Share an Idea For What FESI Can Do To Advance DOE’s Mission
The Federation of American Scientists (FAS) is seeking to engage experts who can leverage their knowledge to propose projects and use-cases for FESI to consider. Priority use cases areas include but are not limited to:
- Catalyzing industry-led consortia
- Supporting coordinated procurement
- Strengthening innovation incentives
- Supporting regional innovation ecosystems
- Convening venture and impact investors
- Piloting or expanding DOE innovation programs with non-DOE funding
- Collaborating with the National Lab Foundations
- Responding quickly to crises
- Enabling communities to participate in clean energy innovation
- Read more about priority use cases here.
What We’re Looking For (and what we’re not)
Please submit your initial project designs in the form of wireframes. A wireframe is an outline of a potential project that demonstrates its fit and potential for impact. The template below reflects the components of a wireframe. The submission form can be found at the end of this page.

When filling out your wireframe, we ask you aim to avoid the following pitfalls to ensure that ideas are properly scoped, appropriately ambitious, and are in line with the agency’s goals:
- Failure to align to mission. Your proposal should be aligned with DOE’s mission, particularly catalyzing the timely, material, and efficient transformation of the nation’s energy system; securing U.S. leadership in energy technologies; and maintaining a vibrant U.S. effort in science and engineering as a cornerstone of economic prosperity
- Going alone. FESI’s central role is to cultivate long-lasting external partnerships and cross-sector activities. Your proposal should not rely on FESI as the sole funder or service provider, except in places where a first-in, crowd-in approach is needed.
- No clear diagnosis of the problem. Your project proposal should identify points of leverage where FESI can make a big impact on a complex problem.
- Duplication of efforts. While FESI can expand upon successful DOE programs that would amplify their benefits for the public , your proposal should not duplicate existing DOE efforts.
Sample Idea
Problem
Enhanced Geothermal Systems (EGS) technology has advanced significantly in recent years, but there is a lack of accurate, public information on heat flows accessible to would-be developers.*
FESI Advantage
FESI could fund the creation and maintenance of a public platform on global heat flows and related knowledge. To do so they can leverage the expertise at DOE’s Utah FORGE experiment and Geothermal Technologies Office while also convening academics, geothermal startups, legacy oil/natural gas firms, and nonprofits.
Program Objective
A partnership between FESI, Project InnerSpace, and Global Heat Flow to update, publish, and maintain a public database of heat flow maps.
Activities
- Kickoff convening of relevant stakeholders, identification of core problems to be overcome in creating a mapping database. Outreach to discover any critically missing information.
- Funding of a team of researchers to complete scope of work identified at kickoff.
- Popularization of research findings and resources to help new startups and projects make the most of available information.
Successful Outcome
Lead time from exploration/discovery to project initiation reduced by X amount. Y number of new projects or investments announced.
*This idea inspired by the partnership between Project Innerspace and the International Heat Flow Commission.
FESI >> Priority Use Cases
The Federation of American Scientists (FAS) is seeking to engage experts who can leverage their knowledge to propose projects and use-cases for FESI to consider. Priority use cases areas include but are not limited to:
1. Catalyzing problem-focused industry-led consortia. DOE has often worked on precompetitive technologies with industrial consortia. Once they are up and running, these consortia can be very productive, but their initial implementation tends to be slow and saddled by red tape. Like the Foundation for the NIH, FESI could launch consortia quickly and assist them to transition into stable, permanent relationships with DOE.
2. Supporting coordinated procurement, advance market commitments, and other sources of demand to stimulate innovation uptake. Early adoption of new technologies spurs their improvement and lowers their cost. FESI could work with DOE to identify uptake opportunities, while simultaneously collaborating with non-governmental funders who might buy down the costs. FESI’s network could become a repository of design expertise and operational know-how for demand-side energy and climate innovation policy.
- H2 Global Foundation (Germany)
- First Movers Coalition
3. Strengthening incentives to broaden the pool of innovators. The nation’s energy challenges demand an “all-of-society” response. The more diverse the communities that are advancing solutions (rural to urban, coast to coast), the better. Learning from the Foundation for Food and Agriculture Research, FESI could work with DOE to assess the pool of innovators and design programs, including prize competitions, to broaden it.
- Egg-Tech Prize (FFAR)
- Carbon Removal X Prize (X Prize)
4. Collaborating to strengthen regional innovation ecosystems. Regions are increasingly building economic development strategies around clean energy. DOE has not had a strong regional presence in the past, but now has a Congressional mandate to build one. Working with the national laboratory foundations, universities, and other partners, FESI could convene initiatives to strengthen regional ecosystems.
- Coordinating with NSF Engines and EDA Tech Hubs
- Coordinating with and learning from state innovation ecosystems
5. Convening impact and venture investors. Early-stage investors have a granular understanding of the technological opportunities, competitive landscape, and commercialization challenges facing clean energy start-ups. FESI could bring this community together with DOE managers and national laboratory experts to identify promising areas for public-private partnerships as well as pitfalls that may impede participation of entrepreneurs in such efforts.
- Building on ARPA-E’s successful annual Summit
6. Piloting or expanding DOE innovation programs with non-DOE funding. DOE has fielded an array of creative programs that foster technology commercialization, such as Lab-Embedded Entrepreneurship Program, Cradle 2 Commerce, Lab Partnering Service, Small Business Vouchers, and Energy I-Corps. The demand for these programs is often stronger than federal funding can accommodate. FESI could enable donors to expand capacity, as the National Fish and Wildlife Foundation has done for federal conservation programs.
7. Responding quickly to crises. The global energy and climate situation is volatile, and crises are inevitable. As the CDC Foundation showed in its response to covid, FESI could act quickly in such situations, laying the basis for a longer-lasting response from DOE. Key activities might include public communication about the performance of the energy system and coordination with non-federal actors, especially in philanthropy and business.
8. Enabling communities and new entrants to participate in clean energy innovation. Landmark legislation has greatly expanded DOE’s on-the-ground footprint through demonstration and deployment programs. The success of these programs depends on effective engagement with a diverse group of actors. FESI could work with partners to provide technical assistance to organizations and businesses that have not worked with DOE in the past, increasing the number and quality of such new entrants.
- FDA Patient Listening Sessions (Reagan-Udall Foundation)
Empower the Geothermal Earthshot: Solve the Climate Crisis with Earth’s Energy
Summary
As a result of human activity, greenhouse gas emissions are increasing so rapidly that climate disaster is imminent. To avoid catastrophe, all economic sectors––industry, agriculture, transport, buildings, and electricity––require immediate energy and climate policy solutions. Only with a resilient and renewable, bipartisan, clean, and reliable partner can America fully decarbonize its economy and avert the devastating effects of climate change. As America’s clean energy transformation proceeds, there is one energy technology up for the task across all these sectors––geothermal.
Geothermal is the energy source naturally produced by the Earth. It is a proven technology with decades of utilization across the United States, including New York, Idaho, North Dakota, California, Arkansas, New Mexico, and everywhere in between.
Government agencies and academic institutions have already identified more than enough untapped Earth-powered energy in the United States alone to meet the nation’s energy needs while also achieving its emissions goals. In fact, the total amount of heat energy in the Earth’s crust is many times greater than the energy available globally from all fossil fuels.
Despite these benefits, geothermal represented just 0.4% of total U.S. utility-scale electricity generation in 2021 and only 1% of the residential and commercial building heating and cooling market. What is holding geothermal back is a lack of policy attention at both the federal and state levels. Geothermal has been drastically underfunded and continues to be left out of energy, climate, and appropriations legislation. By acting as the primary facilitator and coordinator for geothermal technology policy and deployment, the U.S. government can significantly accelerate the clean energy transformation.
Our Empowering the Geothermal Earthshot proposal is a multibillion dollar interagency effort to facilitate the energy revolution America needs to finally solve the climate crisis and complete its clean energy transformation. This top-down support would allow the geothermal industry to fully utilize the power of the free market, commercialize innovation into mass production, and scale technologies.
Challenge and Opportunity
Geothermal energy––clean renewable energy derived from the unlimited heat in the Earth––is a proven technology that can contribute to achieving aggressive climate goals but only if it gets much-needed policy support. Geothermal urgently requires the same legislative and executive attention, policy momentum, and funding that all other energy technologies receive. The Biden Administration as well as Republicans and Democrats in Congress need to lift up the profile of geothermal on par with other energy technologies if we are to reach net-zero by 2050 and eventually 24/7 carbon-free energy.
On day one of his administration, President Biden charged his National Climate Task Force to utilize all available government resources to develop a new target for reductions in greenhouse gas (GHG) emissions. As a result, in April 2021 the Biden Administration announced an aggressive new GHG target: a 50% reduction from 2005 levels by 2030. To meet this challenge, the administration outlined four high-priority goals:

Pie chart showing Total Greenhouse Gas Emissions by Economic Sector in the U.S. in 2020. Transportation is responsible for 27%; Electricity, 25%; Industry, 24%; Commercial; Residential, 13%; Agriculture, 11%.
- Invest in clean technology infrastructure.
- Fuel an economic recovery that creates jobs.
- Protect our air and water and advance environmental justice.
- Do this all in America.
Geothermal energy’s primary benefits make it an ideal energy candidate in America’s fight against climate change. First, geothermal electricity offers clean firm, reliable, and stable baseload power. As such, it easily complements wind and solar energy, which can fluctuate and produce only intermittent power. Not only does geothermal energy offer more resilient and renewable energy, but––unlike nuclear and biomass energy and battery storage––it does so with no harmful waste by-products. Geothermal energy does not depend on extractive activities (i.e., mining) that have a history of adversely impacting the environment and Indigenous communities. The underlying energy source––the literal heat beneath our feet––is local, is 100% American, and has demonstrated gigawatt-scale operation since the 1980s, unlike every other prospective clean energy technology. Geothermal energy offers a technology that we can export as a service provider and manufacturer to the rest of the world to reduce global GHG emissions, increase U.S. energy independence, and improve the country’s economy and national defense.
Additionally, climate change continues to change outside air temperatures and weather patterns impacting building energy consumptions (e.g., heating and cooling), which are expected to increase. Geothermal heating and cooling meets these demands by providing reliable and distributed electricity generation, winter heating, and summer cooling. Geothermal heating and cooling offer solutions to other economic sectors that produce harmful carbon and methane emissions.
Getting to net-zero by 2050––and eventually to 24/7 carbon-free energy––is a community problem, a public sector problem that affects America’s public health, economic survival, and national security. We can get here if geothermal is provided the same opportunities that the government has afforded all other energy technologies.
Geothermal Energy: The Forgotten Energy Technology
Today, geothermal power production is at the same developmental stage that oil production was 100 years ago. Geothermal power production has been proven at gigawatt scale, but in a limited range of locations where conventional hydrothermal systems are easily accessible. Petroleum drilling in the United States began in 1859 and expanded first in places where oil was visible, easily identifiable, and quickly accessible. In the 150 years since, continuous market support from governments and societies has allowed the fossil fuel economy not just to continue but to expand through technology innovation. Fossil fuel technologies have matured to the point where engineers regularly drill seven to eight miles underground, drill in deep ocean water, and utilize efficient recovery technologies such as steam-assisted gravity drainage.
Geothermal carries the same potential to drive new technologies of energy production and enable huge increases in energy recovery and output. However, unlike the petroleum industry, geothermal energy has never received comparable and effective policy support from the federal and state governments to drive this needed technology development, innovation, and deployment. As a result, the geothermal industry has been left behind in the United States.

Pie chart of Federal Energy Subsidies between 1950 and 2010, showing a plurality of subsidies going to oil, while only a small sliver to geothermal.
Ironically, the fact that geothermal technologies have a long and successful track record has kept them out of the “new technology” focus that has been central to clean energy transition policy discussions.
Other technologies (e.g., hydro, solar, hydrocarbons, nuclear, biofuels, and wind) receive tens of billions of dollars each year to develop a path to continued, preferred, and widespread use, which generates commercialization, scalability, and profit. However, similar investment strategies have not been dedicated to geothermal energy infrastructure development.
The United States needs critical capital investments to reach the vast amount of untapped Earth energy scientists have identified, expand the range of places where geothermal resources are possible, and lower the cost of geothermal drilling and production. Public investment will promote technologies such as heating and cooling systems that use individualized geothermal heat pumps (GHP) or district thermal systems. Significant public investment is needed in electricity generation technologies such as closed-loop, deep super hot rock, and enhanced systems (EGS). And of course, public and private investments are needed to help manufacturing and agricultural processes switch from fossil fuels to geothermal.
Investing in Our Future: Empowering the Geothermal Earthshot
Thankfully, investing in America’s energy infrastructure is a priority of our current presidential administration. As indicated in the April 2021 White House Fact Sheet and supported by Executive Order 14057 and the Department of Energy (DOE) Enhanced Geothermal Earthshot announced in September 2022, the Biden Administration realizes the need to marshal federal resources in a coordinated effort.
However, to fully realize and build upon the administration’s clean energy objectives, this proposal urges a holistic approach to empower geothermal deployment. The Enhanced Geothermal Earthshot falls short of the effort required to empower geothermal and scale a solution to draw down the climate crisis because it focuses on a single geothermal technology and involves just one federal agency. Instead, a whole-of-geothermal approach that harnesses the power of the entire federal government is necessary to create ambitious, positive, and widespread changes in America’s energy landscape and subvert the current fossil fuel status quo. The following action plan will usher in the geothermal era and ensure the United States meets its climate objectives and completes the clean energy transformation.
Plan of Action
The Biden Administration must set the targets and the agenda, propose policy and tax support, negotiate for appropriations, and issue regulatory support that allows commercialization and deployment of every possible Earth-powered technology solution. These steps will set up the market conditions for the private sector to commercialize and scale these proven technologies and new innovations.
Creating policies and programs to support geothermal applications and technologies will accelerate the clean energy transformation and end our dependence on hydrocarbons. The U.S. government can usher in a new age of clean, renewable, and local energy through a combination of innovation, programs, and institutionalization. These are outlined in the recommendations detailed below.
Recommendation 1. Empower a Holistic Geothermal Earthshot
The Biden Administration should build upon and broaden the Enhanced Geothermal Earthshot to reduce the cost of EGS by 90% to $45 per megawatt hour by 2035. The administration should set a target for geothermal heat pumps and district thermal systems to reach 35% of U.S. energy consumption by 2035 and electricity generation to reach 10% of energy consumption by 2035. These objectives are in response to the administration’s carbon reduction goals for 2030 and 2050. To begin this initiative, President Biden––joined by the Secretaries of Energy, the Interior, Commerce, Defense, and Agriculture, as well as special climate and environment envoys and advisors and the Environmental Protection Agency (EPA) administrator, among others—should formally usher in a reimagined and holistic Geothermal Earthshot that leverages a whole-of-government approach.
Recommendation 2. Institutionalize and Coordinate Earth Energy Support
Create the Office of Earth Energy (OEE) at DOE through the president’s annual budget proposal. The OEE’s mission will be to coalesce federal and state governments, familiarize the public, and support all types of Earth-powered energy technologies.
- Model the OEE after the DOE’s Office of Nuclear Energy (ONE) and Office of Fossil Energy and Carbon Management (OFECM)
- Inaugurate an Assistant Secretary for Earth Energy to oversee OEE who will report to the DOE’s Undersecretary for Science and Innovation
- Establish three deputy assistant secretaries (DAS) for:
- Low temperature (i.e., direct heat/GHP-GSHP/agriculture/industry)
- Power generation (i.e., enhanced, advanced, conventional)
- Technology R&D (i.e., super hot rock)
- Structure OEE to have branches promoting and supporting Earth-powered systems and solutions by economic sector: industry, agriculture, transport, buildings, and electricity
- OEE annual appropriations of no less than $1.78 billion for operations, research, development, demonstration, and deployment (this funding level is on par with the other energy offices at DOE on which the OEE is modeled)
- Sharpen the focus of the existing Geothermal Technologies Office to be an EGS-specific branch of the power generation DAS within the OEE
Existing DOE offices such as ONE and OFECM offer a proven template from which to model OEE. Geothermal’s potential to address the climate crisis and become a significant part of the cooling/heating and electricity mix in the United States requires significant growth of support within the federal government. The organizational structure of the federal government is imperative to spearhead geothermal development. Raising the awareness and profile of geothermal within the government requires higher-level offices and more senior-level personnel supporting, evaluating, and studying the industry. The three DAS subject-matter designations represent the three overarching applications of geothermal technologies.
Interagency coordination should be led by a Senior Director for Earth-Powered Energy within the National Security Council (NSC). Programs and initiatives involve executive agencies and offices, including DOE, Department of Defense (DOD), Department of Agriculture, Department of Commerce, Department of the Interior (DOI), Office of Science and Technology Policy, Office of Management and Budget, NSC, Domestic Policy Council, Department of State, and EPA, among others.
Recommendation 3. Accelerate Geothermal Innovation
The following innovation accelerator concepts can help unlock technical hurdles and unleash private sector thinking to expand the reach of geothermal energy applications. The needed primary research fits into three broad categories: streamlining existing geothermal energy development and reducing risk, technology innovations to support massively scaling the potential range and total energy available from the Earth, and technical refinements to optimize every Earth energy application.
For example, work is needed to reduce technical risk and predictability in siting geothermal wells to make drilling a geothermal well as predictable and repeatable as it is for oil and gas wells today. Reduced risk and greater predictability is critical to private sector investment support.
Commercial and residential heat pumps and district heating systems need R&D support to improve deployability in urban settings and to maximize both heating and cooling efficiency.
Enhanced geothermal systems—those that expand traditional hydrothermal power generation to less permeable locations—have received modest public sector support for several decades but need greater and more focused application of technologies that were developed for oil and gas during the fracing expansion.
Achieving massive scalability for geothermal power means developing technologies that can operate well beyond traditional hydrothermal system locations. Closed-loop and other advanced geothermal technologies promise access to energy anywhere there is heat, but all are currently at the earliest stages of their technology lifecycles and operating without major public sector research support
All of these use cases would benefit from a concerted, government-funded research effort, shared access to innovation and best practices, and a clear path to commercialization.
(A) Propose in the president’s annual budget a geothermal bureau, program, or focus area within the Advanced Research Projects Agency-Energy (ARPA-E) dedicated to promoting all types of geothermal innovations, from low- to high-temperature cooling/heating and electricity applications. ARPA-E “advances high-potential, high-impact energy technologies that are too early for private-sector investment.” Use this program to support research into new or expanded ways to use Earth energy that are too early or speculative for private sector investment and bring them to the point of commercialization.
(B) Create a new venture capital entity to accelerate commercialization of geothermal innovations by aggressively investing in geothermal-related technologies. Model it on the existing In-Q-Tel organization that has been very successful in driving national security technology development. This would be a new venture capital funding entity focused on commercializing Earth power technology innovation from U.S. government-funded research and development initiatives (e.g., the ARPA-E projects described above) and on exploring technology solutions to problems that remain unsolved across government, industry, and society yet are critically important for dealing with climate change.
(C) Create a public-private Geothermal Center of Excellence (GeoExcel) at a DOE national lab. A sustained and robust public-private research program is essential for innovation, and many agencies leverage private sector investment through publicly funded centers of excellence. Currently, geothermal research is conducted haphazardly and incoherently across U.S. government agencies and DOE national labs such as Idaho National Lab, Sandia National Labs, Lawrence Berkeley Lab, U.S. Geological Survey, National Renewable Energy Lab, Brookhaven National Lab, Argonne National Lab, National Energy Technology Lab, and many more. To augment research within its national lab apparatus, DOE should establish GeoExcel to develop the technology necessary to produce low-cost geothermal power, cooling/heating, and mineral recovery such as lithium, manganese, gold, and silica. GeoExcel would also conduct education outreach and workforce development. GeoExcel would be a multibillion-dollar public-private partnership competitively awarded with multiyear funding. It would interact closely with one or two DOE national labs as well as federal, state, regional, and municipal government agencies, research universities, community college, nonprofits, and the private sector.
Recommendation 4. Create Earth Energy-Specific Programs and Policies
The following programs, funding, and regulatory suggestions should be proposed in the president’s budget and funded or authorized through congressional appropriations or moving authorization legislation. Some recommendations can be achieved through updating rules and regulations.
Programmatic: DOE Demonstration Projects
The Infrastructure Investment and Jobs Act (IIJA) appropriated $20 billion for demonstration projects, including those for hydrogen, direct air capture, and large-scale carbon capture. This funding provides vital capital to incentivize, commercialize, and scale public-private partnerships using the benefits of the free market to build major infrastructure projects that will expand clean energy and advance the energy transformation. The IIJA did not direct any funding specifically for geothermal technologies; yet geothermal provides the critical clean firm and renewable baseload energy that complements intermittent technologies, can be coupled to produce green hydrogen, and empowers direct air capture infrastructure. As part of its criteria for selecting applications for demonstration project funding, Congress should clarify and/or DOE should expressly include and announce that geothermal technology will receive significant demonstration appropriations funded through the IIJA.
Funding: Risk Mitigation and Management
Commercial investment in new technology hinges on risk assessment. Removing risk from new geothermal ventures will facilitate faster commercial-scale deployment and, in turn, lower risk as more projects are completed. Propose a $2 billion risk mitigation fund within the DOE’s OEE specific for district cooling/heating and electricity drilling and exploration projects. This geothermal risk mitigation fund would provide loans to cover a portion (i.e., 60%) of the drilling cost that can be converted into grants if development of the geothermal field is unsuccessful. To minimize losses, a premium can be charged to ensure a positive return based on risk and set limits on total wells covered and monetary claims to limit losses.
This risk mitigation and management structure has been successfully implemented for geothermal projects in Kenya, Iceland, and Costa Rica, countries in the top five of geothermal energy production per capita. To further reduce risk, the OEE should only consider projects that have already completed some exploratory drilling. Before administering commercial debt financing, the OEE should also require these projects to receive concessional risk mitigation support prior to advancing with additional drilling, district cooling/heating system construction, or power plant construction.
Funding: Rural Development
Propose a $450 million Department of Agriculture Rural Development grant program to transition agricultural and industrial cool/heat applications from burning fossil fuels to Earth energy generation. This funding can be used to decarbonize over two million cooling and heating systems used in the agricultural sector in rural America. Agricultural activities such as food processing, pulp and paper manufacturing, vegetable dehydration, dairy processing, aquaculture, greenhouses, processing sugar, and much more can transition to the clean energy economy.
Funding: Community Development
Propose a $750 million grant program to be implemented by the Department of Commerce Economic Development Administration. Grants will be made for high- and low-temperature geothermal developers to partner with municipalities, electric or energy cooperatives, community choice aggregators, and public utilities servicing America’s communities to develop geothermal resources. This funding level could generate between 375 and 500 megawatts of electricity to power between 280,000 and 375,000 households or over 3,500 megawatts of cooling/heating energy and decarbonize two to three million households and commercial businesses around the country. It is important that the clean energy transition equitably and justly empower rural American communities along with urban and suburban communities.
Funding: Tribal Development
Fund a $275 million grant program through the proposed OEE at DOE or the Bureau of Indian Affairs (BIA) at DOI to support tribal nations to develop geothermal resources on their lands, such as electricity generation, industrial and agricultural decarbonization, residential and commercial GHPs or district cooling/heating installations, and recreation. This funding could be used to generate up to 183 megawatts of electricity or 1,375 megawatts of thermal energy for use on tribal lands. Native Americans used geothermal resources for thousands of years before European settlement. Today, tribal lands are the backbone of mineral exploitation, agriculture, industry, and power production in America. These OEE or BIA funds will facilitate the clean energy transition on tribal lands using geothermal resources.
Funding: Military Construction
Propose a $2.6 billion program for distributed geothermal power and cooling/heating projects on military installations across the United States and abroad. The Air Force recently selected two military installations to deploy geothermal energy. In an increasingly contested clean energy economy, we should build secure and resilient military infrastructure using local Earth energy technologies directly on military installations. DOD can use the funding to generate a combination of up to 1,733 megawatts of electricity or 13,000 megawatts of thermal energy to offset its massive carbon footprint from 500 fixed installations, which includes 300,000 buildings. This investment will help all service branches and DOD reach the Biden Administration’s renewable energy generation goals. This funding begins the vital transformation to secure the energy infrastructure of military installations through energy independence and protect our national security interests at home and abroad. Energy and mineral security are paramount for our national security.
Funding: Smithsonian Institution
Geothermal energy is a story of the forgotten energy technology. Propose $25 million for the Smithsonian Institution to memorialize and narrate the history and future of geothermal energy in the United States. Museums familiarize and educate policymakers and the public about the past, present, and future of America. Permanent exhibitions in museums along the National Mall in Washington, DC, will help promote the potential of geothermal resources to policymakers as is already done with other energy technologies featured by the Smithsonian Institution.
Funding: Workforce Development and Community Colleges
The future of the clean energy transformation rests in the education of Americans and a smooth workforce transition of oil and gas professionals into the clean energy economy. Community colleges play a vital role in this transition. Allocate $300 million for the Department of Education to award grants to technical and vocational programs to develop and build geothermal-specific skill sets and needs into curriculums. These geothermal programs will build upon and expand existing programs such as drill rig crew member training programs like that at Houston Community College in Texas or cooling/heating apprenticeship programs like those at Mercer Community College in New Jersey or Foothills College in California. The objective of these grants is to amplify the capabilities of geothermal technologies and deepen the knowledge of professionals who install, sell, market, or manufacture products that could transition to geothermal technologies and away from burning fossil fuels.
Funding: Convert Abandoned Oil and Gas Wells
Expand the authorities of the Leaking Underground Storage Tank (LUST) Trust Fund within the EPA to include the conversion of existing and abandoned oil and gas fields into geothermal wells. The LUST Trust Fund is financed by a 0.1 cent tax on each gallon of motor fuel sold nationwide. Oil and gas wells can be retrofitted or reworked to provide geothermal cooling/heating for low-to-no-carbon direct use opportunities or generate power. Due to the years of development at these sites, the reservoir is well understood, thereby lowering risks and cost of exploration. Alternatively, this program could be a direct grant program funded through the proposed OEE within DOE or through EPA.
Regulatory: Geothermal Permitting Application Processing
Applications to conduct geophysical exploration are currently reviewed by the district office within the Bureau of Land Management (BLM) at DOI that has geographic jurisdiction over the specific geothermal project. Yet many district offices are unfamiliar with the technical aspects of geothermal development, causing significant delays in the review process. Fund $15 million for a national office with a dedicated geothermal team to develop training materials and standard operating procedures and to provide technical support to district offices to ensure timely review of geothermal power and cooling/heating projects on federal lands. Programs that cross-train staff will also improve the ability to coordinate between different agencies and offices.
Regulatory: Categorical Exclusions for Geothermal Projects
Several activities involved in geothermal resource development have no significant environmental effects yet lack an existing categorical exclusion under the National Environmental Policy Act. BLM’s regulations include only one categorical exclusion for geophysical exploration when no temporary or new road construction is required (43 CFR 4 3250); however, it does not cover resource confirmation activities. As a consequence, federal agencies take several months to approve what could be done in a matter of days via a categorical exclusion. Congress has recognized the need to improve the permitting process for geothermal production and introduced several bills to authorize categorical exclusions (i.e., S. 2949, S. 2824, and H.R. 5350).
Tax Support: Cooling and Heating
Propose a 40% tax incentive for residential and commercial building installation of geothermal heat pumps and extend the lifespan of these incentives through 2050, the date set to reach net zero emissions economy-wide. Additionally, the Biden Administration should publicly clarify or amend Presidential Determination No. 2022-18 of Section 303 of the Defense Production Act to include geothermal heat pumps.
Tax Support: Power
Geothermal electricity generation has traditionally been capital-intensive, and investment decisions depend in part on the predictability of tax incentives. This trend is best illustrated by the 1978 passage of the Public Utility Regulatory Policies Act (PURPA). This legislation’s tax consequences created more favorable conditions and a more robust market for renewable-energy suppliers. As a result, PURPA allowed the United States to rapidly increase its geothermal capacity throughout the 1980s.
Rapid deployment and growth after the passage of PURPA illustrates the impact of public policy on geothermal innovation and investment. However, renewable energy tax incentives provided in the Inflation Reduction Act of 2022 had intermittent energy and battery storage in mind when drafted. These tax incentives do not adequately support geothermal power development due to sunset clauses. The president’s budget as well as congressional appropriators and authorizers should extend the availability of the 30% Investment Tax Credit (ITC) and 2.6 cents per kWh for the Production Tax Credit (PTC) using a market approach akin to that proposed in the bipartisan Energy Sector Innovation Credit (ESIC) Act authored by Senators Whitehouse (D-RI), Crapo (R-ID), Barrasso (R-WY), Bennet (D-CO), and Hickenlooper (D-CO) as well as Representatives Reed (R-NY) and Panetta (D-CA).

Chart showing eletricity generation capacity from geothermal development in the U.S. from 1970 to 2020. In that time, geothermal generation capacity has grown from 0 megawatts to nearly 4,000 megawatts.
The ITC and PTC are written with intermittent energy technologies in mind. Geothermal requires a tax incentive structure that does not sunset after two or 10 years but rather automatically scales down credits as geothermal technologies’ market penetration ramps up. The ESIC scale down should begin when geothermal reaches 10% market penetration instead of 2%. This empowers the free market to play a major role in commercialization and scaling geothermal technologies and provides much-needed predictability and planning for the geothermal industry. It also ensures taxpayer dollars do not subsidize market-mature technologies as they currently do for all other energy technologies such as hydrocarbon, solar, wind, and nuclear projects.
Conclusion
We can find geothermal energy just below our feet, literally everywhere. It provides 24/7 carbon-free power, cooling, and heating that is safe, resilient, local, and American. A public-private partnership that leverages public-sector investment with private-sector know-how can make geothermal technology a viable replacement for hydrocarbons and a powerful solution to reducing greenhouse gas emissions. We must empower and broaden the Enhanced Geothermal Earthshot through the programs and recommendations listed in this plan of action. In doing so, a reimagined and holistic Geothermal Earthshot can leverage the position and influence of the federal government through a whole-of-government approach, allowing the free market to seize on this momentum to scale and commercialize geothermal energy solutions. This will expand the rapidly emerging technologies that make widespread Earth-energy harnessing possible. As the need for firm, scalable, renewable, stable baseload energy only becomes more urgent, these geothermal innovations make the possibility of continuous, reliable, global clean energy a reality.
No. Unlike some other clean energy technologies that require vital minerals extracted or refined in authoritarian countries including Russia and China, Earth energy technologies and innovations reduce the clean energy economy’s reliance on these foreign-extracted minerals. Resilience from domestic geothermal energy secures our supply chains, conserves from destruction vital forests and habitats from Brazil to the Democratic Republic of the Congo, and generates high-paid and sought-after union jobs here in the United States.
The clean energy transformation brings with it a workforce transition. Geothermal technologies offer displaced fossil fuel workers employment opportunities that respect their professional experiences, maintain their community heritage, and preserve their place-based sense of self. Mechanical engineers, drill rig apprentices, drill supervisors, geophysicists, and project managers from the oil, gas, and coal industries all possess skills and training transferable to geothermal jobs—typically, six-figure salaried jobs.
Workers are tired of hearing “trust us” refrains from politicians, the private sector, and government agencies that claim a new job will be found for them. These jobs need to be ready before an individual’s job disappears and not rely on potential tourism or the prospect of relocation to another community.
Geothermal provides solutions to the oil and gas workforce as it transitions to a clean energy economy and protects the integrity and honor of rural American communities once prominent in the fossil fuel economy such as Eddington in Maine, Page in Arizona, Colstrip in Montana, River Rouge in Michigan, St. James in Louisiana, and Winfield in West Virginia. All of these communities have had environmental and public health issues due to hydrocarbons or are experiencing major loss of employment due to closing hydrocarbon-burning power plants.
Rural America is poised to win big in the ongoing clean energy transformation once policymakers harness the vast geothermal potential everywhere under our feet.
Recent heat waves around the world, with record temperatures that threaten food production and even human survival, highlight an important fact: with global warming comes an increasing need for sustainable cooling strategies.
Traditional air-conditioning removes dangerous heat from buildings and provides life-saving shelter and comfort. Unfortunately, air-conditioning systems worsen two other problems.
First, heat is not so much removed or eliminated as it is moved from one location to another. When a building interior is cooled, that thermal energy is transferred to the exterior surroundings. In dense urban areas, this effect increases local temperatures, exacerbating the heat wave in places that are already heat islands as a result of urbanization.
Second, air-conditioning requires significant electricity, placing additional stress on electric grids and generation systems that are already struggling to decrease fossil fuel dependence and cope with the electrification needed to reduce greenhouse gas emissions.
Thankfully, this increased demand can be partially offset by daytime solar generation. But nighttime cooling has become a necessity in many places. Geothermal technology has a major role to play here too. Geothermal (i.e., ground source) heat pumps are far more efficient than their air-source counterparts, especially at high and low temperatures.
A ground-source cooling system can reduce building interior temperatures without heating the surrounding air space. But the capital costs for these systems are high. Public-sector support is needed via tax credits and the Defense Production Act to incentivize adoption now plus simultaneous investments in technology to streamline implementation and decrease cost over time.
Intermittent energy technologies have proven they can scale and compete with fossil fuels. But wind and solar, along with battery storage, only get us part of the way through the clean energy transformation. These technologies have made enormous strides in cost-effectively replacing fossil fuels for power generation, but their intermittent nature means they cannot get us “the last mile” to total electrification. They also cannot provide scalable and distributed cooling/heating benefits to decarbonize the built environment or agriculture processes that produce harmful emissions by burning fossil fuels.
A report published by a consortium of scientists and led by the Massachusetts Institute of Technology estimate conventional geothermal could provide 100,000 megawatts of electricity in the United States––enough energy to power 16 million U.S. households––while the Department of Energy estimates geothermal heating and cooling could reach 28 million U.S. households through the use of geothermal heat pumps. These are conservative estimates using proven technologies. Innovative technologies will exponentially grow these estimates with the right and much needed policy support.
Because geothermal energy is a reliable, carbon-free, and renewable source of power, it has wide-ranging applications that meet America’s key agricultural, manufacturing, and commercial needs, including aquaculture farming; dairy production; processing pulp and paper; mineral recovery for use in battery, wind turbine, and solar panel manufacturing; vegetable processing and drying; and zero-carbon electricity generation, to name a few. Find out more uses of geothermal on page 22 in the DOE’s GeoVision report.
Tipping Points for Positive Transformation
The news on the earth’s climate can feel unrelentingly depressing. And increasingly often, headlines and reports focus, correctly, on tipping points. The IPCC first introduced the idea of climate tipping points decades ago; the concept is that once certain climate thresholds are reached, it could force life on earth to contend with long-term, irreversible changes.
From the collapse of the Greenland ice sheet to the Labrador Seas Convection Collapse to the dieback of the Amazon Rainforest, these tipping points will send earth systems into a catastrophic tailspin. They are forecasted to unleash progressively as we approach the warming thresholds of 1.5°C.
But tipping points don’t have to be negative. What if, instead of envisioning every tipping point as the edge of a cliff overlooking an ecological abyss, we can start to think about positive climate tipping points, leading communities, countries, and yes, the globe to a more sustainable, cleaner and livable future?
This is not a utopian pipedream – a growing body of research suggests that positive tipping points, such as thresholds in electric vehicle adoption, or changes in food markets and consumption habits, could just as rapidly accelerate transitions to a more sustainable way of life.
In fact, this week, experts are convening at the University of Exeter in the United Kingdom, for the first ever Global Tipping Points Conference. This event will bring together a growing alliance of partners working together on tipping points and seeking to co-develop new approaches for triggering positive tipping points for a socially just transformation.
Thus far, the idea of positive climate tipping points remains largely academic – and researchers are still working on how to identify enabling conditions for these positive tipping points before they occur. But the goal of operationalizing positive tipping points is well within reach, and some of our counterparts in the UK and Europe have already begun applying this concept in thinking about policy intervention.
What does this mean for the United States? Given the window of opportunity provided by the Inflation Reduction Act (IRA) and the Infrastructure Investment and Jobs Act (IIJA), we have an opportunity to drive real transformative change. Positive tipping points might jumpstart recovery and accelerate our return on investment. For example, what if we could map the penetration and distribution of electric vehicle (EV) charging infrastructure required to cause electric vehicle use to take off — and then target infrastructure subsidies to optimize that result? Or if in planning for implementation of the Federal Sustainability Plan, the government could sequence the transition of its operations, toward 100% zero-emission vehicle acquisitions for example, to achieve results faster and more economically by capitalizing on positive tipping points?
The Federation of American Scientists and our collaborators at Metaculus, a forecasting community and platform dedicated to generating accurate predictions about future real-world events, will be watching this week as the Global Tipping Points Conference kicks off across the Atlantic. Our hope is to harness this energy to inspire policymakers back home, to make the most of this moment to drive toward a sustainable future.
Environmental Data in the Inflation Reduction Act
“It is a capital mistake,” Sherlock Holmes once observed, “to theorize before one has data.” In the Inflation Reduction Act, fortunately, Congress avoided making that capital mistake a Capitol one.
Tax credits and other incentives for clean energy, clean manufacturing, and clean transportation dominate the IRA’s environmental spending. But the bill also makes key investments in environmental data. This is important because data directly informs how efficiently dollars are spent. (You could have avoided wasting money on that extra jug of olive oil if you’d just had better data at hand on the contents of your pantry.)
The IRA’s environmental-data investments can be broken down into three categories: investments in specific datasets, investments in specific data infrastructure, and general support for data-related activities. Let’s take a closer look at each of these and why they matter.
Investments in specific datasets
The IRA appropriates $850 million (over six years) for the Environmental Protection Agency (EPA) to create incentives for methane mitigation and monitoring. The IRA directs EPA to use some of the funds to “prepare inventories, gather empirical data, and track emissions” related to the incentive program. This information will allow EPA (and third parties) to evaluate the program’s success, which could be very powerful indeed. Because methane is such a potent and short-lived greenhouse gas (with a 20-year global warming potential that is more than 70 times greater than that of carbon dioxide), scientists agree that cutting methane emissions quickly is one of the best opportunities for reducing near-term global warming. Understanding whether and which incentives spur significant methane mitigation would therefore help policymakers decide if and where to double down on mitigation incentives moving forward.
The IRA appropriates $1.3 billion (over nine years) for the U.S. Department of Agriculture’s Natural Resources Conservation Service (NRCS) to provide conservation technical assistance to farmers and ranchers—and to quantify the climate benefits. NRCS was established in 1935 to help farmers and ranchers conserve land, soil, water, and other key agricultural resources. The IRA boosts NRCS’s funding by an additional $1 billion over nine years. But it also kicks in an additional $300 million for NRCS to collect and use field-based data to quantify how much NRCS-based efforts sequester carbon and slash greenhouse-gas emissions. Insights could boost national support for practices like regenerative agriculture, incorporation of ecosystem services into agricultural cost-benefit analyses, and good soil stewardship.
The IRA appropriates $42.5 million (over six years) for the Department of Housing and Urban Development (HUD) to conduct energy and water benchmarking studies. Utility benchmarking helps property managers understand how efficient a given building is relative to other, similar buildings. Benchmarking results guide investments into upgrades. For instance, a property manager with $100,000 to spend may wisely decide to spend that money on “low-hanging fruit” fixes (such as replacing old lightbulbs, or installing weatherstripping around doors and windows) at their least-efficient properties instead of investing in upgrades at more-efficient properties that will yield only marginal portfolio improvements. The IRA funds collection of data to expand utility benchmarking across HUD-supported housing.
The IRA appropriates $32.5 million (over four years) to the White House Council on Environmental Quality (CEQ) to collect data on which communities are disproportionately harmed by negative environmental impacts, and to develop related decision-support tools. This component of the IRA directly supports the Biden administration’s Justice40 Initiative. Justice40 establishes a national goal of ensuring that so-called “environmental justice communities” realize at least 40% of the benefits of certain federal investments. But as an executive-led initiative, Justice40 can only direct existing federal funds—it can’t bring in additional money. While advocates have argued that the IRA does not go far enough in bolstering environmental justice, designating new funding for the White House to realize Justice40 objectives is undoubtedly a step in the right direction.
The IRA appropriates $25.5 million for the U.S. Geological Survey to “produce, collect, disseminate, and use 3D elevation data.” There’s no other way to say it: 3D elevation data are cool. These data, collected by aircraft-mounted sensors, can be stitched together to produce models of our world underneath surface features like trees and buildings. These models support everything from landslide prediction (see box) to flood-risk assessment. IRA funds USGS in continuing to fill gaps in the 3D elevation data available for the United States. Example of a model constructed using 3D elevation data. Clouds of data points (left) can be stitched into 3D elevation models (right) that, for instance, reveal past landslides and steep slopes at risk of failure. These features could be impossible to identify through aerial images that also capture surface features. (Source: USGS.)

Clouds of data points (left) can be stitched into 3D elevation models (right) that, for instance, reveal past landslides and steep slopes at risk of failure. These features could be impossible to identify through aerial images that also capture surface features. (Source: USGS).
The IRA appropriates $5 million (over four years) for EPA to collect and analyze lifecycle fuels data. The diversifying U.S. energy system is triggering heated debates over the pros and cons of different fuels. Hydrogen-powered cars produce zero emissions at the tailpipe, yes. But given the carbon and energy footprints of generating fuel-grade hydrogen on the front end, are hydrogen cars really cleaner than their gas/electric hybrid counterparts? Biofuels are all renewable by definition, but certainly not all created equal. The IRA enables the EPA to empirically contribute to these debates.
Investments in specific data infrastructure
The IRA appropriates $190 million (over four years) for the National Oceanic and Atmospheric Administration (NOAA) to invest in high-performance computing and data management. This funding responds to concerns raised by NOAA’s Science Advisory Board that NOAA lacks the technical capacity to continue to advance U.S. weather research. The Board argued that this need is especially acute with regard to understanding and predicting high-impact weather amid rapidly changing climate, population, and development trends.
The IRA appropriates $18 million (over nine years) for EPA to update its Integrated Compliance Information System (ICIS). ICIS is EPA’s principal compliance and enforcement data system, including for regulatory pillars such as the Clean Air Act and Clean Water Act. While an outdated data-management system is hardly the primary reason why violations of U.S. environmental laws are rampant (a near 30% erosion of funding for EPA’s compliance office over the past decade is a bigger problem), it certainly doesn’t help. The IRA will enhance EPA’s efforts to operationalize an existing plan for modernizing the ICIS.
The IRA directs the Secretary of Energy to “develop and publish guidelines for States relating to residential electric and natural gas energy data sharing.” While not an investment per se, this brief provision nevertheless merits mention. The IRA channels funds through the Department of Energy (DOE) to state energy offices for new rebate programs that reward homeowners making energy-efficiency house retrofits. The IRA directs the Secretary of Energy to establish guidelines for sharing data related to these programs. Proactively developing such guidelines will be useful both for facilitating productive data exchange (e.g., among those trying to understand how widespread efficiency upgrades affect energy demand) as well as for forestalling adverse effects (e.g., cyberattacks from bad actors exploiting grid vulnerabilities).
General support for data-related activities
In addition to the specific investments outlined above, the IRA appropriates (over the next nine years) $150 million, $115 million, $100 million, and $40 million, respectively, to the Department of the Interior, the Department of Energy, the Federal Energy Regulatory Commission, and the Environmental Protection Agency for activities including “the development of environmental data or information systems.”
This broad language gives agencies latitude to allocate resources as needs arise. It also underscores the fact that multiple agencies have pressing environmental-data and -technology needs, many of which overlap. The federal government should therefore consider creating a centralized entity—a Digital Service for the Planet—“with the expertise and mission to coordinate environmental data and technology across agencies.”
The hundreds of millions of dollars that the IRA invests in environmental-data collection and analysis will serve as critical scaffolding to efficiently guide federal spending on environmental initiatives in the coming years—spending that is poised to massively increase in years to come due to the IRA as well as other key recent and pending legislative packages (including the Infrastructure Investment and Jobs Act, the CHIPS and Science Act if authorized funds are appropriated, and the Recovering America’s Wildlife Act that has a strong chance of passing this Congress). The foundation for data-driven change has been laid. The game is officially afoot.
Carbon Capture in the Industrial Sector: Addressing Training, Startups, and Risk
This memo is part of the Day One Project Early Career Science Policy Accelerator, a joint initiative between the Federation of American Scientists & the National Science Policy Network.
Summary
Decarbonizing our energy system is a major priority for slowing and eventually reversing climate change. Federal policies supporting industrial-scale solutions for carbon capture, utilization, and sequestration (CCUS) have significantly decreased costs for large-scale technologies, yet these costs are still high enough to create considerable investment risks. Multiple companies and laboratories have developed smaller-scale, modular technologies to decrease the risk and cost of point-source carbon capture and storage (CCS). Additional federal support is needed to help these flexible, broadly implementable technologies meet the scope of necessary decarbonization in the highly complex industrial sector. Accordingly, the Department of Energy (DOE) should launch an innovation initiative comprising the following three pillars:
- Launch a vocational CCS training program to grow the pool of workers equipped with the skills to install, operate, and maintain CCS infrastructure.
- Develop an accelerator to develop and commercialize modular CCS for the industrial sector.
- Create a private-facing CCS Innovation Connector (CIC) to increase stability and investment.
These activities will target underfunded areas and complement existing DOE policies for CCS technologies.
Challenge and Opportunity
Carbon dioxide (CO2) is the largest driver of human-induced climate change. Tackling the climate crisis requires the United States to significantly decarbonize; however, CCS and CCUS are still too costly. CCUS costs must drop to $100 per ton of CO2 captured to incentivize industry uptake. U.S. policymakers have paved the way for CCUS by funding breakthrough research, increasing demand for captured CO2through market-shaping, improving technologies for point-source CCS, and building large-scale plants for direct-air capture (DAC). DAC has great promise for remediating CO2 in the atmosphere despite its higher cost (up to $600/ton of CO2 sequestered), so the Biden Administration and DOE have recently focused on DAC via policies such as the Carbon Negative Shot (CNS) and the 2021 Infrastructure Investment and Jobs Act (IIJA). By comparison, point-source CCS has been described as an “orphan technology” due to a recent lack of innovation.
Part of the problem is that few long-term mechanisms exist to make CCS economical. Industrial CO2 demand is rising, but without a set carbon price, emissions standard, or national carbon market, the cost of carbon capture technology outweighs demand. The Biden Administration is increasing demand for captured carbon through government purchasing and market-shaping, but this process is slow and does not address the root problems of high technology and infrastructure costs. Therefore, targeting the issue from the innovation side holds the most promise for improving industry uptake. DOE grants for technology research and demonstration are common, while public opinion and the 45Q tax credit have led to increased funding for CCS from companies like ExxonMobil. These efforts have allowed large-scale projects like the $1 billion Petra Nova plant to be developed; however, concerns about carbon capture pipelines, the high-cost, high-risk technology, and years needed for permitting mean that large-scale projects are few and far between. Right now, there are only 26 operating CCUS plants globally. Therefore, a solution is to pursue smaller-scale technologies to fill this gap and provide lower-cost and smaller-scale — but much more widespread — CCS installations.
Modular CCS technologies, like those created by the startups Carbon Clean and Carbon Capture, have shown promise for industrial plants. Carbon Clean has serviced 44 facilities that have collectively captured over 1.4 million metric tons of carbon. Mitsubishi is also trialing smaller CCS plants based on successful larger facilities like Orca or Petra Nova. Increasing federal support for modular innovation with lower risks and installation costs could attract additional entrants to the CCS market. Most research focuses on breakthrough innovation to significantly decrease carbon capture costs. However, there are many existing CCS technologies — like amine-based solvents or porous membranes — that can be improved and specialized to cut costs as well. In particular, modular CCS systems could effectively target the U.S. industrial sector, given that industrial subsectors such as steel or plastics manufacturing receive less pressure and have fewer decarbonization options than oil and gas enterprises. The industrial sector accounts for 30% of U.S. greenhouse gas emissions through a variety of small point sources, which makes it a prime area for smaller-scale CCS technologies.
Plan of Action
DOE should launch an initiative designed to dramatically advance technological options for and use of small-scale, modular CCS in the United States. The program would comprise three major pillars, detailed in Table 1.
DOE should leverage IIJA and the new DOE Office of Clean Energy Demonstration (OCED) to create a vocational CCS training program. DOE has in the past supported — and is currently supporting — a suite of regional carbon capture training. However, DOE’s 2012 program was geared toward scientists and workers already in the CCS field, and its 2022 program is specialized for 20–30 specific scientists and projects. DOE should build on this work with a new vocational CCS training program that will:
- Offer a free, 2- to 3-hour online course designed to raise private-sector awareness about CCS technologies, benefits, and prospects for future projects and employment. DOE should advertise this new program alongside existing grant programs and industry connections.
- Work with community colleges, four-year institutions, and workers’ unions to disseminate the online course and create aligned vocational training programs specifically for CCS jobs. In this effort, DOE should target states like Texas and Louisiana that have carbon-rich economies and low public approval of CCS.
- Partner with DOE-sponsored public university programs and private issue groups like ConservAmerica, American Conservation Coalition, and the Center for Climate and Energy Solutions to advertise and update the course.
This educational program would be cost-effective: the online course would require little upkeep, and the vocational training programs could be largely developed with financial and technical support from external partners. Initial funding of $5 million would cover course development and organization of the vocational training programs.
Pillar 2. Create an accelerator for the development and commercialization of modular CCS technologies.
The DOE Office of Fossil Energy and Carbon Management (FECM) or OCED should continue to lead global innovation by creating the Modular CCS Innovation Program (MCIP). This accelerator would provide financial and technical support for U.S. research and development (R&D) startups working on smaller-scale, flexible CCS for industrial plants (e.g., bulk chemical, cement, and steel manufacturing plants). The MCIP should prioritize technology that can be implemented widely with lower costs for installation and upkeep. For example, MCIP projects could focus on improving the resistance of amine-based systems to specialty chemicals, or on developing a modular system like Carbon Clean that can be adopted by different industrial plants. Projects like these have been proposed by different U.S. companies and laboratories, yet to date they have received comparatively less support from government loans or tax credits.

Proposed timeline of the MCIP accelerator for U.S. startups.
As illustrated in Figure 1, the MCIP would be launched with a Request for Proposals (RFP), awarding an initial $1 million each to the top 10 proposals received. In the first 100 days after receiving funding, each participating startup would be required to submit a finalized design and market analysis for its proposed product. The startup would then have an additional 200 days to produce a working prototype of the product. Then, the startup would move into the implementation and commercialization stages, with the goal to have its product market-ready within the next year. Launching the MCIP could therefore be achieved with approximately $10 million in grant funding plus additional funding to cover administrative costs and overhead — amounts commensurate with recent DOE funding for large-scale CCUS projects. This funding could come from the $96 million recently allocated by DOE to advance carbon capture technology and/or from funding allocated in the IIJA allocation. Implementation funding could be secured in part or in whole from private investors or other external industry partners.
Pillar 3. Create a private-facing CCS Innovation Connector (CIC) to increase stability and investment.
The uncertainty and risk that discourages private investment in CCS must be addressed. Many oil and gas companies such as ExxonMobil have called for a more predictable policy landscape and increased funding for CCS projects. Creating a framework for a CCS Innovation Connector (CIC) within the DOE OCED based on a similar fund in the European Union would decrease the perceived risks of CCS technologies emerging from MCIP. The CIC would work as follows: first, a company would submit a proposal relating to point-source carbon capture. DOE technical experts would perform an initial quality-check screening and share proposals that pass to relevant corporate investors. Once funding from investors is secured, the project would begin. CIC staff (likely two to three full-time employees) would monitor projects to ensure they are meeting sponsor goals and offer technical assistance as necessary. The CIC would serve as a liaison between CCS project developers and industrial sponsors or investors to increase investment in and implementation of nascent CCS technologies. While stability in the CCS sector will require policies such as increasing carbon tax credits or creating a global carbon price, the CIC will help advance such policies by funding important American CCS projects.
Conclusion
CO2 emissions will continue to rise as U.S. energy demand grows. Many existing federal policies target these emissions through clean energy or DAC projects, but more can and should be done to incentivize U.S. innovation in point-source CCS. In particular, increased federal support is needed for small-scale and modular carbon capture technologies that target complex areas of U.S. industry and avoid the high costs and risks of large-scale infrastructure installations. This federal support should involve improving CCS education and training, accelerating the development and commercialization of modular CCS technologies for the industrial sector, and connecting startup CCS projects to private funding. Biden Administration policies — coupled with growing public and industrial support for climate action — make this the ideal time to expand the reach of our climate strategy into an “all of the above” solution that includes CCS as a core component.
Building Back with a Cleaner Power Grid for America
Achieving energy decarbonization in America will require a power grid supplied by renewable energy and backed by ample energy storage. The challenge is that many types of renewable energy provide power intermittently depending on factors such as the time of day or weather conditions. To maintain grid reliability while working towards a nation powered by 100% renewable energy, the Biden-Harris Administration should accelerate adoption of distributed energy resources and expand transmission capacity to create a more unified national power grid. These efforts will increase equitable access to clean energy, accelerate investment in renewables, and create thousands of long-term, high-skilled jobs in a robust American energy sector.
Challenge and Opportunity
The U.S. power grid was built in—and designed for—a previous energy era: one in which on-demand, regionally located energy supplies (such as coal-fired power plants) are delivered to thousands of customers along one-direction transmission lines and managed by public utilities that operate as local monopolies.
But as our nation pushes to replace fossil fuels with cleaner sources of power, the energy landscape will look quite different. Many types of renewable energy provide power intermittently depending on factors such as the time of day or weather conditions. Supplies of such energy sources cannot be ramped up easily (or at all) during periods of peak demand. Meanwhile, smart-and-distributed-energy technologies—such as smart thermostats, rooftop solar, and electric vehicles—have led to an increasingly dynamic and complex power grid.
The policy response to these rapid changes in the way we generate power has mostly constituted a patchwork of efforts at the state and regional level. Federal attention to renewables has focused largely on tax incentives and on regulation via orders from the Federal Energy Regulatory Commission (FERC). For instance, FERC’s recent order opening wholesale energy markets to distributed energy resources is an important step towards increasing the share of renewables in the U.S. energy sector. Incentives to increase adoption of renewables and investment in research and development (R&D) to improve performance and utility of renewables are essential as well. But to realize a quick and smooth transition to a clean-energy future, concerted action is needed to tackle the intermittency challenge that renewables pose.
Such action can proceed via two complementary pathways simultaneously. The first pathway is using technology advances like vehicle-to-grid (V2G) integration, demand response, smart thermostats, and energy storage to flexibly shift load demand. These technologies help guide certain discretionary types of energy consumption (e.g., running a load of laundry) to occur during times when renewable-energy supply is high but demand is low, and can even enable consumers to return energy to the grid (e.g., by plugging in a parked electric vehicle so that the vehicle’s battery can be used as a power source) to during periods of peak demand.
Unfortunately, innovative energy-management technologies are markedly underutilized in the U.S. power sector. Distorted market-incentive structures, inadequate control protocols governing relationships between operators and consumers, and reliability concerns have all made utilities reluctant to embrace a more dynamic grid. Moreover, grid users (i.e., residential and commercial customers) cannot currently participate in an open energy market on an equal footing with utilities. This means that our nation is not realizing the full value of services that customers can provide to a power grid.
A smarter grid-operating system would (1) make it easier for operators to integrate distributed energy resources (DER) with more conventional types of power supplies, (2) economically incentivize changes in user behavior to smooth out energy-demand curves, and (3) enable everyday Americans to invest in distributed clean-energy technologies and earn returns for providing various services to the power grid. These steps in turn would greatly facilitate large-scale integration of renewables into the U.S. power mix.
The second pathway for addressing the intermittency problem is to finally create a connected and integrated American power grid. This would enable areas with steady supplies of renewable energy—such as solar in the Southwest, wind in Texas and the Midwest, and off-shore wind in New England—to deliver power to different parts of the country as needed. Preliminary studies done by the National Renewable Energy Laboratory (NREL) have demonstrated the economic and environmental benefits of unifying currently disconnected sections of the American power grid. Examples from California and Texas illustrate the need to and benefits of expanding national transmission capacity.
California’s power grid highlights the problems of building aggressive renewable energy portfolios without sufficient transmission. As renewable-energy capacity in California has increased, so too has curtailment—i.e., deliberate reduction in output—of that capacity (Figure 1). Roughly half of this curtailment has been due to transmission constraints. Transmission constraints have also prevented creation of approximately 72,000 potential American jobs from renewable-energy projects in the Midwest.

Insufficient transmission capacity coupled with increasing renewable-energy production in California is resulting in significant curtailment, or waste, of renewable energy in the state. (Source: California ISO. (2021).
In Texas, the 2021 winter storm Uri recently demonstrated an even more dire consequence of limited interconnection across our nation’s power infrastructure: the disastrous failure modes that can manifest in isolated power grids. When Uri hit, grid operators simultaneously encountered high load demand as residents turned up their heaters and inadequate energy supply as naturalgas power plants began failing in the cold weather. The rolling power failures experienced in Texas during the storm could have been mitigated if Texas had been able to import energy from other grids. Connecting the regional power grids that exist in the United States will improve grid resiliency across the nation by allowing regions to draw from each other as circumstances and local conditions demand.
Strengthening the U.S. power grid through improved use of energy-management technologies and better regional interconnections will have benefits that extend beyond grid flexibility and resilience. Grid modernization will create jobs across America in the construction, manufacturing, and energy sectors. By empowering rate-payers to produce their own energy, sell back surplus energy to the grid, and be rewarded for shifting energy-consumption patterns in response to grid conditions, grid modernization will generate economic value for consumers. By encouraging development of distributed energy resources, grid modernization will allow rural communities to replace expensive and burdensome propane shipments with continuously flowing electricity from local solar and storage installations. By transforming the U.S. power grid from a collection of regional entities into an interconnected, national resource, grid modernization will allow energy developers to tap into a national energy market instead of being limited by regional boundaries. And by creating a more unified energy sector, one in which states and communities rely on each other for power, grid modernization might even result in a more united country.
Plan of Action
The federal government plays a critical role in regulating and maintaining the nation’s grid infrastructure. As such, there is much that the Biden-Harris Administration can do—by using existing executive authority and by working with Congress on legislative actions—to strengthen the resilience of the U.S. power grid and foster integration of distributed energy resources and renewables into the U.S. power sector. Progress on these fronts will help transition the United States towards a 100% clean-energy future while creating industries and jobs centered around clean-energy resources, building up America’s advanced manufacturing base, and generating new economic opportunities for all Americans.
Actions using existing executive authority
Improve coordination between federal and state entities to reduce regulatory barriers to energy development. The federal government can support interstate grid projects (such as regional interconnections) by helping coordinate state legislatures and by reducing regulatory burdens related to such projects. In particular, FERC plays an important role in coordinating regional grid investments and planning across states (such as the Eastern seaboard’s off-shore wind grid). The Biden-Harris Administration should prioritize this function of FERC in order to reduce the bureaucratic hurdles faced by energy developers. The new White House Office of Domestic Climate Policy (Climate Policy Office) can play an additional coordinating role, helping to align technical research conducted at the Department of Energy (DOE)‘s national labs with policy and regulatory work conducted through the White House Office of Science and Technology Policy (OSTP), the Department of Interior, the Department of Defense, and other relevant federal entities. Finally, the Climate Policy Office can work with state legislatures to provide state-specific recommendations (i.e., recommendations tailored to the unique natural resources and electricity market structures of each state) on how to best incentivize investment and job growth in the energy industry.
Actions involving collaboration with Congress
Scale R&D innovations in clean-energy technologies by increasing relevant DOE funding. The federal government can use its federal budget to help scale R&D innovations in clean energy and help advance those innovations towards manufacturing and production. By accelerating commercialization and mass production of clean-energy innovations, federal investment will help make clean energy more affordable for American consumers, while simultaneously fostering job growth in the American energy sector. To that end, the next White House budget proposal should include significant funding increases for DOE, in particular for DOE’s Office of Energy Efficiency & Renewable Energy (EERE)1, Loan Program Office (LPO), and Advanced Research Project Agency for Energy (ARPA-E). Increasing funding for these offices, which use different financing schemes to invest in technologies at different stages of commercialization, is a direct way for the federal government to scale up American-made energy technologies. These three offices heave a proven ability to identify promising candidates for energy innovation.2 Increasing appropriations for these high-impact offices by $500M will represent a more than 10% increase in each offices’ budget: enough to make a difference, but not a dramatic departure from the budget increases already appropriated by Congress from FY 2019– FY 2020.
Broaden the definition of “qualifying facilities” to allow everyday Americans to participate in energy markets. Broadening the definition of “qualifying facility (QF)” in the Power Utility Regulatory Policy Act (PURPA) of 1978 to include energy storage, power quality factors, and demand response would require utilities to compensate energy providers for a wider range of services: i.e., services that go beyond simple energy production. The power grids of today and of the future are more than a collection of relatively fixed energy demands and supplies. Broadening the definition of QF would acknowledge the increasingly dynamic nature of the power grid, where excess supply often needs to be stored for later and where some portion of demand load can be shifted to different times of day. In particular, broadening the definition of QF would require utilities to (1) treat their own customers as first-class suppliers for a diverse set of potential use-cases in the energy marketplace and (2) properly compensate rate-payers for any services they provide to the power grid. Ensuring the market properly rewards customers for adopting novel clean-energy technologies will spur clean-energy market growth, drive innovation, and generate economic value for individual Americans newly able to participate in electricity markets.
Encourage construction of additional transmission capacity via tax incentives and loan programs. Tax credits have historically been a popular way for Congress to incentivize development of renewable energy such as wind and solar.3 By making the construction of additional transmission capacity similarly eligible for tax credits, Congress can support a critical piece of our nation’s grid infrastructure while creating construction jobs across the country.4
From the standpoint of the power grid, electric vehicles (EV) are essentially mobile batteries. EVs plugged in and their batteries used to store surplus renewable energy when production is high or return energy to the grid when renewable-energy production drops. However, this vehicle-to-grid exchange requires careful coordination between EV owners and utility operators. The current power grid is not designed to handle individual consumers returning power to the grid, and there is no way for utilities to compensate EV owners for the value they provide to utilities by doing so. A “smart grid” would create an electricity marketplace that EV owners could participate in. Such a marketplace would significantly improve the value proposition of EVs, encouraging EV uptake as well as domestic investment in advanced automobile manufacturing. Given that Tesla became America’s most valuable automobile company in 2020, the market has already seen the value that EVs have to offer. A smarter power grid will allow full capitalization of that value by consumers, industry, and our power grid.
Investing in the U.S. power grid will benefit many constituent groups, allowing for a multifaceted approach to messaging. For instance:
- Solar energy coupled with storage can lower electricity costs and reduce reliance on imported natural gas or propane for rural and isolated communities.
- Certain U.S. geographic regions, such as the Southwest, contain some of the greatest natural renewable energy sources in the world. Directing federal incentives towards such areas will create jobs at the state and local level while reducing foreign energy dependence.
- President Eisenhower passed the Interstate Highway Act by appealing to bipartisan support in a Cold War environment and helped create our modern road infrastructure. The transmission power grid, as the “interstate highway” for the electricity that powers America, is a similarly important piece of infrastructure that will help America maintain its national security and international competitiveness.
Distributed clean-energy technologies, like energy storage, residential solar, on-shore and offshore wind, and electric vehicles are quickly reaching economies of scale. Artificial intelligence is increasingly being used to ensure grid stability, optimize grid operations, and inform resource planning. High-voltage transmission lines and power inverters are critical parts of the infrastructure that makes up the backbone of the power grid. Each of these technologies presents an economic opportunity for the federal government to invest in building new infrastructure and spur private development, creating new jobs and industries in the process. In addition, many of these technologies are currently manufactured abroad or rely on minerals imported from foreign countries. The federal government should direct research funding towards technologies that do not rely on foreign imports and that leverage America’s existing manufacturing infrastructure and natural resources. Finally, maintaining a robust workforce of professionals who know how to manage and debug production processes will be important for ensuring that our nation is capable of translating American R&D into products that can be manufactured domestically. Following through on the Plan of Action outlined in this proposal will help open the power grid to broader participation and ensure cleaner, more equitable power distribution while simultaneously advancing American technical competitiveness and manufacturing capabilities.
The federal government’s recent involvement in the power market has focused on tax credits and R&D funding. Indeed, the Energy Act of 2020 injects significant federal funding to R&D funding programs and extends certain tax credits. While continued support for R&D funding is important and tax credits are an important market mechanism, amending PURPA is a different type of action altogether. By changing the definition of qualifying facilities, the federal government categorically changes the basis by which utilities buy power. Firmly establishing an expanded definition of QF via legislation will prevent non-elected bodies from arbitrating the definition of QFs either now or in the future. FERC performed such arbitration in 2020, to the detriment of energy storage projects and the chagrin of clean-energy trade associations.
Amending the definition will force the market to properly compensate consumer-provided services that provide value to the grid. For instance, smart thermostats can reduce electricity used for heating and cooling when energy supply drops or electric vehicles can be optimized to only charge when supply is ample. Incentivizing behavioral changes like these is critical for achieving a 100% clean power grid. Amending PURPA to allow Americans to invest in and earn returns on a broad range of energy technologies today will prepare the United States for the power grid of tomorrow.
Decarbonizing the energy sector is the first hurdle to meet President Biden’s vision of a net zero emissions economy by 2050
Addressing the climate crisis is one of the Biden administration’s key goals. On January 27th, the president issued an executive order stating that the U.S. should aim for net zero emissions, economy-wide, by 2050. The House Energy and Commerce Committee held a hearing last week to discuss reaching this goal that featured leaders from industry, academia, and the environmental justice community.
The need to decarbonize the energy sector
To begin slowing the effects of climate change, many experts believe it is imperative to achieve net zero emissions by 2050, with the first step being to decarbonize the energy sector by 2035. This perspective was emphasized during the hearing by Christy Goldfuss, senior vice president of Energy and Environment Policy at the Center for American Progress, who explained how decarbonizing the energy sector would eliminate greenhouse gas emissions from electricity-generating facilities. As of 2016, the five main sources of electricity in the U.S. were natural gas (34%), coal (30%), nuclear energy (20%), hydroelectricity (7%), and wind (6%). The burning of fossil fuels accounts for 98% of the greenhouse gas emissions from electricity generation. Other emissions include nitrous oxide from some coal burning plants, and sulfur hexafluoride from electricity transmission and distribution systems. While the energy sector’s emissions are currently decreasing at a rate of about 3% per year, it is estimated that levels will continue to decline in the 2020s, rise again in the 2030s, and then remain flat through 2050. All of this will occur as the economy expands and demands for electricity increase.
Challenges and potential solutions
There are many challenges to decarbonizing the energy sector within the next 15 years. As other industries increase their use of electricity, such as the auto industry to meet growing demand for electric vehicles, the energy sector will have to balance the need to increase its capacity and efficiency with reducing its dependence on fossil fuels. Other challenges include adapting to the growing use of renewable energy sources by developing better batteries, reducing wasteful energy consumption, and reducing the amount of carbon released into the air from power plants.
There are also a number of potential solutions for eliminating greenhouse gas emissions from the energy sector.
Commercial buildings consume a massive amount of electricity in the U.S., and to reduce energy consumption, buildings can be updated with energy efficient appliances and lighting, or greenery to cool rooftops and urban areas. Specifically, widespread use of LED lighting (as opposed to not using LEDs at all) could save 348 terawatt-hours, which is the equivalent output of 44 large electric power plants, and save over $30 billion. In addition, green roofs can reduce a building’s energy consumption by 0.7% compared to a conventional roof, and lower city-wide temperatures by up to 5 degrees Fahrenheit.
Wind and solar energy are projected to grow in the next few years, and while their costs have decreased dramatically, their utility will also depend on innovations in energy storage. In 2010, solar power cost $0.37 per kilowatt-hour, and by 2018, the cost declined to only $0.09 per kilowatt-hour. Natural gas, a source of carbon emissions, is one of the least expensive forms of electricity and costs about $0.06 per kilowatt-hour. As the U.S. relies more on renewable energy, there is a growing movement toward developing a flexible power grid with a wider deployment of technologies that store energy during periods of lower production. The most common type of energy storage for the grid today is pumped hydroelectric storage. Electricity is used to pump water uphill to a reservoir where it is stored. When the grid needs more power, that water is released, and it runs downhill through turbines to generate electricity. This process allows energy to be stored for extended periods of time, though it is costly to maintain and new facilities could cause adverse environmental impacts. Moreover, lithium-ion batteries have decreased in cost over the past few years, but can only economically store electricity for about four hours, and further technological advancements are necessary to improve their performance.
Carbon capture technologies can pull carbon emissions out of the air to prevent them from causing further climate damage. One method is a post-combustion scrubbing device which is added to a smokestack that releases carbon, such as those on coal, gas, or oil-fired generators. Some other potential options that can remove carbon from the air include:
- Constructing facilities that can chemically separate carbon dioxide from the ambient air and store it underground;
- Planting trees to expand existing forests or replace ones that had been cut down; and
- Pulverizing certain types of rocks, spreading them on fields or in the ocean, and using them to soak up carbon.
It is clear that much needs to be done to slow the effects of climate change. Fortunately, there are several emerging technologies that could help reduce the U.S. carbon footprint by 2050. It is expected that the Biden administration and Congress will continue to make achieving a net zero emissions economy a priority, and we encourage the CSPI community to participate in serving as a resource to federal officials on this topic.
Revitalizing the DOE Loan Program Office to Support Clean Infrastructure Development
The Biden-Harris Administration should expand the focus of the Department of Energy’s (DOE) Loan Program Office (LPO) to meet the demands of a changing energy industry. The LPO was established to serve as a backstop to private-sector financing for large-scale energy projects with embedded technology risk. The program’s success in scaling large scale power plants and manufacturing plants for next generation energy technologies is well documented. However, the energy industry has changed since the program’s beginning, and the needs for support from the Federal Government have evolved. For example, technology areas that were deemed risky in 2009 are now mature, and in some circumstances, for example in electricity generation, the industry structure that was historically highly centralized has become much more distributed. Modernizing the LPO is a critical means for advancing the Biden-Harris Administration’s climate agenda because the Office supports the development of clean energy projects at commercial scale, leverages private sector capital, and creates middle-class jobs.
This memo recommends three important changes to the DOE LPO:
- The aperture of the LPO must be expanded to include a much larger set of technology areas. In particular, energy storage, hydrogen production and carbon capture, utilization and storage, among other nascent fields, should be supported. Authorizing legislation should be changed to give the Program Office the opportunity to support a technological area at its discretion.
- The Loan Program must reduce the cost of application to incentivize more deployment of smaller projects. This will expand the potential set of projects to be supported and align the Office with overarching trends in the energy sector.
- The Loan Program should expand its purview to support projects impeded by other financing risks in the energy system. These could include grid modernization, system hardening or smart grid updates (which often do not pass traditional cost-benefit analyses), and electric vehicle infrastructure deployment.
Challenge and Opportunity
The proposed solution solves two impending challenges to the President’s climate agenda. First, while innovation is necessary to meet climate goals, the private sector is reluctant to fund first generation projects for novel clean energy technology. As the US embarks on a pivotal decade with respect to managing the national carbon budget, deploying new technology at scale will become even more critical. In particular, reaching 2050 carbon goals will require successfully innovating in hydrogen production, carbon capture, energy storage, and load-following electric power — most of which cannot be currently supported under the Loan Program’s authorization. Second, the nation’s overall infrastructure deficit has been estimated to require an additional $2 trillion of spending by the American Society of Civil Engineers in their most recent 2017 assessment. In the energy sector, ASCE estimated the requirement for additional electricity infrastructure alone to be $177 billion. Simultaneously, the economic returns to investing in our nation’s infrastructure are significant. Recent studies suggest that for every $1 million invested in energy infrastructure, the Recovery Act created 15 durable jobs. The multiplier effect from infrastructure spending varies based on economic conditions, but as the country emerges from the COVID-19-induced recession, enabling the LPO to fund a broad swath of energy infrastructure would be a viable asset for job creation in the coming years.
Currently, the LPO is restricted to financing only the first three deployments of new technologies, and new technologies that are highly capital intensive, such as concentrated solar power. The LPO exists to absorb financing risk for the private sector, risks which often stem from capital intensity or technology uncertainty. As we consider the energy transition in the coming decades, a new set of technologies needs support for initial commercial deployment. Additionally, however, a broad array of infrastructure investments continue to go unfunded by the private sector for other reasons as well, particularly in geographies where commercial markets for offtakers are not fully developed. Expanding the technology and stage aperture of the LPO to include a broader array of projects would attract private capital and accelerate the transition to a decarbonized future.
Plan of Action
The Biden-Harris Administration should expand the DOE’s Loan Program Office (LPO) to enable the Federal Government to quickly make investments in a broad range of infrastructure categories through the pre-existing contracting authorizations at the LPO. Accordingly, we propose three changes to the DOE’s LPO. First, the technology aperture of the Loan Program should be expanded to include a broader set of technologies, including but not limited to energy storage, hydrogen production, carbon capture, utilization and storage, and carbon dioxide removal. Program staff should be granted the flexibility to support a wide range of technology areas at their discretion, in a manner not dissimilar to ARPA-E in the breadth of technical fields within staff purview.
Second, the Loan Program must be adjusted to account for a more distributed energy industry by reducing the cost of application and the corresponding size of project to be supported. For example, the first deployment of a novel grid-scale energy storage technology could be financed at the $10+ million level rather than the $100+ million level. A company looking to deploy that technology would be currently discouraged from applying as a result of the upfront cost of application. The Loan Program should support projects across the capital scale, with flexible application requirements depending on the order of magnitude of public support being requested.
Finally, the Loan Program should expand to support projects impeded by other financing risks in the energy system. These risks could include high-risk project cash flows from uncertain offtake agreements, as for example with public transportation infrastructure or grid modernization, system hardening, and electric vehicle infrastructure deployment. A comprehensive list of infrastructure to support should include:
- Existing planned projects and deferred maintenance on public transit systems;
- Identified grid modernization or hardening programs in state resource plans;
- Accelerated smart grid expansion;
- Building retrofits for both energy efficiency and carbon emissions reduction;
- Electric charging stations; and
- Addressing methane leakage in pipeline systems.
Conclusion
At the Roosevelt Project, we are developing action plans for communities that experience significant industrial upheaval, particularly in the context of forthcoming energy transitions. Though these transitions will vary in their nature as a result of local socio-economic realities, access to or distance from natural resources, and exposure to various climate risks, the transitions will most acutely affect communities of working-class, low-income, under-educated Americans. Federal support for the deployment of shovel-ready energy infrastructure can support the creation of high-quality jobs. For infrastructure deployment to positively contribute to both decarbonization and job creation, projects must be targeted to regions that are likely to be affected by the transition. The adjustments to the DOE LPO proposed here offer one important tool for quickly deploying infrastructure in the next four years.
Energy and World Economic Growth
Introduction
Rapid growth in the developing world has changed the economic center of gravity towards Asia, especially with regard to the world’s energy economy. World-wide demand for energy, especially energy that can propel automobiles, is increasing. High energy growth is producing two problems. The first, widely recognized, is the increased greenhouse gas concentrations that result from burning fossil fuels. Barring a substantial reduction of fossil fuel use, world-wide temperatures could increase to dangerous levels. While the huge infrastructure of the energy economy rules out quick changes, if action is taken now, the necessary world-wide reduction of greenhouse gas emissions may still be possible. However, the required uptake of clean energy technologies will require strong government policies to offset initial investment costs.1
The second problem is less widely recognized. The share of GDP that must be spent on oil supplies may also limit economic growth. At times, the price of oil is limited only by the strain it places on the world economy. We have seen episodes where high and rising oil prices precede an economic downturn. During the downturn, oil prices can drop to levels that, along with a weak economy, discourage investment in new oil production. When strong growth returns, we can see the cycle repeated.
These events are not surprising because oil has a very low elasticity of demand and supply with respect to price. That means very large price changes are required to increase supply or decrease demand. In addition, oil has a very high elasticity of demand with respect to income. That means economic growth strongly increases oil demand. Lastly, oil expenditures can be a large enough component of GDP to adversely affect economic growth if they grow too large. Added together, these interactions can produce the following cycle:
- High GDP growth drives oil prices to high levels since high income elasticity increases oil demand while low price elasticities require high oil prices to balance demand and supply2;
- The resulting high share of GDP spent on oil reverses GDP growth;
- With lower GDP growth, high income elasticity reduces oil demand;
- With lower oil demand, low oil price elasticities sharply lower oil prices; and
- Low oil prices reduce oil production investments but encourage high GDP growth.
Oil prices are only one factor affecting the world economy. Nonetheless, world GDP growth and oil prices are periodically engaged in the cycle described above. Oil prices can also stabilize at levels that are not high enough to cause a downturn in GDP growth, while GDP growth is not high enough to push oil prices past the level where the share of GDP spent on oil reverses GDP growth.3
The Clean Energy Challenge
High economic growth encourages more fossil fuel use and increased greenhouse gas concentrations. High oil prices also provide an opportunity for clean alternatives to be more competitive. However, if high oil prices periodically blunt economic growth, it is more difficult to make clean-energy policies a government priority. Economies that are struggling with low growth and high unemployment are less likely to maintain strong clean-energy policies. Without these policies, we cannot hope to limit the increase of world-wide temperatures to 2oC above pre-industrial levels, the level deemed likely to avoid the more serious consequences of climate change and accepted by the G8 countries as a target to be achieved by international climate policies.4
A recent IEA study5 estimated the increase in clean power-sector technologies that would be needed to prevent a world-wide temperature increase of over 2oC (Figure 1). They estimate that the future annual growth of nuclear power must be between 23 and 31 gigawatts (GW). To put this into perspective, the historic high in building nuclear power plants was 27 gigawatts per year (GW/yr). Photovoltaic power must, after 2020, reach 50 GW/yr and, after 2030, exceed 100 GW/yr. Onshore wind investments must exceed 60 GW/yr from now through 2050. Offshore wind must exceed 20 GW/yr after 2020. After 2020, coal with carbon capture and storage would need to grow by more than 20 GW/yr.
The challenges to achieving the 2oC scenario in the transport sector are no less daunting, requiring that the world sales of electric vehicles double each year between 2012 and 2020. Advanced biofuel production must grow from ~ zero to 22 billion gallons by 2020. IEA estimates that the incremental energy-sector investment that would be needed to keep world-wide temperatures from increasing over 2oC is $37 trillion (cumulative investment between now and 2050).6 The bulk of this investment would have to be made in the developing world. It is not likely that these additional investments, over and above what is necessary to provide required energy supplies, will be made without strong government policies, even though they would produce offsetting savings in the long term. Without strong world-wide economic growth, it will be difficult, if not impossible, to implement the policies necessary to achieve the 2oC scenario.

Average Annual Electricity Capacity Additions to 2050
2012 IEA Energy Technology Perspectives 2oC Scenario
Source: IEA, Energy Technology Perspectives 2012
Oil and Economic Growth
World oil prices have, from time to time, reached levels that have impaired world economic growth such as the aftermath of the 1973 oil embargo. This first “energy crisis” accompanied a major change in the way petroleum was controlled and priced. Prior to 1970, world oil prices were managed by a relatively small number of large oil companies. These companies enjoyed liberal access to most countries’ oil resources. They could develop large oil fields in host countries with terms that allowed ample world supply at non-competitive but reasonable prices. These companies pursued a strategy to maintain affordable and stable oil prices that supported economic growth in the industrialized world and encouraged increased demand for oil. These arrangements were undone by reforms in the member-countries of the Organization of Petroleum Exporting Countries (OPEC). The reforms moved the control of the world’s largest oil resources from the international oil companies to OPEC and, given sufficient OPEC cohesion, the ability to control of world oil prices. OPEC’s control of oil prices was short-lived. The rapid price hikes associated with the 1973 embargo and the 1979 Iranian revolution stimulated new supplies, especially from the North Sea and Alaska. High oil prices also stymied demand as consumers turned to more efficient automobiles.
By 1981, oil prices began a steady decline. Saudi Arabia tried to maintain higher prices by cutting production until by 1985, its output had fallen to 3 million barrels per day (mmb/d), 70 percent lower than it had been in 1980. In 1986, Saudi Arabia adopted netback pricing7 to regain market share. Oil prices collapsed to $10 per barrel (/b)8. By 1988, the OPEC pricing regime was replaced by commodity market pricing, a system that remains in place today and for the foreseeable future. The London InterContinental Exchange (ICE) established a contract for Brent, a mixture of high quality North Sea crudes[ref]The selection of Brent and WTI as marker crudes reflected several factors: 1) the desirability of Brent and WTI to most refiners; 2) the sources of Brent (UK and Norway) and WTI (United States) relative to the world’s financial capitals, London and New York; 3) the supply of Brent and WTI would not be controlled by national governments or OPEC; and 4) Brent and WTI were produced in sufficient volume to be an important component of world oil supply.[/ref]. Additionally, the New York Merchantville Exchange (NYMEX) established a contract for West Texas Intermediate (WTI), high-quality crude similar to Brent.
Only a small percentage of the world’s crude petroleum is WTI, Brent or other traded crudes. Nonetheless, these marker crudes affect the contract price of other types of crude oil since most crude oil contracts are indexed to one or more marker crudes. Spot oil prices also respond to whether the oil commodity markets are in backwardation or contango9
This new pricing regime did not entirely eliminate OPEC’s price setting role. A few OPEC countries maintain spare production capacity. Saudi Arabia, by far, keeps the largest production capacity in reserve. Saudi Arabia can increase or decrease its oil production in response to world market conditions. If Saudi Arabia believes that prices are too high, they can put spare capacity into production, putting downward pressure on market prices. Likewise, if Saudi Arabia believes that prices are too low, they can reduce production (increasing spare capacity) putting upward pressure on market prices. Most other oil producing countries and all private oil companies are price takers. They only respond to higher or lower oil prices by increasing or decreasing planned investments in new production capacity. Whether or not these investments are made has little impact on current oil supplies or prices, but has a large impact on future oil supplies and prices.

The new pricing regime produced relatively stable oil prices until 1999 (except for a sharp increase in 1990 due to the Gulf War). In 1999, oil prices began a sharp upward trend culminating in an extremely sharp $40/b rise from January 2007 to June 2008. With record high oil prices, U.S. demand finally slackened and, soon after, failing financial institutions launched a world-wide banking crisis. Oil prices plummeted reversing in one year the gains made since 2005.
Since 2008 there have been two rapid increases in oil prices. In early 2011, the Libyan civil war removed 1.5 mmb/d of light-sweet crude from the market. Oil prices spiked again in 2012 due to increased supply outages from Iran, Nigeria, Sudan and Yemen. The 2012 run-up was followed by a significant price slide due to a deteriorating economic outlook in the Eurozone and uncertainty whether the EU and the European Central Bank would take the necessary actions to prevent an unraveling of the euro.

Source: IEA, World Energy Outlook 2011
Figure 3 shows oil prices and annual changes in world-GDP. Each spike in oil prices was followed by a sharp drop in world GDP growth. The price rise from the 1973 oil embargo preceded a 4% drop in world GPD growth. Within two years, world growth slid from over 6% to 1%. The oil-supply outage resulting from the 1979 Iranian revolution doubled oil prices. Growth slid from 4% to 2% and, later, to below 1%.
The spike in oil prices resulting from the 1990 Gulf War led to a drop in world GDP growth from over 3% in 1990 to 1% in 1991. GDP growth did not reach 3% until 1994. The price spike from 1999-2000 was followed by a drop in world GDP growth from over 4% in 2000 to 2% in 2001. The world economy appeared to survive the long price rise from 2002 to 2007 until 2008, when the world suffered the worst financial crisis since the 1930s. World GDP growth dropped from over 4% in 2007, declined to less than 2% in 2008 and plummeted to -2% in 2009. While these high oil prices did not cause the world-wide recession, they were a contributing factor. High oil prices directly affected automobile sales and travel-related industries. High oil prices also reduced a household’s disposable income for other goods and services that remained after paying unavoidable fuel expenses.10
While each oil spike has been followed by a sharp drop in world economic growth, since 198711, there has been only one sharp reduction in world economic growth that was not preceded by an oil price spike.12 GDP growth has remained above 3%, apart from the 2nd or 3rd years following an oil price spike.
The world oil market has been subject to unplanned supply outages for quite some time. However, since 2011, supply outages have increased considerably from most prior years. They also reflect causes are likely to be chronic conditions as opposed to one-off events. During 2010, oil supply outages averaged less than 1 mmb/d; since 2011, they have averaged ~ 3 mmb/d and remain high today. Reports of insurgent attacks on oil-producing and distribution infrastructure, ethnic or sectarian conflict and civil war in the oil-producing states of the Middle East and North Africa (MENA) are too common to enumerate. The security situation has caused private industry to withdraw personnel from regions that are not deemed to be safe. In addition to loss of trained personnel, insurgent attacks on infrastructure, political disputes concerning sovereignty, disagreements about the validity of oil-related contracts and other problems are not likely to be passing problems that we can assume will be resolved. While these may be necessary side effects as countries replace autocratic rule with democratic governments, they nonetheless pose a great risk for future oil supplies. The International Energy Agency recently warned that relatively stable oil prices should not conceal “an abundance of risk” as “much of the Middle East and North Africa remains in turmoil.” “The current stalemate between the West and Iran” is “unsustainable” and “sooner or later, something has to give.” The political situation in the MENA region reflects a “precarious balance” that does not bode well for “clear, stable and predictable oil policies, let alone supplies.”13
OPEC production capacity has been essentially flat for the last 30 years. Over that time, growing oil demand has been met by additions to non-OPEC capacity. A number of disappointing non-OPEC supply developments helped drive the sharp rise in oil prices from 2002 and 2008. During that period, the cost of oil and gas drilling equipment and support activities increased by 260%.14 More recently, the growth of Canadian oil sands and U.S. tight oil production has kept the world oil market in balance. Without increased oil production in the United States and Canada, non-OPEC production would have been in decline in recent years.
Sufficiently high oil prices are needed to sustain the growth on non-OPEC oil. The IEA estimates that the cost of oil sands and tight oil production ranges from $45/b to over $100/b. 15 As production moves from the most productive plays to less promising plays, costs will tend to move to the upper end of the IEA range. For example, Global Energy Securities estimates that the price of oil needed to generate an attractive internal rate of return increases from $67/b in Eagle Ford (Texas) to $84/b in Monterey/Santos (California).16 While current oil prices are higher than they need to be to justify increased investment, they are not that much higher than what’s needed to motivate the large investments needed to grow non-OPEC oil production.17
As long as world oil demand grows, so will the cost of oil. The only long-term pathway to lower oil prices is to reduce and reverse the growth of world oil demand.
World Economic Growth, Unemployment and Poverty
In OECD 18 economies, unemployment is the most serious consequence of limited GDP growth. Okun’s law describes a statistical relationship between an economy’s potential rate of growth, its actual rate of growth and changes in unemployment. According to this rough relationship, a 2% difference between a country’s actual GDP and its potential is associated with 1% more unemployment. Applied over time, unemployment will grow by 1% if economic growth is 2% below an economy’s potential.19 The picture in developing countries is more complicated because of movements of labor between the agricultural and industrialized economies. Growth below a developing country’s economic potential limits or reverses the movement from the agricultural sector to the industrial sector causing underemployment.20
While increasing productivity within the agricultural sector is a development priority, it also leads to underemployment in the agricultural sector.
The relationship between economic growth and the movement of the population out of the agricultural sector is vividly illustrated in the recent history of China. By the late 1970s China possessed an inefficient agricultural economy with a rudimentary industrial sector. China possessed a population exceeding 1 billion people, of which the vast majority lived in poverty. Economic reforms produced a sustained GDP growth that has averaged 10.2 percent per year.21As a result, China has moved 400 million people out of poverty into the modern economy. Currently, ~ 650 million people still live in the agricultural sector, 450 million more people than are needed.
High Chinese economic growth would permit more people to move out of the underemployed agricultural economy to productive labor in the modern economy, as there are 450 million people living in poverty.22 Within one generation, emigration out of the agricultural sector can be the first step to careers in commerce, business, education, medicine, engineering, science and management.
Reducing Petroleum Demand
By 2014, more oil will be consumed outside the OECD than within.23 Increased personal income and increased auto ownership appear to be as inextricably linked in rapidly developing economies as it had been in the OECD after the Second World War. With economic growth, automobiles (especially luxurious automobiles), are likely to be purchased in increasing numbers. Domestic automobile consumption will also help developing economies move from export reliance to supplying domestic markets.
With a rapidly increasing consumption of energy for personal mobility, it is imperative to satisfy this growth with non-petroleum energy. If the world continues to rely on petroleum fuels for personal mobility, high oil prices are likely to cause periodic episodes of low growth causing significant hardships for hundreds of millions of people.
Energy Security Trust
The Energy Security Trust, proposed by President Obama,24 aims to make current electric vehicle technologies cheaper and better with $2 billion for research. In addition to advances in batteries, electric vehicles and ubiquitous electric refueling, it will also fund sustainable biofuels.25 As stated by the White House; “In each of the last four years, domestic production of oil and gas has gone up and our use of foreign oil has gone down. And while America uses less foreign oil now than we’ve used in almost two decades, there’s more work to do. That’s why we need to keep reaching for greater energy security. And that’s why we must keep developing new energy supplies and new technologies that use less oil. The Secure Energy Trust will ensure American scientists and research labs have the support they need to keep our country competitive and create the jobs of the future.” The success of initiatives like the Energy Trust Fund would produce world-wide benefits as the uptake of competitive advanced clean energy technologies would be global. Competitive alternatives to petroleum-fueled personal transportation, combined with strong clean-energy policies, would go a long way to achieving the G8’s 2oC climate goal. They would also remedy an important impediment to world GDP growth.
Carmine Difiglio is the Deputy Assistant Secretary for Policy Analysis, U.S. Department of Energy and may be reached at carmine.difiglio@hq.doe.gov. His work and publications include the first engineering-economic transportation-energy model, several other modeling projects including the International Energy Agency’s Energy Technology Perspectives project, studies of international oil and natural gas markets, and policies to promote energy security, energy efficiency, motor-vehicle efficiency and alternative transportation fuels. Difiglio also serves as Co-Chair of the World Federation of Scientists’ Permanent Monitoring Panel on Energy and Vice-Chair of the IEA Standing Group on the Oil Market. He was Vice-Chair of the IEA Committee on Energy Research and Technology, Chairman of the IEA Energy Efficiency Working Party and Chairman of the Transportation Research Board Committee on Energy and Transportation. Difiglio’s Ph.D. is from the University of Pennsylvania. The data and views expressed in this paper are those of the author and are not endorsed by the U.S. Department of Energy or the United States government.