Establishing a Cyber Workforce Action Plan
The next presidential administration should establish a comprehensive Cyber Workforce Action Plan to address the critical shortage of cybersecurity professionals and bolster national security. This plan encompasses innovative educational approaches, including micro-credentials, stackable certifications, digital badges, and more, to create flexible and accessible pathways for individuals at all career stages to acquire and demonstrate cybersecurity competencies.
The initiative will be led by the White House Office of the National Cyber Director (ONCD) in collaboration with key agencies such as the Department of Education (DoE), Department of Homeland Security (DHS), National Institute of Standards and Technology (NIST), and National Security Agency (NSA). It will prioritize enhancing and expanding existing initiatives—such as the CyberCorps: Scholarship for Service program that recruits and places talent in federal agencies—while also spearheading new engagements with the private sector and its critical infrastructure vulnerabilities. To ensure alignment with industry needs, the Action Plan will foster strong partnerships between government, educational institutions, and the private sector, particularly focusing on real-world learning opportunities.
This Action Plan also emphasizes the importance of diversity and inclusion by actively recruiting individuals from underrepresented groups, including women, people of color, veterans, and neurodivergent individuals, into the cybersecurity workforce. In addition, the plan will promote international cooperation, with programs to facilitate cybersecurity workforce development globally. Together, these efforts aim to close the cybersecurity skills gap, enhance national defense against evolving cyber threats, and position the United States as a global leader in cybersecurity education and workforce development.
Challenge and Opportunity
The United States and its allies face a critical shortage of cybersecurity professionals, in both the public and private sectors. This shortage poses significant risks to our national security and economic competitiveness in an increasingly digital world.
In the federal government, the cybersecurity workforce is aging rapidly, with only about 3% of information technology (IT) specialists under 30 years old. Meanwhile, nearly 15% of the federal cyber workforce is eligible for retirement. This demographic imbalance threatens the government’s ability to defend against sophisticated and evolving cyber threats.
The private sector faces similar challenges. According to recent estimates, there are nearly half a million unfilled cybersecurity positions in the United States. This gap is expected to grow as cyber threats become more complex and pervasive across all industries. Small and medium-sized businesses are particularly vulnerable, often lacking the resources to compete for scarce cyber talent.
The cybersecurity talent shortage extends beyond our borders, affecting our allies as well. As cyber threats from adversarial nation states become increasingly global in nature, our international partners’ ability to defend against these threats directly impacts U.S. national security. Many of our allies, particularly in Eastern Europe and Southeast Asia, lack robust cybersecurity education and training programs, further exacerbating the global skills gap.
A key factor contributing to this shortage is the lack of accessible, flexible pathways into cybersecurity careers. Traditional education and training programs often fail to keep pace with rapidly evolving technology and threat landscapes. Moreover, they frequently overlook the potential of career changers and nontraditional students who could bring valuable diverse perspectives to the field.
However, this challenge presents a unique opportunity to revolutionize cybersecurity education and workforce development. By leveraging innovative approaches such as apprenticeships, micro-credentials, stackable certifications, peer-to-peer learning platforms, digital badges, and competition-based assessments, we can create more agile and responsive training programs. These methods can provide learners with immediately applicable skills while allowing for continuous upskilling as the field evolves.
Furthermore, there’s an opportunity to enhance cybersecurity awareness and basic skills among all American workers, not just those in dedicated cyber roles. As digital technologies permeate every aspect of modern work, a baseline level of cyber hygiene and security consciousness is becoming essential across all sectors.
By addressing these challenges through a comprehensive Cyber Workforce Action Plan, we can not only strengthen our national cybersecurity posture but also create new pathways to well-paying, high-demand jobs for Americans from all backgrounds. This initiative has the potential to position the United States as a global leader in cyber workforce development, enhancing both our national security and our economic competitiveness in the digital age.
Evidence of Existing Initiatives
While numerous excellent cybersecurity workforce development initiatives exist, they often operate in isolation, lacking cohesion and coordination. ONCD is positioned to leverage its whole-of-government approach and the groundwork laid by its National Cyber Workforce and Education Strategy (NCWES) to unite these disparate efforts. By bringing together the strengths of various initiatives and their stakeholders, ONCD can transform high-level strategies into concrete, actionable steps. This coordinated approach will maximize the impact of existing resources, reduce duplication of efforts, and create a more robust and adaptable cybersecurity workforce development ecosystem. This proposed Action Plan is the vehicle to turn these collective workforce-minded strategies into tangible, measurable outcomes.
At the foundation of this plan lies the NICE Cybersecurity Workforce Framework, developed by NIST. This common lexicon for cybersecurity work roles and competencies provides the essential structure upon which we can build. The Cyber Workforce Action Plan seeks to expand on this foundation by creating standardized assessments and implementation guidelines that can be adopted across both public and private sectors.
Micro-credentials, stackable certifications, digital badges, and other innovations in accessible education—as demonstrated by programs like SANS Institute’s GIAC certifications and CompTIA’s offerings—form a core component of the proposed plan. These modular, skills-based learning approaches allow for rapid validation of specific competencies—a crucial feature in the fast-evolving cybersecurity landscape. The Action Plan aims to standardize and coordinate these and similar efforts, ensuring widespread recognition and adoption of accessible credentials across industries.
The array of gamification and competition-based learning approaches—including but not limited to National Cyber League, SANS NetWars, and CyberPatriot—are also exemplary starting points that would benefit from greater federal engagement and coordination. By formalizing these methods within education and workforce development programs, the government can harness their power to simulate real-world scenarios and drive engagement at a national scale.
Incorporating lessons learned from the federal government’s previous DoE CTE CyberNet program, the National Science Foundation’s (NSF) Scholarship for Service Program (SFS), and the National Security Agency’s (NSA) GenCyber camps—the Action Plan emphasizes the importance of early engagement (the middle grades and early high school years) and practical, hands-on learning experiences. By extending these principles across all levels of education and professional development, we can create a continuous pathway from high school through to advanced career stages.
A Cyber Workforce Action Plan would provide a unifying praxis to standardize competency assessments, create clear pathways for career progression, and adapt to the evolving needs of both the public and private sectors. By building on the successes of existing initiatives and introducing innovative solutions to fill critical gaps in the cybersecurity talent pipeline, we can create a more robust, diverse, and skilled cybersecurity workforce capable of meeting the complex challenges of our digital future.
Plan of Action
Recommendation 1. Create a Cyber Workforce Action Plan.
ONCD will develop and oversee the plan, in close collaboration with DoE, NIST, NSA, and other relevant agencies. The plan has three distinct components:
1. Develop standardized assessments aligned with the NICE framework. ONCD will work with NIST to create a suite of standardized assessments to evaluate cybersecurity competencies that:
- Cover the full range of knowledge, skills, and abilities defined in the NICE framework.
- Include both theoretical knowledge tests and practical, scenario-based evaluations.
- Be regularly updated to reflect evolving cybersecurity threats and technologies.
- Be designed with input from both government and industry cybersecurity professionals to ensure relevance and applicability.
2. Establish a system of stackable and portable micro-credentials. To provide flexible and accessible pathways into cybersecurity careers, ONCD will work with DoE, NIST, and the private sector to help develop and support systems of micro-credentials that are:
- Aligned with specific competencies in the NICE framework: NIST, as the national standards-setting body, will issue these credentials to ensure alignment with the NICE framework. This will provide legitimacy and broad recognition across industries.
- Stackable, allowing learners to build towards larger certifications or degrees: These credentials will be designed to allow individuals to accumulate certifications over time, ultimately leading to more comprehensive qualifications or degrees.
- Portable across different sectors and organizations: The micro-credentials will be recognized by both government agencies and private-sector employers, ensuring they have value regardless of where an individual seeks employment.
- Recognized and valued by both government agencies and private-sector employers: By working closely with the private sector—where credentialing systems like those from CompTIA and Google are already advanced—the ONCD will help ensure government-issued credentials are not duplicative but complementary to existing industry standards. NIST’s involvement, combined with input from private-sector leaders, will provide confidence that these credentials are relevant and accepted in both public and private sectors.
- Designed to facilitate rapid upskilling and reskilling in response to evolving cybersecurity needs: Given the rapidly changing landscape of cybersecurity threats, these micro-credentials will be regularly updated to reflect the most current technologies and skills, enabling professionals to remain agile and competitive.
3. Integrate more closely with more federal initiatives. The Action Plan will be integrated with existing federal cybersecurity programs and initiatives, including:
- DHS’s Cybersecurity Talent Management System
- DoD’s Cyber Excepted Service
- NIST’s NICE framework
- NSF’s CyberCorps SFS program
- NSA’s GenCyber camps
This proposal emphasizes stronger integration with existing federal initiatives and greater collaboration with the private sector. Instead of creating entirely new credentialing standards, ONCD will explore opportunities to leverage widely adopted commercial certifications, such as those from Google, CompTIA, and other private-sector leaders. By selecting and promoting recognized commercial standards where applicable, ONCD can streamline efforts, avoiding duplication and ensuring the cybersecurity workforce development approach is aligned with what is already successful in industry. Where necessary, ONCD will work with NIST and industry professionals to ensure these commercial certifications meet federal needs, creating a more cohesive and efficient approach across both government and industry. This integrated public-private strategy will allow ONCD to offer a clear leadership structure and accountability mechanism while respecting and utilizing commercial technology and standards to address the scale and complexity of the cybersecurity workforce challenge.
The Cyber Workforce Action Plan will emphasize strong collaborations with the private sector, including the establishment of a Federal Cybersecurity Curriculum Advisory Board composed of experts from relevant federal agencies and leading private-sector companies. This board will work directly with universities to develop model curricula that incorporate the latest cybersecurity tools, techniques, and threat landscapes, ensuring that graduates are well-prepared for the specific challenges faced by both federal and private-sector cybersecurity professionals.
To provide hands-on learning opportunities, the Action Plan will include a new National Cyber Internship Program. Managed by the Department of Labor in partnership with DHS’s Cybersecurity and Infrastructure Security Agency (CISA) and leading technology companies, the program will match students with government agencies and private-sector companies. An online platform will be developed, modeled after successful programs like Hacking for Defense, where industry partners can propose real-world cybersecurity projects for student teams.
To incentivize industry participation, the General Services Administration (GSA) and DoD will update federal procurement guidelines to require companies bidding on cybersecurity-related contracts to certify that they offer internship or early-career opportunities for cybersecurity professionals. Additionally, CISA will launch a “Cybersecurity Employer of Excellence” certification program, which will be a prerequisite for companies bidding on certain cybersecurity-related federal contracts.
The Action Plan will also address the global nature of cybersecurity challenges by incorporating international cooperation elements. This includes adapting the plan for international use in strategically important regions, facilitating joint training programs and professional exchanges with allied nations, and promoting global standardization of cybersecurity education through collaboration with international standards organizations.
Ultimately, this effort intends to implement a national standard for cybersecurity competencies—providing clear, accessible pathways for career progression and enabling more agile and responsive workforce development in this critical field.
Recommendation 2. Implement an enhanced CyberCorps fellowship program.
ONCD should expand the NSF’s CyberCorps Scholarship for Service program as an immediate, high-impact initiative. Key features of the expanded CyberCorps fellowship program include:
1. Comprehensive talent pipeline: While maintaining the current SFS focus on students, the enhanced CyberCorps will also target recent graduates and early-career professionals with 1–5 years of work experience. This expansion addresses immediate workforce needs while continuing to invest in future talent. The program will offer competitive salaries, benefits, and loan forgiveness options to attract top talent from both academic and private-sector backgrounds.
2. Multiagency exposure and optional rotations: While cross-sector exposure remains valuable for building a holistic understanding of cybersecurity challenges, the rotational model will be optional or limited based on specific agency needs. Fellows may be offered the opportunity to rotate between agencies or sectors only if their skill set and the hosting agency’s environment are conducive to short-term placements. For fellows placed in agencies or sectors where longer ramp-up times are expected, a deeper, longer-term placement may be more effective. Drawing on lessons from the Presidential Innovation Fellows and the U.S. Digital Corps, the program will emphasize flexibility to ensure that fellows can make meaningful contributions within the time frame and that knowledge transfer between sectors remains a core objective.
3. Advanced mentorship and leadership development: Building on the SFS model, the expanded program will foster a strong community of cyber professionals through cohort activities and mentorship pairings with senior leaders across government and industry. A new emphasis on leadership training will prepare fellows for senior roles in government cybersecurity.
4. Focus on emerging technologies: Complementing the SFS program’s core cybersecurity curriculum, the expanded CyberCorps will emphasize cutting-edge areas such as artificial intelligence in cybersecurity, quantum computing, and advanced threat detection. This focus will prepare fellows to address future cybersecurity challenges.
5. Extended impact through education and mentorship: The program will encourage fellows to become cybersecurity educators and mentors in their communities after their service, extending the program’s impact beyond government service and strengthening America’s overall cyber workforce.
By implementing these enhancements to the CyberCorps program as a first step and quick win, the Action Plan will initiate a more comprehensive approach to federal cybersecurity workforce development. The enhanced CyberCorps fellowship program will also emphasize diversity and inclusion to address the critical shortage of cybersecurity professionals and bring fresh perspectives to cyber challenges. The program will actively recruit individuals from underrepresented groups, including women, people of color, veterans, and neurodivergent individuals.
To achieve this, the program will partner with organizations like Girls Who Code and the Hispanic IT Executive Council to promote cybersecurity careers and expand the applicant pool. The Department of Labor, in conjunction with the NSF, will establish a Cyber Opportunity Fund to provide additional scholarships and grants for individuals from underrepresented groups pursuing cybersecurity education through the CyberCorps program.
In addition, the program will develop standardized apprenticeship components that provide on-the-job training and clear pathways to full-time employment, with a focus on recruiting from diverse industries and backgrounds. Furthermore, partnerships with Historically Black Colleges and Universities, Hispanic-Serving Institutions, and Tribal Colleges and Universities will be strengthened to enhance their cybersecurity programs and create a pipeline of diverse talent for the CyberCorps program.
The CyberCorps program will expand its scope to include an international component, allowing for exchanges with allied nations’ cybersecurity agencies and bringing international students to U.S. universities for advanced studies. This will help position the United States as a global leader in cybersecurity education and training while fostering a worldwide community of professionals capable of responding effectively to evolving cyber threats.
By incorporating these elements, the enhanced CyberCorps fellowship program will not only address immediate federal cybersecurity needs but also contribute to building a diverse, skilled, and globally aware cybersecurity workforce for the future.
Implementation Considerations
To successfully establish and execute the comprehensive Action Plan and its associated initiatives, careful planning and coordination across multiple agencies and stakeholders will be essential. Below are some of the key timeline and funding considerations the ONCD should factor into its implementation.
Key milestones and actions for the first two years
Months 1–6:
- Create the Cyber Workforce Action Plan as a roadmap to implementing ONCD’s NCWES.
- Form interagency working group and private-sector advisory board.
- NIST’s Information Technology Laboratory, in collaboration with industry partners, will begin the development of the standardized assessment system and micro-credentials framework.
- Initiate the Federal Cybersecurity Curriculum Advisory Board.
- Launch the expanded CyberCorps fellowship program recruitment.
Months 7–12:
- Implement pilot programs for standardized assessments and micro-credentials.
- Begin first cohort of expanded CyberCorps fellows.
- Launch diversity and inclusion initiatives, including the “Cyber for All” awareness campaign.
- Initiate the National Cybersecurity Internship Program.
- Begin development of the Cybersecurity Employer of Excellence recognition program.
Months 13–18:
- Pilot standardized assessments and micro-credentials system in select agencies and educational institutions, with full rollout anticipated after evaluation and adjustments based on feedback.
- Expand CyberCorps program and university partnerships.
- Implement private-sector internship and project-based learning programs.
- Launch the International Cybersecurity Workforce Alliance.
Months 19–24:
- Implement tax incentives for industry participation in workforce development.
- Establish the Cybersecurity Development Fund for international capacity building.
- Conduct first annual review of diversity and inclusion metrics in federal cyber workforce.
Program evaluation and quality assurance
Beyond these key milestones, the Action Plan must establish clear evaluation frameworks to ensure program quality and effectiveness, particularly for integrating non-federal education programs into federal hiring pathways. For example, to address OPM’s need for evaluating non-federal technical and career education programs under the Recent Graduates Program, the Action Plan will implement the following evaluation framework:
- Alignment with NICE framework competencies (minimum 80% coverage of core competencies)
- Completion of NIST-approved standardized technical assessments
- Documentation of supervised practical experience (minimum 400 hours)
- Evidence of quality assurance processes comparable to registered apprenticeship programs
- Regular curriculum updates (minimum annually) to reflect current security threats
- Industry partnership validation through the Cybersecurity Employer of Excellence program
The implementation of these criteria will be overseen by the same advisory board established in Months 1-6, expanding their scope to include program evaluation and certification. This approach leverages existing governance structures while providing OPM with quantifiable metrics to evaluate non-federal program graduates.
Budgetary, resource, and personnel needs
The estimated annual budget for the proposed initiative ranges from $125 million to $200 million. This range considers cost-effective resource allocation strategies, including the integration of existing platforms and focused partnerships. Key components of the program include:
- Staffing: A core team of 15–20 full-time employees will oversee the centralized program office, focusing on high-level coordination and oversight. Specialized tasks such as curriculum development and assessment design will be contracted to external partners, reducing the need for a larger in-house team.
- IT infrastructure: Rather than building new systems from scratch, the initiative will use existing platforms and credentialing technologies from private-sector providers (e.g., CompTIA, Coursera). This significantly reduces upfront development costs while ensuring a robust system for managing assessments and credentials.
- Marketing and outreach: A smaller but targeted budget will be allocated for domestic and international outreach to raise awareness of the program. Partnerships with industry and educational institutions will help amplify these efforts, reducing the need for a large marketing budget.
- Grants and partnerships: The program will provide modest grants to universities to support curriculum development, with a focus on fostering partnerships rather than large-scale financial commitments. This allows for more cost-effective collaboration with educational institutions.
- Fellowship programs and international exchanges: The expanded CyberCorps fellowship will begin with a smaller cohort, scaling up based on available funding and demonstrated success. International exchanges will be limited to strategic, high-impact partnerships to ensure cost efficiency while still addressing global cybersecurity needs.
Potential funding sources
Funding for this initiative can be sourced through a variety of channels. First, congressional appropriations via the annual budget process are expected to provide a significant portion of the financial support. Additionally, reallocating existing funds from cybersecurity and workforce development programs could account for approximately 25–35% of the overall budget. This reallocation could include funding from current programs like NICE, SFS, and other workforce development grants, which can be repurposed to support this broader initiative without requiring entirely new appropriations.
Public-private partnerships will also be explored, with potential contributions from industry players who recognize the value of a robust cybersecurity workforce. Grants from federal entities such as DHS, DoD, and NSF are viable options to supplement the program’s financial needs. To offset costs, fees collected from credentialing and training programs could serve as an additional revenue stream.
Finally, the Action Plan and its initiatives will seek contributions from international development funds aimed at capacity-building, as well as financial support from allied nations to aid in the establishment of joint international programs.
Conclusion
Establishing a comprehensive Cyber Workforce Action Plan represents a pivotal move toward securing America’s digital future. By creating flexible, accessible career pathways into cybersecurity, fostering innovative education and training models, and promoting both domestic diversity and international cooperation, this initiative addresses the urgent need for a skilled and resilient cybersecurity workforce.
The impact of this proposal is wide-ranging. It will not only reinforce national security by strengthening the nation’s cyber defenses but also contribute to economic growth by creating high-paying jobs and advancing U.S. leadership in cybersecurity on the global stage. By expanding access to cybersecurity careers and engaging previously underutilized talent pools, this initiative will ensure the workforce reflects the diversity of the nation and is prepared to meet future cybersecurity challenges.
The next administration must make the implementation of this plan a national priority. As cyber threats grow more complex and sophisticated, the nation’s ability to defend itself depends on developing a robust, adaptable, and highly skilled cybersecurity workforce. Acting swiftly to establish this strategy will build a stronger, more resilient digital infrastructure, ensuring both national security and economic prosperity in the 21st century. We urge the administration to allocate the necessary resources and lead the transformation of cybersecurity workforce development. Our digital future—and our national security—demand immediate action.
Teacher Education Clearinghouse for AI and Data Science
The next presidential administration should develop a teacher education and resource center that includes vetted, free, self-guided professional learning modules, resources to support data-based classroom activities, and instructional guides pertaining to different learning disciplines. This would provide critical support to teachers to better understand and implement data science education and use of AI tools in their classroom. Initial resource topics would be:
- An Introduction to AI, Data Literacy, and Data Science
- AI & Data Science Pedagogy
- AI and Data Science for Curriculum Development & Improvement
- Using AI Tools for Differentiation, Assessment & Feedback
- Data Science for Ethical AI Use
In addition, this resource center would develop and host free, pre-recorded, virtual training sessions to support educators and district professionals to better understand these resources and practices so they can bring them back to their contexts. This work would improve teacher practice and cut administrative burdens. A teacher education resource would lessen the digital divide and ensure that our educators are prepared to support their students in understanding how to use AI tools so that each and every student can be college and career ready and competitive at the global level. This resource center would be developed using a process similar to the What Works Clearinghouse, such that it is not endorsing a particular system or curriculum, but is providing a quality rating, based on the evidence provided.
Challenge and Opportunity
AI is an incredible technology that has the power to revolutionize many areas, especially how educators teach and prepare the next generation to be competitive in higher education and the workforce. A recent RAND study showed leaders in education indicating promise in adapting instructional content to fit the level of their students and for generating instructional materials and lesson plans. While this technology holds a wealth of promise, the field has developed so rapidly that people across the workforce do not understand how best to take advantage of AI-based technologies. One of the most crucial areas for this is in education. AI-enabled tools have the potential to improve instruction, curriculum development, and assessment, but most educators have not received adequate training to feel confident using them in their pedagogy. In a Spring 2024 pilot study (Beiting-Parrish & Melville, in preparation), initial results indicated that 64.3% of educators surveyed had not had any professional development or training in how to use AI tools. In addition, more than 70% of educators surveyed felt they did not know how to pick AI tools that are safe for use in the classroom, and that they were not able to detect biased tools. Additionally, the RAND study indicated only 18% of educators reported using AI tools for classroom purposes. Within those 18%, approximately half of those educators used AI because they had been specifically recommended or directly provided a tool for classroom use. This suggests that educators need to be given substantial support in choosing and deploying tools for classroom use. Providing guidance and resources to support vetting tools for safe, ethical, appropriate, and effective instruction is one of the cornerstone missions of the Department of Education. This education should not rest on the shoulders of individual educators who are known to have varying levels of technical and curricular knowledge, especially for veteran teachers who have been teaching for more than a decade.
If the teachers themselves do not have enough professional development or expertise to select and teach new technology, they cannot be expected to thoroughly prepare their students to understand emerging technologies, such as AI, nor the underpinning concepts necessary to understand these technologies, most notably data science and statistics. As such, students’ futures are being put at risk from a lack of emphasis in data literacy that is apparent across the nation. Recent results from the National Assessment of Education Progress (NAEP), assessment scores show a shocking decline in student performance in data literacy, probability, and statistics skills – outpacing declines in other content areas. In 2019, the NAEP High School Transcript Study (HSTS) revealed that only 17% of students completed a course in statistics and probability, and less than 10% of high school students completed AP Statistics. Furthermore, the HSTS study showed that less than 1% of students completed a dedicated course in modern data science or applied data analytics in high school. Students are graduating with record-low proficiency in data, statistics, and probability, and graduating without learning modern data science techniques. While students’ data and digital literacy are failing, there is a proliferation of AI content online; they are failing to build the necessary critical thinking skills and a discerning eye to determine what is real versus what has been AI-generated, and they aren’t prepared to enter the workforce in sectors that are booming. The future the nation’s students will inherit is one in which experience with AI tools and Big Data will be expected to be competitive in the workforce.
Whether students aren’t getting the content because it isn’t given its due priority, or because teachers aren’t comfortable teaching the content, AI and Big Data are here, and our educators don’t have the tools to help students get ready for a world in the midst of a data revolution. Veteran educators and preservice education programs alike may not have an understanding of the essential concepts in statistics, data literacy, or data science that allow them to feel comfortable teaching about and using AI tools in their classes. Additionally, many of the standard assessment and practice tools are not fit for use any longer in a world where every student can generate an A-quality paper in three seconds with proper prompting. The rise of AI-generated content has created a new frontier in information literacy; students need to know to question the output of publically available LLM-based tools, such as Chat-GPT, as well as to be more critical of what they see online, given the rise of AI-generated deep fakes, and educators need to understand how to either incorporate these tools into their classrooms or teach about them effectively. Whether educators are ready or not, the existing Digital Divide has the potential to widen, depending on whether or not they know how to help students understand how to use AI safely and effectively and have the access to resources and training to do so.
The United States finds itself at a crossroads in the global data boom. Demand in the economic marketplace, and threat to national security by way of artificial intelligence and mal-, mis-, and disinformation, have educators facing an urgent problem in need of an immediate solution. In August of 1958, 66 years ago, Congress passed the National Defense Education Act (NDEA), emphasizing teaching and learning in science and mathematics. Specifically in response to the launch of Sputnik, the law supplied massive funding to, “insure trained manpower of sufficient quality and quantity to meet the national defense needs of the United States.” The U.S. Department of Education, in partnership with the White House Office of Science and Technology Policy, must make bold moves now to create such a solution, as Congress did once before.
Plan of Action
In the years since the Space Race, one problem with STEM education persists: K-12 classrooms still teach students largely the same content; for example, the progression of high school mathematics including algebra, geometry, and trigonometry is largely unchanged. We are no longer in a race to space – we’re now needing to race against data. Data security, artificial intelligence, machine learning, and other mechanisms of our new information economy are all connected to national security, yet we do not have educators with the capacity to properly equip today’s students with the skills to combat current challenges on a global scale. Without a resource center to house the urgent professional development and classroom activities America’s educators are calling for, progress and leadership in spaces where AI and Big Data are being used will continue to dwindle, and our national security will continue to be at risk. It’s beyond time for a new take on the NDEA that emphasizes more modern topics in the teaching and learning of mathematics and science, by way of data science, data literacy, and artificial intelligence.
Previously, the Department of Education has created resource repositories to support the dissemination of information to the larger educational praxis and research community. One such example is the What Work Clearinghouse, a federally vetted library of resources on educational products and empirical research that can support the larger field. The WWC was created to help cut through the noise of many different educational product claims to ensure that only high-quality tools and research were being shared. A similar process is happening now with AI and Data Science Resources; there are a lot of resources online, but many of these are of dubious quality or are even spreading erroneous information.
To combat this, we suggest the creation of something similar to the WWC, with a focus on vetted materials for educator and student learning around AI and Data Science. We propose the creation of the Teacher Education Clearinghouse (TEC) underneath the Institute of Education Sciences, in partnership with the Office of Education Technology. Currently, WWC costs approximately $2,500,000 to run, so we anticipate a similar budget for the TEC website. The resource vetting process would begin with a Request for Information from the larger field that would encourage educators and administrators to submit high quality materials. These materials would be vetted using an evaluation framework that looks for high quality resources and materials.
For example, the RFI might request example materials or lesson goals for the following subjects:
- An Introduction to AI, Data Literacy, and Data Science
- Introduction to AI & Data Science Literacy & Vocabulary
- Foundational AI Principles
- Cross-Functional Data Literacy and Data Science
- LLMs and How to Use Them
- Critical Thinking and Safety Around AI Tools
- AI & Data Science Pedagogy
- AI and Data Science for Curriculum Development & Improvement
- Using AI Tools for Differentiation, Assessment & Feedback
- Data Science for Safe and Ethical AI Use
- Characteristics of Potentially Biased Algorithms and Their Shortcomings
A framework for evaluating how useful these contributions might be for the Teacher Education Clearinghouse would consider the following principles:
- Accuracy and relevance to subject matter
- Availability of existing resources vs. creation of new resources
- Ease of instructor use
- Likely classroom efficacy
- Safety, responsible use, and fairness of proposed tool/application/lesson
Additionally, this would also include a series of quick start guide books that would be broken down by topic and include a set of resources around foundational topics such as, “Introduction to AI” and “Foundational Data Science Vocabulary”.
When complete, this process would result in a national resource library, which would house a free series of asynchronous professional learning opportunities and classroom materials, activities, and datasets. This work could be promoted through the larger DoE as well as through the Regional Educational Laboratory program and state level stakeholders. The professional learning would consist of prerecorded virtual trainings and related materials (ex: slide decks, videos, interactive components of lessons, etc.). The materials would include educator-facing materials to support their professional development in Big Data and AI alongside student-facing lessons on AI Literacy that teachers could use to support their students. All materials would be publicly available for download on an ED-owned website. This will allow educators from any district, and any level of experience, to access materials that will improve their understanding and pedagogy. This especially benefits educators from less resourced environments because they can still access the training they need to adequately support their students, regardless of local capacity for potentially expensive training and resource acquisition. Now is the time to create such a resource center because there currently isn’t a set of vetted and reliable resources that are available and accessible to the larger educator community and teachers desperately need these resources to support themselves and their students in using these tools thoughtfully and safely. The successful development of this resource center would result in increased educator understanding of AI and data science such that the standing of U.S. students increases on such international measurements as the International Computer and Information Literacy Study (ICILS), as well as increased participation in STEAM fields that rely on these skills.
Conclusion
The field of education is at a turning point; the rise of advancements in AI and Big Data necessitate increased focus on these areas in the K-12 classroom; however, most educators do not have the preparation needed to adequately teach these topics to fully prepare their students. For the United States to continue to be a competitive global power in technology and innovation, we need a workforce that understands how to use, apply, and develop new innovations using AI and Data Science. This proposal for a library of high quality, open-source, vetted materials would support democratization of professional development for all educators and their students.
Establishing White House Initiative for STEM Educational Excellence & Workforce Development at the U.S. Department of Education
Our national security and competitive edge rely on our science and technological innovation. Now more than ever every child deserves access to a well-rounded and high-quality education that provides them with the critical thinking, problem solving skills that will enable them to access science and technology jobs and contribute to solving global challenges. Science, technology, engineering and mathematics education (STEM). For the purposes of this memo STEM includes computer science, data science, AI and other emerging technology fields in addition to science, engineering and mathematics education. Education and workforce development must be at the forefront of the next administration.
The next administration’s Department of Education (ED) has an incredible opportunity to support our nation’s youth, America’s current and future workforce, to succeed and thrive. Students, families and communities want and need more STEM learning experiences to realize the American Dream, and yet they cannot access them.
In the FY25 President’s Budget, ED called for four full time employees to focus on STEM in the Office of the Deputy Secretary, yet the out-going Administration failed to support this imperative. We hope that this imperative is funded and staffed by the new Administration.
Challenge and Opportunity
Now more than ever our economy and national defense call for every child to have access to a well-rounded and high-quality education that sets them up for success and provides them with the critical thinking and problem solving skills that will enable them to access economic opportunities and contribute to solving global challenges. A well-rounded education must include science, technology, engineering and mathematics education (STEM) and especially STEM learning experiences both in- and out-of-school that provide students with technical skills through hands-on, problem/project-based learning.
The Invest in America package of bills (CHIPS + Science, Bipartisan Infrastructure Law and Inflation Reduction Act) have created decades of employment opportunities that unfortunately may in some regions of the nation go lacking for talent unless we significantly invest in providing a strong well-rounded STEM education to every child.
The future workforce is not the only reason that ED must prioritize STEM teaching as part of their agenda. Kids and families are voting with their feet. Chronic absenteeism, defined as missing 10 or more days of school, has more than doubled since pre-pandemic rates. We must modernize STEM learning opportunities and ensure they are rigorous, relevant and aligned to what kids and families want.
Most teens report math or science as their favorite subject in school. Seventy-five percent of Gen Z youth are interested in STEM occupations. Two-thirds of parents think computer science should be required for learning in schools. According to the Afterschool Alliance, “More than 7 in 10 parents (72 percent) report that STEM and computer science learning opportunities were important in their selection of an afterschool program, up 19 percentage points from 2014 (53 percent).”
Simply put, students want more STEM opportunities and families want more STEM opportunities for their children.
Yet, we know that despite students’ interest in STEM and natural proclivity towards problem solving, too many students don’t have access to STEM learning experiences both in- and out-of-school. Strategic industries ranging from aerospace to communications and agriculture to energy, and many more presently clamor for and compete unproductively to chase talented new employees. The federal government owes it to them to take any and all actions to meet their employment needs, prominently including casting a wider net across the nation’s entire young population for talent.
For example, across the board, NAEP results consistently show that students of color, students who are eligible for free and reduced-price lunch, students with disabilities and English language learners are not well served by our current system. On the 2018 NAEP Technology and Engineering Literacy Assessment, 13% of 8th grade students with disabilities scored at or above proficient compared to 53% of students without a disability. Fifty-nine percent of 8th grade White students scored at or above proficient compared to 23% Black students, 31% Hispanic, 29% of American Indian/Alaska Native. On the 2018 TEL assessment, 30% of students who are eligible for free or reduced-priced lunch scored at or above proficient compared to 60% who are not eligible for the program. These gaps also play out in Math and Science leading to just 6% of Black 12th graders, 9% of Hispanic 12th graders, 13% of American Indian/Alaska Native 12th graders, 7% of 12th graders with disabilities, and 1% of English Learners leaving high school proficient in science. The reality in math is just as stark with only 8% of Black 12th graders, 11% of Hispanic 12th graders, 9% of American Indian/Alaska Native 12th graders, 7% of 12th graders with disabilities, and 3% of English Learners finishing high school proficient in mathematics. The United States can ill afford to half-heartedly serve the educational needs of many of our students in this era of great demand. It is a profound responsibility of the federal government.
While progress is being made to provide more students with high-quality STEM learning during out-of-school time, we know that access is unequal. Children whose families have lower incomes are often the ones missing out on these engaging and enriching opportunities. It is estimated that there are 25 million children who would like access to an afterschool program, but are not able to access any program, let alone a STEM focused program.
We must change this reality quickly. Prioritizing STEM education must be an urgent priority for the Federal government. Luckily, the Federal government has built up significant infrastructure to try to better align federal resources to support this issue. The Federal Coordination on STEM (FC-STEM) effort aligns agencies to support the implementation of key priorities related to STEM.
While STEM has been prioritized across Federal Agencies, STEM has not been a consistent priority at ED. ED should be leading. The Department must establish a structure that persists between administrations and can support deploying financial resources, technical assistance and other tools of the Department to support States, Districts and their partners to increase access, participation and success in STEM learning both in and out-of-school.
In the FY25 President’s Budget, ED called for four full time employees to focus on STEM in the Office of the Deputy Secretary, yet the out-going Administration failed to support this imperative. We hope that this imperative is funded and staffed by the new Administration.
Plan of Action
There are two logical paths forward to ensuring STEM is a priority at ED both of which require establishing dedicated STEM capacity at ED.
First, the new administration could sign an inaugural executive order, similar to this example, but modified for STEM, that establishes a new White House Initiative for STEM Education and Workforce (WHISEW) that could stand alongside other White House initiatives and elevate STEM across the Department. This initiative would establish a STEM team at ED and could also name a list of advisors to ensure that ED could benefit from the expertise of non-government organizations.
Or, a new Congress could appropriate the necessary funds to ensure adequate staffing and direct ED to establish the STEM team as requested in the former President’s FY25 Budget.
Given the ever changing nature of STEM education and workforce, the STEM structure at ED should be a lean and nimble hub of talent that can staff up or down depending on the high-priority issue areas such as math, data science, computational thinking, AI and other emergent technologies.
Whatever structure is established, the primary priorities of the Initiative should include:
- Advancing educational and economic opportunities for all students
- Addressing lack of access, participation and success in STEM education for our nation’s students, which could include things like lack of access to low cost options, lack of access to courses offered in their school, etc.
- Elevating student, family and community voices and needs to ensure STEM learning is improved and modernized aligned to what students want and need
- Increasing data collection related to STEM learning by utilizing new and existing tools to provide more accurate and timely understanding of where STEM learning is and is not occurring
- Interagency coordination and regular engagement of non-government entities to drive a compelling STEM education agenda.
In the next administration, the team should focus on the following four priorities:
- Interagency Coordination and Increasing Access to public non-ED investments: P-12 educators, schools, districts and community based organizations have largely been left out of the funding opportunities available as a result of CHIPS and Science Act, Bipartisan Infrastructure Law, and Inflation Reduction Act. A STEM team should prioritize connection with the U.S. Department of Commerce, National Science Foundation, U.S. Department of Energy and U.S. Department of Defense to ensure P-12 STEM education is not an afterthought in these investments and grant opportunities. The STEM Team at ED should provide technical assistance to State Education Agencies, local education agencies and community-based organizations to ensure these entities know how to partner and access the resources available in their communities.
- Translation of Evidence and Transparency of Outcomes: Despite STEM being a lower priority for ED, resources are still spent regularly on STEM teaching and learning through the Education Innovation and Research grant program, Institute of Education Sciences investments, 21st Century Community Learning Centers, and more. The STEM team should invest in codifying lessons learned and supporting the dissemination of evidence-based practices in coordination with IES and NSF. Additional recommendations for increasing transparency and improving research translation can be found here.
- Support deeper integration of Career-Connected and Academic Learning: every child needs access to career-connected learning and many states are leading the way to ensure students graduate from high school with career-connected credentials and a diploma. The Team should learn more from Indiana, Delaware, and Alabama and coordinate with the Office of Career Technical and Adult Education, U.S. Department of Labor and U.S. Department of Commerce to spotlight and accelerate these examples through grant funding, additional challenge opportunities, a bright spot campaign and joint guidance on use of ESSA and WIOA funds. Additional ideas for increasing work-based learning for educators and students can be found here.
- Issuing an all-hands on deck call to action to support the STEM educator workforce: At least 55,000 teaching positions went unfilled this year, with long-term annual shortages set to double to 100,000 annually. Moreover, teachers have little confidence in their self-assessed ability to teach critical digital skills needed for an AI enabled future and in the profession at large. ED must work with the National Science Foundation, U.S. Department of Labor, AmeriCorps and other agencies to launch an urgent talent strategy. This includes investing in underlying research and development to ensure we find innovative models of teaching that are more sustainable, enjoyable and impactful. (See: More details on a national talent surge.)
- Expanding well-developed afterschool and summer STEM learning opportunities: It is estimated that there are 25 million children who would like access to an afterschool program, but are not able to access any program, let alone a STEM focused program. We need to pull kids away from screens and ensure they are connected to each other and caring adults, with opportunities to explore their interests. The ED team should coordinate with the U.S. Department of Health and Human Services, AmeriCorps, U.S. Department of Defense and National Science Foundation to dramatically expand access to high-quality out-of-school time STEM programs. This could look like establishing a White House Initiative on Community Learning Ecosystems or reestablishing the White House Council on Community Solutions and ensuring these initiatives emphasize STEM explicitly.
Regardless of pathway, it is estimated that the cost to the Department would be equivalent to four full time employees, one of whom would be appointed (Executive Director) and three of whom would be a GS-15 civil servant. This staff could be bolstered by STEM field leaders through fellowships, reimbursed by ED, or funded through partner institutions. The total cost of this investment would be estimated at ~$2.5M annually.
Conclusion
A relatively modest investment (~$2.5M annually) has the potential to impact generations of children, families and their communities by increasing access, participation and success in STEM learning experiences both in and out-of-school. The time is now to establish a permanent and consistent focus on STEM education and workforce at the U.S. Department of Education.
This action-ready policy memo is part of Day One 2025 — our effort to bring forward bold policy ideas, grounded in science and evidence, that can tackle the country’s biggest challenges and bring us closer to the prosperous, equitable and safe future that we all hope for whoever takes office in 2025 and beyond.
It is estimated that to support a small team (3 FTEs plus Fellows) it would cost approximately $5M annually. This cost would cover salary, benefits, travel, technology needs and also a modest events and programming budget.
The US Department of Education’s mission is to “promote student achievement and preparation for global competitiveness by fostering educational excellence and ensuring equal access.” STEM education is critical for supporting students’ global competitiveness. As outlined above, STEM education is not equally accessible to all students. The Department has a critical role to play in supporting STEM education and closing persistent access gaps in STEM.
STEM education cuts across PreK-12 and higher education priorities. Existing White House Initiatives have prior experience coordinating efforts across the department and across student learning experiences from cradle to career. Standing up a new White House Initiative would enable a more holistic and crosscutting view of STEM at the Department. It would also support further coordination between the other White House Initiatives as well. STEM is a priority in the governing documents of many of the current White House Initiatives and it would support collaboration and coherence to have a White House STEM Initiative with the same reporting structure.
One of the critical structure elements of STEM E3 is that the Executive Director of the Initiative is a politically appointed role, enabling each administration to select someone that aligns with their priorities and campaign promises. There should be at least one career staff member to provide continuity and sustainability across administrations. The flexible capacity of Fellows or IPAs allows the team to bring in expertise aligned to the priorities of each administration.
America’s Teachers Innovate: A National Talent Surge for Teaching in the AI Era
Thanks to Melissa Moritz, Patricia Saenz-Armstrong, and Meghan Grady for their input on this memo.
Teaching our young children to be productive and engaged participants in our society and economy is, alongside national defense, the most essential job in our country. Yet the competitiveness and appeal of teaching in the United States has plummeted over the past decade. At least 55,000 teaching positions went unfilled this year, with long-term annual shortages set to double to 100,000 annually. Moreover, teachers have little confidence in their self-assessed ability to teach critical digital skills needed for an AI enabled future and in the profession at large. Efforts in economic peer countries such as Canada or China demonstrate that reversing this trend is feasible. The new Administration should announce a national talent surge to identify, scale, and recruit into innovative teacher preparation models, expand teacher leadership opportunities, and boost the profession’s prestige. “America’s Teachers Innovate” is an eight-part executive action plan to be coordinated by the White House Office of Science and Technology Policy (OSTP), with implementation support through GSA’s Challenge.Gov and accompanied by new competitive priorities in existing National Science Foundation (NSF), Department of Education (ED), Department of Labor (DoL), and Department of Defense education (DoDEA) programs.
Challenge and Opportunity
Artificial Intelligence may add an estimated $2.6 trillion to $4.4 trillion annually to the global economy. Yet, if the U.S. is not able to give its population the proper training to leverage these technologies effectively, the U.S. may witness a majority of this wealth flow to other countries over the next few decades while American workers are automated from, rather than empowered by, AI deployment within their sectors. The students who gain the digital, data, and AI foundations to work in tandem with these systems – currently only 5% of graduating high school students in the U.S. – will fare better in a modern job market than the majority who lack them. Among both countries and communities, the AI skills gap will supercharge existing digital divides and dramatically compound economic inequality.
China, India, Germany, Canada, and the U.K. have all made investments to dramatically reshape the student experience for the world of AI and train teachers to educate a modern, digitally-prepared workforce. While the U.S. made early research & development investments in computer science and data science education through the National Science Foundation, we have no teacher workforce ready to implement these innovations in curriculum or educational technology. The number of individuals completing a teacher preparation program has fallen 25% over the past decade; long-term forecasts suggest at least 100,000 shortages annually, teachers themselves are discouraging others from joining their own profession (especially in STEM), and preparing to teach digital skills such as computer science was the least popular option for prospective educators to pursue. In 2022, even Harvard discontinued its Undergraduate Teacher Education Program completely, citing low interest and enrollment numbers. There is still consistent evidence that young people or even current professionals remain interested in teaching as a possible career, but only if we create the conditions to translate that interest into action. U.S. policymakers have a narrow window to leverage the strong interest in AI to energize the education workforce, and ensure our future graduates are globally competitive for the digital frontier.
Plan of Action
America’s teaching profession needs a coordinated national strategy to reverse decades of decline and concurrently reinvigorate the sector for a new (and digital) industrial revolution now moving at an exponential pace. Key levers for this work include expanding the number of leadership opportunities for educators; identifying and scaling successful evidence-based models such as UTeach, residency-based programs, or National Writing Project’s peer-to-peer training sites; scaling registered apprenticeship programs or Grow Your Own programs along with the nation’s largest teacher colleges; and leveraging the platform of the President to boost recognition and prestige of the teaching profession.
The White House Office of Science and Technology Policy (OSTP) should coordinate a set of Executive Actions within the first 100 days of the next administration, including:
Recommendation 1. Launch a Grand Challenge for AI-Era Teacher Preparation
Create a national challenge via www.Challenge.Gov to identify the most innovative teacher recruitment, preparation, and training programs to prepare and retain educators for teaching in the era of AI. Challenge requirements should be minimal and flexible to encourage innovation, but could include the creation of teacher leadership opportunities, peer-network sites for professionals, and digital classroom resource exchanges. A challenge prompt could replicate the model of 100Kin10 or even leverage the existing network.
Recommendation 2. Update Areas of National Need
To enable existing scholarship programs to support AI readiness, the U.S. Department of Education should add “Artificial Intelligence,” “Data Science,” and “Machine Learning” to GAANN Areas of National Need under the Computer Science and Mathematics categories to expand eligibility for Masters-level scholarships for teachers to pursue additional study in these critical areas. The number of higher education programs in Data Science education has significantly increased in the past five years, with a small but increasing number of emerging Artificial Intelligence programs.
Recommendation 3. Expand and Simplify Key Programs for Technology-Focused Training
The President should direct the U.S. Secretary of Education, the National Science Foundation Director, and the Department of Defense Education Activity Director to add “Artificial Intelligence, Data Science, Computer Science” as competitive priorities where appropriate for existing grant or support programs that directly influence the national direction of teacher training and preparation, including the Teacher Quality Partnerships (ED) program, SEED (ED), the Hawkins Program (ED), the STEM Corps (NSF), the Robert Noyce Scholarship Program (NSF), and the DoDEA Professional Learning Division, and the Apprenticeship Building America grants from the U.S. Department of Labor. These terms could be added under prior “STEM” competitive priorities, such as the STEM Education Acts of 2014 and 2015 for “Computer Science,”and framed under “Digital Frontier Technologies.”
Additionally, the U.S. Department of Education should increase funding allocations for ESSA Evidence Tier-1 (“Demonstrates Rationale”), to expand the flexibility of existing grant programs to align with emerging technology proposals. As AI systems quickly update, few applicants have the opportunity to conduct rigorous evaluation studies or randomized control trials (RCTs) within the timespan of an ED grant program application window.
Additionally, the National Science Foundation should relaunch the 2014 Application Burden Taskforce to identify the greatest barriers in NSF application processes, update digital review infrastructure, review or modernize application criteria to recognize present-day technology realities, and set a 2-year deadline for recommendations to be implemented agency-wide. This ensures earlier-stage projects and non-traditional applicants (e.g. nonprofits, local education agencies, individual schools) can realistically pursue NSF funding. Recommendations may include a “tiered” approach for requirements based on grant size or applying institution.
Recommendation 4. Convene 100 Teacher Prep Programs for Action
The White House Office of Science & Technology Policy (OSTP) should host a national convening of nationally representative colleges of education and teacher preparation programs to 1) catalyze modernization efforts of program experiences and training content, and 2) develop recruitment strategies to revitalize interest in the teaching profession. A White House summit would help call attention to falling enrollment in teacher preparation programs; highlight innovative training models to recruit and retrain additional graduates; and create a deadline for states, districts, and private philanthropy to invest in teacher preparation programs. By leveraging the convening power of the White House, the Administration could make a profound impact on the teacher preparation ecosystem.
The administration should also consider announcing additional incentives or planning grants for regional or state-level teams in 1) catalyzing K-12 educator Registered Apprenticeship Program (RAPs) applications to the Department of Labor and 2) enabling teacher preparation program modernization for incorporating introductory computer science, data science, artificial intelligence, cybersecurity, and other “digital frontier skills,” via the grant programs in Recommendation 3 or via expanded eligibility for the Higher Education Act.
Recommendation 5. Launch a Digital “White House Data Science Fair”
Despite a bipartisan commitment to continue the annual White House Science Fair, the tradition ended in 2017. OSTP and the Committee on Science, Technology, and Math Education (Co-STEM) should resume the White House Science Fair and add a national “White House Data Science Fair,” a digital rendition of the Fair for the AI-era. K-12 and undergraduate student teams would have the opportunity to submit creative or customized applications of AI tools, machine-learning projects (similar to Kaggle competitions), applications of robotics, and data analysis projects centered on their own communities or global problems (climate change, global poverty, housing, etc.), under the mentorship of K-12 teachers. Similar to the original White House Science Fair, this recognition could draw from existing student competitions that have arisen over the past few years, including in Cleveland, Seattle, and nationally via AP Courses and out-of-school contexts. Partner Federal agencies should be encouraged to contribute their own educational resources and datasets through FC-STEM coordination, enabling students to work on a variety of topics across domains or interests (e.g. NASA, the U.S. Census, Bureau of Labor Statistics, etc.).
Recommendation 6. Announce a National Teacher Talent Surge at the State of Union
The President should launch a national teacher talent surge under the banner of “America’s Teachers Innovate,” a multi-agency communications campaign to reinvigorate the teaching profession and increase the number of teachers completing undergraduate or graduate degrees each year by 100,000. This announcement would follow the First 100 Days in office, allowing Recommendations 1-5 to be implemented and/or planned. The “America’s Teachers Innovate” campaign would include:
A national commitments campaign for investing in the future of American teaching, facilitated by the White House, involving State Education Agencies (SEAs) and Governors, the 100 largest school districts, industry, and philanthropy. Many U.S. education organizations are ready to take action. Commitments could include targeted scholarships to incentivize students to enter the profession, new grant programs for summer professional learning, and restructuring teacher payroll to become salaried annual jobs instead of nine-month compensation (see Discover Bank: “Surviving the Summer Paycheck Gap”).
Expansion of the Presidential Awards for Excellence in Mathematics and Science Teaching (PAMEST) program to include Data Science, Cybersecurity, AI, and other emerging technology areas, or a renaming of the program for wider eligibility across today’s STEM umbrella. Additionally, the PAMEST Award program should resume in-person award ceremonies beyond existing press releases, which were discontinued during COVID disruptions and have not since been offered. Several national STEM organizations and teacher associations have requested these events to return.
Student loan relief through the Teacher Loan Forgiveness (TLF) program for teachers who commit to five or more years in the classroom. New research suggests the lifetime return of college for education majors is near zero, only above a degree in Fine Arts. The administration should add “computer science, data science, and artificial intelligence” to the subject list of “Highly Qualified Teacher” who receive $17,500 of loan forgiveness via executive order.
An annual recruitment drive at college campus job fairs, facilitated directly under the banner of the White House Office of Science & Technology Policy (OSTP), to help grow awareness on the aforementioned programs directly with undergraduate students at formative career choice-points.
Recommendation 7. Direct IES and BLS to Support Teacher Shortage Forecasting Infrastructure
The IES Commissioner and BLS Commissioner should 1) establish a special joint task-force to better link existing Federal data across agencies and enable cross-state collaboration on the teacher workforce, 2) support state capacity-building for interoperable teacher workforce data systems through competitive grant priorities in the State Longitudinal Data Systems (SLDS) at IES and the Apprenticeship Building America (ABA) Program (Category 1 grants), and 3) recommend a review criteria question for education workforce data & forecasting in future EDA Tech Hub phases. The vast majority of states don’t currently have adequate data systems in place to track total demand (teacher vacancies), likely supply (teachers completing preparation programs), and the status of retention/mobility (teachers leaving the profession or relocating) based on near- or real-time information. Creating estimates for this very brief was challenging and subject to uncertainty. Without this visibility into the nuances of teacher supply, demand, and retention, school systems cannot accurately forecast and strategically fill classrooms.
Recommendation 8. Direct the NSF to Expand Focus on Translating Evidence on AI Teaching to Schools and Districts.
The NSF Discovery Research PreK-12 Program Resource Center on Transformative Education Research and Translation (DRK-12 RC) program is intended to select intellectual partners as NSF seeks to enhance the overall influence and reach of the DRK-12 Program’s research and development investments. The DRK-12 RC program could be utilized to work with multi-sector constituencies to accelerate the identification and scaling of evidence-based practices for AI, data science, computer science, and other emerging tech fields. Currently, the program is anticipated to make only one single DRK-RC award; the program should be scaled to establish at least three centers: one for AI, integrated data science, and computer science, respectively, to ensure digitally-powered STEM education for all students.
Conclusion
China was #1 in the most recent Global Teacher Status Index, which measures the prestige, respect, and attractiveness of the teaching profession in a given country; meanwhile, the United States ranked just below Panama. The speed of AI means educational investments made by other countries have an exponential impact, and any misstep can place the United States far behind – if we aren’t already. Emerging digital threats from other major powers, increasing fluidity of talent and labor, and a remote-work economy makes our education system the primary lever to keep America competitive in a fast-changing global environment. The timing is ripe for a new Nation at Risk-level effort, if not an action on the scale of the original National Defense Education Act in 1958 or following the more recent America COMPETES Act. The next administration should take decisive action to rebuild our country’s teacher workforce and prepare our students for a future that may look very different from our current one.
This action-ready policy memo is part of Day One 2025 — our effort to bring forward bold policy ideas, grounded in science and evidence, that can tackle the country’s biggest challenges and bring us closer to the prosperous, equitable and safe future that we all hope for whoever takes office in 2025 and beyond.
This memo was developed in partnership with the Alliance for Learning Innovation, a coalition dedicated to advocating for building a better research and development infrastructure in education for the benefit of all students. Read more education R&D memos developed in partnership with ALI here.
Approximately 100,000 more per year. The U.S. has 3.2 million public school teachers and .5 million private school teachers (NCES, 2022). According to U.S. Department of Education data, 8% of public and 12% of private school teachers exit the profession each year (-316,000), a number that has remained relatively steady since 2012, while long-term estimates of re-entry continue to hover near 20% (+63,000). Unfortunately, the number of new teachers completing either traditional or alternative preparation programs has steadily declined over the past decade to 159,000+ per year. As a result of this gap, active vacancies continue to increase each year, and more than 270,000 educators are now cumulatively underqualified for their current roles, assumedly filling-in for absences caused by the widening gap. These predictions were made as early as 2016 (p. 2) and now have seemingly become a reality. Absent any changes, the total shortage of vacant or underqualified teaching positions could reach a total deficit between 700,000 and 1,000,000 by 2035.
The above shortage estimate assumes a base of 50,000 vacancies and 270,000 underqualified teachers as of the most recent available data, a flow of -94,000 net (entries – exits annually, including re-entrants) in 2023-2024. This range includes uncertainties for a slight (3%-5%) annual improvement in preparation from the status quo growth of alternative licensure pathways such as Grow your Own or apprenticeship programs through 2035. For exit rate, the most conservative estimates suggest a 5% exit rate, while the highest estimate at 50%; however, assembled state-level data suggests a 7.9% exit rate, similar to the NCES estimate (8%). Population forecasts for K-12 students (individuals aged 14-17) imply slight declines by 2035, based on U.S. Census estimates. Taken together, more optimistic assumptions result in a net cumulative shortage closer to -700,000 teachers, while worst-case scenario estimates may exceed -1,000,000.
Early versions of AI-powered tutoring have significant promise but have not yet lived up to expectations. Automated tutors have resulted in frustrating experiences for users, led students to perform worse on tests than those who leveraged no outside support, and have yet to successfully integrate other school subject problem areas (such as mathematics). We should expect AI tools to improve over time and become more additive for learning specific concepts, including repetitive or generalizable tasks requiring frequent practice, such as sentence writing or paragraph structure, which has the potential to make classroom time more useful and higher-impact. However, AI will struggle to replace other critical classroom needs inherent to young and middle-aged children, including classroom behavioral management, social motivation to learn, mentorship relationships, facilitating collaboration between students for project-based learning, and improving quality of work beyond accuracy or pre-prompted, rubric-based scoring. Teachers consistently report student interest as a top barrier for continued learning, which digital curriculum and AI automation may provide effectively for a short-period, but cannot do for the full twelve-year duration of a students’ K-12 experience.
These proposed executive actions complement a bi-partisan legislative proposal, “A National Training Program for AI-Ready Students,” which would invest in a national network of training sites for in-service teachers, provide grant dollars to support the expansion of teacher preparation programs, and help reset teacher payroll structure from 9-months to 12-months. Either proposal can be implemented independently from the other, but are stronger together.
How the NEED Act Would Ensure CHIPS Doesn’t Crumble
A year and a half after its passage, money is starting to flow from the CHIPS and Science Act to create high-paying, high-tech jobs. In Phoenix, for example, the chip manufacturer Intel will receive billions to help build two new computer chip manufacturing plants that will transform the area into one of the world’s most important players in modern electronics.
That project was one of several – totaling nearly $20 billion – announced recently with Intel for computer chip plants in Arizona, Ohio, New Mexico and Oregon. The company said the investments will create a combined 30,000 manufacturing and construction jobs.
With numbers like that, it’s easy to see why all of the attention and headlines for the legislation thus far have focused on the “CHIPS” part of the law. But now, it is time for Congress to put its bipartisan support behind the “and Science” or risk the momentum the law has created.
That’s because both the law and the semiconductor industry recognize that the U.S. needs a bigger, more inclusive science, technology, engineering, and math (STEM) workforce to fulfill the needs of a robust high-tech manufacturing industry. While CHIPS sets the conditions for a revitalized domestic semiconductor industry, it also calls for improved “access to education, opportunity, and services” to support and develop the workers needed to fill these new jobs.
The numbers show the U.S. lags behind its global competitors when it comes to math and science achievement. Middle school math scores are exceptionally low: only 26 percent of all eighth-grade students scored “proficient” on the math portion of the National Assessment of Education Progress in 2022. This presents big problems down the road for higher education.
To put it more bluntly: at a time when CHIPS is poised to ramp up demand for STEM graduates, the nation’s education system is unprepared to produce them.
So what’s a fix? A good first step would be for Congress to pass the New Essential Education Discoveries (NEED) Act to improve the nation’s capabilities to conduct education research and development. NEED would create the National Center for Advanced Development in Education (NCADE), a new Center within the research arm of the U.S. Department of Education to develop innovative practices, tools, systems, and approaches to boost achievement among young people in the wake of the pandemic.
NCADE would enable an informed-risk, high-reward R&D strategy for education – the kind that’s already taking place in other sectors, like health, agriculture, and energy. It’s akin to the approach that fuels the Defense Advanced Research Projects Agency (DARPA), which has led to innovations like GPS, the Internet, stealth technology, and even the computer mouse. Education needs something like this, and NEED will create it – a flexible, nimble research center pushing transformational education innovations.
The passing of the CHIPS and Science Act was a strong indication that Republicans and Democrats can work together to solve big, complex problems when motivated to do so. Passing the NEED Act will show that the same bipartisan spirit can ensure the long-term success of the law while simultaneously setting the course for vast and fundamental improvements to the nation’s schools and universities through improved R&D in education.
President Looks to Education Innovation in the FY25 Budget Request
On March 11, 2024, the President released his budget for Fiscal Year 2025, and it spells good news for advocates and educators who are concerned about research and development opportunities and infrastructure in the education sector. New funding caps imposed by the Fiscal Responsibility Act have tempered many advocates’ expectations. However, by requesting increases for key federal education R&D programs across multiple agencies, the Biden-Harris administration has signaled that it continues to value investments in education innovation, even in a budget-conscious political climate.
An analysis of the proposal by the Alliance for Learning Innovation (ALI) found a lot to like. The President’s Budget would send $815.5 million to the Institute for Education Sciences (IES) to invest in education research, development, dissemination, and evaluation. This is $22.5 million higher than IES received in Fiscal Year 2024. This includes $38.5 million for Statewide Longitudinal Data Systems, a 35 percent increase over Fiscal Year 2024.
Notably, the President is asking for $52.7 million to grow the Accelerate, Transform, and Scale (ATS) Initiative at IES. This is 76 percent higher than the $30 million IES originally put into the initiative in 2023 when Congress directed the agency to “use a portion of its fiscal year 2023 appropriation to support a new funding opportunity for quick turnaround, high-reward scalable solutions intended to significantly improve outcomes for students.”
The ATS Initiative, widely regarded as a pilot for a possible National Center for Advanced Development in Education, is inspired by Advanced Research Project Agencies across the federal government – and around the world – that build insights from basic research to develop and scale breakthrough innovations. Like ARPAs, ATS invests in big ideas that emerge from interdisciplinary, outside-the-box collaboration. It aims to solve the nation’s steepest challenges in education.
The President’s request for ATS includes $2 million for a new research and development center on how generative artificial intelligence is being used in classrooms across the U.S. According to the Congressional Justification for IES, this new center will “develop and test innovative uses of this technology and will establish best practices for evidence building about generative AI in education that not only address the effectiveness of the technology for learning, but also consider issues of bias, fairness, transparency, trust and safety.”
Outside of IES, the President’s Budget calls for additional investments in education innovation. For example, it requests $269 million for the Education Innovation and Research program, housed at the U.S. Department of Education’s Office of Elementary and Secondary Education. If fulfilled, this would be a $10 million increase over last year. The President also wants Congress to send $100 million to the Fund for the Improvement of Postsecondary Education to expand R&D infrastructure at four-year Historically Black Colleges or Universities, Tribally Controlled Colleges or Universities, and Minority-Serving Institutions.
The Biden-Harris administration’s support for education R&D is also reflected in its requests for the National Science Foundation (NSF). The President’s Budget requests $1.3 billion for the NSF’s Directorate for STEM Education – $128 million above its Fiscal Year 2024 level. Moreover, it includes $900 million to fund the important work of NSF’s newest directorate, authorized in the CHIPS and Science Act: the Technology, Innovation, and Partnerships (TIP) Directorate. TIP runs important R&D initiatives, such as the VITAL Prize Challenge and America’s Seed Fund, that support teaching and learning innovations.
ALI looks forward to advocating for a robust investment in education R&D in Fiscal Year 2025. The President’s Budget provides a solid marker for the coalition’s efforts.
Increasing Students Opportunity-to-Learn Through Better Data Systems
Research shows that giving students equitable opportunities to learn requires access to key inputs. These include, at a minimum: access to qualified, experienced, in-field, and effective teachers; a rich curriculum; adequate funding; support staff; up-to-date facilities; standards-based materials; and technology. Since the 1960s education scholars have argued that federal, state, and local policymakers should use evidence-based opportunity-to-learn (OTL) indicators to inform education improvement processes and decisions about educator recruitment and retention, targeted student-centered programming, and equitable resource allocation. The current availability of district-level relief funds, the restarting of state accountability systems, and a possible reauthorization of the federal Education Sciences Reform Act (ESRA), are unique policy openings for education leaders to innovate using OTL indicators, incorporate promising practices from existing reporting systems, and establish place-based measures that fit local needs.
Challenge and Opportunity
COVID-19 placed an enormous burden on our education system. Lost instruction, student absences, teacher shortages, school discipline, and the wavering mental health of our nation’s youth have all made headlines since the pandemic began. To address these challenges, policymakers, educators, parents, and community members need multiple data points—in addition to test scores—to both identify achievement and opportunity gaps and spotlight successful models.
Luckily, a 2019 National Academies of Sciences study, in addition to several resources from the Department of Education and policy experts, demonstrate how OTL indicators can inform school, district, and systems-wide improvement. According to Stephen Elliot and Brendan Bartlett, OTL indicators “generally refer to inputs and processes within a school context necessary for producing student achievement of intended outcomes.” Such indicators can include those identified by the National Academies of Sciences in Table 1 and may also incorporate other indicators of school conditions and outcomes. When states, districts, and schools use various combinations of OTL indicators and disaggregate them by student subgroup, they can more accurately gauge and purposefully increase students’ opportunities to learn.
OTL indicators can also provide information about the nature of the teaching and learning opportunities states, districts, and schools make available to students across the country. For example, if a state’s curriculum frameworks and assessments outline standards for science or career and technical education that requires laboratory work, computers, specialized courses, and teaching expertise—states and districts should know whether students have access to these resources.
Federal and Expert Support for OTL Indicators
Over the past two years the Department of Education (ED) released two key resources supporting OTL implementation:
- Volume 2 of ED’s 2021 COVID-19 Handbook includes a section describing how states and districts can “use data about students opportunity to learn to help target resources and support.” This resource also lists several indicators for states to consider included in Table 2.
- ED’s 2022 guidance to states about their accountability systems mentions that states may modify their academic and School Quality and Student Success (SQSS) indicators under ESSA—specifically noting that they may pull from the list of OTL measures listed in ED’s COVID-19 Handbook. This guidance also “encourages SEAs, LEAs, and schools to include OTL measures and measures on the impact of COVID-19 as a part of the school improvement planning process.”
In addition, several organizations released OTL-related resources describing different indicators and how they are being used to support student achievement. For example:
- In 2023, the National Center for Education Statistics created an Equity in Education Dashboard pulling together available data connected to NAS’s 2019 report.
- In 2022, the Aspen Institute released a bipartisan set of OTL principles. These principles note how OTL indicators can create a shift in mindset “from a system and policy frame that measures students, to once that measures systems.”
- In 2022, the National Education Policy Center highlighted ED’s list of OTL indicators, arguing that these measures have never mattered more because they can expose the “systematic social and political structures” that create inequitable learning opportunities.
- In 2022, the Southern Education Foundation released a report recommending states revise their accountability systems to emphasize socio-economic factors, physical environments, health and wellness measures, and sociocultural metrics as a way to address achievement gaps.
- In 2021, MRDC published Equity Metrics, Measures, and Analytic Approaches in Education Research, which pulls together metrics from NAS and a 2018 UNESCO report.
- In 2021, Chiefs for Change released a tool for tracking multiple indicators of system-level student wellbeing, including measures of student flourishing, student mental health outcomes, school-based metrics, and state-connected supports.
- In 2021, FutureED released a report on equity measures. The report describes the history of OTL indicators, discusses criteria for choosing impactful metrics, and provides examples of OTL indicators in action.
- In 2020, the Center for Assessment released a resource describing why OTL data is important and how to collect it. This resource also includes a descriptive list of examples of potential indicators with a variety of ways states, districts, and schools can collect them.
Ideas to Use Data to Increase Opportunities to Learn
Taken together, the resources above from ED and policy experts can facilitate the following local, state, and federal actions to increase the use of OTL indicators.
Supporting Student Opportunity to Learn through Local Data Systems
States and districts have broad flexibility to use American Rescue Plan Act funds to support student achievement—including “developing and implementing procedures and systems to improve the preparedness and response efforts of local educational agencies.” These systems could arguably include building data collection and reporting infrastructure to track OTL indicators, monitor student progress, and respond with evidence-based interventions. Instead of starting from scratch, states and districts can pull best practices from existing cradle-to-career models such as the Schott Foundation’s Loving Cities Index, or StriveTogether which track various forms of OTL data from a student’s early years (e.g., kindergarten readiness) through their entry into career paths (e.g., postsecondary enrollment). School Systems can also adapt aspects of OTL indicators to show how they are meeting the needs of their students. For example, Houston Independent School District has an ESSER Spending Dashboard showing how much funding has been spent on educators, support staff, tutors, devices, programming, and physical health.
Supporting Student Opportunity to Learn through State Accountability and Improvement and Reporting Systems
At the state level, policymakers can help advance OTL indicators by using flexibility included in the Every Student Succeeds Act (ESSA) and further described by ED’s 2022 accountability guidance. For example, ESSA requires states to add at least one indicator of “school quality or student success” to their accountability systems. A number of states have responded by adding indicators of college and career readiness, extended-year graduation rates, suspension rates, school climate, and chronic absenteeism, which all provide information about the broader set of outcomes and opportunities that shape student achievement. For example, the District of Columbia amended its ESSA plan in 2022 to include academic growth, access to dual enrollment courses, and a five-year graduation rate. Many states also represent OTL data in accessible formats such as the school data dashboard in California, a parent dashboard in New York, School and District Profiles in Oregon, and school climate survey reports in Illinois.
Supporting Student Opportunity to Learn through State and Federal Grant Programs
State and federal governments can also incorporate OTL indicators into reporting metrics for grantees. Specifically, state and federal government can solicit feedback on which indicators are most helpful to each program through public notices. By developing equity-centered measures with researchers, policymakers, and practitioners, federal agencies can help grantees build lasting data systems for reporting and continuous improvement. For example, the Full-Service Community School grant program went through negotiated rulemaking to reshape the program’s priorities and drew from suggestions submitted by policy experts to incorporate 13 reporting metrics for new grantees. To help make the collection less burdensome, agencies can also provide technical assistance and release guidance with existing data sources, best practices, and examples.
Supporting Student Opportunity to Learn through Education Sciences Reform Act (ESRA) Implementation and Reauthorization
The federal government can help states and districts close opportunity gaps by assisting in the collection, reporting, validation, disaggregation, and analysis of OTL data through ESRA-funded programs. For example, states and districts can leverage technical assistance and research dissemination through the Regional Educational Laboratories (RELs), creating resources and providing further support through the Comprehensive Centers Program, and equipping the Statewide Longitudinal Data System (SLDS) program to aid in building state and local capacity in measuring students’ opportunity to learn. Officials at the Institute for Education Sciences (IES) can also point states and districts to existing models such as Kentucky’s Longitudinal Data System and Washington’s Indicators of Education System Health, which incorporate data across a student’s academic continuum to inform policy and practice.
Conclusion
If state and local leaders are committed to supporting the “whole child,” then they need more than just outcome-based measures such as test scores or graduation rates (i.e., outputs). So much happens before students take a test or graduate. To improve outcomes, students, parents, teachers, and education stakeholders need better information about factors that contribute to student learning (i.e., inputs). For years federal, state, and local leaders have been assessing our students mainly to find the same persistent achievement gaps, which correlate heavily with race, ethnicity, and socioeconomic status. Expanding the use of OTL indicators also assess our federal, state, and local systems so they can find new opportunities for students to learn.
Putting the fun in fundamental: how playful learning improves children’s outcomes
When we think back to our childhoods, many of us have fond memories of play. Playing outside, playing at school, or playing with friends and siblings often trump memories of worksheets and teacher lectures. Why is that?
Children are born ready to play and explore the world around them. First games of peek-a-boo with a loving caregiver provide an infant with learning and engagement— the infant develops a positive relationship with a caregiver, begins to develop object permanence, and experiences call and response social interactions – all critical steps in a child’s development.
According to the National Association of the Education of Young Children, play is a critical component of early childhood and children’s physical, social, and emotional development. Children learn best when they are doing. Playful learning includes opportunities for free play directed by the children themselves and guided play, designed by a teacher to provide children access to specific materials, concepts and guidance through hands-on engagement. These opportunities allow children to explore, expand their knowledge, take risks, develop interests, and practice their social and emotional skills.
Through play, many children are able to demonstrate their knowledge and learning that they otherwise are unable to share on a worksheet or assessment. For teachers, play provides a window into a child’s world that is not easily accessed through paper and pencil. Early childhood and early elementary programs have a critical opportunity to impact a child’s long term development by providing developmentally appropriate playful learning experiences to all children.
Playful Learning Promotes Child (and Adult) Well-being at a Critical Time
According to the Center for the Developing Child at Harvard University, play can help young children develop resilience and navigate significant adversity. When young children experience playful learning, they benefit from enhanced problem solving, communication, decision-making and creative skills. Teachers and caregivers who encourage play and exploration establish positive relationships. Through this,children develop positive self-esteem and approaches to learning that can carry them for many years. All of these skills are not only critical now, but will increasingly be more important as the next generation moves forward into the future.
Unfortunately, play has become less valued over the last decade or so as school systems have put emphasis on scholastic curricula. We know that kindergarten classrooms are by and large offering less play time and more academic curriculum. Preschool programs are feeling the pressure of getting children “ready for school.” However, our children are experiencing unprecedented stress due to the pandemic, community violence and general unrest in the world. In addition, evidence suggests that children have experienced learning and development loss due to the pandemic. Now more than ever is the time to ensure they are getting what they need through playful learning.
Teachers working with our youngest children are also facing significant challenges as children and families return to the new normal of school on top of their own personal stressors. According to EducationWeek, many teachers continue to report high levels of stress and anxiety as a result of working through and post-pandemic. Teachers are not only continuing to manage virus exposure but are expected to address learning loss of their students, navigate mental health needs while all the while meeting increasingly more rigorous standards during a teacher shortage. Could “allowing” teachers to do what’s best for children and utilize playful learning as a primary strategy not only support children through this trying time but also provide a more relaxed supportive environment for teachers as well? Rather than spending time copying worksheets, conducting testing and focusing on rote memorization, play would be beneficial for teachers and children alike.
In the United States, play is often considered a four letter word mistakenly associated with less academic instruction and ultimately, lower test scores. However, the tide is changing as more and more communities both in the U.S. and abroad begin to recognize that both free and guided play in early childhood can provide children important opportunities for learning, growth and ultimately success in school and life.
Three Lessons from Quality, Play-based Early Learning Programs
Educators and policymakers alike can learn a lot from other countries’ experiences developing quality, play-based early childhood programs. There have been great strides in adopting playful learning — even in low-resource contexts and in school systems where primary schooling tends to follow more traditional teacher-led approaches. Here are three examples of how play has contributed to quality early learning outside the U.S. to show what might be possible.
Playful learning is key to quality early child education: Lively Minds in Ghana
While Ghana introduced two years of kindergarten for four- and five-year olds as part of the universal basic education system in 2007, many schools faced difficulties training and retaining teachers. Large class sizes, limited play and learning materials, and rote teaching approaches are common in preschools. In response to these challenges, Lively Minds, an NGO, developed community-led, play-based early learning programs, known as “Play Schemes” in schools. In partnership with the Ghana Education Service, Lively Minds trained two kindergarten teachers from each participating school who then trained 30-40 mothers to be play scheme facilitators. Four days a week, volunteer mothers run play stations with small groups of children focused on: counting; matching; shapes and senses; books; and building. Parents also participate in monthly workshops to learn to support their children’s health, development, and learning at home.
The program is delivered within the existing government system to promote sustainability. Government and Lively Minds staff jointly monitor the implementation of the play schemes. A randomized control trial in rural Ghana found that Lively Minds significantly improved children’s emerging literacy, executive functioning, and fine motor skills. Children from poorer households benefited more from the program; emergent literacy skills also improved in this group of children. Participating children’s socio-emotional development improved as conduct problems and hyperactive behaviors decreased. Acute malnutrition decreased by a remarkable 22% among children attending Play Schemes. Volunteer mothers improved their self-esteem and mental health as well as their knowledge about child development. They also spent more time on developmentally appropriate activities with their children at home.
Currently, the Ghanaian government is rolling out Lively Minds in 60 of the country’s 228 districts, reaching approximately 4,000 preschool classrooms and more than 1.3 million young children. A new study will evaluate the program’s effectiveness at scale.
Increasing equity through play: Play Labs in Bangladesh
The second example comes from Bangladesh, where the development organization BRAC created the Play Lab model, a low-cost, non-formal approach to play-based learning for children ages 3-5. These vibrant, child-friendly spaces follow a play-based curriculum and use low-cost recycled materials. Play Leaders, young women selected from the community, give young children space and time to explore their own interests and ideas. Play Leaders also engage young children in culturally-relevant rhymes, stories, and dancing to encourage joy-filled learning. Since 2015, Play Labs have reached over 115,000 children in local communities, government schools, and refugee camps in Bangladesh, Tanzania, and Uganda.
A quasi-experimental evaluation in 2018-2019 in Bangladesh found that the Play Labs improved children’s development across physical, cognitive, and socio-emotional domains. In fact, after two years in the Play Labs, children who scored below average at baseline were able to catch up to their peers who entered with the highest scores; no such pattern was found in the control group. By reducing these initial gaps among children, Play Labs helped improve equity and promote school readiness for very disadvantaged young children. Play Leaders not only increased their early childhood knowledge and skills, but also the quality of their interactions with children.
Reaching children experiencing crisis and conflict: Remote early childhood education program in Lebanon
In Lebanon, the International Rescue Committee (IRC) worked with Sesame Workshop to implement an 11-week Remote Early Learning Program for families affected by conflict and crisis. The curriculum focuses on social and emotional learning and school readiness skills and targets mostly (96%) Syrian caregivers with 5-6 year old children living in hard-to-access areas of Lebanon, where exposure to preschool is very limited. As with quality, in-person early childhood education, the remote program focuses on engaging children through hands-on and play-based activities. Participating families receive supplies and worksheets to use in the activities with their children. Teachers use WhatsApp to call groups of parents and send multimedia content (e.g., videos, storybooks, songs) 2-3 times a week. The first five minutes of the call involve the child to help foster their connections with the teacher, while the remainder of time engages the parent on how early childhood activities support children’s development and learning.
A 2022 study compared the impact of the Remote Early Learning Program (RELP) alone and in combination with a remote parent support program that focuses more broadly on early childhood development. Both forms of the intervention had significant, positive effects on child development and child play compared to the control group. The authors remark that: “The size of the impacts found on child development is in the range of those seen in evaluations of in-person preschool from around the world, suggesting that RELP is a viable alternative to support children in places where in-person preschool is not feasible.”
Enabling Play-Based Policies in the U.S. are Needed
While these different modalities – home-based, center-based, remote learning – are promising approaches to support young children’s learning through play, they will not be implemented or scaled in the United States without an enabling policy environment. This means playful learning should be included in policy documents, legislation, standards, and curricula. It should also be supported by committing adequate financial resources for teachers to create playful learning environments and opportunities.
We’re seeing this happen in countries that are known for their high scores on international assessments, but less for their child-centered approaches in the early years. For example, in 2019, South Korea introduced a revised curriculum for 3 to 5 year olds that is organized around learning domains instead of by age. The goal is to shift from an academic approach to early childhood education to one that is more child-focused and play-based.
In 2012, Singapore revamped its Nurturing Early Learners curriculum for children ages 4 to 6 with a key objective being “To give every child a good start, preschool education nurtures the joy of learning and children’s holistic development.” To support implementation, the government developed educators’ guides and teaching and learning resources. Coincidentally, or not, Singapore ranks 4th in the Progress in International Reading Literacy Study (PIRLS), an international comparative assessment that evaluates reading literacy at grade 4.
One of the more comprehensive approaches comes from Rwanda, which recently revised its curriculum for pre-primary education through upper secondary grades. The competency-based curriculum recognizes the importance of play-based learning to reach intended learning outcomes across ages. The Ministry of Education is now working with partners to develop a national strategy to institutionalize learning through play into teacher training and pedagogical practices. In addition to pre-service and in-service training, components will include appropriate learning materials, assessments, quality assurance mechanisms, monitoring and evaluation, and advocacy to roll out learning through play within the education system.
Five Ways Policymakers Can Introduce Playful Learning into any Education Model Today
We know why playful learning is important. We can take inspiration from successful programs in some of the most vulnerable contexts. It’s time for policy makers in the U.S. to take steps to make learning through play a reality for our youngest learners:
- Include playful learning in policy documents including those related to standards and curriculum
- Prioritize funding for high quality developmentally appropriate playful learning in Pre-3
- Focus on preparing and supporting teachers to create playful learning environments along the P-3 continuum
- Support family members to integrate play into everyday activities with their children
- Use appropriate technology to complement in-class activities or to reach those who do not have access to early childhood education
The Federation of American Scientists values diversity of thought and believes that a range of perspectives — informed by evidence — is essential for discourse on scientific and societal issues. Contributors allow us to foster a broader and more inclusive conversation. We encourage constructive discussion around the topics we care about.
Strengthening and Diversifying the Biomedical Research Workforce Through a National Institutes of Health and Department of Education Collaboration
Summary
Our nation’s health and the future of scientific research depend on greater inclusion of underrepresented individuals in the science, technology, engineering, and mathematics (STEM) fields—and in the biomedical sciences in particular. Our nation’s scientists are a homogeneous group: majority white, despite the U.S. population rapidly increasing in diversity. A biomedical science workforce that reflects our nation’s demographics is required to address growing equity gaps and distinct health needs that accompany our diversifying country. This cannot be accomplished without inclusive and practical biomedical educational programs that begin at the PreK–12 level and continue through all levels of higher education, emphasizing Minority Serving Institution (MSI) research programs.
The lack of diversity in biomedical science is unacceptable, especially for an administration deeply committed to equity across its policy agenda. The Biden-Harris Administration must act to address this issue in the biomedical sciences at all levels: from PreK-12 education to research careers. Using the Department of Energy’s National Nuclear Security Administration’s program Minority Serving Institution Partnership Program (MSIPP) as a model, the National Institutes of Health (NIH) should establish a Biomedical Research Minority Serving Institution Partnership Program (BioMSIPP) to build a sustainable pipeline between NIH’s institutes and centers and biomedical science students at MSIs.
Educational interventions are also crucial at earlier stages of education than higher education. BioMSIPP would also include a grant program that funds participating MSIs to produce PreK-12 educational resources (i.e. SEPA tools) and to create a high school to undergraduate bridge program to further link educational interventions with biomedical research careers. We also propose that the Department of Education’s White House Initiative for Historically Black Colleges and Universities, Hispanic Serving Institutions (HSIs), and other MSIs, create community-based engagement plans to assess the needs of individual communities and generate data to aid in future programming. Simultaneously, the Department of Education (ED) should launch a Bright Spots campaign to highlight efforts taking place across the country, building examples for policymakers as roadmaps to bolster biomedical science education and excellence.
Challenge and Opportunity
On June 25, 2021, President Biden signed an executive order establishing diversity, equity, inclusion, and accessibility (DEIA) as national priorities. This order authorized the reestablishing of a coordinated government-wide DEIA Initiative and Strategic Plan. From there, over 50 federal agencies, including ED, the National Science Foundation (NSF), and NIH, released equity action plans, which can be strengthened by supporting meaningful partnerships with MSIs.
MSIs offer broad access to higher education for students who would otherwise not have the opportunity, such as underrepresented racial and ethnic minorities, low-income students, first-generation-to-college students, adult learners, and other post-traditional or nontraditional students. Furthermore, these institutions set an example of DEIA through diverse leadership, administration, and faculty, which is not seen at predominately white institutions (PWIs). The federal government should support institutions that foster diverse talent and the pipelines that feed these institutions through MSI-guided programming for PreK–12 students.
Despite a marginal increase in racially diverse doctorate graduates, there is still a substantial gap in the number of historically marginalized groups that enter and stay in the biomedical enterprise. While there are training programs (see Table 1) to diversify the biomedical sciences at federal agencies such as NIH and NSF, these programs have failed to substantially change the national percentage of racially diverse biomedical scientists. This is in part because the structure of these programs often does not support MSIs in building research capacity, an essential aspect in raising the research classification of an institution determined partly by research spending. In addition, current federal programs do not effectively capture the full spectrum of diverse students since they leave out engagement at the PreK–12 years.
Early exposure to STEM careers is essential to increased STEM participation and success. In fact, getting children involved in STEM-related activities at a young age has been demonstrated to bolster enrollment in STEM degrees and participation in STEM-related careers. Programs focused on STEM education at the PreK–12 level encourage learning in engineering, technology, and computer-based skills. We propose a focused approach in the field of biomedical science. According to the Bureau of Labor Statistics, STEM-related occupations are estimated to grow by 10.8 percent in the next 10 years, and biomedical science is estimated to see exponential growth at 17 percent. A sustainable and diverse STEM ecosystem requires education interventions focused on biomedical sciences at an early age. Currently, interventions primarily focus on undergraduate and graduate students, leaving out formative PreK–12 years (Table 1). ED has programs to immerse PreK–12 students into STEM and to support STEM capacity at MSIs through the Title III Higher Education Act, but none focused specifically on biomedical science.
Department or Agency | Program | PreK-12 programs in the biomedical sciences? |
National Institutes of Health | Maximizing Access to Research Careers | No |
National Institutes of Health | Minority Biomedical Research Support Program | Yes (supplement) |
National Institutes of Health | Research Infrastructure in Minority Institutions | No |
National Institutes of Health | High School Scientific Training and Enrichment Program 2.0 | Yes (high school seniors in DC, VA, or MD only) |
National Science Foundation | Centers of Research Excellence in Science and Technology | Yes (supplement) |
National Science Foundation | HBCU Research Infrastructure for Science and Engineering | No |
National Science Foundation | Hispanic Serving Institutions Program | No |
National Science Foundation | Discovery Research Pre-K | Yes |
Department of Defense | Research and Education Program for Historically Black Colleges and Universities / Minority-Serving Institutions | No |
Department of Defense | Historically Black Colleges and Universities / Minority Serving Institution Science Program | No |
Department of Defense | Hispanic Serving Institutions Program | No |
Plan of Action
The U.S. Department of Education and the National Institutes of Health should collaborate to create a program that strengthens the biomedical science pipeline. NIH and ED are committed to diversity and inclusion in their respective strategic plans. Leveraging their combined resources to strengthen and diversify the biomedical sciences would work toward the DEIA goals set in their strategic plans and prioritized by the Biden-Harris Administration at large. More importantly, it would take an essential step toward creating a biomedical workforce that represents and serves the diverse makeup of the U.S. population.
We propose a new program to address the disparities in the biomedical science education pipeline through NIH and ED collaboration by:
- Establishing a direct pipeline from MSIs to regional educational and NIH-funded laboratories.
- Collaborating with the White House initiatives for HBCUs, HSIs, and other MSIs to create community-based engagement plans to assess the needs of individual communities and generate data to aid in future programming.
- Amplifying these combined efforts and their outcomes as models for any future policy through a Bright Spots campaign.
Recommendation 1. Establish a Biomedical Research Minority Serving Institution Partnership Program (BioMSIPP) to serve as a direct pipeline from MSIs to the research capacity resources at the Department of Education and the research laboratories at the National Institutes of Health.
The Department of Energy established the Minority Serving Institution Partnership Program to build a “sustainable pipeline between the Department of Energy’s (DOE) sites/labs and minority-serving institutions in STEM disciplines.” This program is an example of direct measures to invest in university research capacity and workforce development through relationships between the federal government and institutions that serve historically marginalized populations. The program consists of a network of DOE/National Nuclear Security Administration (NNSA) national laboratories, nonprofit organizations, and MSIs through enrichment activities that span from PreK–12 to the postdoctoral level. We recommend that ED and NIH collaboratively fund and implement a similar program that includes a network of highly-funded NIH laboratories, nonprofit organizations, MSIs, and PreK–12 schools that serve historically marginalized communities.
The program should be implemented under ED, with support from NIH’s research resources and laboratories. The Higher Education Act of 2022 requires ED to provide grants for activities such as research capacity building and institutional support. Further, research capacity grants funded through ED allow for hiring administrative staff to support project management. Opening the capability of funding to include staff to support project management circumvents the eligibility requirement where the sponsoring institution must assure support for the proposed program, a possible barrier to entry.
Recommendation 2. The Department of Education’s White House initiatives for HBCUs, HSIs, and other MSIs should create community-based engagement plans to assess individual community needs and generate data to aid in future programming.
Diversity in the biomedical sciences is an ever-evolving conversation. Currently, the White House Initiatives for HBCUs and HSIs have working groups that collaborate with other federal agencies to develop best practices to diversify the STEM workforce. First, we charge the White House to expand these working groups to include the entire spectrum of MSIs, as well as to include representation from NIH, providing a crucial biomedical science perspective. Next, the working groups should write a report on best practices to engage with historically marginalized PreK–12 school districts in the biomedical sciences, and in particular, approaches to train teachers in teaching biomedical sciences to historically underrepresented students.
Recommendation 3. The Department of Education, along with the National Institutes of Health, should launch a Bright Spots campaign to highlight efforts that are taking place across the country to bolster biomedical science education and excellence.
Bright Spots campaigns highlight transformative work done by school districts, nonprofits, and federal agencies in education. NIH and ED both have repositories for science education resources. The NIH funds the Science Education Partnership Award (SEPA) program, which awards grants to create resources that target state and national PreK–12 standards for STEM teaching and learning and are rigorously evaluated for effectiveness. Likewise, ED funds the Minority Science and Engineering Improvement program to aid MSIs in enhancing their STEM education programs.
We propose that ED and NIH launch a campaign similar to the Bright Spots in Hispanic Education Fulfilling America’s Future spearheaded by the White House Initiative on Educational Excellence for Hispanics. Moreover, we charge both agencies with disseminating the campaign via webinars, conference exhibitions, and outreach to educational societies.
Conclusion
ED and NIH are at the forefront of our nation’s biomedical science enterprise and have access to funding, cutting-edge research, and technology that could greatly enhance research and education at every level of the educational spectrum, specifically by increasing diversity. To ensure that the biomedical workforce reflects our nation, we must increase the research capacity and resources available to MSIs, promote collaborative research and technology transfer between investigators from MSIs and NIH, and provide key educational resources for student enrichment and career development. Through these recommendations, we hope to close the achievement gap and propel PreK–12 students into achieving careers in the biomedical sciences.
Addressing national priorities in innovation demands a larger-scale effort to support incoming students’ education and workforce training. MSIs are an underutilized and underfunded resource for training and strengthening the biomedical research workforce.
Existing programs at the DoD, NIH, and NSF are limited either to the undergraduate level or to a specific geographic location. Our recommended program is designed for Pre–K to the postdoctoral level, like MSIPP.
We estimate that BioMSIPP will cost about the same as the MSIPP program, which currently costs the Department of Energy $38.8 million.
Digital Ethics for All: Implementing a National Digital Framework for K–12 Education
Summary
With the growing prominence of technology and social media in our lives, children of all ages should be made aware of and trained on the ethics of responsible technology usage. Creating a National Digital Ethics Framework for PreK–12 students will enable them to think critically, behave responsibly, and maintain mental health wellness in a digitally transforming world.
Technology is at the forefront of spreading information: news is read on mobile devices, teachers use applications and open-source software in classrooms, and social media defines the lives and status of youth. The COVID-19 pandemic has significantly increased technology use among tweens (8–12 years) and teens, with millions of students using digital entertainment such as TikTok, Instagram, and streaming services. But social media is not the only way students are introduced early to technology; online meetings through applications such as Zoom and Webex became the face of communication, and internet access is required for homework, assignments, and learning in all levels of schooling.
We are not adequately preparing our youth to create a positive digital footprint or have basic internet safety awareness. Implementing internet safety and digital ethics curriculum is imperative, and there is no better time to start than now.
A National Digital Ethics Framework would allow students not just to follow protocols and procedures but also to think critically, behave responsibly, and maintain mental health wellness in a digitally transforming world. This can go further to include concepts like leaving a digital footprint, wherein students engage with technology and media to create content, seek information, communicate ideas, and use open-source platforms in a meaningful and safe manner.
Challenge and Opportunity
Children start interfacing with technology as early as 3–4 years old, and they become increasingly dependent on it through their formative years as digital and social media platforms become ever more indispensable tools for navigating the world. Kids aged 8 to 12 spend an average of six hours per day using entertainment media. By the time they’re teenagers, 95 percent of youth in the United States will have their own mobile device and will, on average, spend almost nine hours a day texting, playing games, posting to social media, watching videos, and more. As tweens and teens move into the middle and high school years, they have ongoing, 24/7 access to friends
and peers via apps and mobile devices, with 45 percent of teens saying they’re online “almost constantly.”
On average, parents allow independent internet usage at 8 years old, and the average age that children sign up for social media is 12.6 years old. In 2021, 59 percent of U.S. tween/teenage students had been cyberbullied or threatened online; we cannot expect a 12-year-old to know how to deal with these dangers on their own.
Despite our increasing reliance on technology, it is not reflected in the learning experiences of PreK–12 students. Digital ethics and internet safety need to be heavily emphasized and implemented in the classroom. This can include simple practices like how to distinguish useful information from spam, using reputable and legitimate sites for references, and understanding copyright issues while quoting information and images from the internet. Digital ethics is a critical 21st-century skill that can be taught alongside computer science courses in schools or in conjunction with coursework that requires students to engage with the internet while seeking information.
Students need increased fluency in information literacy, cyberbullying prevention, online safety, digital responsibility, and emotional well-being. There is currently an internet safety requirement for schools under the Children’s Internet Protection Act (CIPA) to “educate minors about appropriate online behavior, including interacting with other individuals on social networking websites, in chat rooms, and cyberbullying awareness.” The requirements state that this education can be held through school assemblies or via presentations provided by Netsmartz. The presentations highlight important topics, but they are not particularly specific or relevant to today’s environment. Simple internet safety such as avoiding clicking on links sent through spam emails, how and when to use the “block” button on social media platforms, and how to create smart passwords are not covered in the current curriculum.
Developing a federal framework will give teachers a clear path to implementation. The vagueness of current internet safety education requirements means that this education is easily overlooked or not presented thoroughly. Integrating this curriculum into CIPA would allow for easier implementation while leveraging existing resources. In order to implement this at the PreK–12 level, teachers will have to be trained on how to deliver this curriculum. Instead of trying to restrict social media usage and heavily monitor or block internet activity, schools should consider this as an opportunity to help students navigate a digitally transforming world in an informed way.
Plan of Action
Recommendation 1. In order to achieve the goal of digital ethics for all learners, the federal government can take a number of steps to keep kids safer in online settings.
- The National Institute of Standards and Technology (NIST) should work with external stakeholders, other federal agencies, and experts to build a National Digital Ethics Framework that outlines the key objectives and standards to teach digital ethics across all grade bands and subjects from PreK to 12th grade.
- The U.S. Department of Education should issue nonregulatory guidance about how to utilize existing grant dollars—particularly from Title II Part A—to support professional development for PreK–12 educators on integrating digital ethics into their classroom content and reference the framework created by NIST.
- The National Science Foundation should allocate a portion of the STEM +C or CS for All grants toward digital ethics and incentivize research on the best tools, resources, and strategies to teach digital ethics. This could include research on how to better embed digital ethics into computer science education.
- The U.S. Department of Education should create a website and toolkit to identify federally funded tools and resources that educators and families could use to support digital literacy and internet safety.
- The U.S. Department of Education should develop best practices and recommendations that can be piloted across classrooms in different regions.
- The U.S. Department of Education should add a question to the Civil Rights Data Collection on whether digital literacy and internet safety are taught in schools.
At a federal level, CIPA is a great avenue to authorize these standards. The act currently applies its internet safety education requirements to “schools and libraries that receive discounts for Internet access through the E-rate program,” which makes certain communications tools affordable for these institutions. Although this does not cover all schools in the United States, schools with less ability to finance technology have the greatest need for digital literacy and internet safety education. By implementing this curriculum under CIPA’s current education suggestions (which are guidelines, not a specific way to conduct internet safety education), then it is likely to be implemented in schools that qualify for CIPA discounts.
Recommendation 2. As the digital ethics framework rolls out, agencies should work with critical stakeholders.
Efforts should directly engage elementary and middle school students and their teachers in designing frameworks, professional learning, and so on. Other stakeholders include state-level legislators that will be responsible for operationalizing and implementing the framework and school district boards that approve learning in each school district/school. Teachers are also key stakeholders, as they will have to receive and implement the information given to them as listed in the standards and may be subject to training.
Recommendation 3. Allocate federal funding to NIST to develop the Digital Ethics Framework and provide temporary staff through fellows with subject matter expertise on how to develop a digital ethics framework.
It will require approximately $1 million to develop the framework. The other actions as part of Digital Ethics for All utilize existing funds but could be bolstered and more quickly executed with the addition of subject matter experts through fellow placements or other staffing mechanisms. It is estimated that one fellow at NSF and one fellow at the U.S. Department of Education would cost approximately $500,000 annually in addition to the above costs.
Conclusion
Having access to a curriculum rooted in digital ethics, internet safety, and technology career paths is essential for students growing up in a society where access to technology is introduced earlier than the concept of computer science. Although computer science curriculum is being widely pushed for at the high school level, we must make sure to educate elementary and middle school youth as well. A National Digital Ethics Framework is not just an advantage—it is imperative in order to protect our students and their future.
Organizations that are developing curriculums centered around digital tools and computer science, such as Computer Science Teachers Association (CSTA) and CSforAll, could be tapped in order to pull topics or ideas from the standards they have already created. Their standards have been implemented in various states, so leveraging their existing resources will make it easier to develop a national curriculum that is suited for approval and implementation.
Subject matter experts are crucial for this initiative. Their perspective will be important to determine which standards have the best chance of being approved at the state and local level and how CIPA’s current curriculum can be modified. Subject matter experts will be fellows from the National Science Foundation and the U.S. Department of Education. The National Institute of Standards and Technology will also be consulted.
Due to the incorporation of this curriculum into CIPA’s current standards, it would be quicker to implement at a federal level. However, if digital ethics cannot be incorporated into CIPA, it could also be addressed at a state level, similar to the initiatives run by CSTA and CSforAll, where their independent curriculum and standards are adopted by states that want to implement technology standards.
In my own experience as a student and as the CEO and founder of Likeable STEM (an educational technology training company), I have observed that students lack resources to teach them about simple topics such as phishing scams, how to write appropriate emails, cybersecurity/password creation, social media profiles, etc. For the past six years, through Likeable STEM, I have taught these crucial topics to elementary, middle, and high school students and created independent curriculum on digital ethics.
Computer science education has been a bipartisan concern, with both the Democratic and Republican Parties introducing educational principles to support STEM growth and computer science career opportunities. However, one problem area would be the current crackdown on educational topics in states such as Florida. Digital ethics does not have roots in either political party, so it should be likely to be supported by both parties.
The STEMpathy Task Force: Creating a Generation of Culturally Competent STEM Professionals
Summary
Science, technology, engineering, and mathematics (STEM) are powerful levers for improving the quality of life for everyone in the United States. The connection between STEM’s transformative potential and its current impact on structural societal problems starts in the high school classroom.
Teachers play a critical role in fostering student cultural awareness and competency. Research demonstrates that teachers and students alike are eager to affect progress on issues related to diversity, equity, inclusion, and accessibility (DEIA). Educational research also demonstrates that DEIA and empathy enhance student sense of belonging and persistence in professional STEM pathways. However, formal STEM learning experiences lack opportunities for students to practice cultural competency and explore applications of STEM to social justice issues.
Cultural Competency is the ability to understand, empathize, and communicate with others as part of a diverse community.
The Biden-Harris Administration should establish the STEMpathy Task Force to aid high school STEM teachers in establishing cultural competency as an overarching learning goal. Through this action, the Administration would signal the prioritization of STEM equity—reflected in both the classroom and the broader community—across the United States. The program would address two pertinent issues in the STEM pipeline: the lack of momentum in STEM workforce diversification and STEM’s unfulfilled promise to relieve our society of systems of oppression and bias. Students need to be taught not only the scientific method and scientific discourse, but also how to approach their science in a manner that best uplifts all people.
Challenge & Opportunity
In a 2017 survey, over 1,900 U.S. companies listed the ability to work effectively with customers, clients, and businesses from a range of different countries and cultures as a critical skill. Since then, the importance of cultural competency in the U.S. workforce has become increasingly apparent.
Culturally competent workers are more creative and better equipped to solve tricky problems. For example, foresters have managed wildfires by following the instruction and guidance of tribal nations and traditional ecological knowledges. Engineers have designed infrastructure that lowers the water bills of farmers in drought-stricken areas. Public health representatives have assuaged concerns about COVID-19 vaccines in under-served communities. STEM professionals who improve Americans’ quality of life do so by collaborating and communicating with people from diverse backgrounds. When students can see these intersections between STEM and social change, they understand that STEM is not limited to a classroom, lab, or field activity but is also a tool for community building and societal progress.
Today’s middle and high school students are increasingly concerned about issues around race/ethnicity, gender, and equity. Recent college graduates also share these interests, and many demonstrate a growing desire to participate in meaningful work and to pursue social careers. When students realize that STEM fields are compatible with their passion for topics related to identity and social inequities, they are more likely to pursue STEM careers—and stick with them. This is the way to create a generation of professionals who act with STEMpathy.
To unite STEM subjects with themes of social progress, cultural competency must become a critical component of STEM education. Under this framework, teachers would use curricula to address systemic social inequities and augment learning by drawing from students’ personal experiences (Box 1). This focus would align with ongoing efforts to promote project-based learning, social-emotional learning, and career and technical education in classrooms across the United States.
American high school STEM students will demonstrate an understanding of and empathy for how people from varied backgrounds are affected by environmental and social issues. An environmental sciences student in California understands the risks posed by solar farms to agricultural production in the Midwest. They seek to design solar panels that do not disrupt soil drainage systems and financially benefit farmers.An astronomy student in Florida empathizes with Indigenous Hawaiians who are fighting against the construction of a massive telescope on their land. The student signs petitions to prevent the telescope from being built.A chemistry student in Texas learns that many immigrants struggle to understand healthcare professionals. They volunteer as a translator in their local clinic.A computer science student in Georgia discovers that many fellow residents do not know when or where to vote. They develop a chatbot that reminds their neighbors of polling place information. |
With such changes to the STEM lessons, the average U.S. high school graduate would have both a stronger sense of community within STEM classrooms and the capacity to operate at a professional level in intercultural contexts. STEM classroom culture would shift accordingly to empower and amplify diverse perspectives and redefine STEM as a common good in the service of advancing society.
Plan of Action
Through an executive order, the Biden-Harris Administration should create a STEMpathy Task Force committed to building values of inclusion and public service into the United States’ STEM workforce. The task force would assist U.S. high schools in producing college- and career-ready, culturally competent STEM students. The intended outcome is to observe a 20 percent increase in the likelihood of students of color and female- and nonbinary-identifying students to pursue a college degree in a STEM field and for at least 40 percent of surveyed U.S. high school students to demonstrate awareness and understanding of cultural competence skills. Both outcomes should be measured by National Center for Education Research data 5–10 years after the task force is established.
The STEMpathy Task Force would be coordinated by the Subcommittee on Federal Coordination in STEM Education (FC-STEM) from the White House Office of Science and Technology Policy (OSTP). The interagency working group would partner with education-focused organizations, research institutions, and philanthropy foundations to achieve their goals (FAQ #6). These partnerships would allow the White House to draw upon expertise within the STEM education sphere to address the following priorities:
- Publish guides on cultural-competency-oriented learning goals for STEM students that comply with STEM curricula and standards frameworks, as well as on suggested assessments for measuring student achievement in cultural competency skills.
- Issue nonregulatory guidance on federal funding streams for paid teacher professional development opportunities that improve their ability to teach students to apply STEM concepts to public service projects.
- Consider adding cultural competency assessments and measures into federally funded programs such as the What Works Clearinghouse, Blue Ribbon Schools Program, and the National Assessment of Educational Progress science questionnaire.
- Highlight and reward educators and schools that demonstrate high student achievement in science and cultural competence skills.1
Working toward these priorities will equip the next generation of STEM professionals with cultural competence skills. The task force will form effective STEM teaching methods that result in measurable improvement in STEM major diversity and career readiness.
This approach meets the objectives of existing federal STEM education efforts without imposing classroom standards on U.S. educators. In the Federal STEM Education Strategic Plan, the Committee on Science, Technology, Engineering, and Math Education (Co-STEM) aims to (1) increase work-based learning and training, (2) lend successful practices from across the learning landscape, and (3) encourage transdisciplinary learning. The Department of Education also prioritizes the professional development of educators to strengthen student learning, as well as meet students’ social, emotional, and academic needs. In these ways, the STEMpathy Task Force furthers the Administration’s education goals.
Conclusion
Current national frameworks for high school STEM learning do not provide students with a strong sense of belonging or an awareness of how STEM can be leveraged to alleviate social inequities. The STEMpathy Task Force would establish a rigorous, adaptable framework to address these challenges head-on and ensure that the United States provides high school students with inclusive, hands-on science classrooms that prepare them to serve the diverse communities of their country. Following the implementation of the STEMpathy Task Force, the Biden-Harris Administration can expect to see (1) an increase in the number and diversity of students pursuing STEM degrees, (2) a reduction in race/ethnicity- and gender-based gaps in the STEM workforce, and (3) an increase in STEM innovations that solve critical challenges for communities across the United States.
In any team setting, students will function effectively and with empathy. They will interact respectfully with people from varied cultural backgrounds. To achieve these behavioral goals, students will learn three key skills, as outlined by the Nebraska Extension NebGuide:
- Increasing cultural and global knowledge. Students understand the historical background of current events, including relevant cultural practices, values, and beliefs. They know how to ask open-minded, open-ended questions to learn more information.
- Self-assessment. Students reflect critically on their biases to engage with others. They understand how their life experience may differ from others based on their identity.
- Active Listening. Students listen for the total meaning of a person’s message. They avoid mental chatter about how they will respond to a person or question, and they do not jump directly to giving advice or offering solutions.
No. Although the task force will conduct research on STEM- and cultural-competency-related learning standards and lesson plans, the OSTP will not create incentives or regulations to force states to adopt the standards or curricula. The task force is careful to work within the existing, approved educational systems to advance the goals of the Department of Education and Committee on Science, Technology, Engineering, and Math Education (Co-STEM).
As observed during recent efforts to teach American students about structural racism and systemic inequality, some parents may find topics pertaining to diversity, equity, inclusion, and accessibility sensitive. The STEMpathy Task Force’s cultural competency-focused efforts, however, are primarily related to empathy and public service. These values are upheld by constituents and their representatives regardless of political leaning. As such, the STEMpathy Task Force may be understood as a bipartisan effort to advance innovation and the economic competitiveness of U.S. graduates.
Another associated risk is the burden created for teachers to incorporate new material into their already-packed schedules and lesson plans. Many teachers are leaving their jobs due to the stressful post-pandemic classroom environment, as well as the imbalance between their paychecks and the strain and value of their work. These concerns may be addressed through the STEMpathy Task Force’s objectives of paid training and rewards systems for educators who model effective teaching methods for others. In these ways, teachers may receive just compensation for their efforts in supporting both their students and the country’s STEM workforce.
In its first two years, the STEMpathy Task Force would complete the following:
- Revise FC-STEM’s “Best Practices For Diversity and Inclusion in Stem Education and Research” guide to include information on evidence-based or emerging practices that promote cultural competence skills in the STEM classroom.
- Train 500+ teachers across the nation to employ teaching strategies and curricula that improve the cultural competence skills of STEM students.
In the next two years, further progress would be made on the following:
- Measure the efficacy of the teacher training program by assessing ~10,000 students’ cultural competence skill development, STEM interest retention and performance, and classroom sense of belonging.
- Reward/recognize 100 schools for high achievement in cultural competency development.
STEM subjects and professionals have the greatest potential to mitigate inequities in American society. Consider the following examples wherein marginalized communities would benefit from STEM professionals who act with cultural competency while working alongside or separate from decision-makers:
- Native Hawaiians aim to protect their land from a telescope that may be built elsewhere
- Women and non-binary people who require precision medicine face built-in biases from biomedical technologies
- Defendants of color are more likely to be wrongly labeled as “high-risk” than white defendants at bail hearings
- Low-income neighborhoods aim to promote healthy eating and skill building by designing an urban farm
- Transgender individuals require specialized, destigmatized healthcare
Furthermore, although the number of STEM jobs in the United States has grown by 7.6 million since 1990, the STEM workforce has been very slow to diversify. Over the past 30 years, the proportion of Black STEM workers increased by only 2 percent and that of Latinx STEM workers by only 3 percent. Women hold only 15 percent of direct science and engineering jobs. LGBTQ male students are 17 percent more likely to leave STEM fields than their heterosexual counterparts.
Hundreds of professional networks, after-school programs, and nonprofit organizations have attempted to tackle these issues by targeting students of color and female-identifying students within STEM. While these commendable efforts have had a profound impact on many individuals’ lives, they are not providing the sweeping, transformative change that could promote not only diversity in the STEM workforce but a generation of STEM professionals who actively participate in helping diverse communities across the United States.
Based on the president’s budget for ongoing STEM-related programming, we estimate that the agency task force would require approximately $100 million. This amount will be divided across involved agencies for STEMpathy Task Force programming.
The STEMpathy Task Force must combine interagency expertise with nongovernmental organizations such as educational nonprofits, research institutions, and philanthropy foundations.
A National Commitment to Post-Graduate Education in Information Technology
Summary
Information technology (IT) refers to the full range of computing technologies and the people that work with them. IT itself is among the world’s fastest-growing economic sectors, and is an integral part of most other sectors. Rapid growth and demand for IT services have led to critical workforce shortages. Efforts to address these shortages have largely focused on K–12 and college education while ignoring the post-graduate population. This is a critical error. The post-graduate population is a valuable potential source of high-skilled tech talent and diversity. Many individuals with computing-related degrees would benefit from updates to their training, while individuals with expertise in other areas increasingly stand to benefit from adding IT competencies to their existing skills. Expanding post-graduate education and training opportunities would give current employees additional avenues for advancement, while also offering displaced workers ways to reenter the job market with a new set of skills. Such opportunities would also help employers quickly meet workforce needs, enabling the IT sector to become more dynamic, agile, productive, and innovative.
The Biden-Harris Administration should make a substantial investment in post-graduate opportunities that enable college graduates from a range of disciplines to build or upgrade their computational skills. These opportunities could include everything from business-to-business (B2B) short-term classes to update computational skills, to Master of Science (MS) degree programs that don’t require prior computer-science experience, to research and mentoring experiences that prepare students for Ph.D. studies. When implemented at scale, such opportunities will enable our nation to address pressing IT talent shortages while empowering Americans of all backgrounds to participate in—and benefit from—the IT economy.
Note: An initial version of this document was posted as a Widening Participation Quadrennial Paper. Citation: Cuny, J.; Danyluk, A.; Rushmeier, H. (2020). Fostering a Post-Graduate Tech Boom. Computing Research Association.