Applying ARPA-I: A Proven Model for Transportation Infrastructure
Executive Summary
In November 2021, Congress passed the Infrastructure Investment and Jobs Act (IIJA), which included $550 billion in new funding for dozens of new programs across the U.S. Department of Transportation (USDOT). Alongside historic investments in America’s roads and bridges, the bill created the Advanced Research Projects Agency-Infrastructure (ARPA-I). Building on successful models like the Defense Advanced Research Projects Agency (DARPA) and the Advanced Research Program-Energy (ARPA-E), ARPA-I’s mission is to bring the nation’s most innovative technology solutions to bear on our most significant transportation infrastructure challenges.
ARPA-I must navigate America’s uniquely complex infrastructure landscape, characterized by limited federal research and development funding compared to other sectors, public sector ownership and stewardship, and highly fragmented and often overlapping ownership structures that include cities, counties, states, federal agencies, the private sector, and quasi-public agencies. Moreover, the new agency needs to integrate the strong culture, structures, and rigorous ideation process that ARPAs across government have honed since the 1950s. This report is a primer on how ARPA-I, and its stakeholders, can leverage this unique opportunity to drive real, sustainable, and lasting change in America’s transportation infrastructure.
How to Use This Report
This report highlights the opportunity ARPA-I presents; orients those unfamiliar with the transportation infrastructure sector to the unique challenges it faces; provides a foundational understanding of the ARPA model and its early-stage program design; and empowers experts and stakeholders to get involved in program ideation. However, individual sections can be used as standalone tools depending on the reader’s prior knowledge of and intended involvement with ARPA-I.
- If you are unfamiliar with the background, authorization, and mission of ARPA-I, refer to the section “An Opportunity for Transportation Infrastructure Innovation.”
- If you are relatively new to the transportation infrastructure sector, refer to the section “Unique Challenges of the Transportation Infrastructure Landscape.”
- If you have prior transportation infrastructure experience or expertise but are new to the ARPA model, you can move directly to the sections beginning with “Core Tenets of ARPA Success.”
An Opportunity for Transportation Infrastructure Innovation
In November 2021, Congress passed the Infrastructure Investment and Jobs Act (IIJA) authorizing the U.S. Department of Transportation (USDOT) to create the Advanced Research Projects Agency-Infrastructure (ARPA-I), among other new programs. ARPA-I’s mission is to advance U.S. transportation infrastructure by developing innovative science and technology solutions that:
- lower the long-term cost of infrastructure development, including costs of planning, construction, and maintenance;
- reduce the life cycle impacts of transportation infrastructure on the environment, including through the reduction of greenhouse gas emissions;
- contribute significantly to improving the safe, secure, and efficient movement of goods and people; and
- promote the resilience of infrastructure from physical and cyber threats.
ARPA-I will achieve this goal by supporting research projects that:
- advance novel, early-stage research with practicable application to transportation infrastructure;
- translate techniques, processes, and technologies, from the conceptual phase to prototype, testing, or demonstration;
- develop advanced manufacturing processes and technologies for the domestic manufacturing of novel transportation-related technologies; and
- accelerate transformational technological advances in areas in which industry entities are unlikely to carry out projects due to technical and financial uncertainty.
ARPA-I is the newest addition to a long line of successful ARPAs that continue to deliver breakthrough innovations across the defense, intelligence, energy, and health sectors. The U.S. Department of Defense established the pioneering Defense Advanced Research Projects Agency (DARPA) in 1958 in response to the Soviet launch of the Sputnik satellite to develop and demonstrate high-risk, high-reward technologies and capabilities to ensure U.S. military technological superiority and confront national security challenges. Throughout the years, DARPA programs have been responsible for significant technological advances with implications beyond defense and national security, such as the early stages of the internet, the creation of the global positioning system (GPS), and the development of mRNA vaccines critical to combating COVID-19.
In light of the many successful advancements seeded through DARPA programs, the government replicated the ARPA model for other critical sectors, resulting in the Intelligence Advanced Research Projects Activity (IARPA) within the Office of the Director of National Intelligence, the Advanced Research Projects Agency-Energy within the Department of Energy, and, most recently, the Advanced Research Projects Agency-Health (ARPA-H) within the Department of Health and Human Services.
Now, there is the opportunity to bring that same spirit of untethered innovation to solve the most pressing transportation infrastructure challenges of our time. The United States has long faced a variety of transportation infrastructure-related challenges, due in part to low levels of federal research and development (R&D) spending in this area; the fragmentation of roles across federal, state, and local government; risk-averse procurement practices; and sluggish commercial markets. These challenges include:
- Roadway safety. According to the National Highway Traffic Safety Administration, an estimated 42,915 people died in motor vehicle crashes in 2021, up 10.5% from 2020.
- Transportation emissions. According to the U.S. Environmental Protection Agency, the transportation sector accounted for 27% of U.S. greenhouse gas (GHG) emissions in 2020, more than any other sector.
- Aging infrastructure and maintenance. According to the 2021 Report Card for America’s Infrastructure produced by the American Society of Civil Engineers, 42% of the nation’s bridges are at least 50 years old and 7.5% are “structurally deficient.”
The Fiscal Year 2023 Omnibus Appropriations Bill awarded ARPA-I its initial appropriation in early 2023. Yet even before that, the Biden-Harris Administration saw the potential for ARPA-I-driven innovations to help meet its goal of net-zero GHG emissions by 2050, as articulated in its Net-Zero Game Changers Initiative. In particular, the Administration identified smart mobility, clean and efficient transportation systems, next-generation infrastructure construction, advanced electricity infrastructure, and clean fuel infrastructure as “net-zero game changers” that ARPA-I could play an outsize role in helping develop.
For ARPA-I programs to reach their full potential, agency stakeholders and partners need to understand not only how to effectively apply the ARPA model but how the unique circumstances and challenges within transportation infrastructure need to be considered in program design.
Unique Challenges of the Transportation Infrastructure Landscape
Using ARPA-I to advance transportation infrastructure breakthroughs requires an awareness of the most persistent challenges to prioritize and the unique set of circumstances within the sector that can hinder progress if ignored. Below are summaries of key challenges and considerations for ARPA-I to account for, followed by a deeper analysis of each challenge.
- Federal R&D spending on transportation infrastructure is considerably lower than other sectors, such as defense, healthcare, and energy, as evidenced by federal spending as a percentage of that sector’s contribution to gross domestic product (GDP).
- The transportation sector sees significant private R&D investment in vehicle and aircraft equipment but minimal investment in transportation infrastructure because the benefits from those investments are largely public rather than private.
- Market fragmentation within the transportation system is a persistent obstacle to progress, resulting in reliance on commercially available technologies and transportation agencies playing a more passive role in innovative technology development.
- The fragmented market and multimodal nature of the sector pose challenges for allocating R&D investments and identifying customers.
Lower Federal R&D Spending in Transportation Infrastructure
Federal R&D expenditures in transportation infrastructure lag behind those in other sectors. This gap is particularly acute because, unlike for some other sectors, federal transportation R&D expenditures often fund studies and systems used to make regulatory decisions rather than technological innovation. The table below compares actual federal R&D spending and sector expenditures for 2019 across defense, healthcare, energy, and transportation as a percentage of each sector’s GDP. The federal government spends orders of magnitude less on transportation than other sectors: energy R&D spending as a percentage of sector GDP is nearly 15 times higher than transportation, while health is 13 times higher and defense is nearly 38 times higher.
Public Sector Dominance Limits Innovation Investment
Since 1990, total investment in U.S. R&D has increased by roughly 9 times. When looking at the source of R&D investment over the same period, the private and public sectors invested approximately the same amount of R&D funding in 1982, but today the rate of R&D investment is nearly 4 times greater for the private industry than the government.
While there are problems with the bulk of R&D coming from the private sector, such as innovations to promote long-term public goods being overlooked because of more lucrative market incentives, industries that receive considerable private R&D funding still see significant innovation breakthroughs. For example, the medical industry saw $161.8 billion in private R&D funding in 2020 compared to only $61.5 billion from federal funding. More than 75% of this private industry R&D occurred within the biopharmaceutical sector where corporations have profit incentives to be at the cutting edge of advancements in medicine.
The transportation sector has one robust domain for private R&D investment: vehicle and aircraft equipment manufacturing. In 2018, total private R&D was $52.6 billion. Private sector transportation R&D focuses on individual customers and end users, creating better vehicles, products, and efficiencies. The vast majority of that private sector R&D does not go toward infrastructure because the benefits are largely public rather than private. Put another way, the United States invests more than 50 times the amount of R&D into vehicles than the infrastructure systems upon which those vehicles operate.
Market Fragmentation across Levels of Government
Despite opportunities within the public-dominated transportation infrastructure system, market fragmentation is a persistent obstacle to rapid progress. Each level of government has different actors with different objectives and responsibilities. For instance, at the federal level, USDOT provides national-level guidance, policy, and funding for transportation across aviation, highway, rail, transit, ports, and maritime modes. Meanwhile, the states set goals, develop transportation plans and projects, and manage transportation networks like the interstate highway system. Metropolitan planning organizations take on some of the planning functions at the regional level, and local governments often maintain much of their infrastructure. There are also local individual agencies that operate facilities like airports, ports, or tollways organized at the state, regional, or local level. Programs that can use partnerships to cut across this tapestry of systems are essential to driving impact at scale.
Local agencies have limited access and capabilities to develop cross-sector technologies. They have access to limited pools of USDOT funding to pilot technologies and thus generally rely on commercially available technologies to increase the likelihood of pilot success. One shortcoming of this current process is that both USDOT and infrastructure owner-operators (IOOs) play a more passive role in developing innovative technologies, instead depending on merely deploying market-ready technologies.
Multiple Modes, Customers, and Jurisdictions Create Difficulties in Efficiently Allocating R&D Resources
The transportation infrastructure sector is a multimodal environment split across many modes, including aviation, maritime, pipelines, railroads, roadways (which includes biking and walking), and transit. Each mode includes various customers and stakeholders to be considered. In addition, in the fragmented market landscape federal, state, and local departments of transportation have different—and sometimes competing—priorities and mandates. This dynamic creates difficulties in allocating R&D resources and considering access to innovation across these different modes.
Customer identification is not “one size fits all” across existing ARPAs. For example, DARPA has a laser focus on delivering efficient innovations for one customer: the Department of Defense. For ARPA-E, it is less clear; their customers range from utility companies to homeowners looking to benefit from lower energy costs. ARPA-I would occupy a space in between these two cases, understanding that its end users are IOOs—entities responsible for deploying infrastructure in many cases at the local or regional level.
However, even with this more direct understanding of its customers, a shortcoming of a system focused on multiple modes is that transportation infrastructure is very broad, occupying everything from self-healing concrete to intersection safety to the deployment of electrified mobility and more. Further complicating matters is the rapid evolution of technologies and expectations across all modes, along with the rollout of entirely new modes of transportation. These developments raise questions about where new technologies and capabilities fit in existing modal frameworks, what actors in the transportation infrastructure market should lead their development, and who the ultimate “customers” or end users of innovation are.
Having a matrixed understanding of the rapid technological evolution across transportation modes and their potential customers is critical to investing in and building infrastructure for the future, given that transportation infrastructure investments not only alter a region’s movement of people and goods but also fundamentally impact its development. ARPA-I is poised to shape learnings across and in partnership with USDOT’s modes and various offices to ensure the development and refinement of underlying technologies and approaches that serve the needs of the entire transportation system and users across all modes.
Core Tenets of ARPA Success
Success using the ARPA model comes from demonstrating new innovative capabilities, building a community of people (an “ecosystem”) to carry the progress forward, and having the support of key decision-makers. Yet the ARPA model can only be successful if its program directors (PDs), fellows, stakeholders, and other partners understand the unique structure and inherent flexibility required when working to create a culture conducive to spurring breakthrough innovations. From a structural and cultural standpoint, the ARPA model is unlike any other agency model within the federal government, including all existing R&D agencies. Partners and other stakeholders should embrace the unique characteristics of an ARPA.
Cultural Components
ARPAs should take risks.
An ARPA portfolio may be the closest thing to a venture capital portfolio in the federal government. They have a mandate to take big swings so should not be limited to projects that seem like safe bets. ARPAs will take on many projects throughout their existence, so they should balance quick wins with longer-term bets while embracing failure as a natural part of the process.
ARPAs should constantly evaluate and pivot when necessary.
An ARPA needs to be ruthless in its decision-making process because it has the ability to maneuver and shift without the restriction of initial plans or roadmaps. For example, projects around more nascent technology may require more patience, but if assessments indicate they are not achieving intended outcomes or milestones, PDs should not be afraid to terminate those projects and focus on other new ideas.
ARPAs should stay above the political fray.
ARPAs can consider new and nontraditional ways to fund innovation, and thus should not be caught up in trends within their broader agency. As different administrations onboard, new offices get built and partisan priorities may shift, but ARPAs should limit external influence on their day-to-day operations.
ARPA team members should embrace an entrepreneurial mindset.
PDs, partners, and other team members need to embrace the creative freedom required for success and operate much like entrepreneurs for their programs. Valued traits include a propensity toward action, flexibility, visionary leadership, self-motivation, and tenacity.
ARPA team members must move quickly and nimbly.
Trying to plan out the agency’s path for the next two years, five years, 10 years, or beyond is a futile effort and can be detrimental to progress. ARPAs require ultimate flexibility from day to day and year to year. Compared to other federal initiatives, ARPAs are far less bureaucratic by design, and forcing unnecessary planning and bureaucracy on the agency will slow progress.
Collegiality must be woven into the agency’s fabric.
With the rapidly shifting and entrepreneurial nature of ARPA work, the federal staff, contractors, and other agency partners need to rely on one another for support and assistance to seize opportunities and continue progressing as programs mature and shift.
Outcomes matter more than following a process.
ARPA PDs must be free to explore potential program and project ideas without any predetermination. The agency should support them in pursuing big and unconventional ideas unrestricted by a particular process. While there is a process to turn their most unconventional and groundbreaking ideas into funded and functional projects, transformational ideas are more important than the process itself during idea generation.
ARPA team members welcome feedback.
Things move quickly in an ARPA, and decisions must match that pace, so individuals such as fellows and PDs must work together to offer as much feedback as possible. Constructive pushback helps avoid blind alleys and thus makes programs stronger.
Structural Components
The ARPA Director sets the vision.
The Director’s vision helps attract the right talent and appropriate levels of ambition and focus areas while garnering support from key decision-makers and luminaries. This vision will dictate the types and qualities of PDs an ARPA will attract to execute within that vision.
PDs can make or break an ARPA and set the technical direction.
Because the power of the agency lies within its people, ARPAs are typically flat organizations. An ARPA should seek to hire the best and most visionary thinkers and builders as PDs, enable them to determine and design good programs, and execute with limited hierarchical disruption. During this process, PDs should engage with decision-makers in the early stages of the program design to understand the needs and realities of implementers.
Contracting helps achieve goals.
The ARPA model allows PDs to connect with universities, companies, nonprofits, organizations, and other areas of government to contract necessary R&D. This allows the program to build relationships with individuals without needing to hire or provide facilities or research laboratories.
Interactions improve outcomes.
From past versions of ARPA that attempted remote and hybrid environments, it became evident that having organic collisions across an ARPA’s various roles and programs is important to achieving better outcomes. For example, ongoing in-person interactions between and among PDs and technical advisors are critical to idea generation and technical project and program management.
Staff transitions must be well facilitated to retain institutional knowledge.
One of ARPA’s most unique structural characteristics is its frequent turnover. PDs and fellows are term-limited, and ARPAs are designed to turn over those key positions every few years as markets and industries evolve, so having thoughtful transition processes in place is vital, including considering the role of systems engineering and technical assistance (SETA) contractors in filling knowledge gaps, cultivating an active alumni network, and staggered hiring cycles so that large numbers of PDs and fellows are not all exiting their service at once.
Scaling should be built into the structure.
It cannot be assumed that if a project is successful, the private sector will pick that technology up and help it scale. Instead, an ARPA should create its own bridge to scaling in the form of programs dedicated to funding projects proven in a test environment to scale their technology for real-world application.
Technology-to-market advisors play a pivotal role.
Similarly to the dedicated funding for scaling described above, technology-to-market advisors are responsible for thinking about how projects make it to the real world. They should work hand in hand with PDs even in the early stages of program development to provide perspectives on how projects might commercialize and become market-ready. Without this focus, technologies run the risk of dying on the vine—succeeding technically, but failing commercially.
A Primer on ARPA Ideation
Tackling grand challenges in transportation infrastructure through ARPA-I requires understanding what is unique about its program design. This process begins with considering the problem worth solving, the opportunity that makes it a ripe problem to solve, a high-level idea of an ARPA program’s fit in solving it, and a visualization of the future once this problem has been solved. This process of early-stage program ideation requires a shift in one’s thinking to find ideas for innovative programs that fit the ARPA model in terms of appropriate ambition level and suitability for ARPA structure and objectives. It is also an inherently iterative process, so while creating a “wireframe” outlining the problem, opportunity, program objectives, and future vision may seem straightforward, it can take months of refining.
Common Challenges
No clear diagnosis of the problem
Many challenges facing our transportation infrastructure system are not defined by a single problem; rather, they are a conglomeration of issues that simultaneously need addressing. An effective program will not only isolate a single problem to tackle, but it will approach it at a level where something can be done to solve it through root cause analysis.
Thinking small and narrow
On the other hand, problems being considered for ARPA programs can be isolated down to the point that solving them will not drive transformational change. In this situation, narrow problems would not cater to a series of progressive and complementary projects that would fit an ARPA.
Incorrect framing of opportunities:
When doing early-stage program design, opportunities are sometimes framed as “an opportunity to tackle a problem.” Rather, an opportunity should reflect a promising method, technology, or approach already in existence but which would benefit from funding and resources through an advanced research agency program.
Approaching solutions solely from a regulatory or policy angle
While regulations and policy changes are a necessary and important component of tackling challenges in transportation infrastructure, approaching issues through this lens is not the mandate of an ARPA. ARPAs focus on supporting breakthrough innovations in developing new methods, technologies, capabilities, and approaches. Additionally, regulatory approaches to problem-solving can often be subject to lengthy policy processes.
No explicit ARPA role
An ARPA should pursue opportunities to solve problems where, without its intervention, breakthroughs may not happen within a reasonable timeframe. If the public or private sector already has significant interest in solving a problem, and they are well on their way to developing a transformational solution in a few years or less, then ARPA funding and support might provide a higher value-add elsewhere.
Lack of throughline
The problems identified for ARPA program consideration should be present as themes throughout the opportunities chosen to solve them as well as how programs are ultimately structured. Otherwise, a program may lack a targeted approach to solving a particular challenge.
Forgetting about end users
Human-centered design should be at the heart of how ARPA programs are scoped, especially when considering the scale at which designers need to think about how solving a problem will provide transformational change for everyday users.
Being solutions-oriented
Research programs should not be built with predetermined solutions in mind; they should be oriented around a specific problem to ensure that any solutions put forward are targeted and effective.
Not being realistic about direct outcomes of the program
Program objectives should not simply restate the opportunity, nor should they jump to where the world will be many years after the program has run its course. They should separate the tactical elements of a program and what impact they will ultimately drive. Designers should consider their program as one key step in a long arc of commercialization and adoption, with a firm sense of who needs to act and what needs to happen to make a program objective a reality.
Keeping these common mistakes in mind throughout the design process ensures that programs are properly scoped, appropriately ambitious, and in line with the agency’s goals. With these guideposts in mind, idea generators should begin their program design in the form of a wireframe.
Wireframe Development
The first phase in ARPA program development is creating a program wireframe, which is an outline of a potential program that captures key components for consideration to assess the program’s fit and potential impact. The template below shows the components characteristic of a program wireframe.
To create a fully fleshed-out wireframe, program directors work backward by first envisioning a future state that would be truly transformational for society and across sectors if it were to be realized. Then, they identify a clearly-articulated problem that needs solving and is hindering progress toward this transformational future state. During this process, PDs need to conduct extensive root cause analysis to consider whether the problem they’ve identified is exacerbated by policy, regulatory, or environmental complications—as opposed to those that technology can already solve. This will inform whether a problem is something that ARPA-I has the opportunity to impact fundamentally.
Next, program directors identify a promising opportunity—such as a method, approach, or technology—that, if developed, scaled, and implemented, would solve the problem they articulated and help achieve their proposed future state. When considering a promising opportunity, PDs must assess whether it front-runs other potential technologies that would also need developing to support it and whether it is feasible to achieve concrete results within three to five years and with an average program budget. Additionally, it is useful to think about whether an opportunity considered for program development is part of a larger cohort of potential programs that lie within an ARPA-I focus area that could all be run in parallel.
Most importantly, before diving into how to solve the problem, PDs need to articulate what has prevented this opportunity from already being solved, scaled, and implemented, and what explicit role or need there is for a federal R&D agency to step in and lead the development of technologies, methods, or approaches to incentivize private sector deployment and scaling. For example, if the private sector is already incentivized to, and capable of, taking the lead on developing a particular technology and it will achieve market readiness within a few years, then there is less justification for an ARPA intervention in that particular case. On the other hand, the prescribed solution to the identified problem may be so nascent that what is needed is more early-stage foundational R&D, in which case an ARPA program would not be a good fit. This area should be reserved as the domain of more fundamental science-based federal R&D agencies and offices.
One example to illustrate this maturity fit is DARPA investment in mRNA. While the National Institutes of Health contributed significantly to initial basic research, DARPA recognized the technological gap in being able to quickly scale and manufacture therapeutics, prompting the agency to launch the Autonomous Diagnostics to Enable Prevention and Therapeutics (ADEPT) program to develop technologies to respond to infectious disease threats. Through ADEPT, in 2011 DARPA awarded a fledgling Moderna Therapeutics with $25 million to research and develop its messenger RNA therapeutics platform. Nine years later, Moderna became the second company after Pfizer-BioNTech to receive an Emergency Use Authorization for its COVID-19 vaccine.
Another example is DARPA’s role in developing the internet as we know it, which was not originally about realizing the unprecedented concept of a ubiquitous, global communications network. What began as researching technologies for interlinking packet networks led to the development of ARPANET, a pioneering network for sharing information among geographically separated computers. DARPA then contracted BBN Technologies to build the first routers before becoming operational in 1969. This research laid the foundation for the internet. The commercial sector has since adopted ARPANET’s groundbreaking results and used them to revolutionize communication and information sharing across the globe.
Wireframe Refinement and Iteration
To guide program directors through successful program development, George H. Heilmeier, who served as the director of DARPA from 1975 to 1977, used to require that all PDs answer the following questions, known as the Heilmeier Catechism, as part of their pitch for a new program. These questions should be used to refine the wireframe and envision what the program could look like. In particular, wireframe refinement should examine the first three questions before expanding to the remaining questions.
- What are you trying to do? Articulate your objectives using absolutely no jargon.
- How is it done today, and what are the limits of current practice?
- What is new in your approach, and why do you think it will be successful?
- Who cares? If you are successful, what difference will it make?
- What are the risks?
- How much will it cost?
- How long will it take?
- What are the midterm and final “exams” to check for success?
Alongside the Heilmeier Catechism, a series of assessments and lines of questioning should be completed to pressure test and iterate once the wireframe has been drafted. This refinement process is not one-size-fits-all but consistently grounded in research, discussions with experts, and constant questioning to ensure program fit. The objective is to thoroughly analyze whether the problem we are seeking to solve is the right one and whether the full space of opportunities around that problem is ripe for ARPA intervention.
One way to think about determining whether a wireframe could be a program is by asking, “Is this wireframe science or is this science fiction?” In other words, is the proposed technology solution at the right maturity level for an ARPA to make it a reality? There is a relatively broad range in the middle of the technological maturity spectrum that could be an ARPA program fit, but the extreme ends of that spectrum would not be a good fit, and thus those wireframes would need further iteration or rejection. On the far left end of the spectrum would be basic research that only yields published papers or possibly a prototype. On the other extreme would be a technology that is already developed to the point that only full-scale implementation is needed. Everything that falls between could be suitable for an ARPA program topic area.
Once a high-impact program has been designed, the next step is to rigorously pressure test and develop a program until it resembles an executable ARPA program.
Applying ARPA Frameworks to Transportation Infrastructure Challenges
By using this framework, any problem or opportunity within transportation infrastructure can be evaluated for its fit as an ARPA-level idea. Expert and stakeholder idea generation is essential to creating an effective portfolio of ARPA-I programs, so idea generators must be armed with this framework and a defined set of focus areas to develop promising program wireframes. An initial set of focus areas for ARPA-I includes safety, climate and resilience, and digitalization, with equity and accessibility as underlying considerations within each focus area.
There are hundreds of potential topic areas that ARPA-I could tackle; the two wireframes below represent examples of early-stage program ideas that would benefit from further pressure testing through the program design iteration cycle.
Note: The following wireframes are samples intended to illustrate ARPA ideation and the wireframing process, and do not represent potential research programs or topics under consideration by the U.S. Department of Transportation.
Next-Generation Resilient Infrastructure Management
A Digital Inventory of Physical Infrastructure and Its Uses
Wireframe Development Next Steps
After initial wireframe development, further exploration is needed to pressure test an idea and ensure that it can be developed into a viable program to achieve “moonshot” ambitions. Wireframe authors should consider the following factors when iterating:
- The Heilmeier Catechism questions (see page 14) and whether the wireframe needs to be updated or revised as they seek to answer each of the Heilmeier Catechism questions
- Common challenges wireframes face (see page 11) and whether any of them might be reflected in the wireframe
- The federal, state, and local regulatory landscape and any regulatory factors that will impact the direction of a potential research program
- Whether the problem or technology already receives significant investment from other sources (if there is significant investment from venture capital, private equity, or elsewhere, then it would not be an area of interest for ARPA-I)
- Adjacent areas of work that might inform or affect a potential research program
- The transportation infrastructure sector’s unique challenges and landscape
- How long will it take?
- Existing grant programs and opportunities that might achieve similar goals
Wireframes are intended to be a summary communicative of a larger plan to follow. After further iteration and exploration of the factors outlined above, what was first just a raw program wireframe should develop into more detailed documents. These should include an incisive diagnosis of the problem and evidence and citations validating opportunities to solve it. Together, these components should lead to a plausible program objective as an outcome.
Conclusion
The newly authorized and appropriated ARPA-I presents a once-in-a-generation opportunity to apply a model that has been proven successful in developing breakthrough innovations in other sectors to the persistent challenges facing transportation infrastructure.
Individuals and organizations that would work within the ARPA-I network need to have a clear understanding of the unique circumstances, challenges, and opportunities of this sector, as well as how to apply this context and the unique ARPA program ideation model to build high-impact future innovation programs. This community’s engagement is critical to ARPA-I’s success, and the FAS is looking for big thinkers who are willing to take on this challenge by developing bold, innovative ideas.
To sign up for future updates on events, convenings, and other opportunities for you to work in support of ARPA-I programs and partners, click here.
To submit an advanced research program idea, click here.
Proposed House Budget Would Reduce Federal R&D By An Estimated $442 Billion or 19% Over 10 Years
On Wednesday, April 19, Speaker McCarthy unveiled the Limit, Save, Grow Act of 2023, which would establish a set of discretionary spending caps over the next decade through FY 2033, allowing for only sub-inflation increases in overall spending. These caps would have the effect of reducing base discretionary spending by over $3.5 trillion below baseline over that time.
The COVID Emergency is Almost Over—What Did We Learn About Rapid R&D?
This month marks three years since the COVID pandemic took hold of nearly every aspect of American life. In a few more months (May 2023) the coronavirus public health emergency is set to conclude officially, following the Administration’s announcement to wind down the declarations. As the nation grapples with the tragedies and lasting effects of the pandemic, it should also take lessons from the most successful elements of how the government responded to the challenge. The most notable success might be Operation Warp Speed (OWS), the highly successful public-private partnership that produced and distributed millions of live-saving vaccines in record time. Our new memo, How to Replicate the Success of Operation Warp Speed, helps this audience assess how and if they even should attempt to replicate the approach.
The Federation of American Scientists, together with our partners at 1Day Sooner and the Institute for Progress (IFP), convened leadership from the original OWS team, agency heads, Congressional staffers, researchers, and representatives from vaccine manufacturers in November 2022 to reflect on the success of the program and future applications of the model. The memo was developed primarily from notes on presentations, panel discussions, and lively breakout conversations that were both reflective and forward looking. This piece complements other analyses by providing a practical, playbook-style approach. Those looking to replicate the success of OWS should consider the stakeholder landscape and the state of fundamental science before designing a portfolio of policy interventions.
Assess the stakeholder landscape and science surrounding the challenge
A program on the exact scale of OWS will only work for major national challenges that are self-evidently important and urgent. Designers should assess the stakeholder landscape and consider the political, regulatory, and behavioral contexts. The fundamental research must exist, and the goal should require advancing it for a specific use case at scale. Technology readiness levels (TRLs) can help guide technology assessment—a level of at least 5 is a good bet. All decisions about technology readiness should be made using the best available science, data, and demonstrated capabilities.
Design an agile program by selecting a portfolio of interventions
Choose a selection of the mechanisms below informed by the stakeholder and technology assessment. The organization of R&D, manufacturing, and deployment should be inspired by agile methodology, in which planning is iterative and more risk than normal is accepted.
- Establish a leadership team across federal agencies
- Coordinate federal agencies and the private sector
- Activate latent private-sector capacities for labor and manufacturing
- Shape markets with demand-pull mechanisms
- Reduce risk with diversity and redundancy
Operation Warp Speed was a historic accomplishment on the level of the Manhattan Project and the Apollo program, but the unique approach is not appropriate for everything. Read the full memo to understand the mechanisms and the types of challenges best suited for this approach. Even if a challenge does not meet the criteria for the full OWS treatment, the five mechanisms can be applied individually to better coordinate agencies and the private sector toward solutions.
ALI Releases Statement on the President’s FY2024
WASHINGTON, D.C. — The Alliance for Learning Innovation (ALI) applauds the increases proposed for education research and development (R&D) and innovation in the President’s budget request. These include the $870.9 million proposed for the Institute of Education Sciences (IES), including $75 million for a National Center for Advanced Development in Education (NCADE), the $405 million proposed for the Education Innovation and Research (EIR) program and the $1.4 billion for the National Science Foundation’s (NSF) Directorate for STEM Education. These investments represent real commitments to advancing an inclusive education research system that centers students, teachers, and communities.
These recommendations build upon the bipartisan interest in utilizing education R&D to accelerate learning recovery, increase student achievement, and ensure students and teachers are prepared for the continued impact technology will have on teaching and learning. National and economic security depends on the success of our students and ALI appreciates the priorities this budget request places on fostering innovations in education that will support U.S. competitiveness.
Dan Correa, CEO of the Federation of American Scientists and co-lead of ALI notes, “Investments in education research and development hold so much promise for dramatically improving gaps in student achievement. Learning recovery, workforce development, and global competition all demand a pool of talent that can only come from an education system that meets the needs of diverse learners. The President’s budget request recognizes that more robust education R&D is needed to support bold innovations that meet the needs of students, teachers, families, and communities.”
This budget will allow IES and other federal agencies the ability to build on boundary-pushing efforts like the National AI Institute for Exceptional Education, which is supporting advancements in AI, human-AI interaction, and learning science to improve educational outcomes for children with speech and language related challenges.
For too long, federal support for education R&D has languished while resources and attention have been devoted to R&D in health care, defense, energy, and other fields. Today’s budget represents a critical step forward in addressing this deficiency. The Alliance for Learning Innovation looks forward to championing the continued development of an education R&D ecosystem that will lead to the types of groundbreaking developments and advancements we see in health care and defense; thus affording students everywhere access to fulfilling futures.
For more information about the Alliance for Learning Innovation, please visit https://www.alicoalition.org/.
A Bipartisan Health Agenda to Unite America: Innovative Ideas to Strengthen American Wellbeing
As the COVID-19 pandemic has clearly shown – American health is crucial to the health of our nation. Yet American health is under threat from all angles, from escalating chronic deadly diseases like cancer to rising mental health challenges and the growing overdose epidemic. All of these threats contribute to the United States ranking 31st in life expectancy at birth, one of the lowest in the developed world, despite having the highest health spending per capita.
At the State of the Union, the Biden Administration presented a bipartisan platform dedicated to securing the health and wellbeing of the American people, from our Veterans to our youth. An agenda is a first step – unified action on public health comes next. Evidence-based science policy can bring us closer to a healthier future. Since 2020, policy entrepreneurs have developed innovative implementation-ready policy proposals through the Day One Project (D1P) to tackle some of the biggest societal problems. Here are a few that speak to the current moment:
To combat cancer…
With the median monthly cost of cancer drugs topping $10,000, many families cannot afford the costs of caring for their loved ones. Yet, there are 1,100 FDA-approved off-patent generics that could be used for treating cancer, at a fraction of the cost. Congress should appropriate $100 million into Phase III clinical trials of off-patent generics for treating a variety of cancers. This funding can go towards the National Cancer Institute and be implemented through an open-source pharmaceutical R&D framework through accelerated progress towards accessible and affordable cures.
Environmental hazards are a growing driver of cancers, and disproportionately impact rural and disadvantaged communities. Air pollution has been linked to lung cancer, the most deadly cancer for both men and women in the US. An interagency collaboration led by National Oceanic and Atmospheric Administration and leveraging funds from the Inflation Reduction Act could deploy a network on low-cost, real-time, ground-based sensors in all 300 US cities with a population above 100,000 to track particulate matter rates. Connecting this data to relevant providers in these cities, such as federally-qualified community health centers, could inform physicians of high-risk sites to target early screening interventions. Further, materials composing American homes, from housing materials to pipe materials, and even water running in the faucets, have been identified as possible sources of carcinogens. The Biden Administration should launch the President’s Task Force on Healthy Housing and Water for Cancer Prevention to coordinate research, develop the statistical database, and prepare for regulatory actions.
Finally, innovations in primary care can also catch cancer at earlier stages in disease progression. Yet, many rural and disadvantaged communities lack access to primary care. The NIH’s $23 million investment investigating telehealth for cancer care will develop the best care strategies – but labor-market, technical, financial/regulatory barriers, and data barriers will remain for scaling to the broad population. The Biden Administration and Congress will need to collaborate to unlock barriers to delivering healthcare services directly to the American home, through reforming licensure, expanding broadband access, investing in new mobile healthcare devices, expanding Medicare and Medicaid reimbursements, and ensuring data interoperability.
To strengthen mental health…
Digital mental health technologies have enormous potential to combat the growing mental health crisis, as evidenced by the Administration’s plan on mental health research and development. Yet more work remains to build a national infrastructure for successful implementation of digital mental health services. The vast majority of digital mental health technologies are unregulated, as existing FDA standards fail to cover these emerging technologies because many do not make treatment claims. Congress should authorize Health and Human Services (HHS) to develop standards for digital mental health products to ensure clinical effectiveness, data safety, and mitigate risk. Technologies that meet these standards should then be reimbursable through Medicare and Medicaid, which will require further congressional action. Finally, the Substance Abuse and Mental Health Services Administration (SAMHSA) should create a National Center for Digital Mental Health to maintain a database of approved digital products, provide training to providers, and ensure compliance of developers with national standards.
Knowing that tech platforms can be harmful to the youth’s wellbeing, the Congress and the Administration can take several steps to protect children’s privacy. Congress can expand the technological expertise at the Department of Education (ED) to protect children’s privacy and security in schools as well as appropriate $160 million funding to the Federal Trade Commission (FTC) to expand Children’s Online Protection Privacy Act (COPPA) enforcement and further investigate technology companies extracting children’s data. The Administration can commission a task force to identify ways to protect children’s data through existing legislation such as the Family Educational Rights and Privacy Act and COPPA.
To tackle the opioid crisis…
The opioid crisis is claiming thousands of lives every year, and there is bipartisan consensus on action. The Centers for Medicare and Medicaid (CMS) has sought strategies to prevent opioid use disorders – which will require reforms to the insurance reimbursement model which less generously covers preventative services. The Biden Administration should pilot a multidisciplinary study group to implement payment for prevention, using opioid use disorders as the test case. Following the guidance of the study group, CMS should provide guidelines to contracts between states and managed care organizations (MCOs) and between MCOs and providers and provide necessary technical assistance to implement these guidelines.
To deliver on care for Veterans…
Five million veterans live in rural areas, and of those, 45% lack access to reliable broadband internet, reducing access to vital health services. To ensure Veterans remain connected to healthcare services wherever they are, the Veterans Health Administration (VHA) should partner with the Postal Service and/or Department of Agriculture to pilot telehealth hubs in rural communities using existing FY23 appropriations for telehealth. An initial focus of care delivery could be on digital mental health and suicide prevention. Going forward, care delivery innovations like this one, if successful, can inspire new policies for the broader population, if the VHA’s health policy mission is expanded. VHA should be added to strategic interagency health policy coalitions such as the ACA interagency working group on healthcare quality and Healthy People 2030 to share data, develop innovative projects, and evaluate progress.
There’s more work to be done to build a healthier future for all Americans – these ideas can be jumping off points for Executive and Congressional action. FAS will continue to develop and surface evidence-based policies that can make a difference, and submissions to the Day One project are always welcome.
Tilling the Federal SOIL for Transformative R&D: The Solution Oriented Innovation Liaison
Summary
The federal government is increasingly embracing Advanced Research Projects Agencies (ARPAs) and other transformative research and engagement enterprises (TREEs) to connect innovators and create the breakthroughs needed to solve complex problems. Our innovation ecosystem needs more of these TREEs, especially for societal challenges that have not historically benefited from solution-oriented research and development. And because the challenges we face are so interwoven, we want them to work and grow together in a solution-oriented mode.
The National Science Foundation (NSF)’s new Directorate for Technology, Innovation and Partnerships should establish a new Office of the Solution-Oriented Innovation Liaison (SOIL) to help TREEs share knowledge about complementary initiatives, establish a community of practice among breakthrough innovators, and seed a culture for exploring new models of research and development within the federal government. The SOIL would have two primary goals: (1) provide data, information, and knowledge-sharing services across existing TREEs; and (2) explore opportunities to pilot R&D models of the future and embed breakthrough innovation models in underleveraged agencies.
Challenge and Opportunity
Climate change. Food security. Social justice. There is no shortage of complex challenges before us—all intersecting, all demanding civil action, and all waiting for us to share knowledge. Such challenges remain intractable because they are broader than the particular mental models that any one individual or organization holds. To develop solutions, we need science that is more connected to social needs and to other ways of knowing. Our problem is not a deficit of scientific capital. It is a deficit of connection.
Connectivity is what defines a growing number of approaches to the public administration of science and technology, alternatively labeled as transformative innovation, mission-oriented innovation, or solutions R&D. Connectivity is what makes DARPA, IARPA, and ARPA-E work, and it is why new ARPAs are being created for health and proposed for infrastructure, labor, and education. Connectivity is also a common element among an explosion of emerging R&D models, including Focused Research Organizations (FROs) and Distributed Autonomous Organizations (DAOs). And connectivity is the purpose of NSF’s new Directorate for Technology, Innovation and Partnerships (TIP), which includes “fostering innovation ecosystems” in its mission. New transformative research and engagement enterprises (TREEs) could be especially valuable in research domains at the margins, where “the benefits of innovation do not simply trickle down.
The history of ARPAs and other TREEs shows that solutions R&D is successfully conducted by entities that combine both research and engagement. If grown carefully, such organisms bear fruit. So why just plant one here or there when we could grow an entire forest? The metaphor is apt. To grow an innovation ecosystem, we must intentionally sow the seeds of TREEs, nurture their growth, and cultivate symbiotic relationships—all while giving each the space to thrive.
Plan of Action
NSF’s TIP directorate should create a new Office of Solution-Oriented Innovation (SOIL) to foster a thriving community of TREEs. SOIL would have two primary goals: (1) nurture more TREEs of more varieties in more mission spaces; and (2) facilitate more symbiosis among TREEs of increasing number and variety.
Goal 1: More TREEs of more varieties in more mission spaces
SOIL would shepherd the creation of TREEs wherever they are needed, whether in a federal department, a state or local agency, or in the private, nonprofit, or academic sectors. Key to this is codifying the lessons of successful TREEs and translating them to new contexts. Not all such knowledge is codifiable; much is tacit. As such, SOIL would draw upon a cadre of research-management specialists who have a deep familiarity with different organizational forms (e.g., ARPAs, FROs, DAOs) and could work with the leaders of departments, businesses, universities, consortia, etc. to determine which form best suits the need of the entity in question and provide technical assistance in establishment.
An essential part of this work would be helping institutions create mission-appropriate governance models and cultures. Administering TREEs is neither easy nor typical. Indeed, the very fact that they are managed differently from normal R&D programs makes them special. Former DARPA Director Arati Prabhakar has emphasized the importance of such tailored structures to the success of TREEs. To this end, SOIL would also create a Community of Cultivators comprising former TREE leaders, principal investigators (PIs), and staff. Members of this community would provide those seeking to establish new TREEs with guidance during the scoping, launch, and management phases.
SOIL would also provide opportunities for staff at different TREEs to connect with each other and with collective resources. It could, for example, host dedicated liaison officers at agencies (as DARPA has with its service lines) to coordinate access to SOIL resources and other TREEs and support the documentation of lessons learned for broader use. SOIL could also organize periodic TREE conventions for affiliates to discuss strategic directions and possibly set cross-cutting goals. Similar to the SBIR office at the Small Business Administration, SOIL would also report annually to Congress on the state of the TREE system, as well as make policy recommendations.
Goal 2: More symbiosis among TREEs of increasing number and variety
Success for SOIL would be a community of TREEs that is more than the sum of its parts. It is already clear how the defense and intelligence missions of DARPA and IARPA intersect. There are also energy programs at DARPA that might benefit from deeper engagement with programs at ARPA-E. In the future, transportation-infrastructure programs at ARPA-E could work alongside similar programs at an ARPA for infrastructure. Fostering stronger connections between entities with overlapping missions would minimize redundant efforts and yield shared platform technologies that enable sector-specific advances.
Indeed, symbiotic relationships could spawn untold possibilities. What if researchers across different TREEs could build knowledge together? Exchange findings, data, algorithms, and ideas? Co-create shared models of complex phenomena and put competing models to the test against evidence? Collaborate across projects, and with stakeholders, to develop and apply digital technologies as well as practices to govern their use? A common digital infrastructure and virtual research commons would enable faster, more reliable production (and reproduction) of research across domains. This is the logic underlying the Center for Open Science and the National Secure Data Service.
To this end, SOIL should build a digital Mycelial Network (MyNet), a common virtual space that would harness the cognitive diversity across TREEs for more robust knowledge and tools. MyNet would offer a set of digital services and resources that could be accessed by TREE managers, staff, and PIs. Its most basic function could be to depict the ecosystem of challenges and solutions, search for partners, and deconflict programs. Once partnerships are made, higher-level functions would include secure data sharing, co-creation of solutions, and semantic interconnection. MyNet could replace the current multitude of ad hoc, sector-specific systems for sharing research resources, giving more researchers access to more knowledge about complex systems and fewer obstacles from paywalls. And the larger the network, the bigger the network effects. If the MyNet infrastructure proves successful for TREEs, it could ultimately be expanded more broadly to all research institutions—just as ARPAnet expanded into the public internet.
For users, MyNet would have three layers:
- A data layer for archive and access
- An information layer for analysis and synthesis
- A knowledge layer for creating meaning in terms of problems and solutions
These functions would collectively require:
- Physical structures: The facilities, equipment, and workforce for data storage, routing, and cloud computing
- Virtual structures: The applications and digital environments for sharing data, algorithms, text, and other media, as well as for remote collaboration in virtual laboratories and discourse across professional networks
- Institutional structures: The practices and conventions to promote a robust research enterprise, prohibit dangerous behavior, and enforce community data and information standards.
How might MyNet be applied? Consider three hypothetical programs, all focused on microplastics: a medical program that maps how microplastics are metabolized and impact health; a food-security program that maps how microplastics flow through food webs and supply chains; and a social justice program that maps which communities produce and consume microplastics. In the data layer, researchers at the three programs could combine data on health records, supply logistics, food inspections, municipal records, and demographics. In the information layer, they might collaborate on coding and evaluating quantitative models. Finally, in the knowledge layer, they could work together to validate claims regarding who is impacted, how much, and by what means.
Initial Steps
First, Congress should authorize and appropriate the NSF TIP Directorate with $500 million over four years for a new Office of the Solution-Oriented Innovation Liaison. Congress should view SOIL as an opportunity to create a shared service among emergent, transformative federal R&D efforts that will empower—rather than bureaucratically stifle—the science and technological advances we need most. This mission fits squarely under the NSF TIP Directorate’s mandate to “mobilize the collective power of the nation” by serving as “a crosscutting platform that collaboratively integrates with NSF’s existing directorates and fosters partnerships—with government, industry, nonprofits, civil society and communities of practice—to leverage, energize and rapidly bring to society use-inspired research and innovation.”
Once appropriated and authorized to begin intentionally growing a network of TREEs, NSF’s TIP Directorate should focus on a four-year plan for SOIL. TIP should begin by choosing an appropriate leader for SOIL, such as a former director or directorate manager of an ARPA (or other TREE). SOIL would be tasked with first engaging the management of existing ARPAs in the federal government, such as those at the Departments of Defense and Energy, to form an advisory board. The advisory board would in turn guide the creation of experience-informed operating procedures for SOIL to use to establish and aid new TREEs. These might include discussions geared toward arriving at best practices and mechanisms to operate rapid solutions-focused R&D programs for the following functions:
- Hiring services for temporary employees and program managers, pipelines to technical expertise, and consensus on out-of-government pay scales
- Rapid contracting toolkits to acquire key technology inputs from foreign and domestic suppliers
- Research funding structures than enable program managers to make use of multiple kinds of research dollars in the same project, in a coordinated fashion, managed by one entity, and without needing to engage different parts of different agencies
- Early procurement for demonstration, such that mature technologies and systems can transition smoothly into operational use in the home agency or other application space
- The right vehicles (e.g., FFRDCs) for SOIL to subcontract with to pursue support structures on each of these functions
- The ability to define multiyear programs, portfolios, and governance structures, and execute them at their own pace, off-cycle from the budget of their home agencies
Beyond these structural aspects, the board must also incorporate important cultural aspects of TREES into best practices. In my own research into the managerial heuristics that guide TREEs, I found that managers must be encouraged to “drive change” (critique the status quo, dream big, take action), “be better” (embrace difference, attract excellence, stand out from the crowd), “herd nerds” (focus the creative talent of scientists and engineers), “gather support” (forge relationships with research conductors and potential adversaries), “try and err” (take diverse approaches, expect to fail, learn from failure), and “make it matter” (direct activities to realize outcomes for society, not for science).
The board would also recommend a governance structure and implementation strategy for MyNet. In its first year, SOIL could also start to grow the Community of Cultivators, potentially starting with members of the advisory board. The board chair, in partnership with the White House Office of Science and Technology Policy, would also convene an initial series of interagency working groups (IWGs) focused on establishing a community of practice around TREEs, including but not limited to representatives from the following R&D agencies, offices, and programs:
- DARPA
- ARPA-E
- IARPA
- NASA
- National Institutes of Health
- National Institute for Standards and Technology
In years two and three, SOIL would focus on growing three to five new TREEs at organizations that have not had solutions-oriented innovation programs before but need them.
- If a potential TREE opportunity is found at another agency, SOIL should collaborate with the agency’s R&D teams to identify how the TREEs might be pursued and consult the advisory board on the new mission space and its potential similarities and differences to existing TREEs. If there is a clear analogue to an existing TREE, the SOIL should use programmatic dollars to detail one or two technical experts for a one-year appointment to the new agency’s R&D teams to explore how to build the new TREE.
- If a potential TREE opportunity is found at a government-adjacent or external organization such as a new Focused Research Organization created around a priority NSF domain, SOIL should leverage programmatic dollars to provide needed seed funding for the organization to pursue near-term milestones. SOIL should then recommend to the TIP Directorate leadership the outcomes of these near-term pilot supports and whether the newly created organization should receive funds to scale. SOIL may also consider convening a round of aligned philanthropic and private funders interested in funding new TREEs.
- If the opportunity concerns an existing TREE, there should be a memorandum of understanding (MOU) and or request for funding process by which the TREE may apply for off-cycle funding with approval from the host agency.
SOIL would also start to build a pilot version of MyNet as a resource for these new TREEs, with a goal of including existing ARPAs and other TREEs as quickly as possible. In establishing MyNet, SOIL should focus on implementing the most appropriate system of data governance by first understanding the nature of the collaborative activities intended. Digital research collaborations can apply and mix a range of different governance patterns, with different amounts of availability and freedoms with respect to digital resources. MyNet should be flexible enough to meet a range of needs for openness and security. To this end, SOIL should coordinate with the recently created National Secure Data Service and apply lessons forward in creating an accessible, secure, and ethical information-sharing environment.
Year four and beyond would be characterized by scaling up. Building on the lessons learned in the prior two years of pilot programs, SOIL would coordinate with new and legacy TREEs to refresh operating procedures and governance structures. It would then work with an even broader set of organizations to increase the number of TREEs beyond the three to five pilots and continue to build out MyNet as well as the Community of Cultivators. Periodic evaluations of SOIL’s programmatic success would shape its evolution after this point. These should be framed in terms of its capacity to create and support programs that yield meaningful technological and socioeconomic outcomes, not just produce traditional research metrics. As such, in its creation of new TREEs, SOIL should apply a major lesson of the National Academies’ evaluation of ARPA-E: explicitly align the (necessarily) robust performance management systems at the project level with strategy and evaluation systems at the program, portfolio, and agency levels. The long-term viability of SOIL and TREEs will depend on their ability to demonstrate value to the public.
The transformative research model typically works like this:
- Engage with stakeholders to understand their needs and set audacious goals for addressing them.
- Establish lean projects run by teams of diverse experts assembled just long enough to succeed or fail in one approach.
- Continuously evaluate projects, build on what works, kill what doesn’t, and repeat as necessary.
In a nutshell, transformative research enterprises exist solely to solve a particular problem, rather than to grow a program or amass a stock of scientific capital.
To get more specific, Bonvillian and Van Atta (2011) identify the unique factors that contribute to the innovative nature of ARPAs. On the personnel front, ARPA program managers are talented managers, experienced in business, and appointed for limited terms. They are “translators,” as opposed to subject-matter experts, who actively engage with allies, rivals, and others. They have great power to choose projects, hire, fire, and contract. On the structure front, projects are driven by specific challenges or visions—co-developed with stakeholders—designed around plausible implementation pathways. Projects are executed extramurally, and managed as portfolios, with clear metrics to asses risk and reward. Success for ARPAs means developing products and services that achieve broad uptake and cost-efficacy, so finding first adopters and creating markets is part of the work.
Some examples come from other Day One proposals. SOIL could work with the Department of Labor to establish a Labor ARPA. It could work with the Department of Education on an Education ARPA. We could imagine a Justice Department ARPA with a program for criminal justice reform, one at Housing and Urban Development aimed at solving homelessness, or one at the State Department for innovations in diplomacy. And there are myriad opportunities beyond the federal government.
TREEs thrive on their independence and flexibility, so SOIL’s functions must be designed to impose minimal interference. Other than ensuring that the TREEs it supports are effectively administered as transformative, mission-oriented organizations, SOIL would be very hands-off. SOIL would help establish TREEs and set them up so they do not operate as typical R&D units. SOIL would give TREE projects and staff the means to connect cross-organizationally with other projects and staff in areas of mutual interest (e.g., via MyNet, the Community of Cultivators, and periodic convenings). And, like the SBIR office at the Small Business Administration, SOIL would report annually to Congress on its operations and progress toward goals.
An excellent model for SOIL is the Small Business Innovative Research (SBIR) system. SBIR is funded by redirecting a small percentage of the budgets of agencies that spend $100 million or more on extramural R&D. Given that SOIL is intended to be relevant to all federal mission spaces, we recommend that SOIL be funded by a small fraction (between 0.1 and 1.0%) of the budgets of all agencies with $1 billion or more in total discretionary spending. This would yield about $15 billion to support SOIL in growing and connecting new TREEs in a vastly widened set of mission spaces.
The risk is the opportunity cost of this budget reallocation to each funding agency. It is worth noting, though, that changes of 0.1–1.0% are less than the amount that the average agency sees as annual perturbations in its budget. Moreover, redirecting these funds may well be worth the opportunity cost, especially as an investment in solving the compounding problems that federal agencies face. By redirecting this small fraction of funds, we can keep agency operations 99–99.9% as effective while simultaneously creating a robust, interconnected, solutions-oriented R&D system.
Advanced Research Priorities in Transportation
The Federation of American Scientists (FAS) has identified several domains in the transportation and infrastructure space that retain a plethora of unsolved opportunities ripe for breakthrough innovation.
Transportation is not traditionally viewed as a research- and development-led field, with less than 0.7% of the U.S. Department of Transportation (DOT) annual budget dedicated to R&D activities. The majority of DOT’s R&D funds are disbursed by modal operating administrators mandated to execute on distinct funding priorities rather than a collective, integrated vision of transforming the nation’s infrastructure across 50 states and localities.
Historically, a small percentage of these R&D funds have supported and developed promising, cross-cutting initiatives, such as the Federal Highway Administration’s Exploratory Advanced Research programs deploying artificial intelligence to better understand driver behavior and applying novel data integration techniques to enhance freight logistics. Yet, the scope of these programs has not been designed to scale discoveries into broad deployment, limiting the impact of innovation and technology in transforming transportation and infrastructure in the United States.
As a result, transportation and infrastructure retain a plethora of unaddressed opportunities – from reducing the 40,000 annual vehicle-related fatalities, to improving freight logistics through ports, highways, and rail, to achieving a net zero carbon transportation system, to building infrastructure resilient to the impacts of climate change and severe weather. The reasons for these persistent challenges are numerous: low levels of federal R&D spending, fragmentation across state and local government, risk-averse procurement practices, sluggish commercial markets, and more. When innovations do emerge in this field, they suffer from two valleys of death: one to bring new ideas out of the lab into commercialization, and the second to bring successful deployments of those technologies to scale.
The United States needs a concerted national innovation pipeline designed to fill this gap, exploring early-stage, moonshot research while nurturing breakthroughs from concept to deployment. An Advanced Research Projects Agency-Infrastructure would deliver on this mission. Modeled after the Defense Advanced Research Projects Agency (DARPA) and the Advanced Research Projects Agency-Energy (ARPA-E), the Advanced Research Projects Agency-Infrastructure (ARPA-I) will operate nimbly and with rigorous program management and deep technical expertise to tackle the biggest infrastructure challenges and overcome entrenched market failures. Solutions would cut across traditional transportation modes (e.g. highways, rail, aviation, maritime, pipelines etc) and would include innovative new infrastructure technologies, materials, systems, capabilities, or processes.
The list of domain areas below reflects priorities for DOT as well as areas where there is significant opportunity for breakthrough innovation:
Key Domain Areas
Metropolitan Safety
Despite progress made since 1975, dramatic reductions in roadway fatalities remain a core, persistent challenge. In 2021, an estimated 42,915 people were killed in motor vehicle crashes, with an estimated 31,785 people killed in the first nine months of 2022. The magnitude of this challenge is articulated in DOT’s most recent National Roadway Safety Strategy, a document that begins with a statement from Secretary Buttigieg: “The status quo is unacceptable, and it is preventable… Zero is the only acceptable number of deaths and serious injuries on our roadways.”
Example topical areas include but are not limited to: urban roadway safety; advanced vehicle driver assistance systems; driver alcohol detection systems; vehicle design; street design; speeding and speed limits; and V2X (vehicle-to-everything) communications and networking technology.
Key Questions for Consideration:
- What steps can be taken to create safer urban mobility spaces for everyone, and what role can technology play in helping create the future we envision?
- What capabilities, systems, and datasets are we missing right now that would unlock more targeted safety interventions?
Rural Safety
Rural communities possess their own unique safety challenges stemming from road design and signage, speed limits, and other factors; and data from the Federal Highway Administration shows that “while only 19% of the U.S. population lives in rural areas, 43% of all roadway fatalities occur on rural roads, and the fatality rate on rural roads is almost 2 times higher than on urban roads.”
Example topical areas include but are not limited to: improved information collection and management systems; design and evaluation tools for two-lane highways and other geometric design decisions; augmented visibility; mitigating or anti-rollover crash solutions; and enhanced emergency response.
Key Questions for Consideration:
- How can rural-based safety solutions address the resource and implementation issues that are faced by local transportation agencies?
- How can existing innovations be leveraged to support the advancement of road safety in rural settings?
Resilient & Climate Prepared Infrastructure
Modern roads, bridges, and transportation are designed to withstand storms that, at the time of their construction, had a probability of occurring once in 100 years; today, climate change has made extreme weather events commonplace. In 2020 alone, the U.S. suffered 22 high-impact weather disasters that each cost over $1 billion in damages. When Hurricane Sandy hit New York City and New Jersey subways with a 14-foot storm surge, millions were left without their primary mode of transportation for a week. Meanwhile, rising sea levels are likely to impact both marine and air transportation, as 13 of the 47 largest U.S. airports have at least one runway within 12 feet of the current sea level. Additionally, the persistent presence of wildfires–which are burning an average of 7 million acres annually across the United States, more than double the average in the 1990s–dramatically reshapes the transportation network in acute ways and causes downstream damage through landslides, flooding, and other natural events.
These trends are likely to continue as climate change exacerbates the intensity and scope of these events. The Department of Transportation is well-positioned to introduce systems-level improvements to the resilience of our nation’s infrastructure.
Example topical areas include but are not limited to: High-performance long-life, advanced materials that increase resiliency and reduce maintenance and reconstruction needs, especially materials for roads, rail, and ports; nature-based protective strategies such as constructed marshes; novel designs for multi-modal hubs or other logistics/supply chain redundancy; efficient and dynamic mechanisms to optimize the relocation of transportation assets; intensive maintenance, preservation, prediction, and degradation analysis methods; and intelligent disaster-resilient infrastructure countermeasures.
Key Questions for Consideration:
- How can we ensure that innovations in this domain yield processes and technologies that are flexible and adaptive enough to ward against future uncertainties related to climate-related disasters?
- How can we factor in the different climate resilience needs of both urban and rural communities?
Digital Infrastructure
Advancing the systems, tools, and capabilities for digital infrastructure to reflect and manage the built environment has the power to enable improved asset maintenance and operations across all levels of government, at scale. Advancements in this field would make using our infrastructure more seamless for transit, freight, pedestrians, and more. Increased data collection from or about vehicle movements, for example, enables user-friendly and demand-responsive traffic management, dynamic curb management for personal vehicles, transit and delivery transportation modes, congestion pricing, safety mapping and targeted interventions, and rail and port logistics. When data is accessible by local departments of transportation and municipalities, it can be harnessed to improve transportation operations and public safety through crash detection as well as to develop Smart Cities and Communities that utilize user-focused mobility services; connected and automated vehicles; electrification across transportation modes, and intelligent, sensor-based infrastructure to measure and manage age-old problems like potholes, air pollution, traffic, parking, and safety.
Example topical areas include but are not limited to: traffic management; curb management; congestion pricing; accessibility; mapping for safety; rail management; port logistics; and transportation system/electric grid coordination.
Key Questions for Consideration:
- How might we leverage data and data systems to radically improve mobility and our transportation system across all modes?
Expediting and Upgrading Construction Methods
Infrastructure projects are fraught with expensive delays and overrun budgets. In the United States, fewer than 1 in 3 contractors report finishing projects on time and within budgets, with 70% citing coordination at the site of construction as the primary reason. In the words of one industry executive, “all [of the nation’s] major projects have cost and schedule issues … the truth is these are very high-risk and difficult projects. Conditions change. It is impossible to estimate it accurately.” But can process improvements and other innovations make construction cheaper, better, faster, and easier?
Example topical areas include but are not limited to: augmented forecasting and modeling techniques; prefabricated or advanced robotic fabrication, modular, and adaptable structures and systems such as bridge sub- and superstructures; real-time quality control and assurance technologies for accelerated construction, materials innovation; new pavement technologies; bioretention; tunneling; underground infrastructure mapping; novel methods for bridge engineering, building information modeling (BIM), coastal, wind, and offshore engineering; stormwater systems; and computational methods in structural engineering, structural sensing, control, and asset management.
Key Questions for Consideration:
- What innovations are more critical to the accelerated construction requirements of the future?
Logistics
Our national economic strength and quality of life depend on the safe and efficient movement of goods throughout our nation’s borders and beyond. Logistic systems—the interconnected webs of businesses, workers, infrastructure processes, and practices that underlie the sorting, transportation, and distribution of goods must operate with efficiency and resilience. . When logistics systems are disrupted by events such as public health crises, extreme weather, workforce challenges, or cyberattacks, goods are delayed, costs increase, and Americans’ daily lives are affected. The Biden Administration issued Executive Order 14017 calling for a review of the transportation and logistics industrial base. DOT released the Freight and Logistics Supply Chain Assessment in February 2022, spotlighting a range of actions that DOT envisions to support a resilient 21st-century freight and logistics supply chain for America.
Topical areas include but are not limited to: freight infrastructure, including ports, roads, airports, and railroads; data and research; rules and regulations; coordination across public and private sectors; and supply chain electrification and intersections with resilient infrastructure.
Key Questions for Consideration:
- How might we design and develop freight infrastructure to maximize efficiency and use of emerging technologies?
- What existing innovations and technologies could be introduced and scaled up at ports to increase the processing of goods and dramatically lower the transaction costs of US freight?
- How can we design systems that optimize for both efficiency and resilience?
- How can we reduce the negative externalities associated with our logistics systems, including congestion, air pollution, noise, GHG emissions, and infrastructure degradation?
ARPA-I: Get Involved
FAS is seeking to engage experts from across the transportation infrastructure community who are the right kind of big thinkers to get involved in developing solutions to transportation moonshots.
Widespread engagement of this diverse network is critical to ensuring ARPA-I’s success. So whether you are an academic researcher, startup CEO, safe streets activist, or have experience with federal R&D programs–we are looking for your insights and expertise.
To be considered for opportunities to support future efforts around transportation infrastructure moonshots, please fill out this form and a member of our team will be in touch as opportunities to get involved arise.
ARPA-I: Share an Idea
Do you have ideas that could inform an ambitious Advanced Research Projects Agency-Infrastructure (ARPA-I) portfolio at the U.S. Department of Transportation (DOT)? We’re looking for your boldest infrastructure moonshots.
The Federation of American Scientists (FAS) is seeking to engage experts across the transportation policy space who can leverage their expertise to help FAS identify a set of grand solutions around transportation infrastructure challenges and advanced research priorities for DOT to consider. Priority topic areas include but are not limited to metropolitan safety, rural safety, resilient and climate-prepared infrastructure, digital infrastructure, expediting “mega projects,” and logistics. You can read more about these topic areas in depth here.
What We’re Looking For and How to Submit
We are looking for experts to develop and submit an initial program design in the form of a wireframe that could inform a future advanced research portfolio at DOT. A wireframe is an outline of a potential program that captures key components that need to be considered in order to assess the program’s fit and potential impact. The template below reflects the components of a program wireframe. Wireframes can be submitted by email here. Please include all four sections of the wireframe shown in the template below in the body of your email submission.
When writing your wireframe, we ask you aim to avoid the following common challenges to ensure that ideas are properly scoped, appropriately ambitious, and are in line with the agency’s goals:
- No clear diagnosis of the problem: Many challenges facing our transportation infrastructure are not defined by a single problem; rather, they are an ecosystem of issues that simultaneously need addressing. An effective program will not only isolate a single “problem” to tackle, but it will approach it at a level where something can actually be done to solve it through root cause analysis.
- Thinking small and narrow: On the other hand, problems being considered for advanced research programs can be isolated down to the point that solving them will not drive transformational change. In this situation, narrow problems would not cater to a series of progressive and complimentary projects that would fit an ARPA.
- Incorrect framing of opportunities: When doing early-stage program design, opportunities are sometimes framed as “an opportunity to tackle a problem.” Rather, an opportunity should reflect a promising method, technology, or approach that is already in existence but would benefit from funding and resources through an advanced research agency program.
- Approaching solutions solely from a regulatory or policy angle: While regulations and policy changes are a necessary and important component of tackling challenges in transportation infrastructure, approaching issues through this lens is not the mandate of an ARPA. ARPAs focus on supporting breakthrough innovations across methods, technologies, and approaches. Additionally, regulatory approaches to problem solving can often be subject to lengthy policy processes.
- No explicit ARPA role: An ARPA should pursue opportunities to solve problems where, without its intervention, breakthroughs may not happen within a reasonable timeframe. If solving a problem already has significant interest from the private or public sector, and they are well on their way to developing a transformational solution in a few years time, then ARPA funding and support might provide a higher value-add elsewhere.
- Lack of throughline: The problems identified for ARPA program consideration should be present as themes throughout the opportunities chosen to solve them as well as how programs are ultimately structured–otherwise, a program may lack a targeted approach to solving a particular challenge.
- Forgetting about end-users: Human-centered design should be at the heart of how ARPA programs are scoped, especially when thinking about the scale at which designers need to think about how solving a problem will provide transformational change for everyday users of transportation infrastructure.
- Being solutions-oriented: Research programs should not be built with pre-determined solutions already in mind; they should be oriented around a specific problem in order to ensure that any solutions put forward are targeted and effective.
For a more detailed primer on ARPA program ideation, please read our publication, “Applying ARPA-I: A Proven Model for Transportation.”
Sample Idea
Informed by input from non-federal subject matter experts
Problem
Urban and suburban environments are complex, with competing uses for public space across modes and functions – drivers, transit users, cyclists, pedestrians, diners, etc. Humans are prone to erratic, unpredictable, and distracted driving behavior, and when coupled with speed, vehicle size, and infrastructure design, such behaviors can cause injury, death, property damage, and transportation system disruption. A decade-old study from NHTSA – at a time when roadway fatalities were approximately 25% lower than current levels – found that the total value of societal harm from crashes in 2010 was $836 billion.
Opportunity
What if the relationships between the driver, the environment (including pedestrians), and the vehicle could be personalized?
- Driver-to-Vehicle: Using novel data gathered from cars’ sensors, driver smartphones, and other collectible data, design a feedback loop that customizes Advanced Driver Assistance Systems (ADAS) to unique driving behavior signatures.
- Vehicle-to-Environment: Using V2I/V2X and geofencing technologies to govern and harmonize speed and lane operations that optimize max speeds for safety in unique street contexts.
- Driver-to-Environment: Blending both D2V and V2E technologies, develop integrated awareness of the surrounding environment that alerts drivers of potential risks in parked (e.g., car door opening to a bike lane) and moving states (e.g., approaching car).
Program Objective
- Driver-to-Vehicle: (1) Identify the totality of usable driver data within the vehicular environment, from car sensors to phone usage; (2) develop a series of driver profiles that will build the foundation for human-centered, personalized ADAS that can both intervene in an emergency and nudge behavior change through informational updates, intuitive behavioral feedback, or modifying vehicle operations (e.g., acceleration); (3) develop dynamic, intelligent ADAS systems that customize to driver signatures based on preset profiles and experiential, local training of the algorithm; (4) establish this as a proof of concept for a novel, personalized ADAS and architect a grand-challenge for industry to improve upon this personalized, human-centered ADAS with key target metrics; (5) create a regulatory framework mandating Original Equipment Manufacturers (OEMs) to include a baseline level of ADAS, given the results of the grand challenge.
- Vehicle-to-Environment: (1) Design the universal mobile application or geofence trigger that will contour virtual boundaries for a set of diverse, transferrable streets (e.g., school zones) and characteristics (e.g., bike lanes); (2) engage OEMs to design and integrate the geofence triggers with the human-centered ADAS and/or another vehicle-based receiver within a test fleet of different car types to modify vehicle responses to the geofence criteria as outlined by the pilot cities; (3) broker partnerships with 10 cities to identify a menu of geofence criteria, pilot the use of them, and establish a mechanism to measure before-and-after outcomes and comparisons from neighboring regions;
- Driver-to-Environment: integrate ADAS with the geofence trigger to develop an advanced and dynamic situational awareness environment for drivers that is customized to their profile and based on built environment conditions such as bike lanes and school zones, as well as weather, high traffic, and time of day.
Future
Digital transportation networks can communicate personalized information with drivers through their cars in a uniform medium and with a goal of augmenting safety in each of the nation’s largest metropolitan areas.
USDOT Workshop: Transportation, Mobility, and the Future of Infrastructure
On December 8th, 2022, the U.S. Department of Transportation hosted a workshop, “Transportation, Mobility, and the Future of Infrastructure,” in collaboration with the Federation of American Scientists.
The goal for this event was to bring together innovative thinkers from various sectors of infrastructure and transportation to scope ideas where research, technology, and innovation could drive meaningful change for the Department of Transportation’s strategic priorities.
To provide framing for the day, participants heard from Secretary of Transportation Pete Buttigieg and Deputy Assistant Secretary for Research and Technology Robert Hampshire, who both underscored the potential for a new agency – The Advanced Research Projects Agency – Infrastructure (ARPA-I) to accelerate transformative solutions for the transportation sector. Then, a panel featuring Kei Koizumi, Jennifer Gerbi, and Erwin Gianchandani focused on Federal Research and Development (R&D) explored federal advanced research models that drive innovation in complex sectors and explored how such approaches may accelerate solutions to key priorities in the transportation system.
Participants then participated in separate breakout sessions organized around: 1) safety; 2) digitalization; and 3) climate and resilience. During the breakouts sessions, participants were asked to build on pre-work they had completed before the Workshop by brainstorming future vision statements and using them as the foundation to come up with innovative federal R&D program designs. Participants then regrouped and ended the day by discussing the most promising ideas from their respective breakout sessions, and where their ideas could go next.
The Workshop inspired participants to dig deep to surface meaningful challenges and innovative solutions for USDOT to tackle, whether through ARPA-I or other federal R&D mechanisms, and represents an initial step of a broader process to identify topics and domains in which stakeholders can drive transformational progress for our infrastructure and transportation system. Such an effort will require continued engagement and buy-in from a diverse community of experts.
As such, FAS is seeking to engage experts from across the transportation infrastructure community who are willing to “think big” and creatively about solutions to transportation moonshots. If you’re interested in supporting future efforts around transportation infrastructure moonshots, please visit our “Get Involved” page; if you’re ready to submit an initial program design in the form of a wireframe that could inform a future advanced research portfolio at DOT, please visit our “Share an Idea” page.
Building Momentum for Equity in Medical Devices
Just over a year ago, I found myself pausing during a research lab meeting. “Why were all the subjects in our studies of wearable devices white? And what were the consequences of exclusion?”
This question stuck with me long after the meeting. Digging into the evidence, I was alarmed to find paper after paper signaling embedded biases in key medical technologies.
One device stuck out amongst the rest – the pulse oximeter. Because of its crucial role in diagnosing COVID-19, it had caught the attention of a diverse group of stakeholders: clinicians looking to understand the impacts on patient care, engineers working to build more equitable devices, social scientists tracing the history of device and examining colorism in pulse oximetry, policymakers seeking solutions for their constituents, and the FDA, which was examining racial bias in medical technologies for the first time. But what I found as I scoped out this policy area is that these stakeholders weren’t talking to one another, at the expense of coordinated progress towards equity in pulse oximetry.
With all eyes directed towards the FDA’s Advisory Committee meeting on November 1st, 2022, FAS convened a half-day session of stakeholders on November 2nd to chart a research and policy agenda for near-term mitigation of inequities in pulse oximetry and other medical technologies. Eight experts from medicine, engineering, sociology, and anthropology shared insights with an audience of 60 participants from academia, the private sector, and federal government. Collectively, we developed several key insights for future progress on this issue and outlined a path forward for achieving equity now. You can access the full readout here. We’ll dive into the key highlights below:
Key Insights
Through discussions with experts during the forum, three key themes rose to the surface:
- Racial bias in pulse oximetry cannot be fixed by focusing on “race” alone. Existing evidence suggests reducing bias in pulse oximetry requires replacing devices with less-biased ones. This will take time as new devices are developed and will be a significant cost.
- Better calibration for skin tone is vital, but measurement is complicated. The crux of the problem is a comprehensive standard for quantifying the full range of skin pigmentation. This is vital to understanding how pulse oximeter accuracy varies by melanin content.
- Proactively identifying and addressing bias in medical devices will require system-wide efforts. Identification of bias in medical devices has been piecemeal rather than the outcome of proactive, deliberative efforts. Further efforts to address bias in medical devices should engage diverse stakeholders to establish best practices for ensuring equity in medical devices.
Resolving the problem of bias in pulse oximeter devices will likely take several years. But in the meantime, this issue will continue negatively impacting patients. Our participants urged that we need to think about actions that can be initiated this next year that will advance more equitable care with existing pulse oximeters.
Motivating Action for Equity Now
While a daunting problem, a collaborative, multi-stakeholder effort can bring us closer to solutions. We can work together to advance equity in standards of care by:
- Gathering evidence on existing pulse oximeter devices and their use in care [ASAP, start early 2023]. More evidence is required to identify the best approaches to equitable care with existing devices. This evidence gathering process should be initiated over the next year to inform clinicians on
- Establishing consensus to advance the standard of care [start early 2024]. After growing the body of evidence, there will be a need to convene around key conclusions derived from the evidence. Evidence synthesis will need to be generated and care societies will need to make decisions on how clinicians should use pulse oximeters in their care practice.
- Taking action to ensure equitable care nationwide [2024 onwards]. Once the care standards are changed, there is a need for system-wide efforts to communicate these to clinicians nationwide, inform procurement across federal hospitals, and re-evaluate insurance reimbursement standards.
Looking Ahead
This won’t be easy, but it’s 30 years overdue. We believe correcting the bias will pioneer a model that can be readily applied to combatting biases across the medical device ecosystem, something already underway in the United Kingdom with their Equity in Medical Devices Independent Review. Through a systematic approach, stakeholders can work to close racial disparities in the near-term and advance health equity.
An Overdue Fix: Racial Bias and Pulse Oximeters
The invention of pulse oximeters in the 1980s reshaped healthcare. While tracking blood oxygen content (commonly recognized as the “fifth vital sign”) once required a painful blood draw and time-delayed analysis, pulse oximeters deliver nearly instantaneous data by simply sending a pulse of light through the skin. Today, pulse oximeters today are ubiquitous: built into smartwatches, purchased at pharmacies for home health monitoring, and used by clinicians to inform treatment of everything from asthma to heart failure to COVID-19. Emerging algorithms are even incorporating pulse ox data to predict future illness.
There is a huge caveat. Pulse oximeters are medically transformative, but racially biased. The devices work less accurately on dark-skinned populations because melanin, the chemical which gives skin pigment, interferes with light-based pulse ox measurements. This means that dark-skinned individuals can exhibit normal pulse ox readings, but be suffering from hypoxemia or other critical conditions.
But because regulations to this day do not require diversity in medical device evaluation, many pulse ox manufacturers don’t test their devices on diverse populations. And because the Food and Drug Administration (FDA) has created streamlined pathways to approve new medical devices based on technology that is “substantially similar” to already-approved technology, the racial bias embedded in ‘80s-era pulse ox technology continues to pervade pulse oximeters on the market today.
COVID-19 illustrated, in devastating fashion, the consequences of this problem. Embedded bias in pulse oximeters demonstrably worsened outcomes for patient populations already disproportionately impacted by COVID-19. Studies show, for instance, that Black COVID-19 patients have been 29% less likely to receive supplemental oxygen on time and three times as likely to suffer occult hypoxemia during the pandemic.
Similar inequities persist across the health-innovation ecosystem. Women suffer from lack of sex-aware prescription drug dosages. Minorities increasingly suffer from biased health risk-assessment algorithms. Children and those with varying body types suffer from medical equipment not built for their physical characteristics. Across the board, inequities create greater risks of morbidity and mortality and contribute to ballooning national healthcare costs.
This need not be the status quo. If health stakeholders—including patient advocates, medtech companies, clinicians, researchers, and policymakers—collectively commit to systematic evaluation and remediation of bias in health technology, change is possible.
An excellent example is eGFR algorithms. These algorithms, used to assess kidney functionality, previously used faulty “correction factors” to account for patient race. But this correction did not actually correlate with biological realities—and instead of treating patients more effectively, it increased disparities in care. Motivated by the data, advocacy and industry organizations issued broad recommendations to avoid using the eGFR calculation. Hospitals and medical systems listened, dropping eGFR from practice, and the National Institutes of Health (NIH) is now committing funding to investigate alternative calculations.
We as a society must continue to root out bias in health technology, from development to testing to deployment.
When we develop new medical tools, we should consider all the populations who could ultimately need them.
When we test tools, we should rigorously evaluate outcomes across subgroup populations, looking for groups that might fare better or worse from its use in care.
And when we deploy technologies, we need to be ready to track the outcomes of their use at scale.
Engineers, researchers, and clinicians can support these goals by designing medical devices with equity in mind. The UK just launched its evidence-gathering process on equity in medical devices, looking into the impacts of bias and ways to build more equitable solutions. The FDA’s meeting reviewing the evidence on pulse oximetry is a start to auditing technologies for their performance on different populations.
Advocacy organizations can support these goals by providing input to ongoing policy processes. The Federation of American Scientists (FAS), alongside the University of Maryland Medical System, submitted a public comment to the FDA to call for regulations that will encourage the development of low-bias and bias-free tools. FAS is also convening a Forum on Bias in Pulse Oximetry to examine the consequences of bias, build an evidence base for bias-free pulse oximetry, and look ahead to approaches to build more equitable devices.
“Do no harm”, a central oath in medicine, is becoming exceedingly difficult in our technological age. Yet, with an evidence-based approach that ensures technologies equitably serve all groups in a population and works to correct them when they do not, we can come closer to achieving this age-old goal.