day one project

A Comprehensive Strategy to Address Extreme Heat in Schools

04.02.24 | 11 min read | Text by Rebecca Morgenstern Brenner & Amie Patchen & Alistair Hayden & Nathaniel Hupert & Grace Wickerson

Requiring children to attend school when classroom temperatures are high is unsafe and reduces learning; yet closing schools for extreme heat has wide-ranging consequences for learning, safety, food access, and social determinants of health. Children are vulnerable to heat, and schooling is compulsory in the U.S. Families rely on schools for food, childcare, and safety. In order to protect the health and well-being of the nation’s children, the federal government must facilitate efforts to collect the data required to drive extreme heat mitigation and adaptive capacity, invest in more resilient infrastructure, provide guidance on preparedness and response, and establish enforceable temperature thresholds. To do this, federal agencies can take action through three paths of mitigation: data collection and collaboration, set policy, and investments. 

Challenge and Opportunity

Schools are on the forefront of heat-related disasters, and the impact extends beyond the hot days. Extreme heat threatens students’ health and academic achievement and causes rippling effects across the social determinants of health in terms of food access, caregiver employment, and future employment/income for students. Coordinated preparation is necessary to protect the health and well-being of children during extreme heat events.

School Infrastructure Failure

Many schools do not have adequate infrastructure to remain cool during extreme heat events. At the start of the 2023–2024 academic year, schools in multiple locations were already experiencing failure due to extreme heat and were closing or struggling to hold classes in sweltering classrooms. The Center for Climate Integrity identified a 39% increase from 1970 to 2025 in the number of school districts that will have more than 32 school days over 80°F (their temperature cutoff for needing air-conditioning to function). The Government Accountability Office found in 2020 that 41% of public school districts urgently need upgrades to HVAC systems in at least half of their buildings, totaling 36,000 buildings nationally. The National Center for Education Statistics’ (NCES) most recent survey of the Condition of America’s Public School Facilities (2012–2013 school year) found 30% of school buildings did not have adequate air-conditioning. The numbers correlate with the population of disadvantaged students: 34% of schools where at least 75% of students are eligible for free or reduced lunch, and only 25% of schools where less than 35% of students are eligible for free/reduced lunch. NCES’s School Pulse Panel, implemented to document schools’ response to COVID-19, is expanding to include other topics relevant to federal, state, and local decision-makers. The survey includes heat-adjacent questions on indoor air quality, air filtration, and HVAC upgrades, but does not currently document schools’ ability to respond to extreme heat. Schools that are not able to maintain cool temperatures during extreme heat events directly affect child health and safety, and have an upstream impact on health.

Impact on Child Health and Safety

When temperatures rise on school days, local districts must decide whether to remain open or close. Both decisions can affect children’s health and safety. If schools remain open, students may be exposed to uncomfortable and unsustainable high temperatures in rooms with inadequate ventilation. Teachers in New York State reported extreme temperatures up to 94℉ inside the classroom and children passing out during September 2023 heatwaves. Spending time in the schoolyard may only compound the problem. Unshaded playgrounds and asphalt quickly heat up and may be hotter than surrounding areas, with surface temperatures that can cause burns. Similar to neighborhood tree cover, shade on school playgrounds is correlated with income (more income, more shade), leading to a higher risk of heat exposure for low-income and historically marginalized students. Children are vulnerable to heat and may have trouble cooling down when their body temperatures rise. Returning to hot classrooms will not provide them with an opportunity to cool down.

If schools close, children who are unable to access school food may go hungry. Procedures exist to ensure the continuation of school food service during unanticipated school closures, but it is not clear how food service would function if the building is overheated during extreme heat events. In New York City, an assessment of public cooling centers identified that nearly half were in senior centers and not open to children. If schools do not have sufficient heat mitigation and are closed for heat, children from low-income households, who are at higher risk for food insecurity and less likely to have air conditioning at home, may be left hot and hungry.

While some state and local education departments have developed plans for responding to extreme heat on school days, the guidance, topics, and level of detail varies across states. Further, while the National Integrated Heat Health Information System (NIHHIS) and the Centers for Disease Control and Prevention (CDC) have identified children as an at-risk group during heat events, they do not offer specific information on how schools can prepare and respond. A comprehensive playbook that provides guidance on the many challenges schools may encounter during extreme heat, and how to keep children safe, would enhance schools’ ability to function. 

Impact on Learning and Social Determinants of Health

The cumulative impact on learning, income, and equity is large. When schools remain open, heat reduces student learning (a 1% reduction in learning for each 1℉ increase across the year). When schools close, children lose learning time. The nation experienced the rippling effects of school closures during the COVID-19 pandemic, when extended closures impacted the achievement gap, projected future earnings, and caregiver employment, particularly for women. Even five days of closure for snow days in a school year has been seen to reduce learning. The projected increase in the number of districts that experience more than 32 school days a year over 80 suggests the impact of heat on learning could be substantial, whether it is from school closure or from learning in overheated classrooms. 

The impact on learning disproportionately affects students in low-income districts, often correlated with race due to historic redlining, as these districts have fewer funds available for school improvement projects and are more likely to have school buildings that lack sufficient cooling mechanisms. These disproportionate impacts foster increasing academic and economic inequity between students in low- and high-income school districts.

Existing Response: Infrastructure

The federal government is aware of the infrastructure challenges and is funding green and gray infrastructure improvements through several programs. The Renew America’s Schools grants focus on funding infrastructure upgrades for K-12 schools. In the initial round of applications, need far exceeded available funds, with 236 Local Education Authorities submitting eligible requests totaling $1.62 billion. In response to the overwhelming need, the Department of Energy (DOE) more than doubled planned funding and awarded $178 million in grants. Through the American Rescue Plan, the Environmental Protection Agency (EPA) is providing technical assistance to help communities develop plans to develop cooling centers in schools. Through the Inflation Reduction Act, EPA is helping schools develop and implement Indoor Air Quality management plans, which include maintenance of acceptable temperatures, with an anticipated $32 million in grant funding over five years. Multiple public and private programs have supported projects to increase green space and tree cover on school grounds, including grants from the U.S. Department of Agriculture (USDA) Forest Service and California Department of Forestry and Fire Protection (CAL FIRE).

These programs are substantial, but also substantially less than the demonstrated need. Embedding heat considerations into future school infrastructure projects and integrating explicit consideration of heat into existing projects would enable all of the activities supported through these grants to mitigate the impact of extreme heat concurrently. A coordinated effort could increase the impact of these funds. 

Existing Response: Temperature Standards

Though many states, school districts, or health departments maintain and enforce standards for minimum required temperatures in occupied buildings, relatively few have similar standards for maximum acceptable temperatures. The Occupational Safety and Health Administration (OSHA) recommends indoor temperatures stay between 68℉ and 76℉ and is currently developing a national standard for protecting workers during extreme heat. Occupational standards for maximum indoor temperature exist in Oregon (80), Minnesota (77 to 86), and California (80 outdoors; indoors pending). As public schools are institutions where adults work and children, an at-risk group, are required to be present, a national standard on acceptable indoor temperatures should be developed to protect children’s health and learning. 

Plan of Action

Managing extreme heat in American public school systems requires urgent action. While education is primarily under the authority of the state governments, the mission of the federal government is to ensure educational excellence and equal access. Federal agencies can facilitate data collection and collaboration, set standards to maintain safety, provide guidelines for local education authorities to follow, and coordinate different actions at state level and act as a source of expertise for capacity building for state and local actors. Similar to the actions outlined in a recent memo on developing heat-resilient schools in California, the federal government should take preemptive action across the nation.

Collect Data and Collaborate. Federal agencies need to collaborate and collect data to better understand and drive mitigation efforts to prepare for extreme heat for schools. 

  1. The U.S. Department of Education (ED) should join NIHHIS as a partnering agency to collaborate on heat preparation and mitigation strategies specifically for schools. 
  2. The NCES should update a national inventory of school infrastructure to identify schools that will need upgrades or investments in infrastructure to mitigate heat based on climate prediction. 
  3. ED should collaborate with EPA and/or National Oceanic and Atmospheric Administration (NOAA) to collect data about heat at indoor and outdoor school facilities so as to provide better guidance to schools and direct heat mitigation efforts (e.g., increasing shade or tree cover on playgrounds). Mechanisms for this could be through creating an optional reporting function of EPA’s School IAQ Assessment tool (see recommendation below), adding heat-related questions to NCES’s School Pulse Panel, or through NOAA heat-island mapping campaigns.
    • EPA should update its School IAQ Assessment and App to include heat-related information. This could include a checklist or questions related to extreme heat, including both before heat events (HVAC status, shade cover on school building and playground, plans for hot days, options for water/cooling for overheated students, and indicators of heat stress), and heat assessments on days at high temperatures (indoor temperature in classrooms, hallways, cafeteria, gym, and outdoor temperatures on playgrounds [air and surfaces], blacktop, and shaded areas). 
    • NCES should add heat-related questions to the School Pulse Panel survey to aid heat-mitigation efforts in the same way the survey was used for COVID-19 mitigation. There are existing questions related to indoor air quality, ventilation, and the state of HVAC systems. Similar questions should be added to collect data on indoor and outdoor temperatures in locations where students spend school time (classrooms, lunch room, playground) during hot months, use of building-wide or local air conditioning or fans to maintain temperature, and availability of cooling spaces if the whole building does not have air-conditioning.
  4. ED should collaborate with state and local education authorities to collect data on school closures and absences during heat events to identify places where heat affects students’ ability to participate due to extreme heat and the reasons that students are absent during extreme heat events. Data on absences should be used to proactively target places where heat is having a larger impact on access to education. 

Set Policy. In order to prepare for future extreme heat events, federal agencies can take the following actions to set policy to expand the adaptive capacity of schools to protect U.S. educational employees and students:

  1. Similar to required minimum indoor temperatures, OSHA should establish a standard that sets the maximum classroom indoor temperatures at which cooling action must be taken or classrooms must be closed. OSHA is already considering a heat standard for outdoor workers; OSHA can set standards for school employees that would also protect students learning in those conditions. 
  2. The Federal Emergency Management Agency (FEMA) should define school infrastructure as failing on school days above 80℉ outdoor temperature in schools without air conditioning or indoor temperature above 80℉ in classrooms. FEMA can then apply mitigation measures if the school is determined to have infrastructure failure, including providing funding for infrastructure upgrades.
  3. FEMA and other agencies that assess and predict hazard risk should explicitly consider schools’ capability to remain open and keep children safe during extreme heat events as part of their assessments. 
  4. ED and the Department of Health and Human Services (HHS) should develop guidelines to protect students’ health, well-being, and learning during extreme heat events and include them in the Emergency Planning section of schoolsafety.gov guidance. This could include an updated and easily accessed, searchable, and centralized library of federal and state resources specifically tailored to heat stress in schools such as California’s EnvironScreen and US Climate Resilience Toolkit. This can expand the capacity of local and state actors and provide ongoing access to updates support. This also sets the stage for state governments to share resources and collaborate.
  5. NIHHIS should add resources for schools in a “For Schools” drop-down section of the Planning and Preparing page on HEAT.gov.
  6. USDA should develop a federal process to serve food in alternative locations when school buildings are overheated during extreme heat events, similar to New York State’s summer waiver allowing food service in alternate locations during heat events.

Invest in Schools. In order to prepare for and plan for future extreme heat events, EPA, the Consumer Product Safety Commission (CPSC), USDA, and the Department of Energy (DOE) can take the following actions to launch mitigation measures to improve the resilience of schools and alleviate the impact of heat on student and employee health:

  1. Existing projects focused on school upgrades should integrate consideration of heat mitigation into their programs.
    • The Renew America’s Schools Grants and EPA’s Indoor Air Quality project should ensure that infrastructure upgrades they support for K-12 schools will also meet the needs of increasing temperatures. These projects already contribute substantial funding to projects that could affect heat mitigation. Explicitly planning for and investing in heat mitigation as part of those upgrades could reduce the need for additional upgrades to address heat.
    • The CPSC should update their Public Playground Safety Handbook to include a more comprehensive overview of designing thermally comfortable playgrounds. The National Program for Playground Safety developed a good example of this for the Standards Council of Canada with specific details about designing thermally safe playgrounds. Programs supporting schoolyard redesign projects should follow these guidelines.
  2. Substantial funding needs to be allocated to invest in infrastructure, cooling technologies, retrofits, landscape, and other adaptive strategies to prepare for extreme heat. There needs to be investments in researching how much funding is needed and how to allocate that funding equitably. Data collection proposed above will help determine the scale of the need.


Extreme heat is an urgent problem for schools. Opportunities exist across the federal government to protect our nation’s future by protecting our children. Federal agencies can best support state and local schools through three paths of mitigation: collect data and collaborate, set policy, and invest in schools. 

This idea of merit originated from our Extreme Heat Ideas Challenge. Scientific and technical experts across disciplines worked with FAS to develop potential solutions in various realms: infrastructure and the built environment, workforce safety and development, public health, food security and resilience, emergency planning and response, and data indices. Review ideas to combat extreme heat here.

Frequently Asked Questions
Are there any state-level temperature standards in the works for schools?

Several examples of potential legislation exist at the state level in Mississippi (classrooms must be air-conditioned for schools to be accredited), Connecticut (schools with air conditioners must maintain temperatures below 78ºF), Washington (schools must be “reasonably free of… excessive heat”), and Hawaii (classrooms must be a “temperature acceptable for student learning”) and a bill is being considered in New York (cooling action must be taken at 82ºF; classrooms can’t be occupied above 88ºF).