To reduce the burden on traditional data centers, improving on DNA data storage could be the key
The pace at which data – such as photos, videos, and social media posts – are being generated is ramping up drastically, exceeding the scaling limits of traditional silicon-based data storage technologies, and DNA could be deployed to help meet this challenge. As an indication of the massive amount of data storage that may be required, one model predicts that by the year 2030, electricity use by data centers could approach about eight percent of total global electricity demand. New paradigms for data storage, such as the use of DNA for preserving information, are necessary.
DNA is genetic material that contains plans for the design of living things, but DNA can also be used to store data created by living things. DNA is an attractive material for data storage – it is stable, writable, readable, and information dense. In theory, the entire world’s data could be stored in a coffee mug-sized portion of DNA.
So how does storing, for example, a video, in DNA work? (See Figure 1.) First, an algorithm is used to encode the video into the As, Ts, Cs, and Gs that make up DNA molecules. The DNA molecules are then synthesized, and stored. To access the data, the DNA molecules would be sequenced, and the DNA sequences translated using the same algorithm, reproducing the video.
DNA is a polymer – a substance consisting of a high number of similar building blocks that are linked together – and other polymers can be used to store information, too. For example, plastic polymers are being explored for information-storage applications; one group synthesized a plastic polymer that, when read out, reproduced a quote by Jane Austen. By expanding experimental development efforts into (i) increasing the rates at which DNA can be synthesized and sequenced and (ii) detecting and correcting for errors in DNA synthesis, and by pursuing fundamental research into data storage across a variety of polymers, it is possible the U.S. science and technology enterprise could devise a polymer-based method for rapid data storage and retrieval, and meet the data storage challenge.
This CSPI Science and Technology Policy Snapshot expands upon a scientific exchange between Congressman Bill Foster (D, IL-11) and his new FAS-organized Science Council.
Proposed bills advance research ecosystems, economic development, and education access and move now to the U.S. House of Representatives for a vote
NIST’s guidance on “Managing Misuse Risk for Dual-Use Foundation Models” represents a significant step forward in establishing robust practices for mitigating catastrophic risks associated with advanced AI systems.
Surveillance has been used on citizen activists for decades. What can civil society do to fight back against the growing trend of widespread digital surveillance?
Public-private collaboration in standards development also increases the likelihood that companies are able to adopt the standards without being overly burdened.