The U.S. Bioeconomy is Not Yet Sustainable. Here’s What Needs to Change.
The U.S. Bioeconomy can be a slippery thing, but there’s no denying that leaders at the highest levels of industry and politics are paying attention to its potential to boost our economic growth and our technological edge.
Look no further than the White House’s Bioeconomy Executive Order – aimed at shaping a bioeconomy that is “safe, secure and sustainable.” While programs and reports have focused on the ‘safe’ and ‘secure’ aspects of the bioeconomy and economic indicators, environmental sustainability has not had as much momentum. But this isn’t necessarily due to a lack of interest in biobased products at the industrial level.
A novel collaboration between Ford Motor Company and Jose Cuervo® Tequila Company is one example of this growing interest. Agave by-products from tequila production will soon be used to create more sustainable bioplastics for next-generation Ford vehicles. According to the United Nations Environment Programme, 5 billion metric tons of agricultural biomass waste is produced annually. Agriculture by-products, like the waste products from tequila production, are abundant and often underutilized; therefore, finding new processes to incorporate available waste products to create something new and sustainable can help manufacturers embrace more biobased materials.
But one catch for building an environmentally sustainable national bioeconomy strategy is that not all biobased products or processes in the bioeconomy are – despite the connotations of “biobased” – inherently sustainable. Biobased products do indeed hold enormous promise for promoting economic growth while mitigating environmental challenges. And yet a strategy to ensure that environmental benefits actually get to consumers remains elusive. As the U.S. government grapples with delineating what sectors the bioeconomy does or does not contain – it must also ask: What does environmental sustainability mean in a bioeconomy? How should it be measured? Answers to these questions would support efforts to evaluate technologies and projects, prioritize investments, and ultimately improve sustainability.
Circular bioeconomy is a term commonly used to describe sustainability in the bioeconomy and combines two fundamental sustainability principles. First, it embraces the increased use of renewable resources, such as energy, chemicals, and materials, particularly those derived from plants. Second, it focuses on extending the lifecycle of these sustainable materials and products instead of discarding them.
While the U.S. grapples with defining its bioeconomy and landing on a cohesive approach to making it sustainable, the European Union (EU) and other international organizations have committed to this circular bioeconomy model (see BOX).
International definitions of the bioeconomy that include sustainability
Sustainability within the context of the European bioeconomy has been defined in many ways, including:
- Achieving economic growth, social, and environmental objectives by creating and adopting innovative solutions for the sustainable management of renewable biological resources.
- A circular, green, and inclusive approach that aims to create sustainable value from biomass and waste resources and ensure that future generations can benefit from our natural capital.
In the definitions above, economic and environmental sustainability inform each other depending on where a bioeconomy is located and what sector of the bioeconomy is being considered, such as biopharmaceutical manufacturing vs. agriculture. For example, sustainability for agriculturally-related bioeconomic products from Spain’s Andalusia region may look very different from sustainability for biopharmaceuticals from Berlin. The regionality differences will inform decisions that drive sustainability in a bioeconomy.
The United Nations Food and Agriculture Organization (FAO )is creating guidance for developing and implementing sustainable bioeconomy strategies, policies, and programs across the globe The FAO focuses on five key elements of a sustainable bioeconomy: 1) the reduction of carbon emissions, 2) restoring biodiversity, 3) eliminating toxic waste, 4) building rural economies, and 5) reducing food insecurity and malnutrition. The FAO further states that the “development of a sustainable and circular bioeconomy globally is and will be driven by three broad forces:
- Societal aspirations and good governance for sustainable development and improved health and wellbeing.
- Needs and opportunities to valorize and protect biological resources in the traditional bioeconomy core sectors.
- Scientific breakthroughs in biological, digital, and other fields of technology to expand possibilities for innovation.”
The EU is currently working towards a sustainable bioeconomy that aligns with the European Green Deal objectives, to build more diverse supply chains that are less dependent on fossil fuels and non-renewable resources. Furthermore, the EU sees the shift towards biobased products and sustainable processes as a way to achieve economic, social, and environmental goals. Establishing an aligned strategy allows for the two independent plans to work in synergy together to promote and advance EU’s goals. Which is further promoted by financial incentives that help EU member countries and municipalities to partake in this overarching strategy. Significant amounts of funding have been invested into the European bioeconomy and more member states of the EU are using tax incentives, grants, loans, and subsidies for biobased products to “provide public financial support to circular bioeconomy projects.” These efforts push the private sector to create more biobased products, but also enable a shift in manufacturing and research development processes to become more sustainable in order to capture additional financial benefits.
The EU’s intentional inclusion of sustainability as part of their bioeconomy strategy can be attributed to the general acceptance of nature as a societal and economical benefit. This sustainability-forward mindset informs how the EU seeks to use biotechnology as a tool to fix societal challenges. Furthermore, the sustainability-forward mindset has informed how natural resources are included as part of their economic evaluations. Preserving their natural resources becomes a priority for them and the EU sees the bioeconomy, and the biotechnology sitting within it, as a means to safeguarding their natural resources.
The U.S., on the other hand, has a rich history in manufacturing, and takes a more industry-forward approach to promote biomanufacturing and biotechnology as a way to create new biobased products. Any societal challenges that may be alleviated along the way come as a positive byproduct but it is not the primary focus of the U.S. bioeconomy. Inclusion of sustainability in the U.S. bioeconomy gets further stress-tested by the vastness of the U.S. natural landscape and the increasing number of natural disasters that vary from one region to another. For example, the rampant wildfires continue to destroy thousands of acres of forested land on the West Coast and the coastal habitats are lost on the East Coast due to rising ocean levels. This all leads to immense challenges in conserving and protecting these natural resources at a national level, making it hard to establish a coherent environmental sustainability strategy for the U.S. bioeconomy.
To successfully achieve environmental sustainability, the U.S. bioeconomy needs a two-pronged approach. The first approach requires incorporating sustainability at the regional level. Due to historic, place-based federal investments throughout the U.S., like the Economic Development Administration (EDA) Tech Hubs or the National Science Foundation (NSF) Regional Innovation Engines, regional bioeconomies, or microbioeconomies, are beginning to form.
Microbioeconomies utilize a region-specific biobased industries, academic strengths, and support sectors to apply and innovate on various biotechnologies that boost regional economies and mitigate region-specific environmental challenges. Microbioeconomies enable the integration of sustainability into the bioeconomy in a more approachable manner. Taking the lessons learned and major themes that arise from how these microbioeconomies are established and including sustainability in their planning, allows for a roadmap on how to integrate sustainability into the national bioeconomy strategy.
The second approach requires action at the federal level, in other words, a top-down approach to incorporating environmental sustainability into the U.S. bioeconomy. This approach would require a dedicated effort to build the necessary infrastructure and common language of what sustainability is and how it can exist within the bioeconomy. One way that the federal government can start this process is by driving the convergence of bioeconomy and sustainability programs within federal agencies. By mandating that federally-funded bioeconomy programs and activities include a component of environmental sustainability, the government can spur a new wave of innovation and encourage regional efforts to incorporate sustainability in their microbioeconomies. The federal government can leverage and fortify existing programs to carry out this approach. For example, the BioPreferred program, housed within the United States Department of Agriculture (USDA), is meant to increase the purchase of biobased products in the U.S. through mandatory purchasing requirements for federal agencies and their contractors; and a voluntary labeling initiative for biobased products. As the recent Bioeconomy Executive Order also highlighted the need to strengthen and expand the BioPreferred program, and implementation of this task can be another step forward in incorporating sustainability into the U.S. bioeconomy.
With historic levels of investments and the push to reduce emissions to tackle climate change, the time is ripe with opportunities for U.S. innovators to bring sustainability into the fold of their manufacturing and R&D processes, products, and services. The U.S can take steps in the right direction by creating financial incentive programs similar to ones implemented by EU member states, incorporating sustainability language into our federal codes, and mandating that federally funded biotechnology research have a sustainability component. These changes will be critically important to both grow a future circular bioeconomy in the U.S. that can simultaneously promote economic growth and help alleviate the impacts of climate change.
In anticipation of future known and unknown health security threats, including new pandemics, biothreats, and climate-related health emergencies, our answers need to be much faster, cheaper, and less disruptive to other operations.
To unlock the full potential of artificial intelligence within the Department of Health and Human Services, an AI Corps should be established, embedding specialized AI experts within each of the department’s 10 agencies.
The U.S. government should establish a public-private National Exposome Project (NEP) to generate benchmark human exposure levels for the ~80,000 chemicals to which Americans are regularly exposed.
The federal government is responsible for ensuring the safety and privacy of the processing of personally identifiable information within commercially available information used for the development and deployment of artificial intelligence systems