Training for Safety and Success: Research & National Minimum Training Standards for Law Enforcement

Summary

Law enforcement is a highly visible profession where, without effective training, safety is at risk for both law enforcement officers and community members. Officers regularly respond to calls for service with uncertain risk factors and must balance the work with proactive activities to improve community well-being. Nationally, mandated training hours for new law enforcement officers are consistently less than those required for cosmetology licensure, with training quality and requirements varying significantly by state. Nearly three-quarters of states allow officers to work in a law enforcement function before completing the basic academy. Public trust and safety are placed in the hands of law enforcement officers, even if they lack the training, skills, and knowledge to be successful. Policing practices are regularly shaped by failures shown in national media, yet the shift in practices is rarely institutionalized in basic training practices.

To make communities safer and law enforcement officers more successful, the Biden-Harris Administration should fund research on the effectiveness of law enforcement training and create a national minimum standard for entry-level academy training to further support the Safer American Plan. The 2022 Executive Order on Advancing Effective, Accountable Policing and Criminal Justice Practices to Enhance Public Trust and Public Safety focuses on strengthening trust between communities and law enforcement officers, including training and equitable policing. The Department of Justice should oversee this research, and the Departments of Homeland Security, Labor, and Commerce can help create national standards and minimum training recommendations. Based on the findings and using pedagogical approaches for the most productive learning, minimum national training standards will be recommended by an interdisciplinary federal task force. Training can be used to compel change in law enforcement, improve community-police relations, and reduce liability while advancing community safety.

Challenge and Opportunity

Law enforcement actions have widespread implications due to the immense power and inherent risks associated with the position. The profession is plagued with complexity and unpredictability, further challenged by extensive discretionary capabilities and varied training requirements. Basic academy training is the foundational coursework for learning about laws and ethics, technical skills relating to actionable law enforcement functions, soft skill development, and honing critical thinking during stressful situations. However, more focus is placed on didactic portions with practical exercises than on cognitive, emotional, and social skills, which can be used to safely de-escalate situations. Even with these known training insufficiencies, academy training topics and hours are rarely updated. Training requirements and pedagogical approaches administered by peace officer standards and training or similar overseeing bodies generally require legislative updates to update curriculum standards, taking significant time and resources to enact change.

Back in 2015, President Obama highlighted the need for training and education in the 21st Century Taskforce on Policing, citing that law enforcement officers (LEOs) are required to be highly skilled in many operational areas to meet the wide variety of challenges and increasing expectations. The Biden-Harris Administration has vowed to advance effective, accountable policing through the Safer America Plan, noting that change at the local and state level requires congressional action. The Safer American Plan would provide funding for 100,000 additional LEOs, all of whom will require training to be effective in their role. Academy training requirements are not regularly collected or monitored at the federal level, and research is not routinely completed to show the efficacy of the training provided. The lack of data on law enforcement actions further complicates the training process, as the time spent during patrol is not regularly cataloged and reviewed to determine where officers spend most of their time. Data showing where officer time is spent can guide training decisions and adjust hours to provide skills for the most commonly utilized skill sets. 

There is no national training standard for LEOs: state requirements vary from 1345 hours in the basic academy in Connecticut to 0 hours in Hawaii. The basic academy provides future LEOs foundational knowledge and skills in law, defensive tactics, report writing, first aid, communication, and other critical skills. The average length of basic training is 833 hours, with an average of 73 hours dedicated to firearm skills and 18 hours to de-escalation techniques. While firearm familiarization and skills are of utmost importance due to the fatal consequences of not understanding the weaponry and one’s ability, the discharge of a firearm occurs significantly less than de-escalation and other communication techniques. When not used regularly, skills become perishable, and the lack of regular training on topics like firearms and traffic stops can reduce an LEO’s efficiency, response time, and safety. The 2022 Executive Order on Advancing Effective, Accountable Policing mandates training federal LEOs with clear guidance on use-of-force standards and implicit bias, but these basic tenets of policing requirements are not extended to state and local law enforcement.

Thirty-seven states allow LEOs to work before they have completed a basic training academy. The time LEOs can work before receiving basic training ranges from 3 months in West Virginia to 24 months in Mississippi. There are obvious dangers to LEOs and the public by providing a uniform and firearm to an untrained person to interact with the community in a position of power. Figure 1 shows the ranges of when the basic academy is required of new LEOs.

Figure 1

With the basic academy averaging 833 hours, or about 21 weeks, it may seem like a sufficient timeframe to train new law enforcement officers. However, it commonly takes at least six months to master a new skill, with the academy requiring many new skills to be developed simultaneously. The minimum basic academy hour requirement in California is 664 hours, though the training is commonly over 1000 hours. By contrast, earning a cosmetology license in California has more extensive hour requirements than the basic police academy, with cosmetology and barber training requiring 1000 hours for state licensure. While injuries can occur in cosmetology, the profession is inherently safer for the practitioner and the client. 

FBI Director Wray noted a 60% increase in murders of law enforcement officers in 2021, explicitly noting that violence against law enforcement officers does not receive as much attention as it should. Of the 245 LEOs who died in the line of duty in 2022, 74 were feloniously killed, up from 48 in 2019. In 2022, 1194 people were killed by LEOs, with 101 people being unarmed. Black people are disproportionately killed by LEOs, at nearly triple the population rate. The statistics of community members killed do not differentiate between legally justified uses of force and illegal actions, so a true picture of potential training concerns versus ethical violations cannot be determined. 

Recognizing the insufficiencies of current LEO training raises opportunities for data-driven improvements. Research is needed to determine the efficacy of the basic academy training in each state, with comparisons made to provide an overall recommendation for minimum national standards. Innovation should be encouraged when developing future training standards, as the basic academy training has not embraced technology or newer learning techniques that may aid in practical decision-making and skill mastery.

Plan of Action

Training can be used to implement vital reforms in law enforcement, potentially saving lives. A multipronged, transparent approach is needed to determine the efficacy of current training before introducing innovation and minimum training standards. Multiple agencies will need to collaborate to complete the evaluation and create recommendations to incorporate inclusive views through multifaceted lenses and coordinate future actions. Transparency of the research and its goals, including making findings available on public-facing websites, is needed for accountability and to foster trust in the process of improving law enforcement. Additional detail of the proposed agencies and their roles is below.

AgencyRole
Department of Justice (DOJ)The DOJ is responsible for protecting civil rights, upholding the law, and keeping our country safe. The DOJ houses the Office of Justice Programs and Community-Oriented Policing Services, which will be instrumental in this project.

The DOJ should be the principal agency, as the Office of Justice Programs has a structure for creating, reviewing, and awarding grants. The DOJ can also spearhead the evaluation efforts either internally or through grant proposals for the components of the project and the overall assessment.
Department of Homeland Security (DHS)The DHS focuses on crime prevention and safety at our borders, including monitoring security threats and strengthening preparedness.

The DHS oversees Federal Law Enforcement Training Centers (FLETC). FLETC trains federal law enforcement personnel to assist with improving safety across the nation. FLETC can assist in the review of current state training practices and provide recommendations for national training minimums. While federal and local law enforcement focuses vary, safety, ethics, and communication are top priorities in both training communities.
Department of Labor (DOL)The DOL is the primary agency for labor and workforce concerns. The DOL should provide input on national training standards and programs.
Department of Commerce (DOC)The DOC oversees the National Institute of Standards and Technology (NIST). NIST works to advance science through the creation of standards to enhance innovation and promote inclusivity.

NIST should be the principal agency to create the nationally recommended standards for LEO training through its multidisciplinary process with input from DOJ, DHS, and DOL. The standard should also go through a standards-developing organization (SDO) to build consensus and due process.

Recommendation 1. Fund research for current LEO training and efficacy

Before overhauling training, data is needed to provide a baseline of training in each state, including its perceived efficacy by stakeholders. The DOJ should create and administer competitive grants to evaluate current training in every state/territory and complete surveys, interviews, and focus groups with stakeholders to determine the impact of training. Use-of-force incidents, accidents, LEO decertification, and other aspects of potential training deficiency should be examined for additional insight into effectiveness. 

Research should also be conducted on fatal and accidental duty-related incidents to determine the human and other contributing factors. Data and trends gained from the research should be incorporated into minimum training standards to reduce future errors. Competitive grants can be provided to evaluate potential root causes of duty-related fatal and accidental deaths.

A key component of the research phase will be bringing the researchers together to discuss findings, regional and national trends, and recommendations. Creating a formal networking  process will allow for best practices to be shared across all states/territories participating and made available to all LEO training commissions. 

Recommendation 2. Spark innovation from adult learning experts and practitioners for LEO training

Through a competitive grant process, the DOJ’s Office of Justice Programs can advertise funding opportunities and outline the application process. Grants focusing on practitioners and adult learning experts in collaboration, potentially through practitioner-higher education partnerships, can assist in bringing the necessary experience from the field and adult learning. Curriculum designers should consider immersive or simulation training experiences and the use of technology in training. In addition, they should consider redesigning the rigid paramilitary format to encourage LEOs to utilize critical thinking skills, improve adaptability, and hone communication skills. Using Challenge.gov can also provide additional insights from the community. 

Recommendation 3. Create national minimum standards for LEO basic academy training

Using the recommendations from the state law enforcement training researchers, the fatality factor researchers, practitioner and adult learner experts, FLETC, and DOL, a compilation of recommendations from NIST, DOJ, DHS, DOC, and DOL of national minimal standards should be completed. Requirements for academy instructors will also need to be established, including training program requirements and regular reviews of their performance and impact. NIST will use the information gathered, including contemporary training topics and a focus on adult learning techniques, and create a draft standard. The research teams and the public will have an opportunity to comment on the draft standards, then NIST will adjudicate the comments before sending the standards to an SDO for additional feedback for a quality, peer review. 

The DOJ’s Office of Justice Programs will offer grants to all interested state LEO training bodies to adhere to the national minimum standard, with funding for planning, Implementation, and evaluation of the project. Grants should require a three-year timeline for implementation to ensure trainees receive training before their first day on the streets and the basic academy meets the minimum national requirements.

Recommendation 4. Evaluate curricula changes with environmental changes

Grant funding for the planning and implementation should extend an additional two years for the evaluation component. Evaluators chosen during the grant process can review how well training adheres to the national standards across all academies in the state, LEO feelings of preparedness upon graduation and quarterly after that for up to two years, and supervisor/administrator feedback on LEO performance after the academy. Deidentified records of unjustified use-of-force, decertification, and criminal actions can be reviewed for additional insight into the effectiveness of the basic academy training.

An overall program evaluation will be needed, including reviewing the state evaluations and the overall administration of the project. The grant can be open to one organization or multiple organizations with the selection and funding provided by DOJ’s Office of Justice Programs. Competitive grant funding for up to $5 million should be awarded for the six-to-eight-year evaluation.

Budget Proposal

A budget of $125 million is proposed to evaluate current LEO training, develop minimum requirements, and evaluate the implementation. The primary research of determining current LEO basic academy training and efficacy requires $500,000 for one researcher/research group per state/territory, totaling $28 million.

For the adult learning and practitioner component, competitive grants for up to 10 collaborations should receive up to $300,000 each, totaling $3 million. FLETC and DOL can be funded for their participation in the minimum standard creation at $1 million each, totaling $2 million. 

Each state LEO training commission should be eligible to receive up to $2 million each to plan, implement, and evaluate the minimum training standards. If all states/territories participate, the funding will total $112 million.

An evaluation of the entire program will be conducted for $5 million for six to eight years of expected evaluative work. The final report will be provided to the DOJ to determine if performance metrics were met. 

Conclusion

The national LEO training standard is meant to be the floor of training for states and does not remove the oversight of state peace officer training commissions. Every LEO should go through a basic academy and field training before serving the community to ensure they can be safe and effective in their roles. Developing innovating training techniques can help increase skills and understanding of vital topics while refining critical thinking skills in high-stress situations. Minimum training standards can improve safety for the public and first responders, reduce ethical and criminal violations by LEOs, and assist in repairing community-police relationships.

Frequently Asked Questions
Does the federal government have legal oversight of law enforcement training?

No. The 10th Amendment restricts the federal government from mandating standards, but federal grant funding can be restricted from states that do not meet the minimum training mandates. Precedence was made with DOJ’s Community Oriented Policing Services grants, which restrict federal funding if the agency’s use-of-force policy does not adhere to federal, state, and local laws.

Why shouldn’t states update their requirements independently?

States can update their training requirements at their will. States may be incentivized with federal grant funding, rather than waiting for unfunded and underresourced local attempts. Change involving many or all states can create pressure to conform to minimum requirements where there is currently little pressure with no financial incentives offered.

Are there any current federal efforts to initiate changes to state law enforcement training?

In December 2022, the House passed S.4003 Law Enforcement De-Escalation Training Act of 2022. The bill provides $34 million to the Department of Justice to fund scenario-based training for de-escalation and use-of-force for individuals experiencing a mental, suicidal, or behavioral crisis.


Stemming from the deaths of two unarmed Black men, HR 1280 and HR 1347 requested additional training and standards to reduce excessive force by LEOs. HR 1280 passed the House, and HR 1347 was introduced to the House with no actions since 2021.

How does LEO training in the United States compare to training internationally?

LEO training in the United States is among the lowest in the world, with France training LEOs for 10 months or 1600 hours, Scotland’s basic training lasting for 92 weeks or 3680 hours, India for 2.5 years or 5400 hours, and Finland for three years or 6240 hours, with an additional year of field training.

What about continuing education or professional development for LEOs?

Most states require continuing education or professional development. Hawaii has no LEO training requirements, and New Jersey law states agencies may provide in-service training without hourly requirements. Once minimum standards for basic training are implemented, national minimum mandatory annual continuing education or professional education can be developed.

How will the effectiveness of training be measured?

The first recommendation requests funding to assess and determine the current efficacy of law enforcement training in every state. The multistage research would include interviews, surveys, and focus groups with stakeholders to determine training perceptions and impact, while a comparison is made using data from use-of-force incidents, officer decertification, accidents, fatal incidents, and other areas of potential training deficiency.

Transforming On-Demand Medical Oxygen Infrastructure to Improve Access and Mortality Rates

Summary

Despite the World Health Organization’s (WHO) designation of medical oxygen as an essential medicine in 2017, oxygen is still not consistently available in all care settings. Shortages in medical oxygen, which is essential for surgery, pneumonia, trauma, and other hypoxia conditions in vulnerable populations, existed prior to the COVID-19 pandemic and persist today. By one estimate, pre-pandemic, only 20% of patients in low- and middle-income countries (LMICs) who needed medical oxygen received it. The pandemic tremendously increased the need for oxygen, further compounding access issues as oxygen became an indispensable treatment. During the peak of the pandemic, dozens of countries faced severe oxygen shortages due to patient surges impacting an already fragile infrastructure. 

The core driver of this challenge is not a lack of funding and international attention but rather a lack of infrastructure to buy oxygen, not just equipment. Despite organizations such as Unitaid, Bill & Melinda Gates Foundation, Clinton Health Access Initiative, UNICEF, WHO and U.S. Agency for International Development (USAID) prioritizing funding and provisions of medical oxygen, many countries still face critical shortages. Even fewer LMICs, such as Brazil, are truly oxygen self-sufficient. A broken and inequitable global oxygen delivery infrastructure inadvertently excludes low-income and rural area representation during the design phase. Furthermore, the current delivery infrastructure is composed of many individual funders and private and public stakeholders who do not work in a coordinated fashion because there is no global governing body to establish global policy, standards, and oversight; identify waste and redundancy; and ensure paths to self-sufficiency. As a result, LMICs are at the mercy of other nations and entities who may withhold oxygen during a crisis or fail to adequately distribute supply. It is time for aid organizations and governments to become more efficient and effective at solving this systemic problem by establishing global governance and investing in and enabling LMICs to become self-sufficient by establishing national infrastructure for oxygen generation, distribution, and delivery.

We propose transforming current interventions by centering the concept known as Oxygen as a Utility (OaaU), which fundamentally reimagines a country’s infrastructure for medical oxygen as a public utility supported by private investment and stable prices to create a functionable, equitable market for a necessary public health good. With the White House Covid Response Team shuttering in the coming months, USAID’s Bureau for Global Health has a unique opportunity to take a global leadership role in spearheading the development of an accessible, affordable oxygen marketplace. USAID should convene a global public-private partnership and governing coalition called the Universal Oxygen Coalition (UOC), pilot the OaaU model in at least two target LMICs (Tanzania and Uttar Pradesh, India), and launch a Medical Oxygen Grand Challenge to enable necessary technological and infrastructure innovation.

Challenge and Opportunity

There is no medical substitute for oxygen, which is used to treat a wide range of acute respiratory distress syndromes, such as pneumonia and pneumothorax in newborns, and noncommunicable diseases, such as asthma, heart failure, and COVID-19. Pneumonia alone is the world’s biggest infectious killer of adults and children, claiming the lives of 2.5 million people, including 740,180 children, in 2019. The COVID-19 pandemic compounded the demand for oxygen, and exposed the lack thereof, with increased death tolls in countries around the world as a result.

For every COVID-19 patient who needs oxygen, there are at least five other patients who also need it, including the 7.2 million children with pneumonia who enter LMIC hospitals each year. [Ehsanur et al, 2021]. Where it is available, there are often improperly balanced oxygen distribution networks, such as high-density areas being overstocked while rural areas or tertiary care settings go underserved. Only 10% of hospitals in LMICs have access to pulse oximetry and oxygen therapy, and those better-resourced hospitals tend to be in larger cities closer to existing oxygen delivery providers.

This widespread lack of access to medical oxygen in LMICs threatens health outcomes and well-being, particularly for rural and low-income populations. The primary obstacle to equitable oxygen access is lack of the necessary digital infrastructure in-country. Digital infrastructure provides insights that enable health system managers and policymakers to effectively establish policy, manage the supply of oxygen to meet needs, and coordinate work across a complex supply chain composed of various independent providers. Until replicable and affordable digital infrastructure is established, LMICs will not have the necessary resources to manage a national oxygen delivery system, forecast demand, plan for adequate oxygen production and procurement, safeguard fair distribution, and ensure sustainable consumption.

Oxygen can be delivered in a number of forms—via concentrators, cylinders, plants, or liquid—and the global marketplace encompasses many manufacturers and distributors selling in multiple nations. Most oxygen providers are for-profit organizations, which are not commercially incentivized to collaborate to achieve equal oxygen access, despite good intentions. Many of these same manufacturers also sell medical devices to regulate or deliver oxygen to patients, yet maintaining the equipment across a distributed network remains a challenge. These devices are complex and costly, and there are often few trained experts in-country to repair broken devices. Instead of recycling or repairing devices, healthcare providers are often forced to discard broken equipment and purchase new ones, contributing to greater landfill waste and compounding health concerns for those who live nearby.

Common contributing causes for fragmented oxygen delivery systems in LMICs include:

  1. No national digital infrastructure to connect, track, and monitor medical oxygen supply and utilization, like an electrical utility to forecast demand and ensure reliable service delivery.
  2. No centralized way to monitor manufacturers, distributors, and the various delivery providers to ensure coordination and compliance with local policy.
  3. In many cases, no established local policy for oxygen and healthcare regulation or no means to enforce local policy.
  4. Lack of purchasing options for healthcare providers, who are often forced to buy whichever oxygen devices are available versus the type of source oxygen that best fits their needs (i.e., concentrator or liquid) due to cumbersome tender systems and lack of coordination across markets.
  5. Lack of trained experts to maintain and repair devices, including limited national standardized certification programs, resulting in the premature disposal of costly medical devices contributing to waste issues. Further, lack of maintenance fuels the vicious cycle of LMICs requiring more regular funding to buy oxygen devices, which can increase reliance on third parties to sustain oxygen needs rather than domestic demand and marketplaces.

Medical oxygen investment is a unique opportunity to achieve global health outcomes and localization policy objectives. USAID invested $50 million to expand medical oxygen access through its global COVID-19 response for LMIC partners, but this investment only scratches the surface of what is needed to deliver self-sustainment. In response to oxygen shortages during the peaks of the pandemic, the WHO, UNICEF, the World Bank, and other donors shipped hundreds of thousands of oxygen concentrators to help LMICs deal with the rise in oxygen needs. This influx of resources addressed the interim need but did not solve the persisting healthcare system and underlying oxygen infrastructure problems. In 2021, the World Bank made emergency loans available to LMICs to help them shore up production and infrastructure capabilities, but not enough countries applied for these loans, as the barriers to solve these infrastructure issues are complex, difficult to identify without proper data and digital infrastructure to identify supply chain gaps, and hard to solve with a single cash loan.

Despite heavy attention to the issue of oxygen access in LMICs, current spending does not go far enough to set up sustainable oxygen systems in LMICs. Major access and equity gaps still persist. In short, providing funding alone without a cohesive, integrated industrial strategy cannot solve the root problem of medical oxygen inequality. 

USAID recently announced an expanded commitment in Africa and Asia to expand medical oxygen access, including market-shaping activities and partnerships. Since the pandemic began, USAID has directed $112 million in funding for medical oxygen to 50 countries and is the largest donor to The Global Fund, which has provided the largest international sums of money (more than $600 million) to increase medical oxygen access in over 80 countries. In response to the pandemic’s impacts on LMICs, the ACT-Accelerator (ACT-A) Oxygen Emergency Taskforce, co-chaired by Unitaid and the Wellcome Trust, has provided $700 million worth of oxygen supplies to over 75 countries and catalyzed large oxygen suppliers and NGO leaders to support LMICs and national healthcare ministries. This task force has brought together industry, philanthropy, NGO, and academic leaders. While USAID is not a direct partner, The Global Fund is a primary donor to the task force.

Without a sea change in policy, however, LMICs will continue to lack the support required to fully diagnosis national oxygen supply delivery system bottlenecks and barriers, establish national regulation policies, deploy digital infrastructures, change procurement approaches, enable necessary governance changes, and train in-country experts to ensure a sustained, equitable oxygen supply chain. To help LMICs become self-sufficient, we need to shift away from offering a piecemeal approach (donating money and oxygen supplies) to a holistic approach that includes access to a group of experts , funding for oxygen digital infrastructure systems, aid to develop national policy and governance mechanisms, and support for establishing specialty training and certification programs so that LMICs can self-manage their own medical oxygen supply chain. Such a development policy initiative relies on the Oxygen as a Utility framework, which focuses on creating a functional, equitable market for medical oxygen as a necessary public good. When achieved successfully, OaaU facilitates one fair rate for end-to-end distribution within a country, like other public utilities such as water and electricity.

A fully realized OaaU model within a national economy would integrate and streamline most aspects of oxygen delivery, from production to distribution of both the oxygen and the devices that dispense it, to training of staff on when to administer oxygen, how to use equipment, and equipment maintenance. This proposed new model coordinates industry partners, funders, and country leaders to focus on end-to-end medical oxygen delivery as an affordable, accessible utility rather than an in-kind development good. OaaU centers predictability, affordability, and efficiency for each stakeholder involved in creating sustainable LMIC medical oxygen supply chains. At its core, OaaU is about increasing both access and reliability by providing all types of oxygen at negotiated, market-wide, affordable, and predictable prices through industry partners and local players. This new business model would be sustainable by charging subscription and pay-per-use fees to serve the investment by private sector providers, each negotiated by Ministries of Health to empower them to manage their own country’s oxygen needs. This new model will incorporate each stakeholder in an LMIC’s healthcare system and facilitate an open, market-based negotiation to achieve affordable, self-sufficient medical oxygen supply chains.

Initial investment is needed to create a permanent oxygen infrastructure in each LMIC to digitally transform the tender system from an equipment and service or in-kind aid model to buying oxygen as a utility model. An industry business model transformation of this scale will require multistakeholder effort to include in-country coordination. The current oxygen delivery infrastructure is composed of many individual funders and private and public stakeholders who do not work in a coordinated fashion. At this critical juncture for medical oxygen provision, USAID’s convening power, donor support, and expertise should be leveraged to better direct this spending to create innovative opportunities. The Universal Oxygen Coalition would establish global policy, standards, and oversight; identify waste and redundancy; and ensure viable paths to oxygen self-sufficiency in LMICs. The UOC will act similarly to electric cooperatives, which aggregate supplies to meet electricity demand, ensuring every patient has access to oxygen, on demand, at the point of care, no matter where in the world they live.

Plan of Action

To steward and catalyze OaaU, USAID should leverage its global platform to convene funders, suppliers, manufacturers, distributors, health systems, financial partners, philanthropy, and NGOs and launch a call to action to mobilize resources and bring attention to medical oxygen inequality. USAID’s Bureau for Global Health, along with the its Private Sector Engagement Points of Contact, and the State Department’s Office of Global Partnerships should spearhead the UOC coalition. Using USAID’s Private Sector Engagement Strategy and EDGE fund as a model, USAID can serve as a connector, catalyzer, and lead implementer in reforming the global medical oxygen marketplace. The Bureau for Global Health should organize the initial summit, calls to action, and burgeoning UOC coalition because of its expertise and connections in the field. We anticipate that the UOC would require staff time and resources, which could be funded by a combination of private and philanthropic funding from UOC members in addition to some USAID resources.

To achieve the UOC vision, multiple sources of funding could be leveraged in addition to Congressional appropriation. In 2022, State Department and USAID funding for global health programs, through the Global Health Programs (GHP) account, which represents the bulk of global health assistance, totaled $9.8 billion, an increase of $634 million above the FY21 enacted level. In combination with USAID’s leading investments in The Global Fund, USAID could deploy existing authorities and funding from Development Innovation Ventures’ (DIV) and leverage Grand Challenge models like Saving Lives at Birth to create innovation incentive awards already authorized by Congress, or the newly announced EDGE Fund focused on flexible public-private sector partnerships to direct resources toward achieving equitable oxygen access for all. These transformative investments would also serve established USAID policy priorities like localization. UOC would work with USAID and the Every Breath Counts Initiative to reimagine this persistent problem by bringing essential players—health systems, oxygen suppliers, manufacturers and/or distributors, and financial partners—into a unified holistic approach to ensure reliable oxygen provision and sustainable infrastructure support. 

Recommendation 1.  USAID’s Bureau for Global Health should convene the Universal Oxygen Coalition Summit to issue an OaaU co-financing call to action and establish a global governing body. 

The Bureau for Global Health should organize the summit, convene the UOC coalition, and issue calls to action to fund country pilots of OaaU. The UOC coalition should bring together LMIC governments; local, regional, and global private-sector medical oxygen providers; local service and maintenance companies; equipment manufacturers and distributors; health systems; private and development finance; philanthropy organizations; the global health NGO community; Ministries of Health; and in-country faith-based organizations.

Once fully established, the UOC would invite industry coalition members to join to ensure equal and fair representation across the medical oxygen delivery care continuum. Potential industry members include Air Liquide, Linde, Philips, CHART, Praxair, Gulf Cryo, Air Products, International Futures, AFROX, SAROS, and GCE. Public and multilateral institutions should include the World Bank, World Health Organization, UNICEF, USAID country missions and leaders from the Bureau for Global Health, and selected country Ministries of Health. Funders such as Rockefeller Foundation, Unitaid, Bill & Melinda Gates Foundation, Clinton Health Access Initiative, and Wellcome Trust, as well as leading social enterprises and experts in the oxygen field such as Hewatele and PATH, should also be included.

UOC members would engage and interact with USAID through its Private Sector Engagement Points of Contact, which are within each regional and technical bureau. USAID should designate at least two points of contact from a regional and technical bureau, respectively, to lead engagement with UOC members and country-level partners. While dedicated funds to support the UOC and its management would be required in the long term either from Congress or private finance, USAID may be able to deploy staff from existing budgets to support the initial stand-up process of the coalition.

Progress and commitments already exist to launch the UOC, with Rockefeller Philanthropy Advisors planning to bring fiscal sponsorship as well as strategy and planning for the formation of the global coalition to the UOC with PATH providing additional strategic and technical functions for partners. The purpose of the UOC through its fiscal sponsor is to act as the global governing body by establishing global policy, standards, oversight controls, funding coordination, identifying waste & redundancy, setting priorities, acting as advisor and intermediary when needed to ensure LMIC paths to self-sufficiency are available. UOC would oversee and manage country selection, raising funding, and coordination with local Ministries of Health, funders, and private sector providers.

Other responsibilities of the UOC may include: 

The first UOC Summit will issue a call to action to make new, significant commitments from development banks, philanthropies, and aid agencies to co-finance OaaU pilot programs, build buy-in within target LMICs, and engage in market-shaping activities and infrastructure investments in the medical oxygen supply chain. The Summit could occur on the sidelines of the Global COVID-19 Summit or the United Nations General Assembly. Summit activities and outcomes should include:

Recommendation 2. The UOC should establish country prioritization based on need and readiness and direct raised funds toward pilot programs.

USAID should co-finance an OaaU pilot model through investments in domestic supply chain streamlining and leverage matched funds from development bank, private, and philanthropic dollars. This fund should be used to invest in the development of a holistic oxygen ecosystem starting in Tanzania and in Uttar Pradesh, India, so that these regions are prepared to deliver reliable oxygen supply, catalyzing broad demand, business activity, and economic development.

The objective is to deliver a replicable global reference model for streamlining the supply chain and logistics, eventually leading to equitable oxygen catering to the healthcare needs that can be rolled out in other LMICs and improve lives for the deprived. The above sites are prioritized based on their readiness and need as determined by the 2020 PATH Market Research Study supported by the Bill and Melinda Gates Foundation. We estimate that $495 million for the pilots in both nations would provide oxygen for 270 million people, which equates to less than $2 per person. The UOC should:

This effort will result in a sustainable oxygen grid in LMICs to produce revenue via subscription and pay-per-use model, reducing the need for aid organization or donor procurement investment on an annual basis. To create the conditions for OaaU, the UOC will need to make a one-time investment to create infrastructure that can provide the volume of oxygen a country needs to become oxygen self-sufficient. This investment should be backed by the World Bank via volume usage guarantees similar to volume usage guarantees for electricity per country. The result will shift the paradigm from buying equipment to buying oxygen.

Recommendation 3. The UOC and partner agencies should launch the Oxygen Access Grand Challenge to invest in innovations to reduce costs, improve maintenance, and enhance supply chain competition in target countries.

We envision the creation of a replicable solution for a self-sustaining infrastructure that can then serve as a global reference model for how best to streamline the oxygen supply chain through improved infrastructure, digital transformation, and logistics coordination. Open innovation would be well-suited to priming this potential market for digital and infrastructure tools that do not yet exist. UOC should aim to catalyze a more inclusive, dynamic, and sustainable oxygen ecosystem of public- and private-sector stakeholders.

The Grand Challenge platform could leverage philanthropic and private sector resources and investment. However, we also recommend that USAID deploy some capital ($20 million over four years) for the prize purse focused on outcomes-based technologies that could be deployed in LMICs and new ideas from a diverse global pool of applicants. We recommend the Challenge focus on the creation of digital public goods that will be the digital “command and control” backbone of a OaaU in-country. This would allow a country’s government and healthcare system to know their own status of oxygen supply per a country grid and which clinic used how much oxygen in real time and bill accordingly. Such tools do not yet exist at affordable, accessible levels in LMICs. However, USAID and its UOC partners should scope and validate the challenge’s core criteria and problems, as they may differ depending on the target countries selected.

Activities to support the Challenge should include:

Conclusion

USAID can play a catalytic role in spearheading the creation and sustainment of medical oxygen through a public utility model. Investing in new digital tools for aggregation of supply and demand and real-time command and control to radically improve access to medical oxygen on demand in LMICs can unlock better health outcomes and improve health system performance. By piloting the OaaU model, USAID can prove the sustainability and scalability of a solution that can be a global reference model for streamlining medical oxygen supply chain and logistics. USAID and its partners can begin to create sustained change and truly equitable oxygen access. Through enhancing existing public-private partnerships, USAID can also cement a resilient medical oxygen system better prepared for the next pandemic and better equipped to deliver improved health outcomes.

References

  1. Pneumonia in Children Statistics – UNICEF DATA
  2. Ann Danaiya Usher (2021). Medical oxygen crisis: a belated COVID-19 response. The
    Lancet, World Report.
  3. Lam F., Stegmuller A.,Chouz V.B., Grahma H.R. (2021). Oxygen systems strengthening as
    an intervention to prevent childhood deaths due to pneumonia in low-resource settings:
    systematic review, meta-analysis and cost-effectiveness. BMJ Global Health Journals
  4. AD Usher: Medical Oxygen crisis: a belated COVID-19 response (2021) The Lancet Global
    Health.
  5. Nair H, Simoes EA, Rudan I, Gessner BD, Azziz-Baumgartner E, Zhang JS et al.
    (2013) Global and regional burden of hospital admissions for severe acute lower respiratory
    infections in young children in 2010: a systematic analysis. Lancet 381: 1380–90.
    10.1016/S0140-6736(12)61901-1
  6. Liu L, Johnson HL, Cousens S, Perin J, Scott S, Lawn JE et al. (2012) Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 379: 2151–61. 10.1016/S0140-6736(12)60560-1
  7. UNEP report. Africa waste management outlook. (2018)
  8. T Duke, SM Gramham, NN Cherian, AS Ginsburg, M English, S Howie, D Peel, PM Enarson,
    IH Wilson, and W Were, the Union Oxygen Systems Working Group (2010) Oxygen is an
    essential medicine: A call for international action.
  9. Unitaid press release. COVID-19 emergency impacting more than half a million people in low-
    and middle-income countries every day, as demand surges (2021)
Frequently Asked Questions
How does the Oxygen as a Utility (OaaU) model increase oxygen access?

The OaaU approach integrates and streamlines most aspects of oxygen delivery, just as integrated power grids grew into public utilities through government investment and public-private partnerships built on technological development to manage them. With an OaaU approach, investments would be made in oxygen digital grid design, build, interoperable connectivity across markets, staff training, demand forecasting and development of a longitudinal sustainable plan. Through this model, an increased number of oxygen suppliers would compete through auctions designed to drive down cost. Governments would receive a lower fixed price in exchange for offering a firm commitment to purchase a pre-established amount of oxygen, services, and equipment to provide oxygen over a long-time horizon. Financial partners guarantee the value of these commitments to reduce the risk that countries will default on their payments, seeking to encourage the increased competition that turns the wheels of this new mechanism. Providing a higher-quality, lower-cost means of obtaining medical oxygen would be a relief for LMICs. Additionally, we would anticipate the government to play a greater role in regulation and oversight which would provide price stability, affordability, and adequate supply for markets—just like how electricity is regulated.

What are the barriers to solving oxygen infrastructure issues?

First, oxygen is a complex product that can be generated by concentrators, cylinders, plants, and in liquid oxygen form. For a country to become oxygen self-sufficient, it needs all types of oxygen, and each country has its own unique combination of needs based on healthcare systems, population needs, and existing physical infrastructure. If a country has an excellent transportation system, then delivery of oxygen is the better choice. But if a country has a more rural population and no major highways, then delivery is not a feasible solution.


The oxygen market is competitive and consists of many manufacturers, each of which bring added variations to the way oxygen is delivered. While WHO-UNICEF published minimal technical specifications and guidance for oxygen therapy devices in 2019, there remains variation in how these devices are delivered and the type of data produced in the process. Additionally, oxygen delivery requires an entire system to ensure it safely reaches patients. In most cases, these systems are decentralized and independently run, which further contributes to service and performance variation. Due to layers of complexity, access to oxygen includes multiple challenges in availability, quality, affordability, management, supply, human resources capacity, and safety. National oversight through a digital oxygen utility infrastructure that requires the coordination and participation of the various oxygen delivery stakeholders would address oxygen access issues and enable country self-sustainment.

Why should agencies, development banks, and other donors invest in OaaU?

Given that oxygen provides areturn of US $50 per disability-adjusted life year, medical oxygen investment is a meaningful opportunity for development banks, foreign assistance agencies, and impact investors. The OaaU business model transformation will be a major step toward oxygen availability in the form of oxygen on-demand in LMICs. Reliable, affordable medical oxygen can strengthen the healthcare infrastructure and improve health outcomes. Recent estimates indicate every year about 120–156 million cases of acute lower respiratory infections occur globally in children under five, with approximately 1.4 million resulting in death. More than 95% of these deaths occur in low- and middle-income countries (Nair, 2013; Lui, 2012).

How is OaaU different from the status quo?

Unlike prior approaches, OaaU is a business model transformation from partial solutions to integrated solutions with all types of oxygen, just like the electricity sector transformed into an integrated grid of all types of electricity supply. From there, the medical facilities will buy oxygen, not equipment—just like you buy amounts of electricity, not a nuclear power plant.

A Bipartisan Health Agenda to Unite America: Innovative Ideas to Strengthen American Wellbeing

As the COVID-19 pandemic has clearly shown – American health is crucial to the health of our nation. Yet American health is under threat from all angles, from escalating chronic deadly diseases like cancer to rising mental health challenges and the growing overdose epidemic. All of these threats contribute to the United States ranking 31st in life expectancy at birth, one of the lowest in the developed world, despite having the highest health spending per capita.

At the State of the Union, the Biden Administration presented a bipartisan platform dedicated to securing the health and wellbeing of the American people, from our Veterans to our youth. An agenda is a first step – unified action on public health comes next. Evidence-based science policy can bring us closer to a healthier future. Since 2020, policy entrepreneurs have developed innovative implementation-ready policy proposals through the Day One Project (D1P) to tackle some of the biggest societal problems. Here are a few that speak to the current moment:

To combat cancer…

With the median monthly cost of cancer drugs topping $10,000, many families cannot afford the costs of caring for their loved ones. Yet, there are 1,100 FDA-approved off-patent generics that could be used for treating cancer, at a fraction of the cost. Congress should appropriate $100 million into Phase III clinical trials of off-patent generics for treating a variety of cancers. This funding can go towards the National Cancer Institute and be implemented through an open-source pharmaceutical R&D framework through accelerated progress towards accessible and affordable cures.

Environmental hazards are a growing driver of cancers, and disproportionately impact rural and disadvantaged communities. Air pollution has been linked to lung cancer, the most deadly cancer for both men and women in the US. An interagency collaboration led by National Oceanic and Atmospheric Administration and leveraging funds from the Inflation Reduction Act could deploy a network on low-cost, real-time, ground-based sensors in all 300 US cities with a population above 100,000 to track particulate matter rates. Connecting this data to relevant providers in these cities, such as federally-qualified community health centers, could inform physicians of high-risk sites to target early screening interventions. Further, materials composing American homes, from housing materials to pipe materials, and even water running in the faucets, have been identified as possible sources of carcinogens. The Biden Administration should launch the President’s Task Force on Healthy Housing and Water for Cancer Prevention to coordinate research, develop the statistical database, and prepare for regulatory actions.

Finally, innovations in primary care can also catch cancer at earlier stages in disease progression. Yet, many rural and disadvantaged communities lack access to primary care. The NIH’s $23 million investment investigating telehealth for cancer care will develop the best care strategies – but labor-market, technical, financial/regulatory barriers, and data barriers will remain for scaling to the broad population. The Biden Administration and Congress will need to collaborate to unlock barriers to delivering healthcare services directly to the American home, through reforming licensure, expanding broadband access, investing in new mobile healthcare devices, expanding Medicare and Medicaid reimbursements, and ensuring data interoperability.

To strengthen mental health…

Digital mental health technologies have enormous potential to combat the growing mental health crisis, as evidenced by the Administration’s plan on mental health research and development. Yet more work remains to build a national infrastructure for successful implementation of digital mental health services. The vast majority of digital mental health technologies are unregulated, as existing FDA standards fail to cover these emerging technologies because many do not make treatment claims. Congress should authorize Health and Human Services (HHS) to develop standards for digital mental health products to ensure clinical effectiveness, data safety, and mitigate risk. Technologies that meet these standards should then be reimbursable through Medicare and Medicaid, which will require further congressional action. Finally, the Substance Abuse and Mental Health Services Administration (SAMHSA) should create a National Center for Digital Mental Health to maintain a database of approved digital products, provide training to providers, and ensure compliance of developers with national standards.

Knowing that tech platforms can be harmful to the youth’s wellbeing, the Congress and the Administration can take several steps to protect children’s privacy. Congress can expand the technological expertise at the Department of Education (ED) to protect children’s privacy and security in schools as well as appropriate $160 million funding to the Federal Trade Commission (FTC) to expand Children’s Online Protection Privacy Act (COPPA) enforcement and further investigate technology companies extracting children’s data. The Administration can commission a task force to identify ways to protect children’s data through existing legislation such as the Family Educational Rights and Privacy Act and COPPA.

To tackle the opioid crisis…

The opioid crisis is claiming thousands of lives every year, and there is bipartisan consensus on action. The Centers for Medicare and Medicaid (CMS) has sought strategies to prevent opioid use disorders – which will require reforms to the insurance reimbursement model which less generously covers preventative services. The Biden Administration should pilot a multidisciplinary study group to implement payment for prevention, using opioid use disorders as the test case. Following the guidance of the study group, CMS should provide guidelines to contracts between states and managed care organizations (MCOs) and between MCOs and providers and provide necessary technical assistance to implement these guidelines.

To deliver on care for Veterans…

Five million veterans live in rural areas, and of those, 45% lack access to reliable broadband internet, reducing access to vital health services. To ensure Veterans remain connected to healthcare services wherever they are, the Veterans Health Administration (VHA) should partner with the Postal Service and/or Department of Agriculture to pilot telehealth hubs in rural communities using existing FY23 appropriations for telehealth. An initial focus of care delivery could be on digital mental health and suicide prevention. Going forward, care delivery innovations like this one, if successful, can inspire new policies for the broader population, if the VHA’s health policy mission is expanded. VHA should be added to strategic interagency health policy coalitions such as the ACA interagency working group on healthcare quality and Healthy People 2030 to share data, develop innovative projects, and evaluate progress.

There’s more work to be done to build a healthier future for all Americans – these ideas can be jumping off points for Executive and Congressional action. FAS will continue to develop and surface evidence-based policies that can make a difference, and submissions to the Day One project are always welcome.

Enabling Faster Funding Timelines in the National Institutes of Health

Summary

The National Institutes of Health (NIH) funds some of the world’s most innovative biomedical research, but rising administrative burden and extended wait times—even in crisis—have shown that its funding system is in desperate need of modernization. Examples of promising alternative models exist: in the last two years, private “fast science funding” initiatives such as Fast Grants and Impetus Grants have delivered breakthroughs in responding to the coronavirus pandemic and aging research on days to one-month timelines, significantly faster than the yearly NIH funding cycles. In response to the COVID-19 pandemic the NIH implemented a temporary fast funding program called RADx, indicating a willingness to adopt such practices during acute crises. Research on other critical health challenges like aging, the opioid epidemic, and pandemic preparedness deserves similar urgency. We therefore believe it is critical that the NIH formalize and expand its institutional capacity for rapid funding of high-potential research.

Using the learnings of these fast funding programs, this memo proposes actions that the NIH could take to accelerate research outcomes and reduce administrative burden. Specifically, the NIH director should consider pursuing one of the following approaches to integrate faster funding mechanisms into its extramural research programs: 

Future efforts by the NIH and other federal policymakers to respond to crises like the COVID-19 pandemic would also benefit from a clearer understanding of the impact of the decision-making process and actions taken by the NIH during the earliest weeks of the pandemic. To that end, we also recommend that Congress initiate a report from the Government Accountability Office to illuminate the outcomes and learnings of fast governmental programs during COVID-19, such as RADx.

Challenge and Opportunity

The urgency of the COVID-19 pandemic created adaptations not only in how we structure our daily lives but in how we develop therapeutics and fund science. Starting in 2020, the public saw a rapid emergence of nongovernmental programs like Fast Grants, Impetus Grants, and Reproductive Grants to fund both big clinical trials and proof-of-concept scientific studies within timelines that were previously thought to be impossible. Within the government, the NIH launched RADx, a program for the rapid development of coronavirus diagnostics with significantly accelerated approval timelines. Though the sudden onset of the pandemic was unique, we believe that an array of other biomedical crises deserve the same sense of urgency and innovation. It is therefore vital that the new NIH director permanently integrate fast funding programs like RADx into the NIH in order to better respond to these crises and accelerate research progress for the future. 

To demonstrate why, we must remember that the coronavirus is far from being an outlier—in the last 20 years, humanity has gone through several major pandemics, notably swine flu, SARS CoV-1, and Ebola. Based on the long-observed history of infectious diseases, the risk of pandemics with an impact similar to that of COVID-19 is about two percent in any year. An extension of naturally occurring pandemics is the ongoing epidemic of opioid use and addiction. The rapidly changing landscape of opioid use—with overdose rates growing rapidly and synthetic opioid formulations becoming more common—makes slow, incremental grantmaking ill-suited for the task. The counterfactual impact of providing some awards via faster funding mechanisms in these cases is self-evident: having tests, trials, and interventions earlier saves lives and saves money, without sacrificing additional resources.

Beyond acute crises, there are strong longer-term public health motivations for achieving faster funding of science. In about 10 years, the United States will have more seniors (people aged 65+) than children. This will place substantial stress on the U.S. healthcare system, especially given that two-thirds of seniors suffer from more than one chronic disease. New disease treatments may help, but it often takes years to translate the results of basic research into approved drugs. The idiosyncrasies of drug discovery and clinical trials make them difficult to accelerate at scale, but we can reliably accelerate drug timelines on the front end by reducing the time researchers spend in writing and reviewing grants—potentially easing the long-term stress on U.S. healthcare.

The existing science funding system developed over time with the best intentions, but for a variety of reasons—partly because the supply of federal dollars has not kept up with demand—administrative requirements have become a major challenge for many researchers. According to surveys, working scientists now spend 44% of their research time on administrative activities and compliance, with roughly half of that time spent on pre-award activities. Over 60% of scientists say administrative burden compromises research productivity, and many fear it discourages students from pursuing science careers. In addition, the wait for funding can be extensive: one of the major NIH grants, R01, takes more than three months to write and around 8–20 months to receive (see FAQ). Even proof-of-concept ideas face onerous review processes and take at least a year to fund. This can bottleneck potentially transformative ideas, as with Katalin Kariko famously struggling to get funding for her breakthrough mRNA vaccine work when it was at its early stages. These issues have been of interest for science policymakers for more than two decades, but with little to show for it. 

Though several nongovernmental organizations have attempted to address this need, the model of private citizens continuously fundraising to enable fast science is neither sustainable nor substantial enough compared to the impact of the NIH. We believe that a coordinated governmental effort is needed to revitalize American research productivity and ensure a prompt response to national—and international—health challenges like naturally occurring pandemics and imminent demographic pressure from age-related diseases. The new NIH director has an opportunity to take bold action by making faster funding programs a priority under their leadership and a keystone of their legacy. 

The government’s own track record with such programs gives grounds for optimism. In addition to the aforementioned RADx program at NIH, the National Science Foundation (NSF) runs the Early-Concept Grants for Exploratory Research (EAGER) and Rapid Response Research (RAPID) programs, which can have response times in a matter of weeks. Going back further in history, during World War II, the National Defense Research Committee maintained a one-week review process.
Faster grant review processes can be either integrated into existing grant programs or rolled out by institutes in temporary grant initiatives responding to pressing needs, as the RADx program was. For example, when faced with data falsification around the beta amyloid hypothesis, the National Institute of Aging (NIA) could leverage fast grant review infrastructure to quickly fund replication studies for key papers, without waiting for the next funding cycle. In case of threats to human health due to toxins, the National Institute of Environmental Health Sciences (NIEHS) could rapidly fund studies on risk assessment and prevention, giving public evidence-based recommendations with no delay. Finally, empowering the National Institute of Allergy and Infectious Diseases (NIAID) to quickly fund science would prepare us for many yet-to-come pandemics.

Plan of Action

The NIH is a decentralized organization, with institutes and centers (ICs) that each have their own mission and focus areas. While the NIH Office of the Director sets general policies and guidelines for research grants, individual ICs have the authority to create their own grant programs and define their goals and scope. The Center for Scientific Review (CSR) is responsible for the peer review process used to review grants across the NIH and recently published new guidelines to simplify the review criteria. Given this organizational structure, we propose that the NIH Office of the Director, particularly the Office of Extramural Research, assess opportunities for both NIH-wide and institute-specific fast funding mechanisms and direct the CSR, institutes, and centers to produce proposed plans for fast funding mechanisms within one year. The Director’s Office should consider the following approaches. 

Approach 1. Develop an expedited peer review process for the existing R21 grant mechanism to bring it more in line with the NIH’s own goals of funding high-reward, rapid-turnaround research. 

The R21 program is designed to support high-risk, high-reward, rapid-turnaround, proof-of-concept research. However, it has been historically less popular among applicants compared to the NIH’s traditional research mechanism, the R01. This is in part due to the fact that its application and review process is known to be only slightly less burdensome than the R01, despite providing less than half of the financial and temporal support. Therefore, reforming the application and peer review process for the R21 program to make it a fast grant–style award would both bring it more in line with its own goals and potentially make it more attractive to applicants. 

All ICs follow identical yearly cycles for major grant programs like the R21, and the CSR centrally manages the peer review process for these grant applications. Thus, changes to the R21 grant review process must be spearheaded by the NIH director and coordinated in a centralized manner with all parties involved in the review process: the CSR, program directors and managers at the ICs, and the advisory councils at the ICs. 

The track record of federal and private fast funding initiatives demonstrates that faster funding timelines can be feasible and successful (see FAQ). Among the key learnings and observations of public efforts that the NIH could implement are:

Pending the success of these changes, the NIH should consider applying similar changes to other major research grant programs.

Approach 2. Direct NIH institutes and centers to independently develop and deploy programs with faster funding timelines using Other Transaction Authority (OTA).

Compared to reforming an existing mechanism, the creation of institute-specific fast funding programs would allow for context-specific implementation and cross-institute comparison. This could be accomplished using OTA—the same authority used by the NIH to implement COVID-19 response programs. Since 2020, all ICs at the NIH have had this authority and may implement programs using OTA with approval from the director of NIH, though many have yet to make use of it.

As discussed previously, the NIA, NIDA, and NIAID would be prime candidates for the roll-out of faster funding. In particular, these new programs could focus on responding to time-sensitive research needs within each institute or center’s area of focus—such as health crises or replication of linchpin findings—that would provide large public benefits. To maintain this focus, these programs could restrict investigator-initiated applications and only issue funding opportunity announcements for areas of pressing need. 

To enable faster peer review of applications, ICs should establish (a) new study section(s) within their Scientific Review Branch dedicated to rapid review, similar to how the RADx program had its own dedicated review committees. Reviewers who join these study sections would commit to short meetings on a monthly or bimonthly basis rather than meeting three times a year for one to two days as traditional study sections do. Additionally, as recommended above, these new programs should have a three-page limit on applications to reduce the administrative burden on both applicants and reviewers. 

In this framework, we propose that the ICs be encouraged to direct at least one percent of their budget to establish new research programs with faster funding processes. We believe that even one percent of the annual budget is sufficient to launch initial fast grant programs funded through National Institutes. For example, the National Institute of Aging had an operating budget of $4 billion in the 2022 fiscal year. One percent of this budget would constitute $40 million for faster funding initiatives, which would be on the order of initial budgets of Impetus and Fast Grants ($25 million and $50 million accordingly). 

NIH ICs should develop success criteria in advance of launching new fast funding programs. If the success criteria are met, they should gradually increase the budget and expand the scope of the program by allowing for investigator-initiated applications, making it a real alternative to R01 grants. A precedent for this type of grant program growth is the Maximizing Investigators’ Research Award (MIRA) (R35) grant program within the National Institute of General Medical Sciences (NIGMS), which set the goal of funding 60% of all R01 equivalent grants through MIRA by 2025. In the spirit of fast grants, we recommend setting a deadline on how long each institute can take to establish a fast grants program to ensure that the process does not extend for too many years.

Additional recommendation. Congress should initiate a Government Accountability Office report to illuminate the outcomes and learnings of governmental fast funding programs during COVID-19, such as RADx.

While a number of published papers cite RADx funding, the program’s overall impact and efficiency haven’t yet been assessed. We believe that the agency’s response during the pandemic isn’t yet well-understood but likely played an important role. Illuminating the learnings of these interventions would greatly benefit future emergency fast funding programs.

Conclusion

The NIH should become a reliable agent for quickly mobilizing funding to address emergencies and accelerating solutions for longer-term pressing issues. As present, no funding mechanisms within NIH or its branch institutes enable them to react to such matters rapidly. However, both public and governmental initiatives show that fast funding programs are not only possible but can also be extremely successful. Given this, we propose the creation of permanent fast grants programs within the NIH and its institutes based on learnings from past initiatives.

The changes proposed here are part of a larger effort from the scientific community to modernize and accelerate research funding across the U.S. government. In the current climate of rapidly advancing technology and increasing global challenges, it is more important than ever for U.S. agencies to stay at the forefront of science and innovation. A fast funding mechanism would enable the NIH to be more agile and responsive to the needs of the scientific community and would greatly benefit the public through the advancement of human health and safety.

Frequently Asked Questions
What actions, besides RADx, did the NIH take in response to the COVID-19 pandemic?

The NIH released a number of Notices of Special Interest to allow emergency revision to existing grants (e.g., PA-20-135 and PA-18-591) and a quicker path for commercialization of life-saving COVID technologies (NOT-EB-20-008). Unfortunately, repurposing existing grants reportedly took several months, significantly delaying impactful research.

What does the current review process look like?

The current scientific review process in NIH involves  multiple stakeholders. There are two stages of review at NIH, with the first stage being conducted by a Scientific Review Group that consists primarily of nonfederal scientists. Typically, Center for Scientific Review committees meet three times a year for one or two days. This way, the initial review starts only four months after the proposal submission. Special Emphasis Panel meetings that are not recurring take even longer due to panel recruitment and scheduling. The Institute and Center National Advisory Councils or Boards are responsible for the second stage of review, which usually happens after revision and appeals, taking the total timeline to approximately a year.

Is there evidence for the NIH’s current approach to scientific review?

Because of the difficulty of empirically studying drivers of scientific impact, there has been little research evaluating peer review’s effects on scientific quality. A Cochrane systematic review from 2007 found no studies directly assessing review’s effects on scientific quality, and a recent Rand review of the literature in 2018 found a similar lack of empirical evidence. A few more recent studies have found modest associations between NIH peer review scores and research impact, suggesting that peer review may indeed successfully identify innovative projects. However, such a relationship still falls short of demonstrating that the current model of grant review reliably leads to better funding outcomes than alternative models. Additionally, some studies have demonstrated that the current model leads to variable and conservative assessments. Taken together, we think that experimentation with models of peer review that are less burdensome for applicants and reviewers is warranted.

One concern with faster reviews is a lower science quality. How do you ensure high-quality science while keeping fast response times and short proposals?

Intuitively, it seems that having longer grant applications and longer review processes ensures that both researchers and reviewers expend great effort to address pitfalls and failure modes before research starts. However, systematic reviews of the literature have found that reducing the length and complexity of applications has minimal effects on funding decisions, suggesting that the quality of resulting science is unlikely to be affected. 


Historical examples have also suggested that the quality of an endeavor is largely uncorrelated from its planning times. It took Moderna 45 days from COVID-19 genome publication to submit the mRNA-1273 vaccine to the NIH for use in its Phase 1 clinical study. Such examples exist within government too: during World War II, National Defense Research Committee set a record by reviewing and authorizing grants within one week, which led to DUKWProject PigeonProximity fuze, and Radar.


Recent fast grant initiatives have produced high-quality outcomes. With its short applications and next-day response times, Fast Grants enabled:



  • detection of new concerning COVID-19 variants before other sources of funding became available.

  • work that showed saliva-based COVID-19 tests can work just as well as those using nasopharyngeal swabs.

  • drug-repurposing clinical trials, one of which identified a generic drug reducing hospitalization from COVID-19 by ~40%. 

  • Research into “Long COVID,” which is now being followed up with a clinical trial on the ability of COVID-19 vaccines to improve symptoms.


Impetus Grants focused on projects with longer timelines but led to a number of important preprints in less than a year from the moment person applied:



With the heavy toll that resource-intensive approaches to peer review take on the speed and innovative potential of science—and the early signs that fast grants lead to important and high-quality work—we feel that the evidentiary burden should be placed on current onerous methods rather than the proposed streamlined approaches. Without strong reason to believe that the status quo produces vastly improved science, we feel there is no reason to add years of grant writing and wait times to the process.

Why focus on the NIH, as opposed to other science funding agencies?

The adoption of faster funding mechanisms would indeed be valuable across a range of federal funding agencies. Here, we focus on the NIH because its budget for extramural research (over $30 billion per year) represents the single largest source of science funding in the United States. Additionally, the NIH’s umbrella of health and medical science includes many domains that would be well-served by faster research timelines for proof-of-concept studies—including pandemics, aging, opioid addiction, mental health, cancer, etc.

Building Momentum for Equity in Medical Devices

Just over a year ago, I found myself pausing during a research lab meeting. “Why were all the subjects in our studies of wearable devices white? And what were the consequences of exclusion?”

This question stuck with me long after the meeting. Digging into the evidence, I was alarmed to find paper after paper signaling embedded biases in key medical technologies

One device stuck out amongst the rest – the pulse oximeter. Because of its crucial role in diagnosing COVID-19, it had caught the attention of a diverse group of stakeholders: clinicians looking to understand the impacts on patient care, engineers working to build more equitable devices, social scientists tracing the history of device and examining colorism in pulse oximetrypolicymakers seeking solutions for their constituents, and the FDA, which was examining racial bias in medical technologies for the first time. But what I found as I scoped out this policy area is that these stakeholders weren’t talking to one another, at the expense of coordinated progress towards equity in pulse oximetry. 

With all eyes directed towards the FDA’s Advisory Committee meeting on November 1st, 2022, FAS convened a half-day session of stakeholders on November 2nd to chart a research and policy agenda for near-term mitigation of inequities in pulse oximetry and other medical technologies. Eight experts from medicine, engineering, sociology, and anthropology shared insights with an audience of 60 participants from academia, the private sector, and federal government. Collectively, we developed several key insights for future progress on this issue and outlined a path forward for achieving equity now. You can access the full readout here. We’ll dive into the key highlights below:

Key Insights

Through discussions with experts during the forum, three key themes rose to the surface:

Resolving the problem of bias in pulse oximeter devices will likely take several years. But in the meantime, this issue will continue negatively impacting patients. Our participants urged that we need to think about actions that can be initiated this next year that will advance more equitable care with existing pulse oximeters. 

In-person stakeholders convening a focused conversation on next steps

Motivating Action for Equity Now

While a daunting problem, a collaborative, multi-stakeholder effort can bring us closer to solutions. We can work together to advance equity in standards of care by:

Mapping out a plan of action towards equity

Looking Ahead

This won’t be easy, but it’s 30 years overdue. We believe correcting the bias will pioneer a model that can be readily applied to combatting biases across the medical device ecosystem, something already underway in the United Kingdom with their Equity in Medical Devices Independent Review. Through a systematic approach, stakeholders can work to close racial disparities in the near-term and advance health equity.

Saving 3.1 Million Lives a Year with a President’s Emergency Plan to Combat Acute Childhood Malnutrition

Summary

Like HIV/AIDS, acute childhood malnutrition is deadly but easily treatable when the right approach is taken. Building on the success of PEPFAR, the Biden-Harris Administration should launch a global cross-agency effort to better fund, coordinate, research, and implement malnutrition prevention and treatment programs to save millions of children’s lives annually and eventually eliminate severe acute malnutrition.

Children with untreated severe acute malnutrition are 9 to 11 times more likely to die than their peers and suffer from permanent setbacks to their neurodevelopment, immune system, and future earnings potential if they survive. Effective programs can treat children for around $60 per child with greater than 90 percent recovery rates. However, globally, only about 25–30 percent of children with moderate and severe acute malnutrition have access to treatment. Every year, 3.1 million children die due to malnutrition-related causes, and 45% of all deaths of children under five are related to malnutrition, making it the leading cause of under-five deaths. 

In 2003, a similar predicament existed: the HIV/AIDS epidemic was causing millions of deaths in sub-Saharan Africa and around the world, despite the existence of highly effective treatment and prevention methods. In response, the Bush Administration created the President’s Emergency Plan for AIDS Relief (PEPFAR). PEPFAR has proven a major global health success, saving an estimated 30 million lives since 2003 through over $100 billion in funding. 

The Biden-Harris Administration should establish a President’s Emergency Plan for Acute Childhood Malnutrition (PEPFAM) in the Office of Global Food Security at the State Department to clearly elevate the problem of acute childhood malnutrition, leverage new and existing food security and health programs to serve U.S. national security and humanitarian interests, and save the lives of up to 3.1 million children around the world, every year. PEPFAM could serve as a catalytic initiative to harmonize the fight against malnutrition and direct currently fragmented resources toward greater impact.

Challenge and Opportunity

United Nations Sustainable Development Goal (SDG) 2.2 outlines goals for reducing acute malnutrition, ambitiously targeting global rates of 5 percent by 2025 and 3 percent (a “virtual elimination”) by 2030. Due to climate change, the COVID-19 pandemic, and conflicts like the war in Ukraine, global rates of malnutrition remain at 8 percent and are forecast to become worse, not better. Globally, 45.4 million children suffer from acute malnutrition, 13.6 million of whom are severely acutely malnourished (SAM). If current trends persist until 2030, an estimated 109 million children will suffer from permanent cognitive or physiological stunting, despite the existence of highly effective and relatively cheap treatment. 

Providing life-saving treatment around the world serves a core American value of humanitarianism and helps meet commitments to the SDGs. The United States Agency for International Development (USAID) recently announced a commitment to purchase ready-to-use therapeutic food (RUTF), a life-saving food, on the sidelines of the UN General Assembly, demonstrating a prioritization of global food security. Food security is also a priority for the Biden Administration’s approach to national security. The newly released National Security Strategy dedicates an entire section to food insecurity, highlighting the urgency of the problem and calling on the United States and its global partners to work to address acute needs and tackle the extraordinary humanitarian burden posed by malnutrition. The Office of Global Food Security at the U.S. Department of State also prioritizes food security as an issue of national security, leading and coordinating diplomatic engagement in bilateral, multilateral, and regional contexts. At a time when the United States is competing for its vision of a free, open, and prosperous world, addressing childhood malnutrition could serve as a catalyst to achieve the vision articulated in the National Security Strategy and at the State Department.

“People all over the world are struggling to cope with the effects of shared challenges that cross borders—whether it is climate change, food insecurity, communicable diseases, terrorism, energy shortages, or inflation. These shared challenges are not marginal issues that are secondary to geopolitics. They are at the very core of national and international security and must be treated as such.” 

U.S. 2022 National Security Strategy 

Tested, scalable, and low-cost solutions exist to treat children with acute malnutrition, yet the platform and urgency to deliver interventions at scale does not. Solutions such as community management of acute malnutrition (CMAM), the gold standard approach to malnutrition treatment, and other intentional strategies like biofortification could dramatically lower the burden of global childhood malnutrition. Despite the 3.1 million preventable deaths that occur annually related to childhood malnutrition and the clear threat that food insecurity poses to U.S. national security, we lack an urgent platform to bring these low-cost solutions to bear. 

While U.S. government assistance to combat food insecurity and malnutrition is a priority, funding and coordination are not centralized. The U.S. has committed over $10 billion to address global food insecurity, allocating dollars to USAID, Feed the Future, the U.S. Department of Agriculture (USDA), and others. Through the recently signed Global Malnutrition Prevention and Treatment Act of 2021, Congress took a step forward by authorizing USAID to have greater authority in targeting nutrition aid to areas of greatest need and greater flexibility to coordinate activities across the agency and its partners. In accordance with the agency’s Global Nutrition Coordination Plan, Congress also established the Nutrition Leadership Council, chaired by the Bureau for Resilience and Food Security to coordinate and integrate activities solely within USAID. Multilateral and private sector partners also dedicate resources to food security: the Gates Foundation committed $922 million toward global nutrition and food systems, and UNICEF created a Nutrition Match Fund to incentivize funding to combat severe acute malnutrition. These lines of effort are each individually important, but could be more impactful if aligned. A President’s Emergency Plan for malnutrition could harmonize these separate funding streams and authorities and mobilize multilateral and private sector partners to prevent and treat malnutrition and food insecurity.

Drawing on the strengths of the PEPFAR model to combat HIV/AIDS at scale while driving down costs for treatment, PEPFAM could revolutionize how resources are spent while scaling sustainable and cost-effective solutions to childhood malnutrition, saving millions of lives every year. Under this model, significantly more—and, optimally, all—children suffering from acute malnutrition would have access to treatment. This would make dramatic progress toward global food security and U.S. national security priorities.

Plan of Action

President Biden should declare a global childhood malnutrition emergency and announce the creation of the President’s Emergency Plan for Acute Childhood Malnutrition. Using PEPFAR as a model, PEPFAM could catalyze cost-effective solutions to save millions of lives every year. When President Bush mobilized support for PEPFAR in his 2003 State of the Union, he declared, “We must remember our calling, as a blessed country, is to make the world better,” and called for interagency support for an “Emergency Plan” for HIV/AIDS relief and Congressional support to commit $15 billion over the next five years to launch PEPFAR.

President Biden should follow a similar path and announce PEPFAM in a similarly high-profile speech—the 2023 State of the Union address, for example—to elevate the problem of acute childhood malnutrition to the American people and the U.S. government and offer a clear call to action through an executive order directing an interagency task force to develop a 24-month strategic plan within 180 days. The initial stages of PEPFAM and corresponding executive branch activities can be guided by the following recommendations.

Recommendation 1. Name a White House PEPFAM czar and task the Office of Global Food Security at the State Department to coordinate cross-agency support, intended personnel, agencies, and roles involved.

A Senior Advisor on the White House’s National Security Team at the Office of Science and Technology Policy would serve as the White House czar for PEPFAM and would (1) steer and lead the initiative, (2) organize an interagency task force, and (3) coordinate PEPFAM’s strategic focus by engaging multiple federal agencies, including: 

The Office of the Global AIDS Coordinator and Health Diplomacy at the State Department (OGAC) manages the high-level execution of PEPFAR by dictating strategic direction and coordinating agencies. The PEPFAM executive order will set up a similar infrastructure at the Office of Global Food Security at the State Department to: 

USAID is also well positioned to play a leading role given its current support of global food and nutrition programming. Several of USAID’s portfolios are central to PEPFAM’s aims, including Agriculture and Food Security, Nutrition, Global Health, Water and Sanitation, and Humanitarian Assistance. The offices that support these portfolios should provide technical expertise in the realm of food and nutrition, existing connections to good program implementers in various country contexts, monitoring and evaluation capacity to track implementer’s progress toward goals, and strategic direction. 

The Office of Global Food Security and the PEPFAM czar should delegate authority for the program across government agencies, private partners (e.g., Gates Foundation), and multilateral organizations (e.g., World Food Programme). The Office would coordinate interagency action to support PEPFAM’s implementation and evaluation as well as identify agencies that are best placed to lead each component of the effort. 

Recommendation 2. Present initial, strategic action plan to build and sustain PEPFAM.

The PEPFAM interagency task force, described above, should develop a strategic plan targeting an initial set of actions to align with existing global food security and childhood malnutrition priorities and identify opportunities to redirect existing resources toward scalable, high-impact solutions like CMAM. USAID already invests millions of dollars each year in initiatives like Feed the Future that support global food security while overseeing cross-agency implementation and harmonization of the Global Food Security Strategy. These efforts and funding should be rolled under the umbrella of PEPFAM to better align treatment and prevention interventions, strategically coordinate resources across the government, and improve a focus on impact.  

Recommendation 3. Announce discrete, evidence-driven goals for PEPFAM.

These goals include:

Recommendation 4. Establish a coordination framework between PEPFAM, multilateral agencies, and private sector partners to mobilize and harmonize resources.

The Office of Global Food Security and USAID should build on current momentum to bring multilateral and private partners behind PEPFAM. USAID has recently announced a series of partnerships with large philanthropic organizations like the Gates Foundation, Aliko Dangote Foundation, and Eleanor Crook Foundation (to name a few), as well as other countries and multilateral organizations at UNGA. Much like with PEPFAR, PEPFAM could rely on the support of external partners as well as federal funds to maximize the impact of the program. 

Recommendation 5. Create an international council to set technical standards so that money goes to the most effective programs possible. 

The Office of Global Food Security, USAID, and PEPFAM should spearhead the development of an international technical council (that could be housed under the UN, the World Health Organization, or independently) to set standards for malnutrition prevention and treatment programming. Malnutrition treatment is already cost-effective, but it could be made even cheaper and more effective through innovation. Even when promising new interventions are identified, the process of disseminating and scaling of existing, proven best practices innovations doesn’t function optimally. 

Treatment guidelines issued by the WHO and national governments are slow to be updated, meaning that highly effective interventions can take years to be adopted and, even then, are adopted in a piecemeal fashion. Other implementers may be too wedded to their operational practices to consider making a change unless standards are updated or innovations from other implementers are actively socialized. 

An international technical council would disseminate and scale best practices discovered in the processes of implementation and research. If funders like the U.S. government commit to only funding organizations that promptly adopt these standards, they can maximize the impact of existing funding by ensuring that every dollar goes toward the most cost-effective ways of saving lives. This body could ideally speed the sharing and implementation of practices that could allow more children to be treated effectively, at lower costs.

Recommendation 6. Direct existing child malnutrition assistance through PEPFAM to ensure coordinated impact and seek permanent funding from Congress for PEPFAM.

The executive order will create the momentum to establish PEPFAM, but legislative authorization is required to make it sustainable. The strategic plan should lay out efforts to build Congressional support for funding legislation.

Congress will play a key role in PEPFAM implementation by appropriating funds. Under PEPFAR, Congress appropriates money directly to OGAC at the Department of State, which disburses it to other agencies. In 2003, Congress supported President Bush’s request for $15 billion in PEPFAR funding by passing the Leadership Act that authorized yearly contributions to the Global Fund from 2004 to 2008. Congress has subsequently reauthorized the program through FY2023. Each year, the OGAC presents a request of funding needed for recipient countries and programs to the President, who then forwards the request to Congress for reauthorization. The PEPFAM process should mirror this structure.

At the UNGA in 2022, President Biden announced over $2.9 billion in new assistance to address global food insecurity, building on the $6.9 billion in U.S. government assistance already committed in 2021. Last year, President Biden also announced a $10 billion, multiyear investment to promote food systems transformation, including a $5 billion commitment to Feed the Future specifically. Instead of fractured funding to different initiatives, these funds should be harmonized under PEPFAM, with dollars allocated to the PEPFAM task force to create a centralized two-year strategy to combat malnutrition. 

Conclusion 

This program would have a series of positive effects. First, and most obviously, PEPFAM would save up to 3.1 million lives every year and bring together resources and goals around food security that are currently fractured across the federal government, increasing the effectiveness of U.S. aid dollars globally. Second, PEPFAM, like PEPFAR, would make existing interventions more effective by unlocking cost savings and innovation at scale. Third, at a time when the United States is competing for its vision of a free, open, and prosperous world, PEPFAM could play a key role in achieving the mission of the National Security Strategy.
Over time, more comprehensive treatment coverage and prevention efforts could also lead to the elimination of severe acute malnutrition by preventing cases and catching those that approach moderate acute malnutrition or have already fallen into it. PEPFAM would save an estimated 27.9 million lives over the same time scale as PEPFAR. Millions of children die every year while a cheap and effective solution exists. PEPFAM could change that.

Frequently Asked Questions
How does PEPFAM compare to PEPFAR in terms of funding and effectiveness at scale?

From 2003 to present day, PEPFAR has spent billions of dollars and saved millions of lives. This table compares the estimated costs and outcomes of PEPFAR with PEPFAM. Because malnutrition treatment is cheaper than HIV/AIDS treatment and there is a higher caseload, there is a high-leverage opportunity to save lives.






























  PEPFAR (HIV/AIDS) PEPFAM (Childhood Malnutrition)
Average Cost of Treatment per Person $367,134 $60
Number of Cases 38.4 million 45.4 million
Program Cost (estimated yearly) $5.7 billion (USD) $4 billion (USD)
Lives Saved (estimated yearly) 1.6 million  1.5 million 

 


Costs for PEPFAM are difficult to project precisely, because the program is likely to become more cost-effective over time as efforts to prevent cases start to work and research and development result in cheaper and more effective treatment. The projections above operate under the most pessimistic assumptions that no improvements to cost or effectiveness are made over time. This graph illustrates a similar the expansion of PEPFAR services, even under flat budgets thanks to this same self-improvement over time. 


PEPFAR funding graph


Source: Department of State


PEPFAM is similar: more comprehensive treatment coverage and prevention efforts could lead to the elimination of severe acute malnutrition by preventing cases and catching those that approach moderate acute malnutrition or have already fallen into it. That means that the program should become cheaper over time, as more cases are identified earlier when they are cheaper to treat, and more cases are prevented, both by prevention programs and general economic development. Research and innovation can similarly cut down on the costs and improve the effectiveness of malnutrition treatment and prevention over time.

Why should the U.S. declare food security and childhood malnutrition a global emergency?

The lack of attention to childhood malnutrition in non-emergency/non-crisis zones results in millions of preventable deaths each year. Declaring an emergency would put pressure on other organizations, media outlets, and NGOs to devote more resources to food security. The international community is keen to respond to food crises in emergency contexts, especially among children. USAID and the UN recently committed millions of dollars for the procurement of ready-to-use therapeutic food (RUTF) to combat emergency risks like the war in Ukraine and conflicts in places like Ethiopia. But the unfortunate truth is that even outside of newsworthy emergencies, acute malnutrition remains a daily emergency in many places around the world. Malnutrition rates are just as high in states and countries that neighbor emergency zones as in the crisis-hit places themselves, partially as a result of movement of internally displaced people. While funding acute malnutrition in relatively mundane circumstances (e.g., poverty-stricken states in Nigeria) may make less headlines than emergency food aid, it’s equally needed.

How much U.S. global health funding is currently put toward nutrition?

Currently, only 1 percent of U.S. global health spending is put toward nutrition. Only 25–30 percent of children globally have access to treatment as a result of underfunded programs and a subsequent lack of resources and geographic coverage.

What is the current state of investment in quality treatment implementation?

Treatment is only effective if implemented well. Right now, funding goes to a range of programs that fail to meet Sphere Standards of 75 percent recovery rates. Large-scale funders like UNICEF have internal commitments to spend a certain amount of their budgets on ready-to-use therapeutic food (RUTF) a year, which means that their hands are tied when working in contexts with poor implementing partners (e.g., corrupt governments). At the same time, NGOs like Alliance for International Medical Action and Médecins Sans Frontières achieve recovery rates of more than 95 percent. More investment in quality implementation capacity is needed; otherwise, scarce existing resources will continue to be wasted.

Is there a robust evidence base for malnutrition prevention?

There’s a growing movement to implement interventions that catch children on the border of malnutrition or improve conditions that lead to malnutrition in the first place (e.g., infant and young child feeding circles, exclusive breastfeeding counseling). These programs are exciting, but the evidence base for impact at this point is minimal. It’s much cheaper to catch a child before they fall into malnutrition than it is to treat them, not to mention the health benefits to the child from averting the disease. More work needs to be done to test and validate the most cost-effective prevention methods to ensure that only those that actually generate impact are scaled.

What agencies play a role in PEPFAR?
Where are current efforts to combat malnutrition focused?

Childhood malnutrition sits at the intersection of public health and nutrition/agricultural programming. Current efforts are spread across the U.S. government and multilateral partners with little coordination toward desired outcomes. Funding that hypothetically targets childhood malnutrition can come from a variety of players in the U.S. government, ranging from Department of Defense to USAID to the Department of Agriculture. While some coordination through programs like Feed the Future exist at USAID, these programs are not yet results- or outcome-based. Coordination should involve measuring the impact of collective aid across agencies on an outcome like recovery rates or the number of children suffering from malnutrition in a given geographic area.

What outcomes does PEPFAM target?

An Overdue Fix: Racial Bias and Pulse Oximeters

The invention of pulse oximeters in the 1980s reshaped healthcare. While tracking blood oxygen content (commonly recognized as the “fifth vital sign”) once required a painful blood draw and time-delayed analysis, pulse oximeters deliver nearly instantaneous data by simply sending a pulse of light through the skin. Today, pulse oximeters today are ubiquitous: built into smartwatches, purchased at pharmacies for home health monitoring, and used by clinicians to inform treatment of everything from asthma to heart failure to COVID-19. Emerging algorithms are even incorporating pulse ox data to predict future illness.

There is a huge caveat. Pulse oximeters are medically transformative, but racially biased. The devices work less accurately on dark-skinned populations because melanin, the chemical which gives skin pigment, interferes with light-based pulse ox measurements. This means that dark-skinned individuals can exhibit normal pulse ox readings, but be suffering from hypoxemia or other critical conditions.

But because regulations to this day do not require diversity in medical device evaluation, many pulse ox manufacturers don’t test their devices on diverse populations. And because the Food and Drug Administration (FDA) has created streamlined pathways to approve new medical devices based on technology that is “substantially similar” to already-approved technology, the racial bias embedded in ‘80s-era pulse ox technology continues to pervade pulse oximeters on the market today.

COVID-19 illustrated, in devastating fashion, the consequences of this problem. Embedded bias in pulse oximeters demonstrably worsened outcomes for patient populations already disproportionately impacted by COVID-19. Studies show, for instance, that Black COVID-19 patients have been 29% less likely to receive supplemental oxygen on time and three times as likely to suffer occult hypoxemia during the pandemic. 

Similar inequities persist across the health-innovation ecosystem. Women suffer from lack of sex-aware prescription drug dosages. Minorities increasingly suffer from biased health risk-assessment algorithms. Children and those with varying body types suffer from medical equipment not built for their physical characteristics. Across the board, inequities create greater risks of morbidity and mortality and contribute to ballooning national healthcare costs. 

This need not be the status quo. If health stakeholders—including patient advocates, medtech companies, clinicians, researchers, and policymakers—collectively commit to systematic evaluation and remediation of bias in health technology, change is possible.

An excellent example is eGFR algorithms. These algorithms, used to assess kidney functionality, previously used faulty “correction factors” to account for patient race. But this correction did not actually correlate with biological realities—and instead of treating patients more effectively, it increased disparities in care. Motivated by the data, advocacy and industry organizations issued broad recommendations to avoid using the eGFR calculation. Hospitals and medical systems listened, dropping eGFR from practice, and the National Institutes of Health (NIH) is now committing funding to investigate alternative calculations.

We as a society must continue to root out bias in health technology, from development to testing to deployment.

When we develop new medical tools, we should consider all the populations who could ultimately need them. 

When we test tools, we should rigorously evaluate outcomes across subgroup populations, looking for groups that might fare better or worse from its use in care. 

And when we deploy technologies, we need to be ready to track the outcomes of their use at scale.

Engineers, researchers, and clinicians can support these goals by designing medical devices with equity in mind. The UK just launched its evidence-gathering process on equity in medical devices, looking into the impacts of bias and ways to build more equitable solutions. The FDA’s meeting reviewing the evidence on pulse oximetry is a start to auditing technologies for their performance on different populations. 

Advocacy organizations can support these goals by providing input to ongoing policy processes. The Federation of American Scientists (FAS), alongside the University of Maryland Medical System, submitted a public comment to the FDA to call for regulations that will encourage the development of low-bias and bias-free tools. FAS is also convening a Forum on Bias in Pulse Oximetry to examine the consequences of bias, build an evidence base for bias-free pulse oximetry, and look ahead to approaches to build more equitable devices. 

“Do no harm”, a central oath in medicine, is becoming exceedingly difficult in our technological age. Yet, with an evidence-based approach that ensures technologies equitably serve all groups in a population and works to correct them when they do not, we can come closer to achieving this age-old goal.

Pandemic Readiness Requires Bold Federal Financing for Vaccines

Summary

Most people will experience a severe pandemic within their lifetime, and the world remains dangerously unprepared. In fact, scientists predict a nearly 50% chance––the same probability as flipping heads or tails on a coin––that we will endure another COVID-19-level pandemic within the next 25 years. Shifting America’s pandemic response capability from reactive to proactive is, therefore, urgent. Failure to do so risks the country’s welfare. 

Getting ahead of the next pandemic is impossible without government financing. Vaccine production is costly, and these expenses will hinder industries from preemptively developing the tools needed to halt disease transmission. For example, the total expected revenues over a 20-year vaccine patent lifecycle would cover just half of the upfront research and development (R&D) costs. 

However, research suggests that a portfolio-based approach to vaccine development —  especially now with new, broadly applicable mRNA technology — dramatically increases the returns on investment while also guarding against an estimated 31 of the next 45 epidemic outbreaks. With lessons learned from Operation Warp Speed, Congress can deploy this approach by (i) authorizing and appropriating $10 billion to the Biomedical Advanced Research and Development Authority (BARDA) (ii) developing a vaccine portfolio for 10 emerging infectious diseases (EIDs), and (iii) a White House Office of Science and Technology Policy (OSTP)-led interagency effort focused on scaling up production of priority vaccines. 

Challenge & Opportunity 

The COVID-19 pandemic continues to wreak havoc across the world, with an ongoing total cost of $16 trillion and more than 6 million dead. Three conditions increase the likelihood that we will experience another pandemic that is just as disastrous: 

  1. New outbreaks of infectious diseases––like ––are emerging due to population growth, increased zoonotic transmission from animals, habitat loss, climate change, and more. Over 1.6 million yet-to-be-discovered, human-infecting viral species are thought to exist in mammals and birds.
  2. More laboratories are handling dangerous pathogens around the world, which increases the likelihood of an accidental contagion release.
  3. It is easier than ever to purchase biotechnologies once reserved only for scientists. Consequently, malign actors now have more resources to develop a human-engineered bioweapon. 

The United States and the rest of the world are still woefully unprepared for future pandemic or epidemic threats. The lack of progress is largely due to little to no vaccine development for these six EIDs, all of which have pandemic potential

Failure to produce and supply vaccines doses to Americans could undermine the U.S. government’s response to a vaccine crisis. This is illustrated in the recent monkeypox response. The federal government invested in a new monkeypox vaccine with a significantly longer shelf life. While focused on this effort, it failed to replace its existing vaccine stockpile as it expired, leaving the American population woefully unprepared during the recent monkeypox outbreak. 

An immediate national strategy is needed to course correct, the beginnings of which are articulated in the recent plan for American Pandemic Preparedness: Transforming our Capabilities. These overarching concerns were also echoed in a bipartisan letter from the Senate Health, Education, Labor, and Pensions and Armed Services Committees, urging the Biden Administration to re-establish a “2.0” version of Operation Warp Speed (OWS)––the government’s prior effort to accelerate COVID-19 vaccine production. 

The President’s recent FY23 Budget advocates for a historic pandemic preparedness investment. The plan allocates nearly $40 billion to the Department of Health and Human Services Assistant Secretary for Preparedness and Response to “invest in advanced development and manufacturing of countermeasures for high priority threats and viral families, including vaccines, therapeutics, diagnostics, and personal protective equipment.” BARDA also declared the need to prepare prototype vaccines for virus families with pandemic potential and has included such investments in its most recent strategic plan. And, the recent  calls for increased “piloting and prototyping efforts in biotechnology and biomanufacturing to accelerate the translation of basic research results into practice.”

Robust federal investment in America’s vaccine industry is especially needed since––as demonstrated by COVID-19––industries garner minimal profit from vaccine development before or during a widespread outbreak. A recent study predicted that in the unlikely scenario where 10 million vaccines are manufactured during a crisis response, pharmaceutical companies can expect to recoup only half of the upfront R&D costs. The same research states that “new drug development has become slower, more expensive, and less likely to succeed” because:

With clinical costs accounting for 96% of total investment, companies have a weak financial justification for investing in risky vaccine research. 

To minimize these uncertainties and improve investment returns for vaccine and therapeutic production, the federal government should embrace two key lessons from OWS: 

  1. Guaranteed government demand enables the pursuit of innovative, speedy, and effective vaccine R&D. OWS selected companies pursuing different scientific methods to develop a vaccine, each of which possessed breakthrough potential. Moderna and Pfizer/BioNTech utilized mRNA, AstraZeneca and Janssen worked with replication-defective live vectors, and Novavax and Sanofi/GSK utilized a recombinant protein. Merck is working on a live attenuated virus that may be given orally. By frequently evaluating vaccine candidates, scientists ensured that only the most promising contenders continued to subsequent regulatory phases. This workflow dramatically expedited vaccine development. Relatedly, companies were able to invest in large-scale vaccine manufacturing during clinical trials thanks to government financial support. They not only received guaranteed investment installments, but also advanced commitments to purchase vaccines. This significantly decreased the financial risk and saved tremendous amounts of time and resources. 
  2. Public-private partnerships utilize incentives and rewards to foster highly effective and dynamic teams. OWS created a “unique distribution of responsibilities … based upon core competencies rather than on political or financial considerations.” The interests of eight pharmaceutical companies were aligned based on the potential to receive an upfront commitment from the federal government to bulk purchase vaccines. Such approaches are critical to ensuring vaccine R&D not only happens in an efficient, coordinated manner but also that such R&D yields production at scale. Moreover, it enabled a suite of approaches to vaccine development rather than one method, raising the overall probability of developing a successful vaccine. 

Repeating these lessons in subsequent EID vaccine developments would generate both significant returns on investment and benefits to society. 

Plan of Action

By incentivizing vaccine development for priority EIDs, the federal government can preemptively solve market failures without picking winners or losers. 

First, Congress should authorize and appropriate $10 billion to BARDA over 10 years to create a Dynamic Vaccine Development Fund. This fund would build on BARDA’s unique competencies as an engagement platform with the private sector. would allow for new developments to emerge 

It would also enact the following strategies, gleaned from all of which were proven to be effective in OWS: 

As illustrated by its successful history, BARDA is well-positioned to manage a large-scale vaccine initiative. Last year, BARDA announced the first venture capital partnership with the Global Health Investment Corporation to “allow direct linkage with the investment community and establish sustained and long-term efforts to identify, nurture, and commercialize technologies that aid the U.S. in responding effectively to future health security threats.” During the COVID-19 pandemic, BARDA and Janssen shared the R&D costs to help move Janssen’s investigational novel coronavirus vaccine into clinical evaluation—a collaboration supported by their previous successes on the Ebola vaccine. The Government Accountability Office reported that BARDA had also supported scaled production by identifying additional manufacturing partners. This partnership record shows that BARDA not only knows how to manage global health projects to completion but also is particularly adept at interfacing with the private sector. As such, it stands out as an ideal manager for the Dynamic Vaccine Development Fund.

With $10 billion, this Fund could not only support the vaccine economy, but also save millions of lives and trillions of dollars. Although the price tag is admittedly hefty, it is reasonable. After all, OWS had a price tag of $12+ billion––a small investment compared to the $16+ trillion cost of COVID-19. As seen in OWS, the long-term benefits of upfront, robust financing are even more impactful. One back-of-the-envelope calculation suggests immense economic returns for the Fund: 

A $10 billion down payment would allow the Fund to excel in its normal operations (see bulleted list above) and support up to 120 vaccine candidates. OWS also spawned more than just new breakthrough R&D in the use of mRNA vaccine models. It also led to a health and biotechnology innovation windfall

“Now that we know that mRNA vaccines work, there is no reason we could not start the process of developing those for the top 20 most likely pandemic pathogen prototypes” 

Dr. Francis Collins, former director of the National Institutes of Health

Ten billion dollars would ensure the Fund’s impact could be similarly force-multiplied by private sector partnerships. There would be  more time available and more opportunity for creative partnerships with the private sector. The Fund’s purpose is to lower financial risks and attract large amounts of capital from the bond market, whose size outweighs the venture capital, public equity, or private equity markets. Indeed, there has been growing interest in the application of social bonds to pandemic preparedness as a unique instrument for rapidly frontloading resources from capital markets. Though this Fund will assume a different form, the International Finance Facility for Immunisation represents a proof of concept for coordinating  philanthropic foundations, governments, and supranational organizations for the purpose of “raising money more quickly.” With seed capital, this Fund could provide a strong signal — and perhaps an anchor for coordination — to debt capital markets to make issuances for vaccines. To this end, the targeted critical mass of $10 billion is estimated to generate both tremendous societal value by preventing future epidemic outbreaks as well as producing positive returns for investors. 

Second, in executing Fund activities, BARDA should leverage investment strategies––such as milestone-based payments––to incentivize maximum vaccine innovation. When combatting EIDs, the U.S. will need as many vaccine options as possible. To facilitate this outcome, vaccine manufacturers should be rewarded for producing multiple kinds of vaccines at the same time. For example, BARDA might support the development of vaccines for a given EID by funding progress for four novel methods (e.g., mRNA, recombinant protein, gene-therapy, and live attenuated, orally-administered vaccines).  

Furthermore, these rewards should come regularly during major events––or “milestones”––during development. Initial-stage milestones include vaccine candidates that protect an animal model against disease; later-stage milestones include human clinical trials. This financing model would provide companies with clear, short-term targets, reducing uncertainty and rewarding progress dynamically. Additionally, it would support the recent executive order, which calls for “increasing piloting and prototyping efforts in biotechnology and biomanufacturing to accelerate the translation of basic research results into practice.”

BARDA could expand the milestone-based financing mechanism further by employing early-stage challenges. In this scenario, it would only fund the first two of three candidates that successfully complete small-scale clinical trials. The final milestone stage––which should only be offered to a limited number of candidates––should provide an advanced market commitment to house complete vaccines within U.S. storage facilities, based on the interagency effort (described in the paragraph below). The selections process would retain sufficient competition throughout the development process, while ensuring a sustainable method for scaling up certain vaccines based on mission priorities.

Third, to support Fund activities towards late-stage clinical trials, the White House Office of Science and Technology Policy (OSTP) should coordinate a larger-scale interagency effort leveraging advanced market commitments, prize challenges, and other innovative procurement techniques. OSTP should be a coordinator across federal agencies that address pandemic preparedness, which might include: the Department of Defense, BARDA, the U.S. Agency for International Development, the National Institute of Allergy and Infectious Diseases, the Federal Emergency Management Agency, and the Development Finance Corporation. In doing so, the OSTP can (i) consolidate investments for particular vaccine candidates, and (ii) utilize networks and incentive strategies across the U.S. government to secure vaccines. Separately––and based on urgent priorities shared by agencies––OSTP should work closely with the Food and Drug Administration (FDA) to explore opportunities for pre-approval of vaccines as they develop through the trial phase. 

Conclusion

Vaccines are among the most powerful tools for fighting pandemics. Unfortunately, bringing vaccines to market at scale is challenging. However, Operation Warp Speed (OWS) established a new precedent for tackling vaccine innovation market failures, laying the groundwork for a new era of industrial strategy. Congress should take advantage and supercharge U.S. pandemic preparedness by enabling the Biomedical Advanced Research and Development Authority (BARDA) to build a Dynamic Vaccine Development Fund. Embracing lessons learned from OWS, the Fund would incentivize companies to create vaccines for the six emerging infectious diseases most likely to cause the next pandemic.

Frequently Asked Questions
If it takes so long to approve a new vaccine, why should we invest in developing vaccines ahead of time?

The regulatory process for approving vaccines is even more reason to develop them ahead of time—before they are needed, rather than after an outbreak. Having access to an effective vaccine even days sooner can save thousands of lives due to the exponential rate of growth of all infectious diseases. Moreover, the FDA approval process—especially its Emergency Use Authorization Program—is extremely efficient, and is not the bottleneck for vaccine development. The main delay involved in vaccine development is the time it takes to conduct randomized clinical trials. Unfortunately, there are no shortcuts to this process if we want to ensure that vaccines are safe and effective. That is why we need to develop vaccines before pandemics occur. The idea here is simply to develop the minimum viable product of vaccines for priority EIDs that positions these vaccines to rapidly scale in the event of a pandemic.

Has this large-scale, multi-use investment program been deployed elsewhere?

Yes, there are several examples of vaccine initiatives using this strategy. To list a few:



  1. The Coalition for Epidemic Preparedness Innovations (CEPI) has a “megafund” vaccine portfolio (i.e., they have 32 vaccine candidates as of April 2022). This portfolio spans 13 different therapeutic mechanisms and five different stages of clinical development, from preclinical to “Emergency Use Listing” by the World Health Organization. 

  2. BridgeBioRoivant Sciences have used portfolio-based approaches for drug development.

  3. The National Brain Tumor Society is also leveraging this approach to finance novel drug candidates that can treat glioblastoma.

Where and how would you safely store a large vaccine stockpile? When we tried this before, didn’t 20 million doses of monkeypox vaccines expire?

Ideally, vaccines in the final milestone stage would be stored in the United States and in line with new CDC guidance in the Vaccine Storage and Handling toolkit. This prevents the scenario where vaccines are held up in transit due to complex international negotiations and, potentially, expire during the lengthy proceedings. This exact scenario occurred when the 300,000 doses of monkeypox vaccine held in a Denmark-based facility were slowly and inconsistently onshored back to the U.S. 


In addition, vaccines that are financed through the Fund would not always be final products. Instead, they would potentially be at varying stages of development thanks to the milestone-based payment strategy and frequent progress reviews. This would make it easier for the federal government to closely coordinate vaccine development with manufacturing professionals and rapidly increase vaccine production if necessary. The strategy offered in this memo lowers the risk of a similar situation occurring again.


We recommend that the executive order on biomanufacturing continue exploring this issue and investigate ways to securely store completed vaccines. The Government Accountability Office, for example, recently suggested several promising and discrete changes to update the requirements and operations of the Strategic National Stockpile.

Why did you select these six emerging infectious diseases?

This list was derived from justifications listed on CEPI’s website, linked here

Why not develop a vaccine against all potential viral threats?

There are simply too many infectious diseases in nature, and most of are too rare to pose a significant threat. It would be scientifically and financially impractical––and unnecessary––to develop vaccines against all of them. However, we can greatly increase our readiness by widening our scope and developing a library of prototyped vaccines based on the 25 viral families (as called for by CEPI). Doing so would allow us to respond quickly against even unlikely pandemic scenarios.

Masks via Mail: Maintaining Critical COVID-19 Infrastructure for Future Public Health Threats

Summary

To protect against future infectious disease outbreaks, the Department of Health and Human Services (HHS) Coordination Operations and Response Element (H-CORE) should develop and maintain the capacity to regularly deliver N95 respirator masks to every home using a mail delivery system. H-CORE previously developed a mailing system to provide free, rapid antigen tests to homes across the U.S. in response to the COVID-19 pandemic. H-CORE can build upon this system to supply the American public with additional disease prevention equipment––notably face masks. H-CORE can helm this expanded mail-delivery system by (i) gathering technical expertise from partnering federal agencies, (ii) deciding which masks are appropriate for public use, (iii) pulling from a rotating face-mask inventory at the Strategic National Stockpile (SNS), and (iv) centralizing subsequent equipment shipping and delivery. In doing so, H-CORE will fortify the pandemic response infrastructure established during the COVID-19 pandemic, allowing the U.S. government to face future pathogens with preparedness and resilience.

Challenge and Opportunity

The infrastructure put in place to respond to COVID-19 should be maintained and improved to better prepare for and respond to the next pandemic. As the federal government thinks about the future of COVID-19 response programs, it should prioritize maintaining systems that can be flexibly used to address a variety of health threats. One critical capability to maintain is the ability to quickly deliver medical countermeasures across the US. This was already done to provide the American public with COVID-19 rapid tests, but additional medical countermeasures––such as N95 respirators––should also be included. 

N95s are an incredibly effective means of preventing deadly infectious disease spread. Wearing an N95 respirator reduces the odds of testing positive for COVID-19 by 83%, compared to 66% for surgical masks and 56% for cloth masks. The significant difference between N95 respirators and other face coverings means that N95 respirators can provide real public health benefits against a variety of biothreats, not just COVID-19. Adding N95 respirators to H-CORE’s mailing program would increase public access to a highly effective medical countermeasure that protects against a variety of harmful diseases. Providing equitable access to N95 masks can also protect the United States against other dangerous public health emergencies, not just pandemics. Additionally, N95s protect individuals from harmful, wildfire-smoke-derived airborne particles, providing another use-case beyond protection against viruses. 

Beyond the benefit of expanding access to masks in particular, it is important to have an active public health mailing system that can be quickly scaled up to respond to emergencies. In times of need, this established mailing system could distribute a wide array of medical countermeasures, medicines, information, and personal protective equipment––including N95s. Thankfully, the agencies needed to coordinate this effort are already primed to do so. These authorities already have the momentum, expertise, and experience to convert existing COVID-19 response programs and pandemic preparedness investments into permanent health response infrastructure.

Plan of Action

The newly-elevated Administration for Strategic Preparedness and Response (ASPR) should house the N95 respirator mailing system, granting H-CORE key management and distribution responsibilities. Evolving out of the operational capacities built from Operation Warp Speed, H-CORE has demonstrated strong logistical capabilities in distributing COVID-19 vaccines, therapeutics, and at-home tests across the United States. H-CORE should continue operating some of these preparedness programs to increase public access to key medical countermeasures. At the same time, it should also maintain the flexibility to pivot and scale up these response programs as soon as the next public health emergency arises. 

H-CORE should bolster its free COVID-19 test mailing program and include the option to order one box of 10 free N95 respirator masks every quarter. 

H-CORE partnered with the U.S. Postal Service (USPS) to develop an unprecedented initiative––creating an online ordering system for rapid COVID-19 testing to be sent via mail to American households. ASPR should maintain its relationships with USPS and other shipping companies to distribute other needed medical supplies––like N95s. To ensure public comfort, a simple N95 ordering website could be designed to mimic the COVID-19 test ordering site

An N95-distribution program has already been piloted and proven successful. Thanks to ASPR and the National Institute for Occupational Safety and Health (NIOSH), masks previously held at SNS were made available to the public at select retail pharmacies. This program should be made permanent and expanded to maximize the convenience of obtaining medical countermeasures, like masks. Doing so will likely increase the chance that the general population will acquire and use them. Additionally––if supplies are sourced primarily from domestic mask manufacturers––this program can stabilize demand and incentivize further manufacturing within the United States. Keeping this production at a steady base level will also make it easier to scale up quickly, should America face another pandemic or other public health crisis.

H-CORE and ASPR should coordinate with the SNS to provide N95 respirators through a rotating inventory system.  

As evidenced by the 2009 H1N1 influenza pandemic and the COVID-19 pandemic, static stockpiling large quantities of masks is not an effective way to prepare for the next bio-incident. 

Congress has long recognized the need to shift the stockpiling status quo within HSS, including within the SNS. Recent draft legislation––including the Protecting Providers Everywhere (PPE) in America Act and PREVENT Pandemics Act, as well as being mentioned in the National Strategy for a Resilient Public Health Supply Chain––have advocated for a rotating stock system. While the concept is mentioned in these documents, there are few details on what the system would look like in practice or a timeline for its implementation.

Ultimately, the SNS should use a rotating inventory system where its stored masks get rotated out to other uses in the supply chain using a “first in, first out” approach. This will  prevent N95s from being stored beyond their recommended shelf-life and encourage continual replenishment of the SNS’ mask stockpile.

To make this new rotating inventory system possible, ASPR should pilot rotating inventory through this H-CORE mask mailing program while they decide if and how rotating inventory could be implemented in larger quantities (e.g. rotating out to Veterans Affairs, the Department of Defense, and other purchasers). To pilot a rotating inventory system, the Secretary of HHS may enter into contracts and cooperative agreements with vendors, through the SNS contracting mechanisms, and structure the contracts to include maintaining a constant supply and re-stock capacity of the stated product in such quantities as required by the contract. As a guide, the SNS can model these agreements after select pharmaceutical contracts, especially those that have stipulated similar rotating inventory systems (i.e., the radiological countermeasure Neupogen).

The N95 mail-delivery system will allow ASPR, H-CORE, and the SNS to test the rotating stock model in a way that avoids serious risk or negative consequences. The small quantity of N95s needed for the pilot program should not tax the SNS’ supply-at-large. After all, the afore-mentioned H-CORE/NIOSH mask-distribution programs are similarly designed to this pilot, and they do not disrupt the SNS supply for healthcare workers.

Conclusion

To be fully prepared for the next public health emergency, the United States must learn from its previous experience with COVID-19 and continue building the public health infrastructures that proved efficient during this pandemic. Widespread distribution of COVID-19 rapid diagnostic tests is one such success story. The logistics and protocols that made this resource dispersal possible should be continued for other flexible medical countermeasures, like N95 respirators. After all, while the need for COVID-19 tests may wane over time, the relevance of N95 respirators will not.

HHS should therefore distribute N95 respirators to the general public through H-CORE to (i) maintain the existing mailing infrastructure and (ii) increase access to a medical countermeasure that efficiently impedes transmission for many diseases. The masks for this effort should be sourced from the Strategic National Stockpile. This will not only prevent stock expiration, but also pilot rotating inventory as a strategy for larger-scale integration into the SNS. These actions will together equip the public with medical countermeasures relevant to a variety of diseases and strengthen a critical distribution program that should be maintained for future pandemic response.

Frequently Asked Questions
What are medical countermeasures?

Medical countermeasures (MCMs) can include both pharmaceutical interventions (such as vaccines, antimicrobials, antivirals, etc.) and non-pharmaceutical interventions (such as ventilators, diagnostics, personal protective equipment, etc.) that are used to prevent, mitigate, or treat the adverse health effects or a public health emergency. Examples of MCM deployment during the COVID-19 pandemic include the COVID-19 vaccines, therapeutics for COVID-19-hospitalized patients (e.g., antivirals and monoclonal antibodies), and personal protective equipment (e.g., respirators and gloves) deployed to healthcare providers and the public.

Why should the N95 mask delivery system be housed under HHS and managed through ASPR and H-CORE?

This proposal would build off of capabilities already being executed under the Department of Health and Human Services, Administration for Strategic Preparedness and Response (HHS ASPR). ASPR oversees both H-CORE and the Strategic National Stockpile (SNS) and was recently reclassified from a staff division to an operating division. This change allowed ASPR to better mobilize and respond to health-related emergencies. ASPR established H-CORE at the beginning of 2022 to create a permanent team responsible for coordinating medical countermeasures and strengthening preparedness for future pandemics. While H-CORE is currently focused on providing COVID-19 countermeasures––including vaccines, therapeutics, masks, and test kits––their longer-term mission is to augment capabilities within HHS to solve emerging health threats. As such, their ingrained mission and expertise match those required to successfully launch an N95 mail-delivery system.

How many masks would be needed for this program?

Presently, 270 million masks have been made available to the U.S. population. It’s estimated that this same number of masks would be enough for American households to receive 10 masks per quarter, assuming a 50% participation rate in the program.

How much will the N95 delivery system cost?

The total annual cost of this program is an estimated $280 million to purchase 270 million masks and facilitate shipping across the United States.

How should the N95 delivery system be funded?

There are several ways this initiative could be funded. Initial funding to purchase and mail COVID-19 tests to homes came from the American Rescue Plan. By passing the COVID Supplemental Appropriations Act, Congress could provide supplemental funds to maintain standing COVID-19 programs and help pivot them to address evolving and future health threats.


The FY2023 President’s Budget for HHS also provides ample funding for H-CORE, the SNS, and ASPR, meaning it could also provide alternative funding for an N95 mail-delivery system. Presently, the budget asks for: $133 million for H-CORE and mentions their role in making masks available nationwide. Additionally, $975 million has been allotted to the SNS, which includes coordination with HHS and maintaining the stockpile. Furthermore, is petitions for ASPR to receive $12 billion to generally prepare for pandemics and other future biological threats (and here it also specifically recommends strong coordination with HHS agency efforts).

Why are N95 masks important?

N95 respirators have a number of benefits that make them a critical defense strategy in a public health emergency. First, they are pathogen-agnostic, shelf-stable countermeasures that filter airborne particles very efficiently, meaning they can impede transmission for a variety of diseases––especially airborne and aerosolized ones. This is important, since these two latter disease categories are the most likely naturally occurring and intentional biothreats. Second, N95 respirators are useful beyond pandemic responses and also protect against wildfire smoke. Additionally, N95 masks have a long shelf-life. Therefore, the ability to quickly and widely distribute N95s is a critical public health preparedness measure.

Why should the U.S. government fund increased N95 manufacturing capacity?

Domestic mask manufacturers have also frequently experienced boom and bust cycles as public demand for masks can change rapidly and without warning. This inconsistent market makes it difficult for manufacturers to invest in increased manufacturing capacity in the long-term. One example is the company Prestige Ameritech, which invested over $1 million in new equipment and hired 150 new workers to produce masks in response to the 2009 swine flu outbreak. However, by the time production was ready, demand for masks had dropped and the company almost went bankrupt. Given overwhelmingly positive benefits of having mask manufacturing capacity available when needed, it is worthwhile for the government to provide some ongoing demand certainty.


Furthermore, making masks free and easily available to the general public could increase the public’s mask usage during the annual flu season and other periods of sickness. While personal protective equipment has decreased in cost since the peak of the pandemic, making them as accessible as possible will disproportionately increase access for low-income citizens and help ensure equitable access to protective medical countermeasures.

Can N95 respirators be deployed to the public if they are only approved for use in a healthcare setting?

It is true that N95s are not regulated outside of healthcare settings, but that shouldn’t dissuade public use. Presently, there is no federal agency currently tasked with regulating respiratory protection for the public. The Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC) National Institute for Occupational Safety and Health (NIOSH) currently have a Memorandum of Understanding (MOU) coordinating regulatory authority over N95 respirators for medical use. Neither the FDA nor NIOSH, though, have jurisdiction of mask use in a non-medical, non-occupational setting. Using an N95 respirator outside of a medical setting does not satisfy all of the regulatory requirements, like undergoing a fit-test to ensure proper seal. However, using N95 respirators for every-day respiratory protection (i) provides better protection than no mask, a cloth mask, or a surgical mask, and (ii) realistically should not need to meet the same regulatory standards as medical use as people are not regularly exposed to the same level of risk as medical professionals.

Who currently regulates N95 safety standards?

Presently, there is no central regulator for public respiratory protection in general. In fact, the National Academies of Science Engineering and Medicine recently issued a recommendation for Congress to “expeditiously establish a coordinating entity within the Department of Health and Human Services (HHS) with the necessary responsibility, authority, and resources (financial, personnel, and infrastructure) to provide a unified and authoritative source of information and effective oversight in the development, approval, and use of respiratory protective devices that can meet the needs of the public and protect the public health.”


Moving forward, NIOSH alone should regulate N95 use for the public just as they do in occupational settings. The approval process used by other regulators––like the FDA––is more restrictive than necessary for public use. The FDA’s standards for medical protection understandably need to be high in order to protect doctors, nurses, and other medical professionals against a wide variety of dangerous exposure situations. NIOSH can provide alternative regulation and guidance for the general public, who realistically are unlikely to be in similar circumstances.


Aside from federal agencies, professional scientific societies have also provided their input in regulating N95s. The American Society for Testing and Materials (ASTM), for example, recently published standards for barrier face coverings not intended for medical use or currently regulated under NIOSH standards. While ASTM does not have any regulatory or enforcement authority, HHS could use these standards for protection, comfort, and usability as a starting point for developing guidelines for respirators suitable for public distribution and use.

Why use a rotating inventory system?

After the 2009 H1N1 influenza pandemic and the COVID-19 pandemic, it became evident that SNS must change its stockpile management practices. The stockpile’s reserves of N95 respirators were not sufficiently replenished after the 2009 H1N1 pandemic, in large part due to the significant up-front supply restocking cost. During the early days of COVID-19 response, many states received expired respirators and broken ventilators from the SNS. These incidents revealed a number of issues with the current stockpiling paradigm. Shifting to a rotating inventory system would prevent issues with expiration, smooth out the costs of large periodic restocks, and help maintain a capable and responsive manufacturing base.

Addressing the Mental Health Crisis Among Predoctoral and Postdoctoral Researchers in STEM

Summary

The growing mentalhealth crisis among science, technology, engineering, and math (STEM) doctoral and postdoctoral researchers threatens the future and competitiveness of science and technology in the United States. The federal government should tackle this crisis through a four-part approach to (i) improve data collection on the underlying drivers of mental-health struggles in STEM, (ii) discourage behaviors and cultures that perpetuate stress, (iii) require Principal Investigators (PIs) to submit a statement of their mentoring philosophy as part of applications for federally supported research grants, and (iv) increase access to mental-health care for predoctoral and postdoctoral researchers.

Challenge and Opportunity

The prevalence of mental-health problems is higher among Ph.D. students than in the highly educated general population: fully half of Ph.D. students experience psychological distress. In a survey of postdoctoral researchers conducted by Nature, 51% of respondents reported considering leaving science due to work-related mental-health concerns. 65% of respondents reported experiencing power imbalances or bullying during their postdoctoral appointments, and 74% reported observing the same. Stress accumulation not only leads to the development of neuropsychiatric disorders among the developing STEM workforce — it also contributes to burnout. At a time when advancing U.S. competitiveness in science and technology is of utmost importance, the mental-health crisis is depleting our nation’s STEM pipeline when we should be expanding and diversifying it. This is a crisis that the federal government is well-positioned to and must solve. 

Plan of Action

The federal government should counter the mental-health crisis for U.S. doctoral and postdoctoral researchers through a four-part approach to (i) improve data collection on the underlying drivers of mental-health struggles in STEM, (ii) discourage behaviors that perpetuate stress, (iii) require PIs to submit a statement of their mentoring philosophy as part of applications for federally supported research grants, and (iv) increase access to mental-health care for doctoral and postdoctoral researchers. Detailed recommendations associated with each of these steps are provided below.

Part 1. Improve data collection

Data drives public policy. Various organizations conduct surveys evaluating the mental health of doctoral and postdoctoral researchers in STEM, but survey designs, target audiences, and subsequent follow-up and monitoring are inconsistent. This fragmented information ecosystem makes it difficult to integrate and act on existing data on mental health in STEM. To provide a more comprehensive picture of the STEM mental-health landscape in the United States, the National Institutes of Health (NIH) and the National Science Foundation (NSF) should work together to conduct and publish biennial evaluations of the state of mental health of the STEM workforce. The survey format could be modeled on the NSF’s Survey of Doctorate Recipients or the Survey of Earned Doctorates — and, like those surveys, resultant data could be maintained at NSF under the National Center for Science and Engineering Statistics. Once established, the data from the survey can be used to track effectiveness of programs that are implemented and direct the federal government to change or start new initiatives to modify the needs of doctoral and postdoctoral researchers. Additionally, the NSF and NIH could partner with physicians within HHS to define and establish what “healthy” means in terms of mental-health guidelines in order to establish new program guidelines and goals. 

Part 2. Discourage problematic behaviors

The future of a doctoral or postdoctoral researcher depends considerably on the researcher’s professional relationship with their PI(s). Problems in the relationship — including bullying, harassment, and discrimination — can put a trainee in a difficult situation, as the trainee may worry that confronting the PI could compromise their career opportunities. The federal government can take three steps to discourage these problematic behaviors by requiring PIs to submit and implement training and mentorship plans for all grant-supported trainees. 

First, the White House Office of Science and Technology Policy (OSTP) should assemble a committee of professionals in psychology, social sciences, and human resources to define what behaviors constitute bullying and harassment in academic work environments. The committee’s findings should be publicized via a web portal (similar to NSF’s website on Sexual Harassment), and included in all requests for grant applications issued by federal STEM-funding agencies (in order to raise awareness among PIs).

Second, federal STEM-funding agencies should require universities to submit annual reports of bullying to federal, grant-issuing agencies. NSF already requires institutions to report findings of sexual harassment and other forms of harassment and can revoke grants if a grantee is found culpable. NSF and other STEM-funding agencies should add clarity to this definition and broaden this reporting to include bullying and retaliation to include bullying and retaliation attempts by PIs, with similar consequences for repeated offenses. Reinstatement of privileges (e.g., reinstatement of eligibility for federal grant funding) would be considered on a case-by-case basis by the grant-issuing institution and could be made contingent on implementation of an adequate “re-entry” plan by the PI’s home institution. The NIH Office of Behavioral and Social Science Research should be consulted to help formulate such “re-entry” plans to benefit both researchers and PIs.

Third, STEM-funding agencies could work together to establish a mechanism whereby trainees can anonymously report problematic PI behaviors. NSF has a complaint form for those who wish to report incidents for incidents of sexual harassment or harassment. Thus, NSF could expand their system to accept broader incidents such as bullying and retaliation attempts and NIH could use this complaint form as a template for reporting as well. In conjunction with reporting misconduct, a “two-strike” accountability system should be imposed if a PI is found guilty of harassment, bullying, or other behaviors that could contribute to the development of a neuropsychiatric disorder. After receiving a first strike (report of problematic behavior and a guilty verdict), the PI would be given a warning and be required to participate in relevant training workshops and counseling using a plan outlined by social science professionals at NIH. If a second strike is received, the PI would lose privileges to apply for federal grant funding and opportunities to serve on committees that are often favored for tenure and promotion, such as grant review committees. Again, reinstatement of privileges would be considered on a case-by-case basis by the grant-issuing institution and could be made contingent on implementation of an adequate “re-entry” plan.

Part 3. Require submission of mentoring philosophies

NIH F31 predoctoral and F32 postdoctoral award applications already require PIs to submit mentoring plans for their trainees to receive professional-development training. Federal STEM-funding agencies should build on this precedent by requiring PIs applying for federal grants to submit not just mentoring plans, but brief summaries of their mentoring philosophies. As the University of Colorado Boulder explains, a mentoring philosophy

“…defines [a mentor’s] approach to engaging with students as [they] guide their personal growth and professional development, often explaining [the mentor’s] motivation to mentor with personal narratives while highlighting their goals for successful relationships and broader social impact. These statements may also be considered ‘living documents’ that are updated as [the mentor] refine[s[ [their] approach and the context and goals of [their] work changes.”

Mentoring philosophies help guide development of and updates to individualized mentoring plans. Mentoring philosophies also promote equity and inclusion among mentees by providing a common starting point for communication and expectations. Requiring PIs to create mentoring philosophies will elevate mental health among doctoral and postdoctoral researchers in STEM by promoting effective top-down mentorship and discouraging unintended marginalization. And since a growing number of university faculty are already creating mentoring philosophies, this new requirement shouldn’t be seen as just another administrative burden; rather, it would serve as a means to quickly perpetuate a best practice that is already spreading. The federal government can support PIs in adhering to this new requirement by working with external partners to collect and broadly share resources related to preparing mentoring philosophies. The Center for the Improvement of Mentored Experiences in Research, for instance, has already assembled a suite of such resources on its web platform. 

Part 4. Increase access to mental health care

Concurrent with reducing causes of mental health burdens, the federal government should work to expand doctoral and postdoctoral researchers’ access to adequate mental-health care. Current access may vary considerably depending on the level of insurance coverage offered by a researcher’s home institution. Inspired by legislation (S. 3048 – Stopping the Mental Health Pandemic Act, where funds can be used to support and enhance mental health services) introduced in the 117th Congress, the Department of Health and Human Services (HHS) should partner with federal STEM-funding agencies to design and implement new pathways, programs, and opportunities to strengthen mental-health care among early-career STEM professionals. In particular, the federal government could create a library of model policies that federally funded public and private institutions could adopt to strengthen mental-health care for employed early-career researchers. Examples include allowing trainees to take time off during the workday to receive mental-health treatment without expectations to make up hours outside of business hours, providing a supplemental stipend for trainees to pay for therapy costs that are not covered by insurance, and addressing other sources of stress that can exacerbate stressful situations, such as increasing stipends to decrease financial stress. 

Conclusion

The U.S. science and technology enterprise is only as strong as the workforce behind it. Failing to address the mental-health crisis that plagues early-career researchers will lead the United States to fall behind in global research and development due to talent attrition. President Biden’s 2022 State of the Union address cited mental health as a priority area of concern. There is an especially clear need for a culture change around mental health in academia. The four actions detailed in this memo align with the President’s policy agenda. By improving data collection on the mental-health status of STEM doctoral and postdoctoral researchers, discouraging behaviors and cultures that produce stress among this population, improving training and mentorship at universities, and expanding access to mental-health care among STEM doctoral and postdoctoral researchers, the federal government can ensure that success for early-career STEM professionals does not demand mental-health sacrifice.

Frequently Asked Questions
Why does this proposal focus on early-career professionals in STEM and not on other fields?

STEM fields are closely tied to the U.S. economy, supporting two-thirds of U.S. jobs and 69% of the U.S. Gross Domestic Product (GDP). Attrition of U.S. researchers from STEM fields due to mental-health challenges has disproportionately adverse effects on American society and undermines U.S. competitiveness. Policymakers should prioritize actions designed to combat the mental-health crisis in STEM.

Bullying and harassment are subjective behaviors. How can the federal government prevent false allegations from being submitted by doctoral and postdoctoral researchers?

NSF already requires that universities who receive federal research funding conduct internal investigations to validate claims of harassment and sexual harassment. Similar policies could be implemented regarding reported bullying and/or workplace harassment. If an allegation is found to be false, it should be handled by university-specific policies.

If bullying and harassment are causing serious issues in STEM training, why should a PI be allowed “re-entry” to apply for federal funding to mentor students and postdocs after workshops and therapy are completed?

The goal of requiring PIs to attend workshops on mentorship and therapy sessions is to help them better themselves and improve their ability to mentor the next generation of STEM professionals. Re-entry to mentoring trainees will be closely monitored by leadership faculty who should conduct surveys of both mentors and mentees to determine if the PI understands (a) their previous misconduct and (b) the lasting mental health effects that their previous actions inflicted on their trainees.

NIH and NSF aren’t the only federal agencies that provide funding for training early career researchers. What about the others?

NIH and NSF are arguably the two leading federal agencies when it comes to providing federal funding for graduate students. That said, recommendations presented in this memo could easily be extended to other STEM-funding agencies. For instance, there is a timely opportunity to extend these recommendations to the Department of Energy (DOE). DOE is currently working to manage the President’s major FY23 investment in clean energy and sustainability, including through significant research-grant funding. Coupling these new grants with policies designed to mitigate mental-health burdens among early-career researchers could help foster a more resilient and productive clean-energy workforce and serve as a pilot group for the NIH and NSF to follow.

Requiring the reporting of bullying or harassment by a PI is an administrative burden. Why should universities take on increased responsibilities in this area?

The administrative responsibilities for reporting are minimal. NSF’s Organizational Notification of Harassment Form can — at a minimum — be used as a template for NSF, NIH, and other agencies to notify the federal government of guilty verdicts from universities. Alternatively, doctoral and postdoctoral researchers can submit incidents for reporting by federal agencies similar to NSF’s existing complaint form, which would reduce the initial administrative burden of university employees but may create additional hours of work once federal agencies conduct their investigations.

Some universities are offering free yoga and meditation classes for predoctoral and postdoctoral researchers. Others are offering training courses on developing resilience to stress. Aren’t these opportunities sufficient for alleviating mental health concerns?

While the strategies above teach researchers how to cope with stress, a long-term, more supportive approach would be to reduce stress by going straight to the source. Actions such as addressing harassment and bullying will benefit not only the researcher themselves, but others in the work environment by fostering a responsible, low-stress culture.

7. How are mentoring philosophies different from mentoring plans?

The submission of mentoring plans by PIs are currently required for NIH pre- and post-doctoral fellowship applications. They are meant to supplement the training of a researcher by focusing on the logistics of skill building. However, mentorship of a researcher transcends knowledge and skill-building — it also encompasses the holistic development of a researcher, supporting and respecting their interests, values, and considerations of their individual situations. Thus, submission of a mentoring philosophy is meant to stimulate thoughts and conversations about how a PI wants to communicate openly and honestly with their trainee and how they can adapt to support the mentoring style that best fits their trainee.

Establishing a National Endemic Disease Surveillance Initiative (NEDSI)

Summary

Global pandemics cause major human and financial losses. Our nation has suffered nearly a million deaths associated with COVID-19 to date. The Congressional Budget Office estimates that COVID-19 will cost the United States $7.6 trillion in lost economic output over the next decade. While much has rightly been written on preventing the next pandemic, far less attention has been paid to mitigating the compounding effects of endemic diseases. Endemic diseases are consistently present over time and typically restricted to a defined geographic region. Such diseases can exacerbate pandemic-associated financial losses, complicate patient care, and delay patient recovery. In a clinical context, endemic diseases can worsen existing infections and compromise patient outcomes. For example, co-infections with endemic diseases increase the likelihood of patient mortality from pandemic diseases like COVID-19 and H1N1 influenza. 

Accurate and timely data on the prevalence of endemic diseases enables public-health officials to minimize the above-cited burdens through proactive response. Yet the U.S. government does not mandate reporting and/or monitoring of many endemic diseases. The Biden-Harris administration should use American Rescue Plan funds to establish a National Endemic Disease Surveillance Initiative (NEDSI), within the National Notifiable Disease Surveillance System (NNDSS), to remove barriers to monitoring endemic, infectious diseases and to incentivize reporting. The NEDSI will support the goals of the Centers for Disease Control and Prevention (CDC)’s Data Modernization Initiative by providing robust infection data on a typically overlooked suite of diseases in the United States. Specifically, the NEDSI will:

  1. Provide healthcare practitioners with resources to implement/upgrade digital disease reporting.
  2. Support effective allocation of funding to hospitals, clinics, and healthcare providers in regions with severe endemic disease.
  3. Prepare quarterly memos updating healthcare providers about endemic disease prevalence and spread.
  4. Alert citizens and health-care practitioners in real time of notable infections and disease outbreaks.
  5. Track and predict endemic-disease burden, enabling strategic-intervention planning within the CDC and with partner entities.

Challenge and Opportunity

The COVID-19 pandemic highlighted the need for a multilevel approach to addressing endemic diseases. Endemic diseases are defined as those that persist at relatively stable case numbers within a defined geographic region. Though endemic diseases are typically geographically restricted, changes in population movement, population behaviors, and environmental conditions are increasing the incidence of endemic diseases. For example, Valley fever, a fungal respiratory disease endemic to the California Central Valley and the American Southwest, is predicted to spread to the American Midwest by 2060 due to climate change. 

Better preparing the United States for future pandemics depends partly on better countering endemic disease. Effective patient care during a pandemic requires clinicians to treat not only the primary infection, but also potential secondary infections arising from endemic pathogens taking advantage of a weakened, preoccupied host immune system. Though typically not dangerous on their own, secondary infections from even common fungi such as Aspergillus or Candida can become deadly if the host is pre-infected with a respiratory virus. On the individual level, secondary infections with endemic diseases adversely impact patient recovery and survival rates. On the state level, secondary infections impose major healthcare costs by prolonging patient recovery and increasing medical intervention needs. And on the national level, poor endemic-disease management in one state can cause disease persistence and spread to other states. 

Robust surveillance is integral to endemic-disease management. The case of endemic schistosomiasis in the Sichuan province of China illustrates the point. Though the province successfully controlled the disease initially, decreased funding for disease tracking and management—and hence lack of awareness and apathy among stakeholders—caused the disease to re-emerge and case numbers to grow. During active endemic-disease outbreaks, comprehensive data improves decision-making by reflecting the real-time state of infections. In between outbreaks, high-quality surveillance data enables more accurate prediction and thus timely, life-saving intervention. Yet the U.S. government mandates reporting and/or monitoring of relatively few endemic diseases. 

Part of the problem is that improvements are needed in our national infrastructure for tracking and reporting diseases of concern. Approximately 95% of all hospitals within the United States use some form of electronic health record (EHR) keeping, but not all hospitals have the same resources to maintain or use EHR systems. For example, rural hospitals generally have poorer capacity to send, receive, find, and integrate patient-care reports. This results in drastic variation in case-reporting quality across the United States: and hence drastic variation in availability of the standardized, accurate data that policy and decision makers need to maximize public health. 

With these issues in mind, the Biden-Harris administration should use American Rescue Plan (ARP) funds to establish a National Endemic Disease Surveillance Initiative (NEDSI) within the CDC’s National Notifiable Disease Surveillance System (NNDSS). Fighting an individual pandemic disease is difficult enough. We need better systems to stop endemic diseases from making the battle worse. Implementing NEDSI will equip decision makers with the data they need to respond to real-time needs— thereby protecting our nation’s economy and, more importantly, our people’s lives.

Plan of Action

To build NEDSI, the CDC should use a portion of the $500 million allocated in the ARP to strengthen surveillance and analytic infrastructure and build infectious-disease forecasting systems. NEDSI will support the goals of the CDC’s Data Modernization Initiative by allocating resources to implement and/or upgrade digital-disease reporting capabilities needed to obtain robust infection data on endemic diseases. Specifically, NEDSI would strive to minimize healthcare burdens of endemic diseases through the following four actions: 

Conclusion

Despite the clear burdens that endemic diseases impose, such diseases are still largely understudied and poorly understood. Until we have better knowledge of immunology related to endemic-disease co-infections, our best “treatment” is robust surveillance of opportunistic co-infections—surveillance that will enable proactive steps to minimize endemic-disease impacts on already vulnerable populations. Establishing a National Endemic Disease Surveillance Initiative within the National Notifiable Disease Surveillance System will close a critical gap in our nation’s disease-monitoring and -reporting infrastructure, helping reduce healthcare burdens while strengthening pandemic preparedness. 

Frequently Asked Questions
How will NEDSI improve pandemic preparedness?

NEDSI, like other systems standardizing and streamlining disease reporting, will allow healthcare practitioners to efficiently—and in some cases, automatically—share data on endemic diseases. Such real-time, consistent data are invaluable for informing public-health responses as well as future emergency planning.

Why is endemic disease monitoring an urgent concern?

An ounce of endemic-disease prevention is worth far more than a pound of cure—and effective prevention depends on effective monitoring. Research shows that endemic diseases account for an alarming number of co-infections with COVID-19. These co-infections have detrimental impacts on patient outcomes. Further, population growth and migration trends are increasing transmission of and exposure to endemic diseases. Mitigating the severity of future epidemics and pandemics hence requires near-term investment in endemic-disease monitoring.

Are co-infections and endemic disease significant outside the context of a pandemic?

Yes: even in non-pandemic times, co-infections represent a major risk for the immunocompromised and elderly. AIDS patients succumb to secondary infections as a direct result of becoming immunocompromised by their primary HIV infection. Annual flu seasons are worsened by opportunistic co-infections. Monitoring and tracking endemic diseases and their co-infection rates will help mitigate existing healthcare burdens even outside the scope of a pandemic.

If endemic disease monitoring is so critical, why has it not been implemented yet?

Due to a combination of funding challenges and lack of research progress/understanding, endemic-disease monitoring was only recently identified as a crucial gap in overall infectious disease preparedness. But now, with allocated funds from the American Rescue Plan to strengthen surveillance and infectious-disease forecasting systems, there is a historic opportunity to invest in this important area

Combating Bias in Medical Innovation

There is a crisis within healthcare technology research and development, wherein historically marginalized groups are under-researched in preclinical studiesunder-represented in clinical trialsmisunderstood by clinical practitioners, and harmed by biased medical technology. These issues in turn contribute to costly disparities in healthcare outcomes, leading to losses of $93 billion a year in excess medical-care costs, $42 billion a year in lost productivity, and $175 billion a year due to premature deaths. COVID-19 put these disparities into especially sharp focus. In December 2020, pulse oximeters, critical for healthcare monitoring during the pandemic, were shown to be much less accurate in patients with darker skin, thereby putting those patients at a greater risk of organ damage. The Food and Drug Administration (FDA) responded by issuing a safety communication, but not with any changes to regulation of pulse oximeters. 

Especially for an administration that has embedded equity throughout its policy agenda, this situation is unacceptable. The Biden-Harris Administration must act to address bias in medical technology at the development, testing and regulation, and market-deployment and evaluation phases. This will require coordinated effort across multiple agencies. In the development phase, science-funding agencies should crack down on federally funded studies that do not conduct mandatory subgroup analysis for diverse populations. Funding agencies should also expand funding for under-resourced research areas. In the testing and regulation phase, the FDA should raise the threshold for evaluation of medical technologies, make diversity requirements binding, and expand data-auditing processes. In the market-deployment and evaluation phases, the FDA should strengthen reporting mechanisms for adverse outcomes, the Federal Trade Commission (FTC) should require impact assessments of deployed technologies, and the Agency for Healthcare Research and Quality (AHRQ) should identify technologies that could address healthcare disparities.

Challenge and Opportunity

Bias is regrettably endemic in medical innovation. Drugs are incorrectly dosed to people assigned female at birth due to historical exclusion of women from clinical trials. Medical algorithms make healthcare decisions based on biased health dataclinically disputed race-based corrections, and/or model choices that exacerbate healthcare disparitiesMuch medical equipment is not accessible, thus violating the Americans with Disabilities Act. Biased studies, technology, and equipment inevitably produce disparate outcomes in U.S. healthcare.

The problem of bias in medical innovation manifests in multiple ways: cutting across technological sectors in clinical trials, pervading the commercialization pipeline, and impeding equitable access to critical healthcare advances.

Bias in medical innovation cuts across technology sectors

The 1993 National Institutes of Health (NIH) Revitalization Act required federally funded clinical studies to (i) include women and racial minorities as participants, and (ii) break down results by sex and race or ethnicity. Yet a 2019 study found that only 13.4% of NIH-funded trials performed the mandatory subgroup analysis. Moreover, the increasing share of industry-funded studies are not subject to Revitalization Act mandates — they are only governed by non-binding FDA recommendations for clinical-trial diversity. These studies frequently fail to report differences in outcomes by patient population as a result. The resulting disparities in clinical-trial representation are stark: African Americans represent 12% of the U.S. population but only 5% of clinical-trial participants, Hispanics make up 16% of the population but only 1% of clinical trial participants, and sex distribution in some trials is 67% male. Finally, many medical technologies approved prior to 1993 have not been reassessed for potential bias. One outcome of such inequitable representation is evident in drug dosing protocols: sex-aware prescribing guidelines exist for only a third of all drugs.

Bias in U.S. medical innovation — perpetuated by weak or weakly enforced federal regulations — extends beyond clinical trials. As explained below, bias pervades medical algorithms, medical devices, and the pharmaceutical sector as well. 

Algorithms

Regulation of medical algorithms varies based on end application, as defined in the 21st Century Cures Act. Only algorithms that (i) acquire and analyze medical data and (ii) could have adverse outcomes are subject to FDA regulation. Thus, clinical decision-support software is not regulated even though these technologies make important clinical decisions in 90% of U.S. hospitals

Even when a medical algorithm is regulated, regulation may occur through relatively permissive de novo pathways and 510(k) pathways. A de novo pathway is used for novel devices determined to be low to moderate risk, and thus subject to a lower burden of proof with respect to safety and equity. A 510(k) pathway can be used to approve a medical device exhibiting “substantial equivalence” to a previously approved device, i.e., it has the same intended use and/or same technological features. Different technical features can be approved so long as there are not questions raised around safety and effectiveness.

Medical devices approved through de novo pathways can be used as predicates for approval of devices through 510(k) pathways. Moreover, a device approved through a 510(k) pathway can remain on the market even if its predicate device was recalled. Widespread use of 510(k) approval pathways has generated a “collapsing building” phenomenon, wherein many technologies currently in use are based on failed predecessors. Indeed, 97% of devices recalled between 2008 to 2017 were approved via 510(k) clearance. 

Even more alarming is evidence showing that machine learning can further entrench medical inequities. Because machine learning medical algorithms are powered by data from past medical decision-making, which is rife with human error, these algorithms can perpetuate racial, gender, and economic bias. Even algorithms demonstrated to be unbiased at the time of approval can evolve in biased ways over time, with little to no oversight from the FDA. As technological innovation progresses, an intentional focus on this problem will be required.

Finally, there is not a list of approved medical algorithms on the market, making it difficult for researchers to assess them for bias.

Medical devices

Currently, the Medical Device User Fee Act requires the FDA to consider the least burdensome appropriate means for manufacturers to demonstrate the effectiveness of a medical device or to demonstrate a device’s substantial equivalence. This requirement was reinforced by the 21st Century Cures Act, which also designated a category for “breakthrough devices” subject to far less-stringent data requirements. Such legislation shifts the burden of clinical data collection to physicians and researchers, who might discover bias years after FDA approval. This legislation also makes it difficult to require assessments on the differential impacts of technology.

Like medical algorithms, many medical devices are approved through 510(k) exemptions or de novopathways. The FDA has taken steps since 2018 to increase requirements for 510(k) approval and ensure that Class III (high-risk) medical devices are subject to rigorous pre-market approval, but problems posed by equivalence and limited diversity requirements remain. 

Pharmaceuticals

The 1993 Revitalization Act strictly governs clinical trials for pharmaceuticals and does not make recommendations for adequate sex or genetic diversity in preclinical research. The results are that a disproportionately high number of male animals are used in research and that only 5% of cell lines used for pharmaceutical research are of African descent. Programs like All of Us, an effort to build diverse health databases through data collection, are promising steps towards improving equity and representation in pharmaceutical research and development (R&D). But stronger enforcement is needed to ensure that preclinical data (which informs function in clinical trials) reflects the diversity of our nation. 

Bias in medical innovation exists throughout the commercialization pipeline

Bias occurs not only in multiple medical innovation sectors, but also across the development, testing and regulation, and market-deployment and evaluation phases of the medical innovation pipeline. This can be understood through the example of pulse oximeters.

Development

Pulse oximetry was developed by Biox and given FDA approval in 1980. The technology works by shining a light through the skin and measuring the difference in light absorbance to estimate arterial oxygen saturation. Melanin absorbs visual and infrared light and will interfere at all wavelengths. No algorithm has yet been developed to account for melanin attenuation. Hence pulse oximeter calibration data does not accurately reflect Black patients.

Testing and regulation

The first pulse oximeter was approved by the FDA at a time when clinical trials did not require gender and racial diversity. Thus, the foundational, 1980s-era pulse oximeter technology upon which subsequent 510(k) clearance for pulse oximeters has been granted is one that was tested almost exclusively on white, male patient populations.

With the 510(k) clearance, only 10 people are required in a study of any new pulse oximeter’s efficacy. The FDA states that pulse oximetry study populations should have a range of skin pigmentations and must include at least two darkly pigmented individuals or 15% of the participant pool, whichever is larger. But the FDA does not provide an objective standard for “darkly pigmented”. Moreover, this requirement (i) does not have the statistical power necessary to detect differences between demographic groups, and (i) does not represent the composition of the U.S. population. Finally, FDA guidance is silent on how pulse oximetry technology should be calibrated — it does not, for instance, specifically recommend studies on melanin interference.

Market deployment and evaluation

To clinical practitioners, pulse oximeters are a metaphorical “black box”, with oxygenation calculations hidden by proprietary algorithms. When errors or biases occur in oximeter data (if they are even noticed), the practitioner may blame the patient for their lifestyle rather than the technology used for assessment. This in turn leads to worse clinical outcomes for patients with darker skin tones, as they are at greater risk of becoming sicker before receiving care. The problem is exacerbated by the fact that clinicians who use oximeter technology for the first time (as was the case during COVID-19) generally are not trained to spot factors that cause inaccurate measurements. This leads to underreporting of adverse events to the FDA — which is already a problem due to the voluntary nature of adverse-event reporting. When problems are ultimately identified during market deployment and evaluation of a given technology, government can be slow to respond. The pulse oximeter’s limitations in monitoring oxygenation levels across diverse skin tones was identified as early as the 1990s. 31 years later, despite repeated follow-up studies indicating biases, no manufacturer has incorporated skin-tone-adjusted calibration algorithms into pulse oximeters. It required the large Sjoding study, and the media coverage it garnered, for the FDA to issue a safety communication. Even then, the safety communication has not been followed with any additional regulatory action. 

Inequitable access to medical innovation represents a form of bias

Americans face wildly different levels of access to new medical innovations. As many new innovations have high cost points, these devices exist outside the price range of many smaller healthcare institutions and/or federally funded healthcare services, including Veterans Affairs, health centers, and the Indian Health Service. Emerging care-delivery strategies might not be covered by Medicare and Medicaid, meaning that patients under those systems cannot access the most cutting-edge treatments. Finally, the shift to digital health in response to COVID-19 has compromised access to healthcare in rural communities without reliable broadband access. 

Finally, the Advanced Research Projects Agency for Health (ARPA-H) has a commitment to have all programs and projects consider equity in their design. To fulfill ARPA-H’s commitment, there is a need for action across the federal government to ensure that medical technologies are developed fairly, tested with rigor, deployed safely, and made affordable and accessible to everyone.

Plan of Action

The Biden-Harris Administration should launch “Healthcare Technology for All Americans” (HTAA), a government-wide initiative to address systemic inequities in U.S. healthcare wrought by biased medical technology. Through a comprehensive approach that addresses bias in all medical sectors, at all stages of the commercialization pipeline, and in all geographies, the initiative will strive to ensure unbiased, equitable care delivery across the entire medical-innovation ecosystem. HTAA should be a joint mandate of Health and Human Services (HHS) and the Office of Science Technology and Policy (OSTP) to work with federal agencies on priorities of health equity, and initiative leadership should sit at both HHS and OSTP. 

This initiative will require involvement of multiple federal agencies, as summarized in the table below. Additional detail is provided in the subsequent sections describing how the federal government can mitigate bias in the development phase; testing, regulation, and approval phases; and market deployment and evaluation phases.

Three guiding principles should underlie the initiative:

  1. Equity should drive action. Actions should seek to improve the health of those who have been historically excluded from medical research and development. We should design standards that repair past exclusion and prevent future exclusion. 
  2. Coordination and cooperation are necessary. The executive and legislative branches must collaborate to address the full scope of the problem of bias in medical technology, from federal processes to new regulations. Legislative leadership should task the Government Accountability Office (GAO) to engage in ongoing assessment of progress towards the goal of achieving equity in medical innovation.
  3. Transparent, evidence-based decision making is paramount. There is abundant peer-reviewed literature that examines bias in drugs, devices, and algorithms used in healthcare settings — this literature should form the basis of an equity-driven approach to medical innovation. Gaps in evidence should be focused on through deployed research funding. Moreover, as algorithms become ubiquitous in medicine, every effort should be made to ensure that these algorithms are trained on representative data of those experiencing a given healthcare condition.

Addressing bias at the development phase

The following actions should be taken to address bias in medical technology at the innovation phase:

Addressing bias at the testing, regulation, and approval phases

The following actions should be taken to address bias in medical innovation at the testing, regulation, and approval phases:

Addressing bias at the market deployment and evaluation phases 

A comprehensive road map is needed

In January 2021, Senators Elizabeth Warren, Cory Booker, and Ron Wyden called for an FDA review of pulse oximetry measurements and their skin tone bias, citing the lack of understanding about clinical outcomes of this bias in their call to action. The GAO should go a step beyond this call to action and conduct a comprehensive investigation of “black box” medical technologies utilizing algorithms that are not transparent to end users, medical providers, and patients. The investigation should inform a national strategic plan for equity and inclusion in medical innovation that relies heavily on algorithmic decision-making. The plan should include identification of noteworthy medical algorithms exacerbating inequities, creation of enforceable regulatory standards, development of new sources of research funding to address knowledge gaps, development of enforcement mechanisms for bias reporting, and ongoing assessment of equity goals.

Timeline for action

Realizing HTAA will require mobilization of federal funding, introduction of regulation and legislation, and coordination of stakeholders from federal agencies, industry, healthcare providers, and researchers around a common goal of mitigating bias in medical technology. Such an initiative will be a multi-year undertaking and require funding to enact R&D expenditures, expand data capacity, assess enforcement impacts, create educational materials, and deploy personnel to staff all the above.

Near-term steps that can be taken to launch HTAA include issuing a public request for information, gathering stakeholders, engaging the public and relevant communities in conversation, and preparing a report outlining the roadmap to accomplishing the policies outlined in this memo. 

Conclusion

Medical innovation is central to the delivery of high-quality healthcare in the United States. Ensuring equitable healthcare for all Americans requires ensuring that medical innovation is equitable across all sectors, phases, and geographies. Through a bold and comprehensive initiative, the Biden-Harris Administration can ensure that our nation continues leading the world in medical innovation while crafting a future where healthcare delivery works for all.

Frequently Asked Questions
1. How will the success of HTAA be evaluated?

HTAA will be successful when medical policies, projects, and technologies yield equitable health care access, treatment, and outcomes. For instance, success would yield the following outcomes:



  1. Representation in preclinical and clinical research equivalent to the incidence of a studied condition in the general population.

  2. Research on a disease condition funded equally per affected patient.

  3. Existence of data for all populations facing a given disease condition.

  4. Medical algorithms that have equal efficacy across subgroup populations.

  5. Technologies that work equally well in testing as they do when deployed to the market.

  6. Healthcare technologies made available and affordable to all care facilities.

2. Why does this memo propose an expansive multi-agency effort instead of just targeting the FDA?

Regulation alone cannot close the disparity gap. There are notable gaps in preclinical and clinical research data for women, people of color, and other historically marginalized groups that need to be filled. There are also historical biases encoded in AI/ML decision-making algorithms that need to be studied and rectified. In addition, the FDA’s role is to serve as a safety check on new technologies — the agency has limited oversight over technologies once they are out on the market due to the voluntary nature of adverse reporting mechanisms. This means that agencies like the FTC and CMS need to be mobilized to audit high-risk technologies once they reach the market. Eliminating bias in medical technology is only possible through coordination and cooperation of federal agencies with each other as well as with partners in the medical device industry, the pharmaceutical industry, academic research, and medical care delivery.

3. Why is ARPA-H critical to this effort?

Working together to address the enormous challenge of bias in medical innovation will require communication, coordination, and collaboration. ARPA-H provides the essential platform for these three tasks. As an agency bridging academic research and industry, ARPA-H will focus on developing technologies that address some of the greatest healthcare challenges facing Americans, including inequities existing in healthcare. By committing to consider equity in every project, ARPA-H provides the basis for practice of technological development that is inclusive, responsible, and accountable. ARPA-H’s deep relationships with industry will spur medical device companies to align with ARPA-H’s processes.

4. Why create a new initiative when we have standing offices like the Office of Minority Health (OMH) focused on health equity?

Offices like the OMH do necessary work in identifying disparities in care and pointing out solutions. For example, the call for digital infrastructure improvements to improve care access for vulnerable populations has been echoed by OMH. But these offices lack the ability to operationalize multi-agency collaborations needed to address cross-cutting challenges related to medical bias. A new initiative led by the White House      in close partnership with HHS leadership is needed to ensure that the broad scope of the plan outlined in this memo is actualized.

5. What challenges might the administration encounter from industry in launching this initiative?

A significant focus of the medical device and pharmaceutical industries is reducing      the time to market for new medical devices and drugs. Imposing additional requirements for subgroup analysis and equitable use as part of the approval process could work against this objective. On the other hand, ensuring equitable use during the development and approval stages of commercialization will ultimately be less costly than dealing with a future recall or a loss of Medicare or Medicaid eligibility if inequitable outcomes are discovered. FAR regulation can also be employed to incentivize companies to adhere to equity standards in order to receive federal contracts.

6. How can the Administration build the bipartisan support necessary to secure the funding for this initiative?

Healthcare disparities exist in every state in America and are costing billions a year in economic growth. Some of the most vulnerable people live in rural areas, where they are less likely to receive high-quality care because costs of new medical technologies are too high for the federally qualified health centers that serve one in five rural residents as well as rural hospitals. Furthermore, during continued use, a biased device creates adverse healthcare outcomes that cost taxpayers money. A technology functioning poorly due to bias can be expensive to replace. It is economically imperative to ensure technology works as expected, as it leads to more effective healthcare and thus healthier people.