Shifting Federal Investments to Address Extreme Heat Through Green and Resilient Infrastructure
“Under the President’s direction, every Federal department and agency is focused on strengthening the Nation’s climate resilience, including by tightening flood risk standards, strengthening building codes, scaling technology solutions, protecting and restoring our lands and waters, and integrating nature-based solutions.” – National Climate Resilience Framework
Now more than ever, communities across the country need to adopt policies and implement projects that promote climate resilience. As climate change continues to impact the planet, extreme heat has become more frequent. To address this reality, the federal government needs to shift as much of its infrastructure investments as possible away from dark and impervious surfaces and toward cool and pervious “smart surfaces.”
By ensuring that a more substantial portion of federal infrastructure investments are designed to address extreme heat and climate change, instead of exacerbating the problem like many investments are doing now, the government can ensure healthy and livable communities. Making improvements, such as coating black asphalt roads with higher albedo products, installing cool roofs, and increasing tree and vegetative cover, results in positive social, political, and economic effects. Investments in safe and resilient communities provide numerous benefits, including better health outcomes, higher quality of life, an increase in proximal property values, and a reduction in business disruption. By making these changes, policymakers will engender significant long-term benefits within communities.
Challenge and Opportunity
Extreme heat events—a period of high heat and humidity with temperatures above 90°F for at least two to three days—are the leading cause of weather-related fatalities in the United States among natural disasters. Recent surges in extreme heat have led to summers now commonly 5–9°F hotter city-wide, with some neighborhoods experiencing as much as 20°F higher temperatures than rural areas, an outcome commonly referred to as the urban heat island (UHI) effect. More than 80% of the U.S. population lives in cities experiencing these record-breaking temperatures.
Extreme Heat and External Impacts
As populations in urban areas continue to grow, their density will further increase the urban heat island effect and exacerbate heat inequities in the absence of more resilient infrastructure investments. Between 2004 and 2018, the Centers for Disease Control and Prevention (CDC) recorded 10,527 heat-related deaths in the United States, an average of 702 per year. In their report, the CDC emphasized that many of these deaths occurred in urban areas, particularly in low-income and communities of color. Lower-income neighborhoods commonly have fewer trees and darker surfaces, resulting in temperatures often 10–20°F hotter than wealthy neighborhoods with more trees and green infrastructure.
A wide range of other consequences result from the rise in urban heat islands. For instance, as we experience hotter days, the warming atmosphere traps in more moisture, resulting in episodes of extreme flooding. Communities are experiencing a variety of impacts such as personal property damage, infrastructure destruction, injury, and increasing morbidity and mortality. In addition to the health impacts of extreme heat, increases in urban flooding also lead to long-term impacts such as disease outbreaks and economic instability due to the destruction of businesses. According to the Environmental Protection Agency (EPA), annual damages from flooding are expected to increase by 30% by the end of the century, making it more difficult for communities, particularly low-income and communities of color, to rebuild. Implementing climate-resilient solutions for extreme heat provides multiplicative benefits that extend beyond the singular issue of heat.
Integrating Climate Resilience in All Federal Funding Grants and Investments
As urban heat islands continue to expand in urban communities due to an increase in greenhouse gas emissions and investments in dark and impervious surfaces, it is vital that the federal government integrate climate resilience into all federal funding grants and investments. Great progress has been made by the Biden Administration via the Inflation Reduction Act (IRA) and other policy interventions that have created regulations and grant programs that promote and adopt climate-resilience policies. However, many federal investments continue to promote dark and impervious surfaces rather than requiring cooler and greener infrastructure in all projects. Investing in more sustainable resilient infrastructure is an important step toward combating urban heat islands and extreme flooding. Therefore, federal agencies such as the EPA, Department of Transportation (DOT), Federal Emergency Management Agency (FEMA), Department of Energy (DOE), and others should be encouraged to adopt a standard for integrating climate resiliency into all federal projects by funding green infrastructure and cool surface projects within their programs.
Strengthening Climate Policy
To address extreme heat, federal agencies should fund nature-based, light-colored, and pervious surfaces and shift away from investing in darker and more impervious surfaces. This redirection of funds will increase the cost-effectiveness of investments and yield multiplicative co-benefits.
Mitigating extreme heat through investments in green and cool infrastructure will result in better livability, enhanced water and air quality, greater environmental justice outcomes, additional tourism, expansion of good jobs, and a reduction in global warming. As an example, in 2017, New York City initiated the Cool Neighborhoods NYC program to combat heat islands by installing more than 10 million square feet of cool roofs in vulnerable communities, which also resulted in an estimated reduction of internal building temperatures by more than 30%.
Similarly, in the nation’s capital, DC Water’s 2016 revision of its consent decree to integrate green with gray infrastructure in the $2.6 billion Clean Rivers Project is set to cut combined sewer overflows by 96% at a lower cost to ratepayers than a gray-infrastructure-only solution. By implementing nature-based solutions, the DC Water investment also helps to reduce the urban heat island effect and air pollution, as well as localized surface flooding. One dollar invested in green infrastructure provides many dollars’ worth of benefits.
Plan of Action
To combat extreme heat within communities, federal agencies and Congress should take the following steps.
Recommendation 1. FEMA, DOT, EPA, DOE, and other agencies should continue to shift funding to climate-resilient solutions.
Agencies should continue the advancements made in the Inflation Reduction Act and shift away from providing city and state governments with funding for more dark and impervious surfaces, and instead require that all projects include green and cool infrastructure investments in addition to any gray infrastructure deemed absolutely necessary to meet project goals. These agencies should require teams to submit a justification for funding of any dark and impervious surfaces proposed for project funding. Agencies would review the justification document to determine its validity and reject it if found invalid.
The Interagency Working Group on Extreme Heat or a similar multi agency task force should develop a guidance document to formally establish new requirements for green and cool infrastructure investments. Similar to the standards set by the Buy America and Buy Clean initiatives, the “Buy Green” document should create a plan for addressing extreme heat in federally funded projects. Once created, the document would help support additional climate-resilience frameworks such as the Advancing Climate Resilience through Climate-Smart Infrastructure Investments and Implementation Guidance memo that was released by Office of Management and Budget (OMB). While this memo provides much-needed counsel on implementing climate and smart infrastructure, its focus on extreme flooding makes it a narrow tool. The newly established Buy Green guidance will provide necessary support and information on extreme heat to implement related cool and green infrastructure.
Recommendation 2. All federal agencies should factor in the new social cost of carbon.
In December 2023, the EPA announced an updated number for the social cost of carbon – $190 per ton – as part of a new rule to limit methane emissions. The new social cost of carbon number is not yet included in federal projects for all agencies, nor in federal grant funding applications. Not updating the social cost of carbon skews federal funding and grant investments away from more climate-friendly and resilient projects. All federal agencies should move quickly to adopt the new social cost of carbon number and use the number to determine the cost-effectiveness of project concepts at all stages of review, including in environmental impact statements prepared under the National Environmental Policy Act.
Recommendation 3. The Ecosystem Services Guidance should be fully adopted by federal agencies.
In early March 2024, the OMB released guidance to direct federal agencies to provide detailed accounts of how proposed projects, policies, and regulations could impact human welfare from the environment. The Ecosystem Services Guidance is designed to help agencies identify, measure, and discuss how their actions might have an impact on the environment through a benefit-cost analysis (BCA). We recommend that FEMA, DOT, EPA, DOE, and other funding agencies adopt and implement this guidance in their BCAs. This move would complement Recommendation 2, as factoring the new social cost of carbon into the Ecosystem Services Guidance will further encourage federal agencies to consider green infrastructure technologies and move away from funding dark and impervious surfaces.
Recommendation 4. The Federal Highway Administration (FHA) should revise its list of standards to include and then promote green and cool infrastructure.
The FHA has established a list of standards to help guide organizations and agencies on road construction projects. While the standards have made progress on building more resilient roadways, much of the funding that flows through FHA to states and metro areas continues to result in more dark and impervious surfaces. FHA should include standards that promote cool and green infrastructure within their specifications. These standards should include the proposed new social cost of carbon, as well as guidance developed in partnership with other agencies (FEMA, DOT, EPA, and DOE) on a variety of green infrastructure projects, including the implementation of cool pavement products, installation of roadside solar panels, conversions of mowed grass to meadows, raingardens and bioswales, etc. In addition, we also recommend that FHA strongly consider the adoption of the CarbonStar Standard. Designed to quantify the embodied carbon of concrete, the CarbonStar Standard will supplement the FHA standards and encourage the adoption of concrete with lower embodied carbon emissions.
Recommendation 5. EPA and DOE should collaborate to increase the ENERGY STAR standard for roofing materials and issue a design innovation competition for increasing reflectivity in steep slope roofing.
Since 1992, ENERGY STAR products have saved American families and businesses more than five trillion kilowatt-hours of electricity, avoided more than $500 billion in energy costs, and achieved four billion metric tons of greenhouse gas reductions. While this has made a large impact, the current standards for low-slope roofs of initial solar reflectance of 0.65 and three-year aged reflectance of 0.50 are too low. The cool roofing market has advanced rapidly in recent years, and according to the Cool Roof Rating Council database, there are now more than 70 low-slope roof products with an initial solar reflectance above 0.80 and a three-year aged solar reflectance of 0.70 and above. EPA and DOE should increase the requirements of the standard to support higher albedo products and improve outcomes.
Similarly, there have been advancements in the steep slope roofing industry, and there are now more than 20 asphalt shingle products available with initial solar reflectance of 0.27 and above and three-year aged solar reflectance of 0.25 and above. EPA and DOE should consider increasing the ENERGY STAR standard for steep slope roofs to reward the higher performers in the market and incentivize them to develop products with even greater reflectivity in the future.
In addition to increasing the standards, the agency should also issue a design competition to promote greater innovation among manufacturers, in particular for steep slope roofing solutions. Authorized under the COMPETES Act, the competition would primarily focus on steep slope asphalt roofs, helping product designers develop surfaces that have a much higher reflectivity than currently exist in the marketplace (perhaps with a minimum initial solar reflectance target of 0.5, but with an award given to the highest performers).
Recommendation 6. Congress and the IRS should reinstate the tax credit for steep slope ENERGY STAR residential roofing.
ENERGY STAR programs are managed through Congress and the IRS, who are in charge of maintaining the standards and distributing the tax credits. Though the IRA allowed for a short-term extension of the tax credit for steep slope ENERGY STAR residential roofing, the incentive has since expired. Given the massive benefits of cool roofing for energy efficiency, climate mitigation, resilience, health, and urban heat island reduction, Congress along with the IRS should move to reinstate this incentive. Because of the multiplicative benefits, this is fundamentally one of the most important incentives that EPA/DOE/IRS could offer.
Recommendation 7. DOE or DOT should conduct testing for cool pavement products.
Currently, cities looking to reduce extreme heat are increasingly looking to cool pavement coatings as a solution but do not have the capacity to conduct third-party reviews of the products and manufacturers’ claims, and they need the federal government to provide support. Claims are being made by manufacturers in terms of the aged albedo of products and also their benefits in terms of increasing road surface longevity, but to date there has been no third party analysis to verify the claims. DOE/DOT should conduct an independent third party test of the various cool pavement products available in the marketplace.
Recommendation 8. The Biden Administration should provide support for the Extreme Heat Emergency Act of 2023.
On June 12, 2023, Representative Ruben Gallego (D-AZ) introduced the Extreme Heat Emergency Act of 2023 to amend the Robert T. Stafford Disaster Relief and Emergency Assistance Act and include extreme heat in the definition of a major disaster. This bill is a vital piece of climate resilience legislation, as it recognizes the impact of extreme heat and seeks to address it federally. The Biden Administration, and FEMA in particular, should provide political support for the act given its transformative potential in addressing extreme heat in cities. Failing to update the list of hazards that FEMA can respond to with public assistance can amount to a de facto endorsement of policies and projects that harm our environment and economy. Congress should work with FEMA to alter the Stafford Act language to enable designating extreme heat as a major disaster.
Recommendation 9. Create an implementation plan for a National Climate Resilience Framework.
In September 2023, the Biden Administration issued the landmark National Climate Resilience Framework. It is our understanding that an implementation plan for the framework has not yet been developed. If that is the case, the Administration should move forward expeditiously with developing a plan that includes the proposed recommendations above and others. Ideas such as creating a standard guidance for climate resilience projects and factoring the new social cost of carbon should be included and implemented through federal investments, grants, climate action plans, legislation, and more. With help from Congress to formally enact the plan, the bill should require the Administration to issue guidance for all federal agencies referenced in the implementation plan to incorporate climate resilience in all funded projects. This would help standardize climate resilience policies to combat extreme heat and flooding.
Cost Estimates
This proposal is largely focused on redirecting current appropriations to more resilient solutions rather than requiring more budget capacity. Agencies such as FEMA, DOT, EPA, and DOE should redirect funds allocated in infrastructure budgets and grant programs that promote dark and impervious surfaces to green and cool infrastructure projects. Items that will incur additional costs are including heat in FEMA’s definitions of natural disasters, the suggested cool roof design innovation competition, and the analysis of cool pavement technologies.
Conclusion
Combating extreme heat urgently requires us to address climate resilient infrastructure at the federal level. Without the necessary changes to adopt green and cooler technologies and create a national resilience framework implementation plan, urban heat islands will continue to intensify in cities. Without a dedicated focus from the federal government, extreme heat will continue to create dangerous temperatures and also further disparities affecting low-income and communities of color who already do not have the adequate resources to stay cool. Shifting federal investments to address extreme heat through green and resilient infrastructure extends beyond political lines and would greatly benefit from policymaker support.
This idea of merit originated from our Extreme Heat Ideas Challenge. Scientific and technical experts across disciplines worked with FAS to develop potential solutions in various realms: infrastructure and the built environment, workforce safety and development, public health, food security and resilience, emergency planning and response, and data indices. Review ideas to combat extreme heat here.
Addressing the National Challenges of Extreme Heat by Modernizing Preparedness Approaches at Administration for Strategic Preparedness and Response
In the United States, almost one in four Americans are vulnerable to the growing threat of extreme heat. In fact, extreme heat kills more people on average every year than any other extreme weather event. Yet scientists believe these numbers still largely underestimate the true number of heat-related deaths by up to 50-fold, suggesting tens of thousands of Americans could be dying each year from heat-related exposure. Climate change further drives the risk of extreme heat, with a hundred million Americans exposed to dangerous temperatures each summer and projections showing these numbers to further increase.
The Administration for Strategic Preparedness and Response (ASPR) within the Department of Health and Human Services (HHS) can and should play a leadership role in supporting State, Local, Tribal, and Territorial (SLTT) preparedness and response to extreme heat. Just as ASPR serves as the Sector Risk Management Agency for healthcare and Public Health (HPH) cybersecurity, ASPR is uniquely positioned to lead the federal response to extreme heat due to the distinct and disproportionate impacts of extreme heat on the medical and public health sector. As leader, ASPR would support the integration of extreme heat into healthcare preparedness and response programs, participate in an interagency workgroup to develop critical healthcare impact-based forecasts, and implement lessons learned from similar efforts to develop effective hurricane responses. This is critical for ASPR to meet its mandate in a rapidly warming world, will save thousands of American lives, and stand as a testament to U.S. innovation and resolve.
Challenge and Opportunity
Across the U.S., more communities are facing the deadly impacts of extreme heat. Local responses are often disorganized and reactive, resulting in excessive preventable injuries and deaths. Hospitals are overwhelmed, emergency services are stretched thin, and the most vulnerable suffer. Combined with potential power outages, heat waves could create catastrophic impacts, including unparalleled patient surge and mass casualty crises that would overwhelm local and state resources. Unlike other extreme weather hazards, the impacts of extreme heat are disproportionately felt by HPH organizations and agencies, a clear indicator that ASPR should play a leadership role in supporting SLTTs to ensure regional healthcare readiness, sharing of critical impact-forecast data, and effective response coordination.
On June 23, 2021, the Seattle-based National Weather Service (NWS) office alerted Washington State response agencies about a large record-breaking heat dome forecasted to impact the region. With three days until the start of the heat dome and five days until its peak, there was ample time to prepare. However, with Washington being largely unaccustomed to extreme heat —and lacking plans, an understanding of the potential impacts, and technical assistance or resource support from the federal government — SLTTs were left to fend for themselves. The results were catastrophic: more lives were lost than any other extreme weather event in the state’s history.
ASPR, with minimal additional funding from Congress, should act to better support SLTT-level healthcare and public health organizations and agencies by supporting the development of data-driven decision-making tools, heat-integrated preparedness programs, and response systems ready to pre-deploy when extreme heat threatens to overwhelm SLTT HPH resources.
Heat Impact Forecasts and Response Triggers
A major operational barrier to extreme heat response planning is a lack of data-driven decision-making resources, such as impact-based forecasts. Traditional forecasts for heat waves often focus on temperature and humidity, but do little to provide necessary information for SLTTs and national agencies to understand community risk and anticipated impacts on the HPH sectors.
Similar to ongoing efforts to move beyond traditional hurricane forecasts (wind speed, pressure, location) and toward impact-based warnings for jurisdictions and communities, the Centers for Disease Control and Prevention (CDC) and the NWS collaboratively developed the HeatRisk prototype to provide risk-focused information. Even with the tool still in the development phase and only providing forecasts for half of the continental United States, HeatRisk has already been integrated into SLTT response plans. This demonstrates a significant need to complete and expand this tool to support SLTT and federal response decision-making.
ASPR is uniquely positioned to advance this initiative by integrating healthcare data to develop impact-based forecasts that provide anticipated public health and healthcare surge information. Instead of only forecasting the level of risk posed to the public, a HeatRisk HPH platform could provide critical estimates of healthcare service demand due the extreme heat. This information would be vital to identify evidence-based thresholds that could trigger pre-event coordination, technical assistance, and activation of federal resources from ASPR and FEMA.
Heat-Prepared Medical and Public Health Response System
Extreme temperature exposure can take just hours to days to be deadly, while federal responses often take days to weeks to organize and deploy, so saving lives during an extreme heat event that overwhelms local and state HPH resources requires rapid pre-deployment of federal assets based on extreme heat forecast data. To date, there is no plan for or example of this occurring, even when thousands of Americans are dying each year from extreme heat.
Clear legal guidelines allow ASPR to pre-deploy response personnel and supplies without a disaster declaration. Section 301, 311, 2812 of the Public Health Services Act authorizes the HHS secretary to provide public health service personnel, equipment, medical supplies, and other assistance to states and local jurisdictions to prevent or respond to any health emergency, with or without a public health emergency declaration. In addition, there are many examples of ASPR pre-deploying assets in anticipation of extreme weather hazards such as Hurricane Ian in 2022, which included the pre-deployment of Health and Medical Task Force teams, Incident Management Teams, and caches of medical supplies.
ASPR has a mission responsibility to support SLTTs before and during an overwhelming heat emergency with technical assistance and resources – such as personnel and critical medical supplies. This will require modernizing the National Disaster Medical System (NDMS) and U.S. Public Health Service (USPHS) Commissioned Corps to meet the current and future threat landscape of extreme heat, development of heat-specific response standards and training, and integration of forecast-based pre-deployment and technical assistance into regional SLTT preparedness activities.
Additionally, heat response standards and training could support SLTT Medical Reserve Corps (MRC) volunteer heat-response capabilities through an already existing ASPR and the National Association of County and City Health Officials collaboration, which provides MRC deployment training and readiness guides. This technical support would help meet the growing demand for MRC volunteers in local extreme heat responses.
Heat-Prepared Healthcare Systems
Healthcare systems are often caught off guard by extreme heat events due to a lack of hazard analysis and preparedness. ASPR is critical in supporting healthcare readiness via the Hospital Preparedness Program (HPP), which provides funding through grants and cooperative agreements to support local healthcare capacity, system readiness, and coordination in response to medical surge events.
There is a significant opportunity to integrate heat-specific programmatic requirements into HPP, such as requiring heat-specific hazard and vulnerability analyses and preparedness activities, which would ensure health systems are aware and prepared. Additionally, advancements in medical surge coordination, such as regional and state medical operations coordination cells (MOCC), developed or refined during the pandemic and utilized during periods of extreme heat, should be funded through HPP to ensure patient and resource coordination capabilities are developed, utilized, have appropriate authority, and are financially sustained.
Heat-Health Response Excellence Centers
ASPR has created and funded several medical-academic centers that provide technical assistance, training, exercises, and assessments specific to unique hazards and demographics. These include two Pediatric Disaster Care Centers of Excellence and the National Emerging Special Pathogens Training & Education Center. With adequate congressional funding, ASPR should establish two national Heat-Health Response Excellence Centers that support SLTTs and ASPR in identifying preparedness and response best practices; developing heat-specific federal response standards and training; understanding regional heat impact characteristics and supporting HeatRisk data integration; connecting HPH response planners with leading national heat research and subject matter experts; and leveraging ASPR TRACIE, ASPR Project ECHO, and the National Integrated Heat Health Information Network (NIHHIS) to capture and disseminate best practices and ongoing engagement.
Plan of Action
To ensure ASPR is able to advance SLTT HPH extreme heat readiness and can effectively support jurisdictions responding to a heat-related health emergencies, the following actions should be taken.
Recommendation 1. Develop heat impact-based forecasts
- ASPR collaborates closely with CDC and NWS to support the expansion of the HeatRisk prototype to include HPH sector risk analysis (using ASPR-controlled healthcare data), and is socialized/integrated in SLTT heat response plans.
- Identify specific NDMS forecast thresholds to trigger support for SLTTs, such as prepositioning of personnel, resources, and provision of technical assistance.
- One-time funds of $10 million to increase HeatRisk scope and impact-based forecast planning that would include:
- Staff support to appropriately integrate ASPR healthcare data
- Cross-agency integration of HeatRisk data to identify activation thresholds
- Outreach and promotion for SLTT awareness and planning
- Recurring $3 million to ensure ongoing HeatRisk refinement (incorporating new data), ASPR healthcare data integration, and ongoing assistance to SLTTs to support heat response planning.
Recommendation 2. Leverage HPP to advance healthcare readiness
- Require HPP recipients to integrate extreme heat in the required coalition-led hazard and vulnerability assessments (HVA). This should include connections with local or regional climate projection subject matter experts.
- Require healthcare coalitions to develop a coalition heat response plan, similar to existing requirements for hazard-specific response plans, such as the radiation emergency surge annex requirement.
- Require healthcare coalitions to use extreme heat as a Medical Response and Surge Exercise scenario once in each cooperative agreement, or more frequently based on HVA and priorities.
- Streamline MOCC-capability funding through HPP, require all HPP recipients to establish patient and resource transfer coordination capabilities, and institute clear transfer authority. 50% increase in annual funding per recipient, or $120 million based on 2023 funding.
- Current funding mechanisms for MOCCs are convoluted, tied to expiring COVID funding or reallocating funds from various response funds. A clear, streamlined approach will ensure sustainability and readiness.
- MOCC funding should be periodically reassessed based on innovative best practices and changes in the local and national threat landscape. For example, MOCCs may be critical during non-emergency protracted hospital strain and should be funded appropriately.
- Ensure healthcare coalitions engage outpatient healthcare, long-term care, and federally qualified health centers and their respective regional or state associations.
Recommendation 3. Establish technical assistance resources
- Fund and establish two regional Heat-Health Response Excellence Centers at two academic institutions that will provide technical expertise and guidance to federal agencies and SLTTs on heat preparedness and response best practices, regional heat characteristics, and connect SLTTs with heat subject matter experts.
- Develop heat-specific response guidance—examples could include heat-sensitive pharmaceutical guidance, heat-associated mass casualty triage, and critical resources for extreme heat-related patient surges.
- Allocate $6 million in annual funds based on existing ASPR-funded Pediatric Disaster Care Centers of Excellence.
Recommendation 4. Modernize NDMS and USPHS for extreme heat
- Work with Heat-Health Response Excellence Centers to develop heat-specific response standards and training. Integrate them into current NDMS modernization efforts, starting with Disaster Medical Assistant Teams.
- Update NDMS response plans to align with forecast-based response triggers. Integrate these plans into ongoing regional exercises that include HPP recipients.
- One-time funds: $17 million based on 2020 CARES Act for USPHS training.
Cost Estimates
This proposal would require a first-year cost of $153 million and future annual costs of $129 million. The economic justification to fund these efforts is apparent. The sharp increase in billion-dollar extreme weather disasters in the U. S., the growing awareness of the impact of extreme heat on human health (and associated medical expenses), and mitigation research showing that every dollar in prevention saves up to $15 in response and recovery expenses should incentivize Congress to fully fund this proposal.
Conclusion
Increasing risks associated with extreme heat in the United States signal an urgent need to enhance national preparedness and response strategies. ASPR is ideally suited to lead in supporting SLTTs in their preparedness and response. ASPR can accomplish this through low-cost measures that develop critical decision-making tools and better integrate extreme heat into existing programs, funding mechanisms, and medical and public health deployment systems.
Extreme heat events are unique compared to other extreme weather events. The impacts more closely resemble those of a rapid epidemic, with often geographically dispersed direct impacts to human health resulting in significant surges of patients into emergency departments. While heat-related impacts to infrastructure do occur, and require coordination with local, state, and federal emergency management, ASPR is ideally situated to support the frontlines of a heat emergency with existing programs and response systems, such as HPP, and HPH technical assistance, coordination, and resources.
Sociologist Eric Klinenberg characterizes heat as a “silent and invisible killer of silenced and invisible people,” highlighting the many, often intersecting health inequities that drive heat morbidity and mortality. In the U.S., the socially isolated, elderly, disabled, and unhoused make up the majority of heat-related deaths. Tragically, these deaths rarely garner media attention. Additionally, heat affects the human body in a variety of often under-recognized ways, resulting in underreporting on medical records. Lastly, aggregate surveillance data from heat events is often slow to come out or not analyzed at all. The combination of these factors results in significant undercounting of heat deaths—and a public that largely underestimates their risk to this growing threat.
Direct health impacts (e.g., heat stress, heat stroke, heat-associated cardiac and respiratory events) increase demand for emergency healthcare services, which can result in significant patient surges to emergency departments. This can increase 9-1-1 wait times and pre-hospital wall times. Indirect health impacts, such increases in drownings, auto accidents, burns, domestic violence, and overdoses, further stress an already-overwhelmed healthcare service. High temperatures can affect medical equipment, staff safety, productivity, and burnout. As extreme heat exposure increases in frequency, severity, and duration, the risk of a catastrophic heat event that results in tens of thousands of deaths increases, demanding urgent action.
Harnessing Federal Programs to Improve Local Housing Permit Data
Many recent regulatory reforms are intended to spur new housing development, but timely data on the location and quantity of new housing is limited. The most comprehensive data source on new development, the U.S. Census Bureau’s Building Permit Survey (BPS), relies on antiquated methods that can introduce a variety of errors and biases. Individual jurisdictions are asked to submit regular reports on the building permits they issue. In addition to the potential for human error, many jurisdictions are not asked to report on a monthly basis, and some that are asked to report on a monthly basis don’t do so. As a result, although the BPS is reasonably reliable at high levels of geographic aggregation (e.g., counties, states, metro areas), it is less reliable at the municipal level. Moreover, the BPS does not provide any information at lower levels of geography (such as the census tract or block group). This is a problem, because many recent land-use regulation reforms are intended to spur development in specific areas, such as transit-rich or high-resource locations. The lack of accurate, timely, geographically precise permit data makes it hard to assess whether these regulations are working.
The Census Bureau should work with information technology (IT) vendors, states, and local governments to facilitate the automation of local building permit reporting. All large jurisdictions (and many small jurisdictions) use some form of computerized tracking system for building permits. In some cases, the tracking system involves specialized software, typically developed by a private vendor. In other cases, it’s simply a spreadsheet. A uniform software tool for inputting building permit data would make the BPS more reliable, and it would also facilitate more fine-grained geographical analysis of new housing development. Data from the tool could be directly transmitted to the Census Bureau, reducing the potential for errors in local aggregation and tabulation of the data. More fine-grained geographic data would help the Department of Housing and Urban Development (HUD) to assess whether local efforts to affirmatively further fair housing are bearing fruit. It would also help states that have recently adopted regulatory reforms concerning fair housing and transit-oriented development to assess the impacts of those reforms. Moreover, automating the collection and transmission of data would reduce paperwork burdens for local governments.
The Census Bureau should first explore using the same appropriation source that is funding the Modernizing Construction Indicators (MCI) project. This funding may be sufficient to launch a pilot project that would convene a working group of local and state officials, software vendors, and researchers to identify the key attributes needed in this new reporting system. Whereas the MCI project is currently focused on improving the BPS by using data from vendors who collect building permit data from governments, the proposed project involves working with the vendors who provide information technology services to governments. Rather than relying on a patchwork of private vendors with different data standards and licensing rules who collect data from local governments and then repackage it, the Census Bureau and other agencies should contribute to the development of IT solutions that can be used by the vendors who provide service to local governments. These IT solutions can, in turn, feed into the Bureau’s own standardized data collection process.
The pilot program would involve creating and deploying software that would record the same permits currently covered by the form used for the BPS. The data collected should include the geographic coordinates for each newly permitted structure and the number of units included in each structure. Local jurisdictions that volunteer to participate would receive funding to implement the new system, either from the same appropriation source funding the MCI project or from a separate congressional appropriation. The Census Bureau would revise the system based on the pilot program for broader rollout, for which Congress would have to provide additional funding.
Federal agencies (e.g., HUD), state governments, and nongovernmental organizations could use the data to better assess the efficacy of land-use regulatory reforms. Both government entities and advocacy groups are largely flying blind with respect to their reform efforts, due to lack of data. In order to assess, for example, whether reforms targeted to transit-rich or high-resource locations are yielding development in those locations, advocates and policymakers need to know how much development is occurring in those locations.
In addition to yielding specific benefits for the evaluation of regulatory reforms, there are also broader social and economic benefits of timely, reliable, spatially precise data on new housing development. For example, such data facilitates the development of economic indicators by the Conference Board and Federal Reserve Board; helps financial institutions estimate mortgage demand; and contributes to various kinds of research by private businesses.
This idea of merit originated from our Housing Ideas Challenge, in partnership with Learning Collider, National Zoning Atlas, and Cornell’s Legal Constructs Lab. Find additional ideas to address the housing shortage here.
Less Paperwork, More Projects: Streamlining applications for Federal funding in housing development
U.S. housing and planning officials have identified a series of roadblocks that slow down or prevent their cities from being flush with affordable units. In particular, the paperwork is simply too complicated.
Existing federal rules make filing for Department of Housing and Urban Development (HUD) funds challenging. National Environmental Policy Act (NEPA) compliance requires one set of paperwork, National Register of Historic Places mandates require another, on top of the paperwork requesting funds. Outside of compliance rules, applications for funding regulations need their own paperwork and require status reports throughout the project.
Opportunity
The programs meant to create housing abundance have instead created a complex network of paperwork that is redundant, rigid, and discouraging. Let’s narrow our lens, and consider how developers use the Low-Income Housing Tax Credit (LIHTC) in particular. Developers may pull together as many as 11 sources of funding for a single project, which they are encouraged to do. Many state Qualified Allocation Plans prefer projects that leverage other government funding sources outside of the LIHTC.
But it costs money to make money. According to a 2018 Government Accountability Office report, developer fees were about 10% of the total costs for both new construction and rehabilitation projects. In addition to literal fees, sourcing and applying for diverse funding takes time. A 2021 Terner Center report identified “lack of alignment of deadlines,” multiple application rounds, mismatched priorities (“the city elected to disburse capital funds early in the process to help the project be competitive for state funds, while the housing authority’s approach was to prioritize project “readiness”), and contrasting requirements as massive time sucks that delay critical housing projects.
Plan of Action
Some states already streamline allocation from multiple funding sources to truncate development timelines and contain costs.
In Pennsylvania, a single entity administers multiple programs as a “one-stop shop” – a single application for a nine percent LIHTC automatically marks the applicant for HOME and National Housing Trust Funds, turning three applications into one. The Pennsylvania Housing Affordability and Rehabilitation Enforcement (PHARE) program also consolidates applications: Applying for a four percent LIHTC credit? You are also automatically eligible for other PHARE-distributed funds, like the Realty Transfer Tax and Marcellus Shale Fund. All of the sources that Pennsylvania Housing Finance Authority (PHFA) allocates, it does so in-house and with nearly-identical requirements. Because of this optimization, PHFA can award developers the “optimal mix of funding” in a single application.
Other states consolidate applications to further streamline funding processes. In Minnesota, the state has consolidated multiple housing resources within a single application process. This so-called “Consolidated RFP” has turned $298.9 million of state investment into $883 million in housing development activity, representing over 5,074 affordable units.
If states are able to put these innovations into place, then so should the federal government. The best place to start is HUD. Housing development grants and other affordable housing programs are already centralized at HUD, making it a natural fit for updated practices meant to distribute those programs.
Recommendations
Recommendation 1. Create a federal one-stop shop for affordable housing investments.
In FY23, there were 40 unique HUD funding opportunities, each requiring its own application. About half of these grants are disbursed to individuals seeking assistance for repairs or other programs. The other half, like the Choice Neighborhoods Implementation program or Capital Fund at Risk program, are aimed at communities and developers. In addition to HUD, other agencies earmark or leave open grants and funding opportunities for housing developments. To reduce friction for developers applying to multiple funds, HUD should look to Pennsylvania and Minnesota and create a lean interagency working group to consolidate applications.
This working group would have two goals:
- Enumerate all federal-level housing development grants and funds in a given fiscal year.
- Create a minimum viable universal application.
The first goal would empower HUD to be the keeper of all knowledge regarding housing development grants, which it does not currently do. This makes it easier to capture information about how these disparate grant opportunities are used across the country (something that the Government Accountability Office is extremely interested in). By cataloging developer-level grants, HUD would be a single source of information on Capital Magnet Fund, National Housing Trust Fund, public housing operating funds, and myriad other funding sources.
Recommendation 2. Align requirements and deadlines across grants and funds.
With a minimum application in place, the working group should then align the minimal amount of excess application material required to make an application competitive for the biggest number of grants. This would decrease the burden for developers submitting multiple applications, as well as federal grantmakers reading and grading applications. The working group should consolidate deadlines (or even consider taking applications in limited waves) to accommodate the universal application process.
Recommendation 3. Empower staff to award responsibly.
When more established and active, the working group should empower members to award “optimal mix of funding” to applicants. If an applicant was unaware they qualified for an additional grant, awarding staff should take reasonable action to submit the applicant into the process for the additional grant. With the universal applications, this would require minimal, if any, additional work on behalf of the working group staff or submitters.
Conclusion
Developers, funders, and the bureaucratic teams that sign off and disburse funding — everybody hates paperwork. Opening access to funds does not have to require more person power, as exemplified in the states that use consolidated applications. That access, paired with more streamlined application paperwork, would cut down busy work for developers and get them to what they do best fast: build.
This idea of merit originated from our Housing Ideas Challenge, in partnership with Learning Collider, National Zoning Atlas, and Cornell’s Legal Constructs Lab. Find additional ideas to address the housing shortage here.
Incorporate open source hardware into Patent and Trademark Office search locations for prior art
Increasingly, scientific innovations reside outside the realm of papers and patents. This is particularly true for open source hardware — hardware designs made freely and publicly available for study, modification, distribution, production, and sale. The shift toward open source aligns well with the White House’s 2023 Year of Open Science and can advance the accessibility and impact of federally funded hardware. Yet as the U.S. government expands its support for open science and open source, it will be increasingly vital that our intellectual property (IP) system is designed to properly identify and protect open innovations. Without consideration of open source hardware in prior art and attribution, these public goods are at risk of being patented over and having their accessibility lost.
Organizations like the Open Source Hardware Association (OSHWA) — a standards body for open hardware — provide verified databases of open source innovations. Over the past six years, for example, OSHWA’s certification program has grown to over 2600 certifications, and the organization has offered educational seminars and training. Despite the availability of such resources, open source certifications and resources have yet to be effectively incorporated into the IP system.
We recommend that the United States Patent and Trademark Office (USPTO) incorporate open source hardware certification databases into the library of resources to search for prior art, and create guidelines and training to build agency capacity for evaluating open source prior art.
Details
Innovative and important hardware products are increasingly being developed as open source, particularly in the sciences, as academic and government research moves toward greater transparency. This trend holds great promise for science and technology, as more people from more backgrounds are able to replicate, improve, and share hardware. A prime example is the 3D printing industry. Once foundational patents in 3D printing were released, there was an explosion of invention in the field that led to desktop and consumer 3D printers, open source filaments, and even 3D printing in space.
For these benefits to be more broadly realized across science and technology, open source hardware must be acknowledged in a way that ensures scientists will have their contributions found and respected by the IP system’s prior art process. Scientists building open source hardware are rightfully concerned their inventions will be patented over by someone else. Recently, a legal battle ensued from open hardware being wrongly patented over. While the patent was eventually overturned, it took time and money, and revealed important holes in the United States’ prior art system. As another example, the Electronic Frontier Foundation found 30+ pieces of prior art that the ArrivalStar patent was violating.
Erroneous patents can harm the validity of open source and limit the creation and use of new open source tools, especially in the case of hardware, which relies on prior art as its main protection. The USPTO — the administrator of intellectual property protection and a key actor in the U.S. science and technology enterprise — has an opportunity to ensure that open source tools are reliably identified and considered. Standardized and robust incorporation of open source innovations into the U.S. IP ecosystem would make science more reproducible and ensure that open science stays open, for the benefits of rapid improvement, testing, citizen science, and general education.
Recommendations
We recommend that the USPTO incorporate open source hardware into prior art searches and take steps to develop education and training to support the protection of open innovation in the patenting process.
- USPTO should add OSHWA’s certification – a known, compliant open source hardware certification program – to its non-patent search library.
- USPTO should put out a request for information (RFI) seeking input on (a) optimal approaches for incorporating open source innovations into searches for prior art, and (b) existing databases, standards, or certification programs that can/should be added to the agency’s non-patent search library.
- Based on the results of the RFI, USPTO’s Scientific and Technical Information Center should create guidelines and educational training programs to build examiners’ knowledge and capacity for evaluating open source prior art.
- USPTO should create clear public guidelines for the submission of new databases into the agency’s prior art library, and the requirements for their consideration and inclusion.
Incorporation of open hardware into prior art searches will signify the importance and consideration of open source within the IP system. These actions have the potential to improve the efficiency of prior art identification, advance open source hardware by assuring institutional actors that open innovations will be reliably identified and protected, and ensure open science stays open.
Establish data collaboratives to foster meaningful public involvement
Federal agencies are striving to expand the role of the public, including members of marginalized communities, in developing regulatory policy. At the same time, agencies are considering how to mobilize data of increasing size and complexity to ensure that policies are equitable and evidence-based. However, community engagement has rarely been extended to the process of examining and interpreting data. This is a missed opportunity: community members can offer critical context to quantitative data, ground-truth data analyses, and suggest ways of looking at data that could inform policy responses to pressing problems in their lives. Realizing this opportunity requires a structure for public participation in which community members can expect both support from agency staff in accessing and understanding data and genuine openness to new perspectives on quantitative analysis.
To deepen community involvement in developing evidence-based policy, federal agencies should form Data Collaboratives in which staff and members of the public engage in mutual learning about available datasets and their affordances for clarifying policy problems.
Details
Executive Order 14094 and the Office of Management and Budget’s subsequent guidance memo direct federal agencies to broaden public participation and community engagement in the federal regulatory process. Among the aims of this policy are to establish two-way communications and promote trust between government agencies and the public, particularly members of historically underserved communities. Under the Executive Order, the federal government also seeks to involve communities earlier in the policy process. This new attention to community engagement can seem disconnected from the federal government’s long-standing commitment to evidence-based policy and efforts to ensure that data available to agencies support equity in policy-making; assessing data and evidence is usually considered a job for people with highly specialized, quantitative skills. However, lack of transparency about the collection and uses of data can undermine public trust in government decision-making. Further, communities may have vital knowledge that credentialed experts don’t, knowledge that could help put data in context and make analyses more relevant to problems on the ground.
For the federal government to achieve its goals of broadened participation and equitable data, opportunities must be created for members of the public and underserved communities to help shape how data are used to inform public policy. Data Collaboratives would provide such an opportunity. Data Collaboratives would consist of agency staff and individuals affected by the agency’s policies. Each member of a Data Collaborative would be regarded as someone with valuable knowledge and insight; staff members’ role would not be to explain or educate but to learn alongside community participants. To foster mutual learning, Data Collaboratives would meet regularly and frequently (e.g., every other week) for a year or more.
Each Data Collaborative would focus on a policy problem that an agency wishes to address. The Environmental Protection Agency might, for example, form a Data Collaborative on pollution prevention in the oil and gas sector. Depending on the policy problem, staff from multiple agencies may be involved alongside community participants. The Data Collaborative’s goal would be to surface the datasets potentially relevant to the policy problem, understand how they could inform the problem, and identify their limitations. Data Collaboratives would not make formal recommendations or seek consensus; however, ongoing deliberations about the datasets and their affordances can be expected to create a more robust foundation for the use of data in policy development and the development of additional data resources.
Recommendations
The Office of Management and Budget should
- Establish a government-wide Data Collaboratives program in consultation with the Chief Data Officers Council.
- Work with leadership at federal agencies to identify policy problems that would benefit from consideration by a Data Collaborative. It is expected that deputy administrators, heads of equity and diversity offices, and chief data officers would be among those consulted.
- Hire a full-time director of Data Collaboratives to lead such tasks as coordinating with public participants, facilitating meetings, and ensuring that relevant data resources are available to all collaborative members.
- Ensure agencies’ ability to provide the material support necessary to secure the participation of underrepresented community members in Data Collaboratives, such as stipends, childcare, and transportation.
- Support agencies in highlighting the activities and accomplishments of Data Collaboratives through social media, press releases, open houses, and other means.
Conclusion
Data Collaboratives would move public participation and community engagement upstream in the policy process by creating opportunities for community members to contribute their lived experience to the assessment of data and the framing of policy problems. This would in turn foster two-way communication and trusting relationships between government and the public. Data Collaboratives would also help ensure that data and their uses in federal government are equitable, by inviting a broader range of perspectives on how data analysis can promote equity and where relevant data are missing. Finally, Data Collaboratives would be one vehicle for enabling individuals to participate in science, technology, engineering, math, and medicine activities throughout their lives, increasing the quality of American science and the competitiveness of American industry.
Expand capacity and coordination to better integrate community data into environmental governance
Frontline communities bear the brunt of harms created by climate change and environmental pollution, but they also increasingly generate their own data, providing critical social and environmental context often not present in research or agency-collected data. However, community data collectors face many obstacles to integrating this data into federal systems: they must navigate complex local and federal policies within dense legal landscapes, and even when there is interest or demonstrated need, agencies and researchers may lack the capacity to find or integrate this data responsibly.
Federal research and regulatory agencies, as well as the White House, are increasingly supporting community-led environmental justice initiatives, presenting an opportunity to better integrate local and contextualized information into more effective and responsive environmental policy.
The Environmental Protection Agency (EPA) should better integrate community data into environmental research and governance by building internal capacity for recognizing and applying such data, facilitating connections between data communities, and addressing misalignments with data standards.
Details
Community science and monitoring are often overlooked yet vital facets of open science. Community science collaborations and their resulting data have led to historic environmental justice victories that underscore the importance of contextualized community-generated data in environmental problem-solving and evidence-informed policy-making.
Momentum around integrating community-generated environmental data has been building at the federal level for the past decade. In 2016, the report “A Vision for Citizen Science at EPA,” produced by the National Advisory Council for Environmental Policy and Technology (NACEPT), thoroughly diagnosed the need for a clear framework for moving community-generated environmental data and information into governance processes. Since then, EPA has developed additional participatory science resources, including a participatory science vision, policy guidelines, and equipment loan programs. More recently, in 2022, the EPA created an Equity Action Plan in alignment with their 2022–2026 Strategic Plan and established an Office of Environmental Justice and External Civil Rights (OEJECR). And, in 2023, as a part of the cross-agency Year of Open Science, the National Aeronautics and Space Administration (NASA)’s Transform to Open Science (TOPS) program lists “broadening participation by historically excluded communities” as a requisite part of its strategic objectives.
It is evident that the EPA and research funding agencies like NASA have a strategic and mission-driven interest in collaborating with communities bearing the brunt of environmental and climate injustice to unlock the potential of their data. It is also clear that current methods aren’t working. Communities that collect and use environmental data still must navigate disjointed reporting policies and data standards and face a dearth of resources on how to share data with relevant stakeholders within the federal government. There is a critical lack of capacity and coordination directed at cross-agency integration of community data and the infrastructure that could enable the use of this data in regulatory and policy-making processes.
Recommendations
To build government capacity to integrate community-generated data into environmental governance, the EPA should:
- Create a memorandum of understanding between the EPA’s OEJECR, National Environmental Justice Advisory Council (NEJAC), Office of Management and Budget (OMB), United States Digital Service (USDS), and relevant research agencies, including NASA, National Atmospheric and Oceanic Administration (NOAA), and National Science Foundation (NSF), to develop a collaborative framework for building internal capacity for generating and applying community-generated data, as well as managing it to enable its broader responsible reuse.
- Develop and distribute guidance on responsible scientific collaboration with communities that prioritizes ethical open science and data-sharing practices that center community and environmental justice priorities.
- Create a capacity-building program, designed by and with environmental justice and data-collecting communities, focused on building translational and intermediary roles within the EPA that can facilitate connections and responsible sharing between data holders and seekers. Incentivize the application of the aforementioned guidance within federally funded research by recruiting and training program staff to act as translational liaisons situated between the OEJECR, regional EPA offices, and relevant research funding agencies, including NASA, NOAA, and NSF.
To facilitate connections between communities generating data, the EPA should:
- Expand the scope of the current Environmental Information Exchange Network (EN) to include facilitation of environmental data sharing by community-based organizations and community science initiatives.
- Initiate a working group including representatives from data-generating community organizations to develop recommendations on how EN might accommodate community data and how its data governance processes can center community and environmental justice priorities.
- Provide grant funding within the EN earmarked for community-based organizations to support data integration with the EN platform. This could include hiring contractors with technical data management expertise to support data uploading within established standards or to build capacity internally within community-based organizations to collect and manage data according to EN standards.
- Expand the resources available for EN partners that support data quality assurance, advocacy, and sharing, for example by providing technical assistance through regional EPA offices trained through the aforementioned capacity-building program.
To address misaligned data standards, the EPA, in partnership with USDS and the OMB, should:
- Update and promote guidance resources for communities and community-based organizations aiming to apply the data standards EPA uses to integrate data in regulatory decisions.
- Initiate a collaborative co-design process for new data standards that can accommodate community-generated data, with representation from communities who collect environmental data. This may require the creation of maps or crosswalks to facilitate translation between standards, including research data standards, as well as internal capacity to maintain these crosswalks.
Community-generated data provides contextualized environmental information essential for evidence-based policy-making and regulation, which in turn reduces wasteful spending by designing effective programs. Moreover, healthcare costs will be reduced for the general public if better evidence is used to address pollution, and climate adaptation costs could be reduced if we can use more localized and granular data to address pressing environmental and climate issues now rather than in the future.
Our recommendations call for the addition of at least 10 full-time employees for each regional EPA office. The additional positions proposed could fill existing vacancies in newly established offices like the OEJECR. Additional budgetary allocations can also be made to the EPA’s EN to support technical infrastructure alterations and grant-making.
While there is substantial momentum and attention on community environmental data, our proposed capacity stimulus can make existing EPA processes more effective at achieving their mission and supports rebuilding trust in agencies that are meant to serve the public.
A Matter of Trust: Helping the Bioeconomy Reach Its Full Potential with Translational Governance
The promise of the bioeconomy is massive and fast-growing—offering new jobs, enhanced supply chains, novel technologies, and sustainable bioproducts valued at a projected $4 trillion over the next 16 years. Although the United States has been a global leader, advancements in the bioeconomy—whether it’s investing in specialized infrastructural hardware or building a multidisciplinary STEM workforce—are subject to public trust. In fact, public trust is the key to unlocking the full potential of the bioeconomy, and without it, the United States may fall short of long-term economic goals and even fall behind peer nations as a bioeconomy leader. Recent failures of the federal regulatory system for biotechnology threaten public trust, and recent regulations have been criticized for their lack of transparency. As a result, cross-sector efforts aim not just to reimagine the bioeconomy but to create a coordinated regulatory system for it. Burdened by decreasing public trust in the federal government, even the most coordinated regulatory systems will fail to boost the bioeconomy if they cannot instill public trust.
In response, the Biden-Harris Administration should direct a Bioeconomy Initiative Coordination Office (BICO) to establish a public engagement mechanism parallel with the biotechnology regulatory system. Citizen engagement and transparency are key to building public trust, yet current public engagement mechanisms cannot convey trust to a public skeptical of a biotechnology’s rewards in light of perceived risks. Bioeconomy coordination efforts should therefore prioritize public trust by adopting a new public-facing biotechnology evaluation program that collects data from nontraditional audiences via participatory technology assessments (pTA) and Multi-Criteria Decision Analysis (MCDA/MCDM) and provides insight that addresses limitations. In accordance with the CHIPS and Science Act, the public engagement program will provide a mechanism for a BICO to build public trust while advancing the bioeconomy.
The public engagement program will serve as a decision-making resource for the Coordinated Framework for the Regulation of Biotechnology (CFRB) and a data repository for evaluating public acceptance in the present and future bioeconomy.
Challenge and Opportunity
While policymakers have been addressing the challenge of sharing regulatory space among the three key agencies—Environmental Protection Agency (EPA), Food and Drug Administration (FDA), and USDA—transparency and public trust remain challenges for federal agencies, small to midsize developers, and even the public at large. The government plays a vital role in the regulatory process by providing guidelines that govern the interactions between the developers and consumers of biotechnology. For over 30 years, product developers have depended on strategic alliances between product developers and the government to ensure the market success of biotechnology. The marketplace and regulatory oversight are tightly linked, and their impacts on public confidence in the bioeconomy cannot be separated.
When it comes to a consumer’s purchase of a biotechnology product, the pivotal factor is often not price but trust. In 2016, the National Academy of Sciences, Engineering, and Medicine released recommendations on aligning public values with gene drive research. The report revealed that public engagement that promotes a “bi-directional exchange of information and perspectives” can increase public trust. Moreover, a 2022 report on Gene Drives in Agriculture highlights the importance of considering public perception and acceptance in risk-based decision-making.
The CHIPS and Science Act provides an opportunity to address transparency and public trust within the federal regulatory system for biotechnology by directing the Office of Science and Technology Policy (OSTP) to establish a Coordination Office for the National Engineering Biology Research and Development Initiative. The coordination office (i.e., BICO) will serve as a point of contact for cross-sector engagement and create a junction for the exchange of technical and programmatic information. Additionally, the office will conduct public outreach and produce recommendations for strengthening the bioeconomy.
This policy window presents a novel opportunity to create a regulatory system for the bioeconomy that also encompasses the voice of the general public. History of requests for information, public hearings, and cross-sector partnerships demonstrates the public’s capacity—or at least specific subsets of experts therein—to fill gaps, oversights, and ambiguities within biotechnology regulations.
While expert opinion is essential for developing regulation, so too are the opinions of the general public. Historically, discussions about values, sentiments, and opinions on biotechnology have been dominated by technical experts (for example, through debates on product vs. process, genetically engineered vs. genetically modified organisms, and perceived safety). Biotechnology discourse has primarily been restricted to these traditional, technical audiences, and as a result, public calls to address concerns about biotechnology are drowned out by expert opinions. We need a mechanism for public engagement that prioritizes collecting data from nontraditional audiences. This will ensure sustainable and responsible advancements in the bioeconomy.
If we want to establish a bioeconomy that increases national competitiveness, then we need to increase the participation of nontraditional audiences. Although some public concerns are unlikely to be allayed through policy change (e.g., addressing calls for a ban on genetically engineered or modified products), a public engagement program could identify the underlying issue(s) for these concerns. This would enable the adoption of comprehensive strategies that increase public trust, further sustaining the bioeconomy.
Research shows that public comment and notice periods are less likely to hear from nontraditional audiences—that is, members of underserved communities, workers, smaller market entities, and new firms. Despite the statutory and capacity-based obstacles federal agencies face in increasing public participation, the Executive Office of the President seeks to broaden public participation and community engagement in the federal regulatory process. Public engagement programs provide a platform to interact with interested parties that represent a wide range of perspectives. Thus, information gathered from public engagement could inform future proposed updates to the CFRB and the regulatory pathways for new products. In this way, the public opinions and sentiments can be incorporated into a translational governance framework to bring translational value to the bioeconomy. Since increasing public trust is complementary to advancing the bioeconomy, there is a translational value in strategically integrating a collective perception of risk and safety into future biotechnology regulation. In this case, translational governance allows for regulation that is informed by science and is responsive to the values of citizens, effectively introducing a policy lever that improves the adoption of, and investment in, the U.S. bioeconomy.
The future of biotechnology regulation is an emerging innovative ecosystem. The path to accomplishing economic goals within this ecosystem requires a new public-facing engagement mechanism framework that satisfies congressional directives and advances the bioeconomy. This framework provides a BICO with the scaffolding necessary to create an infrastructure that invites public input and community reflection and the potential to decrease the number of biotechnologies that fail to reach the market. The proposed public engagement mechanism will work alongside the current regulatory system for biotechnology to enhance public trust, improve interagency coordination, and strengthen the bioeconomy.
Plan of Action
To reach our national bioeconomic policy goals, the BICO should use a public engagement program to solicit perspectives and develop an understanding of non-economic values, such as deeply held beliefs about the relationship between humans and the environment or personal or cultural perspectives related to specific biotechnologies. The BICO should devote $10 million over five years to public engagement programs and advisory board activities that (a) report to the BICO but are carried out through external partnerships; (b) provide meaningful social data for biotechnology regulation while running parallel to the CFRB regulatory system; and (c) produce a repository of public acceptance data for horizon scanning. These programs will inform regulatory decision-making, increase public trust, and achieve the congressional directives outlined in Sec. 10402 of the CHIPS & Science Act.
Recommendation 1. Establish a Bioeconomy Initiative Coordination Office (BICO) as a home office for interagency coordination.
The BICO should be housed within the Office of Science and Technology Policy (OSTP). The creation of a BICO is in alignment with the mandates of Executive Order (EO) 14081, Advancing Biotechnology and Biomanufacturing Innovation for a Sustainable, Safe, and Secure Bioeconomy, and the statutory authority granted to the OSTP through the CHIPS and Science Act.
Congress should allocate $2 million annually for five years to the BICO to carry out a public engagement program and advisory board activities in coordination with the EPA, FDA, and USDA.
The public engagement program would be housed within the BICO as a public-facing data-generating mechanism that parallels the current federal regulatory system for biotechnology.
The bioeconomy cuts across sectors (e.g., agriculture, health, materials, energy) and actively creates new connections and opportunities for national competitiveness. A thriving bioeconomy must ensure regulatory policy coherence and alignment among these sectors, and the BICO should be able to comprehensively integrate information from multiple sectors into a strategy that increases public awareness and acceptance of bioeconomy-related products and services. Public engagement should be used to build a data ecosystem of values related to biotechnologies that advance the bioeconomy.
Recommendation 2. Establish a process for public engagement and produce a large repository of public acceptance data.
Public acceptance data will be collected alongside the “biological data ecosystem,” as referenced by the Biden Administration in EO 14081, that advances innovation in the bioeconomy. To provide an expert element to the public engagement process, an advisory board should be involved in translating public acceptance data (opinions on how biotechnologies align with values) into policy suggestions and recommendations for regulatory agencies. The advisory board should be a formal entity recognizable under the Federal Advisory Committee Act (FACA) and the Freedom of Information Act (FOIA). It should be diverse but not so large that it becomes inefficient in fulfilling its mandate. Striking a balance between compositional diversity and operational efficiency is critical to ensuring the board provides valuable insights and recommendations to the BICO. The advisory board should consist of up to 25 members, reflect NSF data on diversity and STEM, and include a diverse range of citizens, from everyday consumers (such as parents, young adults, and patients from different ethnic backgrounds) to specialists in various disciplines (such as biologists, philosophers, hair stylists, sanitation workers, social workers, and dietitians). To promote transparency and increase public trust, data will be subject to FACA and the FOIA regulations, and advisory board meetings must be accessible to the public and their details must be published in the Federal Register. Additionally, management and applications of any data collected should employ CARE (Collective Benefit, Authority to Control, Responsibility, Ethics) Principles for Indigenous Data Governance, which complement FAIR (Findable, Accessible, Interoperable and Reusable) Principles. Adopting CARE brings a people and purpose orientation to data governance and is rooted in Indigenous Peoples’ sovereignty.
The BICO can look to the National Science and Technology Council’s published requests for information (RFI) and public meetings as a model for public engagement. BICO should work with an inclusive network of external partners to design workshops for collecting public acceptance data. Using participatory technology assessments (pTA) methods, the BICO will fund public engagement activities such as open-framing focus groups, workshops, and forums that prioritize input from nontraditional public audiences. The BICO office should use pre-submission data, past technologies, near-term biotechnologies, and, where helpful, imaginative scenarios to produce case studies to engage with these audiences. Public engagement should be hosted by external grantees who maintain a wide-ranging network of interdisciplinary specialists and interested citizens to facilitate activities.
Qualitative and quantitative data will be used to reveal themes, public values, and rationales, which will aid product developers and others in the bioeconomy as they decide on new directions and potential products. This process will also serve as the primary data source for the public acceptance data repository. Evolving risk pathways are a considerable concern for any regulatory system, especially one tasked with regulating biotechnologies. How risks are managed is subject to many factors (history, knowledge, experience product) and has a lasting impact on public trust. Advancing the bioeconomy requires a transparent decision-making process that integrates public input and allows society to redefine risks and safety as a collective. Public acceptance data should inform an understanding of values, risks, and safety and improve horizon-scanning capabilities.
Conclusion
As the use of biotechnology continues to expand, policymakers must remain adaptive in their regulatory approach to ensure that public trust is acquired and maintained. Recent federal action to boost the bioeconomy provides an opportunity for policymakers to expand public engagement and improve public acceptance of biotechnology. By centralizing coordination and integrating public input, policymakers can create a responsive regulatory convention that advances the bioeconomy while also building public trust. To achieve this, the public engagement program will combine elements of community-based participatory research, value-based assessments, pTA, and CARE Principles for Indigenous Data Governance. This approach will create a translational mechanism that improves interagency coordination and builds public trust. As the government works to create a regulatory framework for the bioeconomy, the need for public participation will only increase. By leveraging the expertise and perspectives of a diverse range of interested parties, policymakers can ensure that the regulatory framework is aligned with public values and concerns while promoting innovation and progress in the U.S. bioeconomy.
Translational governance focuses on expediting the implementation of regulations to safeguard human health and the environment while simultaneously encouraging innovation. This approach involves integrating non-economic values into decision-making processes to enhance scientific and statutory criteria of risk and safety by considering public perceptions of risk and safety. Essentially, it is the policy and regulatory equivalent of translational research, which strives to bring healthcare discoveries to market swiftly and safely.
The Office of Science and Technology Policy (OSTP) should use translational governance through public engagement as a backbone of the National Engineering Biology Research and Development Initiative. Following the designation of an interagency committee by the OSTP—and once established under the scope of direction outlined in Sec. 10403 of the CHIPS and Science Act—the Initiative Coordination Office should use a public engagement program to support the following National Engineering Biology Research and Development Initiative congressional directives (Sec. 10402):
- 1) Supporting social and behavioral sciences and economics research that advances the field of engineering biology and contributes to the development and public understanding of new products, processes, and technologies.
- 2) Improving the understanding of engineering biology of the scientific and lay public and supporting greater evidence-based public discourse about its benefits and risks.
- 3) Supporting research relating to the risks and benefits of engineering biology, including under subsection d: Ensuring, through the agencies and departments that participate in the Initiative, that public input and outreach are integrated into the Initiative by the convening of regular and ongoing public discussions through mechanisms such as workshops, consensus conferences, and educational events, as appropriate].
- 4) Expanding the number of researchers, educators, and students and a retooled workforce with engineering biology training, including from traditionally underrepresented and underserved populations.
- 5) Accelerating the translation and commercialization of engineering biology and biomanufacturing research and development by the private sector.
- 6) Improving the interagency planning and coordination of federal government activities related to engineering biology.
In 1986, the newly issued regulatory system for biotechnology products faced significant statutory challenges in establishing the jurisdiction of the three key regulatory agencies (EPA, FDA, and USDA). In those early days, agency coordination allowed for the successful regulation of products that had shared jurisdiction. For example, one agency would regulate the plant in the field (USDA), and another would regulate the feed or food produced by the plant (FDA/DHHS). However, as the biotechnology product landscape has advanced, so has the complexity of agency coordination. For example, at the time of their commercialization, plants that were modified to exhibit pesticidal traits, specific microbial products, and certain genetically modified organisms cut across product use-specific regulations that were organized according to agency (i.e., field plants, food, pesticides). In response, the three key agencies have traditionally implemented their own rules and regulations (e.g., EPA’s Generally Recognized as Safe, USDA’s Am I Regulated?, USDA SECURE Rule). While such policy action is under their statutory authorities, it has resulted in policy resistance, reinforcing the confusion and lack of transparency within the regulatory process.
Since its formal debut on June 26, 1986, the CFRB has undergone two major updates, in 1992 and 2017. Additionally, the CFRB has been subject to multiple memorandums of understanding as well as two executive orders across two consecutive administrations (Trump and Biden). With the arrival of The CHIPS and Science Act (2022) and Executive Order 14081, the CFRB will likely undertake one of its most extensive updates—modernization for the bioeconomy.
According to the EPA, when the CFRB was issued in 1986, the expectation was that the framework would respond to the experiences of the industry and the agencies and that modifications would be accomplished through administrative or legislative actions. Moreover, upon their release of the 2017 updates to the CFRB, the Obama Administration described the CFRB as a “flexible regulatory structure that provides appropriate oversight for all products of modern biotechnology.” With this understanding, the CFRB is designed to be iterative and responsive to change. However, as this memo and other reports demonstrate, not all products of modern biotechnology are subject to appropriate oversight. The opportunity loss between addressing regulatory concerns and acquiring the regulations necessary to capitalize on the evolving biotechnology landscape fully presents a costly delay. The CFRB is falling behind biotechnology in a manner that hampers the bioeconomy—and likely—the future economy.
Automating Scientific Discovery: A Research Agenda for Advancing Self-Driving Labs
Despite significant advances in scientific tools and methods, the traditional, labor-intensive model of scientific research in materials discovery has seen little innovation. The reliance on highly skilled but underpaid graduate students as labor to run experiments hinders the labor productivity of our scientific ecosystem. An emerging technology platform known as Self-Driving Labs (SDLs), which use commoditized robotics and artificial intelligence for automated experimentation, presents a potential solution to these challenges.
SDLs are not just theoretical constructs but have already been implemented at small scales in a few labs. An ARPA-E-funded Grand Challenge could drive funding, innovation, and development of SDLs, accelerating their integration into the scientific process. A Focused Research Organization (FRO) can also help create more modular and open-source components for SDLs and can be funded by philanthropies or the Department of Energy’s (DOE) new foundation. With additional funding, DOE national labs can also establish user facilities for scientists across the country to gain more experience working with autonomous scientific discovery platforms. In an era of strategic competition, funding emerging technology platforms like SDLs is all the more important to help the United States maintain its lead in materials innovation.
Challenge and Opportunity
New scientific ideas are critical for technological progress. These ideas often form the seed insight to creating new technologies: lighter cars that are more energy efficient, stronger submarines to support national security, and more efficient clean energy like solar panels and offshore wind. While the past several centuries have seen incredible progress in scientific understanding, the fundamental labor structure of how we do science has not changed. Our microscopes have become far more sophisticated, yet the actual synthesizing and testing of new materials is still laboriously done in university laboratories by highly knowledgeable graduate students. The lack of innovation in how we historically use scientific labor pools may account for stagnation of research labor productivity, a primary cause of concerns about the slowing of scientific progress. Indeed, analysis of scientific literature suggests that scientific papers are becoming less disruptive over time and that new ideas are getting harder to find. The slowing rate of new scientific ideas, particularly in the discovery of new materials or advances in materials efficiency, poses a substantial risk, potentially costing billions of dollars in economic value and jeopardizing global competitiveness. However, incredible advances in artificial intelligence (AI) coupled with the rise of cheap but robust robot arms are leading to a promising new paradigm of material discovery and innovation: Self-Driving Labs. An SDL is a platform where material synthesis and characterization is done by robots, with AI models intelligently selecting new material designs to test based on previous experimental results. These platforms enable researchers to rapidly explore and optimize designs within otherwise unfeasibly large search spaces.
Today, most material science labs are organized around a faculty member or principal investigator (PI), who manages a team of graduate students. Each graduate student designs experiments and hypotheses in collaboration with a PI, and then executes the experiment, synthesizing the material and characterizing its property. Unfortunately, that last step is often laborious and the most time-consuming. This sequential method to material discovery, where highly knowledgeable graduate students spend large portions of their time doing manual wet lab work, rate limits the amount of experiments and potential discoveries by a given lab group. SDLs can significantly improve the labor productivity of our scientific enterprise, freeing highly skilled graduate students from menial experimental labor to craft new theories or distill novel insights from autonomously collected data. Additionally, they yield more reproducible outcomes as experiments are run by code-driven motors, rather than by humans who may forget to include certain experimental details or have natural variations between procedures.
Self-Driving Labs are not a pipe dream. The biotech industry has spent decades developing advanced high-throughput synthesis and automation. For instance, while in the 1970s statins (one of the most successful cholesterol-lowering drug families) were discovered in part by a researcher testing 3800 cultures manually over a year, today, companies like AstraZeneca invest millions of dollars in automation and high-throughput research equipment (see figure 1). While drug and material discovery share some characteristics (e.g., combinatorially large search spaces and high impact of discovery), materials R&D has historically seen fewer capital investments in automation, primarily because it sits further upstream from where private investments anticipate predictable returns. There are, however, a few notable examples of SDLs being developed today. For instance, researchers at Boston University used a robot arm to test 3D-printed designs for uniaxial compression energy adsorption, an important mechanical property for designing stronger structures in civil engineering and aerospace. A Bayesian optimizer was then used to iterate over 25,000 designs in a search space with trillions of possible candidates, which led to an optimized structure with the highest recorded mechanical energy adsorption to date. Researchers at North Carolina State University used a microfluidic platform to autonomously synthesize >100 quantum dots, discovering formulations that were better than the previous state of the art in that material family.
These first-of-a-kind SDLs have shown exciting initial results demonstrating their ability to discover new material designs in a haystack of thousands to trillions of possible designs, which would be too large for any human researcher to grasp. However, SDLs are still an emerging technology platform. In order to scale up and realize their full potential, the federal government will need to make significant and coordinated research investments to derisk this materials innovation platform and demonstrate the return on capital before the private sector is willing to invest it.
Other nations are beginning to recognize the importance of a structured approach to funding SDLs: University of Toronto’s Alan Aspuru-Guzik, a former Harvard professor who left the United States in 2018, has created an Acceleration Consortium to deploy these SDLs and recently received $200 million in research funding, Canada’s largest ever research grant. In an era of strategic competition and climate challenges, maintaining U.S. competitiveness in materials innovation is more important than ever. Building a strong research program to fund, build, and deploy SDLs in research labs should be a part of the U.S. innovation portfolio.
Plan of Action
While several labs in the United States are working on SDLs, they have all received small, ad-hoc grants that are not coordinated in any way. A federal government funding program dedicated to self-driving labs does not currently exist. As a result, the SDLs are constrained to low-hanging material systems (e.g., microfluidics), with the lack of patient capital hindering labs’ ability to scale these systems and realize their true potential. A coordinated U.S. research program for Self-Driving Labs should:
Initiate an ARPA-E SDL Grand Challenge: Drawing inspiration from DARPA’s previous grand challenges that have catalyzed advancements in self-driving vehicles, ARPA-E should establish a Grand Challenge to catalyze state-of-the-art advancements in SDLs for scientific research. This challenge would involve an open call for teams to submit proposals for SDL projects, with a transparent set of performance metrics and benchmarks. Successful applicants would then receive funding to develop SDLs that demonstrate breakthroughs in automated scientific research. A projected budget for this initiative is $30 million1, divided among six selected teams, each receiving $5 million over a four-year period to build and validate their SDL concepts. While ARPA-E is best positioned in terms of authority and funding flexibility, other institutions like National Science Foundation (NSF) or DARPA itself could also fund similar programs.
Establish a Focused Research Organization to open-source SDL components: This FRO would be responsible for developing modular, open-source hardware and software specifically designed for SDL applications. Creating common standards for both the hardware and software needed for SDLs will make such technology more accessible and encourage wider adoption. The FRO would also conduct research on how automation via SDLs is likely to reshape labor roles within scientific research and provide best practices on how to incorporate SDLs into scientific workflows. A proposed operational timeframe for this organization is five years, with an estimated budget of $18 million over that time period. The organization would work on prototyping SDL-specific hardware solutions and make them available on an open-source basis to foster wider community participation and iterative improvement. A FRO could be spun out of the DOE’s new Foundation for Energy Security (FESI), which would continue to establish the DOE’s role as an innovative science funder and be an exciting opportunity for FESI to work with nontraditional technical organizations. Using FESI would not require any new authorities and could leverage philanthropic funding, rather than requiring congressional appropriations.
Provide dedicated funding for the DOE national labs to build self-driving lab user facilities, so the United States can build institutional expertise in SDL operations and allow other U.S. scientists to familiarize themselves with these platforms. This funding can be specifically set aside by the DOE Office of Science or through line-item appropriations from Congress. Existing prototype SDLs, like the Argonne National Lab Rapid Prototyping Lab or Berkeley Lab’s A-Lab, that have emerged in the past several years lack sustained DOE funding but could be scaled up and supported with only $50 million in total funding over the next five years. SDLs are also one of the primary applications identified by the national labs in the “AI for Science, Energy, and Security” report, demonstrating willingness to build out this infrastructure and underscoring the recognized strategic importance of SDLs by the scientific research community.
As with any new laboratory technique, SDLs are not necessarily an appropriate tool for everything. Given that their main benefit lies in automation and the ability to rapidly iterate through designs experimentally, SDLs are likely best suited for:
- Material families with combinatorially large design spaces that lack clear design theories or numerical models (e.g., metal organic frameworks, perovskites)
- Experiments where synthesis and characterization are either relatively quick or cheap and are amenable to automated handling (e.g., UV-vis spectroscopy is relatively simple, in-situ characterization technique)
- Scientific fields where numerical models are not accurate enough to use for training surrogate models or where there is a lack of experimental data repositories (e.g., the challenges of using density functional theory in material science as a reliable surrogate model)
While these heuristics are suggested as guidelines, it will take a full-fledged program with actual results to determine what systems are most amenable to SDL disruption.
When it comes to exciting new technologies, there can be incentives to misuse terms. Self-Driving Labs can be precisely defined as the automation of both material synthesis and characterization that includes some degree of intelligent, automated decision-making in-the-loop. Based on this definition, here are common classes of experiments that are not SDLs:
- High-throughput synthesis, where synthesis automation allows for the rapid synthesis of many different material formulations in parallel (lacks characterization and AI-in-the-loop)
- Using AI as a surrogate trained over numerical models, which is based on software-only results. Using an AI surrogate model to make material predictions and then synthesizing an optimal material is also not a SDL, though certainly still quite the accomplishment for AI in science (lacks discovery of synthesis procedures and requires numerical models or prior existing data, neither of which are always readily available in the material sciences).
SDLs, like every other technology that we have adopted over the years, eliminate routine tasks that scientists must currently spend their time on. They will allow scientists to spend more time understanding scientific data, validating theories, and developing models for further experiments. They can automate routine tasks but not the job of being a scientist.
However, because SDLs require more firmware and software, they may favor larger facilities that can maintain long-term technicians and engineers who maintain and customize SDL platforms for various applications. An FRO could help address this asymmetry by developing open-source and modular software that smaller labs can adopt more easily upfront.
Finding True North: How Community Navigator Programs Can Forward Distributional Justice
State, local, and Tribal governments still face major capacity issues when it comes to accessing federal funding opportunities – even with the sheer amount of programs started since the Bipartisan Infrastructure Law (BIL) and Inflation Reduction Act (IRA) were passed. Communities need more technical assistance if implementation of those bills is going to reach its full potential, but federal agencies charged with distributing funding can’t offer the amount needed to get resources to where they need to go quickly, effectively, and equitably.
Community navigator programs offer a potential solution. Navigators are local and regional experts with a deep understanding of the climate and clean energy challenges and opportunities in their area. These navigators can be trained in federal funding requirements, clean energy technologies, permitting processes, and more – allowing them to share that knowledge with their communities and boost capacity.
Federal agencies like the Department of Energy (DOE) should invest in standing up these programs by collecting feedback on specific capacity needs from regional partners and attaching them to existing technical assistance funding. These programs can look different, but agencies should consider specific goals and desired outcomes, identify appropriate regional and local partners, and explore additional flexible funding opportunities to get them off the ground.
Community navigator programs can provide much-needed capacity combined with deep place-based knowledge to create local champions with expertise in accessing federal funding – relieving agencies of technical assistance burdens and smoothing grant-writing processes for local and state partners. Agencies should quickly take advantage of these programs to implement funding more effectively.
Challenge
BIL/IRA implementation is well under way, with countless programs being stood up at record speed by federal agencies. Of course, the sheer size of the packages means that there is still quite a bit of funding on the table at DOE that risks not being distributed effectively or equitably in the allotted time frame. While the agency is making huge strides to roll out its resources—which include state-level block grants, loan guarantee programs, and tax rebates—it has limited capacity to fully understand the unique needs of individual cities and communities and to support each location effectively in accessing funding opportunities and implementing related programs.
Subnational actors own the burden of distributing and applying for funding. States, cities, and communities want to support distribution, but they are not equally prepared to access federal funding quickly. They lack what officials call absorptive capacity, the ability to apply for, distribute, and implement funding packages. Agencies don’t have comprehensive knowledge of barriers to implementation across the hundreds of thousands of communities and can’t provide individualized technical assistance that is needed.
Two recent research projects identified several keys ways that cities, state governments, and technical assistance organizations need support from federal agencies:
- Identifying appropriate federal funding opportunities and matching with projects and stakeholders
- Understanding complex federal requirements and processes for accessing those opportunities
- Assistance with completing applications quickly and accurately
- Assembling the necessary technical capacity during the pre-application period to develop a quality application with a higher likelihood of funding
- Guidance on allowable expenditures from federal funding that support the overall technical capacity or coordinating capability of a subnational entity to collect, analyze, and securely share data on project outcomes
While this research focuses on several BIL/IRA agencies, the Department of Energy in particular distributed hundreds of billions of dollars to communities over the past few years. DOE faces an additional challenge: up until 2020, the agency was mainly focused on conducting basic science research. With the advent of BIL, IRA, and the CHIPS and Science Act, it had to adjust quickly to conduct more deployment and loan guarantee activities.
In order to meet community needs, DOE needs help – and at its core, this problem is one of talent and capacity. Since the passage of BIL, DOE has increased its hiring and bolstered its offices through the Clean Energy Corps.
Yet even if DOE could hire faster and more effectively, the sheer scope of the problem outweighs any number of federal employees. Candidates need not only certain skills but also knowledge specific to each community. To fully meet the needs of the localities and individuals it aims to reach, DOE would need to develop thorough community competency for the entire country. With over 29,000 defined communities in the United States – with about half being classified as ‘low capacity’ – it’s simply impossible to hire enough people or identify and overcome the barriers each one faces in the short amount of time allotted to implementation of BIL/IRA. Government needs outside support in order to distribute funds quickly and equitably.
Opportunity
DOE, the rest of the federal government, and the national labs are keen to provide significant technical assistance for their programs. DOE’s Office of State and Community Energy Programs has put considerable time and energy into expanding its community support efforts, including the recently stood up Office of Community Engagement and the Community Energy Fellows program.
National labs have been engaging communities for a long time – the National Renewable Energy Laboratory (NREL) conducts trainings and information sessions, answers questions, and connects communities with regional and federal resources. Colorado and Alaska, for example, were well-positioned to take advantage of federal funding when BIL/IRA were released as a result of federal training opportunities from the NREL, DOE, and other institutions, as well as local and regional coordinated approaches to preparing. Their absorptive capacity has helped them successfully access opportunities – but only because communities, cities, and Tribal governments in those regions have spent the last decade preparing for clean energy opportunities.
While this type of long-term technical assistance and training is necessary, there are resources available right now that are at risk of not being used if states, cities, and communities can’t develop capacity quickly. As DOE continues to flex its deployment and demonstration muscles, the agency needs to invest in community engagement and regional capacity to ensure long-term success across the country.
A key way that DOE can help meet the needs of states and cities that are implementing funding is by standing up community navigator programs. These programs take many forms, but broadly, they leverage the expertise of individuals or organizations within a state or community that can act as guides to the barriers and opportunities within that place.
Community navigators themselves have several benefits. They can act as a catalytic resource by delivering quality technical assistance where federal agencies may not have capacity. In DOE’s case, this could help communities understand funding opportunities and requirements, identify appropriate funding opportunities, explore new clean energy technologies that might meet the needs of the community, and actually complete applications for funding quickly and accurately. They understand regional assets and available capital and have strong existing relationships. Further, community navigators can help build networks – connecting community-based organizations, start-ups, and subnational government agencies based on focus areas.
The DOE and other agencies with BIL/IRA mandates should design programs to leverage these navigators in order to better support state and local organizations with implementation. Programs that leverage community navigators will increase the efficiency of federal technical assistance resources, stretching them further, and will help build capacity within subnational organizations to sustain climate and clean energy initiatives longer term.
These programs can target a range of issues. In the past, they have been used to support access to individual benefits, but expanding their scope could lead to broader results for communities. Training community organizations, and by extension individuals, on how to engage with federal funding and assess capital, development, and infrastructure improvement opportunities in their own regions can help federal agencies take a more holistic approach to implementation and supporting communities. Applying for funding takes work, and navigators can help – but they can also support the rollout of proposed programs once funding is awarded and ensure the projects are seen through their life cycles. For example, understanding broader federal guidance on funding opportunities like the Office of Management and Budget’s proposed revisions to the Uniform Grants Guidance can give navigators and communities additional tools for monitoring and evaluation and administrative capacity.
Benefits of these programs aren’t limited to funding opportunities and program implementation – they can help smooth permitting processes as well. Navigators can act as ready-made champions for and experts on clean energy technologies and potential community concerns. In some communities, distrust of clean energy sources, companies, and government officials can slow permitting, especially for emerging technologies that are subject to misinformation or lack of wider recognition. Supporting community champions that understand the technologies, can advocate on their behalf, and can facilitate relationship building between developers and community members can reduce opposition to clean energy projects.
Further, community navigator programs could help alleviate cost-recovery concerns from permitting teams. Permitting staff within agencies understand that communities need support, especially in the pre-application period, but in the interest of being good stewards of taxpayer dollars they are often reluctant to invest in applications that may not turn into projects.
Overall, these programs have major potential for expanding the technical assistance resources of federal agencies and the capacity of state and local governments and community-based organizations. Federal agencies with a BIL/IRA mandate should design and stand up these programs alongside the rollout of funding opportunities.
Plan of Action
With the Biden Administration’s focus on community engagement and climate and energy justice, agencies have a window of opportunity in which to expand these programs. In order to effectively expand community navigator programs, offices should:
Build community navigator programs into existing technical assistance budgets.
Offices at agencies and subcomponents with BIL/IRA funding like the Department of Energy, the Bureau of Ocean Energy Management, the Bureau of Land Management (BLM), and the Environmental Protection Agency (EPA) have expanded their technical assistance programs alongside introducing new initiatives from that same funding. Community navigator programs are primarily models for providing technical assistance – and can use programmatic funding. Offices should assess funding capabilities and explore flexible funding mechanisms like the ones below.
Some existing programs are attached to large block grant funding, like DOE’s Community Energy Programs attached to the Energy Efficiency and Conservation Block Grant Program. This is a useful practice as the funding source has broad goals and is relatively large and regionally nonspecific.
Collect feedback from regional partners on specific challenges and capacity needs to appropriately tailor community navigator programs.
Before setting up a program, offices should convene local and regional partners to assess major challenges in communities and better design a program. Feedback collection can take the form of journey mapping, listening sessions, convenings, or other structures. These meetings should rely on partners’ expertise and understanding of the opportunities specific to their communities.
For example, if there’s sufficient capacity for grant-writing but a lack of expertise in specific clean energy technologies that a region is interested in, that would inform the goals, curricula, and partners of a particular program. It also would help determine where the program should sit: if it’s targeted at developing clean energy expertise in order to overcome permitting hurdles, it might fit better at the BLM or be a good candidate for a partnership between a DOE office and BLM.
Partner with other federal agencies to develop more holistic programs.
The goals of these programs often speak to the mission of several agencies – for example, the goal of just and equitable technical assistance has already led to the Environmental Justice Thriving Communities Technical Assistance Centers program, a collaboration between EPA and DOE. By combining resources, agencies and offices can even further expand the capacity of a region and increase accessibility to more federal funding opportunities.
A good example of offices collaborating on these programs is below, with the Arctic Energy Ambassadors, funded by the Office of State and Community Energy Programs (SCEP) and the Arctic Energy Office.
Roadmap for Success
There are several initial considerations for building out a program, including solidifying the program’s goals, ensuring available funding sources and mechanisms, and identifying regional and local partners to ensure it is sustainable and effective. Community navigator programs should:
Identify a need and outline clear goals for the program.
Offices should clearly understand the goals of a program. This should go without saying, but given the inconsistency in needs, capacity, and readiness across different communities, it’s key to develop a program that has defined what success looks like for the participants and region. For example, community navigator programs could specifically work to help a region navigate permitting processes; develop several projects of a singular clean energy technology; or understand how to apply for federal grants effectively. Just one of those goals could underpin an entire program.
Ideally, community navigator programs would offer a more holistic approach – working with regional organizations or training participants who understand the challenges and opportunities within their region to identify and assess federal funding opportunities and work together to develop projects from start to finish. But agencies just setting up programs should start with a more directed approach and seek to understand what would be most helpful for an area.
Source and secure available funding, including considerations for flexible mechanisms.
There are a number of available models using different funding and structural mechanisms. Part of the benefit of these programs is that they don’t rely solely on hiring new technical assistance staff, and offices can use programmatic funds more flexibly to work with partners. Rather than hiring staff to work directly for an agency, offices can work with local and regional organizations to administer programs, train other individuals and organizations, and augment local and community capacity.
Further, offices should aim to work across the agency and identify opportunities to pool resources. The IRA provided a significant amount of funding for technical assistance across the agency – for example, the State Energy Program funding at SCEP, the Energy Improvements in Rural and Remote Areas funding at the Office of Clean Energy Demonstrations (OCED), and the Environmental Justice Thriving Communities Technical Assistance Centers program from a Department of Transportation/Department of Energy partnership could all be used to fund these programs or award funding to organizations that could administer programs.
Community navigator programs could also be good candidates for entities like FESI, the DOE’s newly authorized Foundation for Energy Security and Innovation. Although FESI must be set up by DOE, once formally established it becomes a 501(c)(3) organization and can combine congressionally appropriated funding with philanthropic or private investments, making it a more flexible tool for collaborative projects. FESI is a good tool for the partnerships described above – it could hold funding from various sources and support partners overseeing programs while convening with their federal counterparts.
Finally, DOE is also exploring the expanded use of Partnership Intermediary Agreements (PIAs), public-private partnership tools that are explicitly targeted at nontraditional partners. As the DOE continues to announce and distribute BIL/IRA funds, these agreements could be used to administer community navigator programs.
Build relationships and partner with appropriate local and regional stakeholders.
Funding shouldn’t be the only consideration. Agency offices need to ensure they identify appropriate local and regional partners, both for administration and funding. Partners should be their own form of community navigators – they should understand the region’s clean energy ecosystem and the unique needs of the communities within. In different places, the reach and existence of these partners may vary – not every locality will have a dedicated nonprofit or institution supporting clean energy development, environmental justice, or workforce, for example. In those cases, there could be regional or county-level partners that have broader scope and more capacity and would be more effective federal partners. Partner organizations should not only understand community needs but have a baseline level of experience in working with the federal government in order to effectively function as the link between the two entities. Finding the right balance of community understanding and experience with federal funding is key.
This is not foolproof. NREL’s ‘Community to Clean Energy (C2C) Peer Learning Cohorts’ can help local champions share challenges and best practices across states and communities and are useful tools for enhancing local capacity. But this program faces similar challenges as other technical assistance programs: participants engage with federal institutions that provide training and technical expertise that may not directly speak to local experience. It may be more effective to train a local or regional organization with a deeper understanding of the specific challenges and opportunities of a place and greater immediate buy-in from the community. It’s challenging for NREL as well to identify the best candidates in communities across the country without that in-depth knowledge of a region.
Additional federal technical assistance support is sorely needed if BIL/IRA funds are to be distributed equitably and quickly. Federal agencies are moving faster than ever before but don’t have the capacity to assess state and local needs. Developing models for state and local partners can help agencies get funding out the door and where it needs to go to support communities moving towards a clean energy transition.
Case Study: DOE’s Arctic Energy Ambassadors
DOE’s Arctic Energy Office (AEO) has been training state level champions for years but recently introduced the Arctic Energy Ambassadors program, using community navigators to expand clean energy project development.
The program, announced in late October 2023, will support regional champions of clean energy with training and resources to help expand their impact in their communities and across Alaska. The ambassadors’ ultimate goal is clean energy project development: helping local practitioners access federal resources, identify appropriate funding opportunities, and address their communities’ specific clean energy challenges.
The Arctic Energy Office is leading the program with help from several federal and subnational organizations. DOE’s Office of State and Community Engagement and Office of Energy Efficiency and Renewable Energy are also providing funding.
On the ground, the Denali Commission will oversee distribution of funding, and the Alaska Municipal League will administer the program. The combination of comparative advantages is what will hopefully make this program successful. The Denali Commission, in addition to receiving congressionally appropriated funding, can receive funds from other nonfederal sources in service of its mission. This could help the Commission sustain the ambassadors over the longer term and use funds more flexibly. The Commission also has closer relationships with state-level and Tribal governments and can provide insight into regional clean energy needs.
The Alaska Municipal League (AML) brings additional value as a partner; its role in supporting local governments across Alaska gives it a strong sense of community strengths and needs. AML will recruit, assess, and identify the 12 ambassadors and coordinate program logistics and travel for programming. Identifying the right candidates for the program requires in-depth knowledge of Alaskan communities, including more rural and remote ones.
For its own part, the AEO will provide the content and technical expertise for the program. DOE continues to host an incredible wealth of subject matter knowledge on cutting-edge clean energy technologies, and its leadership in this area combined with the local understanding and administration by AML and Denali Commission will help the Arctic Energy Ambassadors succeed in the years to come.
In all, strong local and regional partners, diverse funding sources and flexible mechanisms for delivering it, and clear goals for community navigator programs are key for successful administration. The Arctic Energy Ambassadors represents one model that other agencies can look to for success.
Case study: SCEP’s Community Energy Fellows Program
DOE’s State and Community Energy Programs office has been working tirelessly to implement BIL and IRA, and last year as part of those efforts it introduced the Community Energy Fellows Program (CEFP).
This program aims to support local and Tribal governments with their projects funded by the Energy Efficiency and Conservation Block Grants. CEFP matches midcareer energy professionals with host organizations to provide support and technical assistance on projects as well as learn more about how clean energy development happens.
Because the program has a much broader scope than the Arctic Energy Fellows, it solicits and assesses host institutions as well as Fellows. This allows SCEP to more effectively match the two based on issue areas, expertise, and specific skillsets. This structure allows for multiple community navigators – the host institution understands the needs of its community and the Fellow brings expertise in federal programs and clean energy development. Both parties gain from the fellowship.
In addition, SCEP has added another resource: Clean Energy Coaches, who provide another layer of expertise to the host institution and the Fellow. These coaches will help develop the Fellows’ skills as they work to support the host institution and community.
Some of the awards are already being rolled out, with a second call for host institutions and Fellows out now. Communities in southern Maine participating in the program are optimistic about the support that navigators will provide – and their project leads have a keen sense of the challenges in their communities.
As the program continues to grow, it can provide a great opportunity for other agencies and offices to learn from its success.
Connecting Utility-Scale Renewable Energy Resources with Rural-Urban Transmission
There is a vast amount of wind and solar power ready to be harvested and moved to market across the United States, but it must be connected through long-distance transmission to protect against intermittency instability. Strategically placed long-distance transmission also ensures that rural and urban populations benefit economically from the transition to clean energy.
The Biden-Harris Administration should facilitate the transition to a clean grid by aggressively supporting utility-scale renewable energy resources in rural areas that are connected to urban centers through modernized high-voltage direct current (HVDC) transmission. To move toward total electrification and a decarbonized grid, the Department of the Interior (DOI) and the Bureau of Land Management (BLM) must encourage renewable energy production on federal land through the BLM’s multiple-use mandate. BLM must work in tandem with the Department of Energy (DOE), Department of Transportation (DOT), and the Federal Energy Regulatory Commission (FERC) to transport increased clean power generation through newly constructed HVDC lines that can handle this capacity.
This two-pronged approach will move loads from high-generation, low-demand rural areas to low-generation, high-demand (often coastal) urban hubs. As residents in the East arrive home from work and turn on their TVs, the sun is still up in the West and can provide for their energy needs. As residents in the Northwest wake up, grind coffee, and tune into the news, they can rely on power from the Midwest, where the wind is blowing.
Challenge and Opportunity
Utility-Scale Renewable Energy Development on Federal Land
After taking office, the Biden-Harris Administration rejoined the Paris Climate Agreement and committed the United States to reduce greenhouse gas (GHG) emissions by 50–52% below 2005 levels by 2030. The Inflation Reduction Act (IRA) is a positive step toward meeting these GHG emissions goals. The IRA allocated $369 billion to climate and energy security investments, which should be used to bolster development of renewables on federal lands. Together with the Infrastructure Investment and Jobs Act, this funding affords an enormous opportunity.
Building utility-scale renewable energy infrastructure such as wind or solar requires a vast amount of space. A utility-scale solar power plant could require between 5 and 10 acres of land in order to generate enough energy to power approximately 173 homes.
The federal government owns a vast amount of land, some of which is viable for wind and solar. To be exact, the federal government owns 640 million acres of land (nearly one-third of all U.S. land), which is managed through the Bureau of Land Management (BLM), the Fish and Wildlife Services (FWS), the National Park Service (NPS), the Forest Service (USFS), and the Department of Defense (DOD).
Land owned by the BLM (245 million acres) and the USFS (193 million acres) falls under similar multiple-use, sustained-yield mandates. The majority of those combined 438 million acres under BLM jurisdiction are the concern of this memo. According to the Federal Land Policy and Management Act of 1976 (FLPMA), resources and uses on those federal lands must be used in a balanced combination that “best meets present and future needs of the American people.” This multiple-use mandate presents an enormous opportunity for deployment of utility-scale renewable energy resources. The BLM manages over 19 million acres of public lands with excellent solar potential across six states and 20.6 million acres of public lands with excellent wind potential. This land is ripe for utility-scale renewable energy generation and will be critical to achieving the nation’s decarbonization goals. Green energy generation on these lands should be privileged.
Together, the 15 central U.S. states account for the majority of national wind and solar technical potential. However, these states are projected to comprise only a third of the nation’s electrical demand in 2050. Population-dense and predominantly coastal cities have higher energy demand, while the Midwest and Southwest are dominated by rural communities and public land. Transmission lines are needed to transport renewable energy from these central states to the urban centers with large energy markets.
Transmission Development on a Rural-Urban Grid
The U.S. grid is split into three regions: the Western Interconnection, the Eastern Interconnection, and ERCOT Interconnection (Texas). These three regions are only minimally connected nationally, regionally, or even through interstate connections due to intense localism on the part of utilities that are not financially incentivized to engage in regional transmission. There are three key utility ownership models in the United States: private investor-owned utilities (IOUs), public power utilities owned by states or municipalities, and nonprofit rural electric cooperatives (co-ops).
The Federal Energy Regulatory Commission is an independent agency that regulates the interstate transmission of electricity. In this capacity, it ensures that regional goals are established and met. Two types of entities established by FERC, regional transmission organizations (RTOs) and independent system operators (ISOs), help to coordinate regional transmission across utilities. RTOs are voluntary bodies of utilities that streamline and coordinate regional transmission initiatives and objectives. ISOs are independent and federally regulated entities that coordinate regional transmission to ensure nondiscriminatory access and streamline regional goals. ISOs and RTOs are similar, but RTOs generally have jurisdiction over a larger geographic area. Two-thirds of the nation’s electricity load is served in ISO/RTO regions. The remainder of the energy market is dominated by vertically integrated utilities that manage both transmission and distribution.
Establishing more connections among the three regional grids will support renewable energy development, reduce GHG emissions, save consumers money, increase resilience, and create jobs. Connecting the power grid across states and time zones is also vital to peak load control. Greater connection mitigates the inherent instability of renewables: if clouds cover the sun in the East, winds will still blow in the Midwest. If those winds die, water will still flow in the Northwest’s rivers.
The best way to make connections between regional and local grids is through high-voltage direct current electrical transmission systems. HVDC transmission allows for the direct current (DC) transfer of power over long distances, which is more energetically efficient than alternating current (AC).
There is precedent and forward momentum on developing interstate transmission, including projects like SunZia in the Southwest, TransWest Express in the Mountain West, Grain Belt Express in the Midwest, and Champlain Hudson Power Express in the Northeast. The Midcontinent Independent System Operator (MISO) recently approved $10.3 billion in regional HVDC lines, a move that is projected to generate up to $52.2 billion in net benefits through mitigated blackouts and increased fuel savings.
Though co-ops account for the smallest percentage of utilities (there are 812 total), they are found in the primarily rural Midwest, where there is high generation potential for solar and wind energy. Here, utility participation in RTOs is low. FERC has expressed disinterest in mandating RTO participation and in taking punitive action. However, it can incentivize regional planning through RTO membership or, where unappealing to local utilities, incentivize regional transmission investment through joint ownership structures.
The Biden-Harris Administration has taken the first steps to address these issues, such as releasing an Action Plan in 2022 to encourage federal agencies to expedite the permitting process of renewable energy. The president should expand on the existing Action Plan to build a larger coalition of contributors and also encourage the following recommendations to facilitate maximum clean-energy transition efficiency. Achieving the Biden-Harris Administration decarbonization targets requires the tandem development of rural utility-scale renewable energy and regional HVDC transmission to carry this energy to urban centers, benefiting people and economies across the United States.
Plan of Action
Recommendation 1. BLM should prioritize renewable energy permit awards near planned HVDC transmission lines and existing rights-of-way.
Compared to FY20, BLM reported that it has increased renewable energy permitting activities by 35%, supporting the development of 2,898 MW of onshore solar, wind, and geothermal energy generation capacity. BLM received 130 proposals for renewable energy generation projects on public lands and six applications for interconnected transmission lines in 2021. The transmission line proposals would support 17 GW of energy, which would also support the transmission of renewable energy on non-federal land across the Southwest.
DOI can directly support renewable energy generation by instructing BLM to ensure that contracts are awarded through the multiple-use, sustained-yield mandate in a specific way. Though Section 50265 of the IRA mandates that oil and gas leases must continue, DOI can plan with an eye to the future. Renewables built on public lands should be constructed in areas closest to planned HVDC transmission, including but not limited to Kansas, Wyoming, and New Mexico. Renewables should always take precedence over coal, oil, and natural gas in areas where existing or future HVDC transmission lines are planned to begin construction or upgrades. Renewables should also always take precedence near railways and federal highways, where HVDC transmission is more easily implemented. Contracts for renewables near planned HVDC interstate transmission lines and existing rights-of-way like railways and highways should be given precedence in the awards process. This will prime the grid for the Biden-Harris Administration’s decarbonization goals and ensure that oil and gas generation is situated closer to legacy lines that are more likely to be retired sooner. DOI has unique considerations due to Section 50265 of the IRA, but it can still coordinate with other federal agencies to manage its constraints and judiciously prioritize transmission-adjacent renewable energy generation sites.
Recommendation 2. FERC should incentivize regional transmission planning by encouraging federal-local partnerships, introducing joint-ownership structures, and amending Order 1000.
FERC should encourage RTOs to prioritize regional transmission planning in order to meet decarbonization goals and comply with an influx of cheaper, cleaner energy into its portfolio. The FERC-NARUC Task Force is a good starting point for this cooperation and should be expanded upon. This federal-state task force on electric transmission is a good blueprint for how federal objectives for regional planning can work hand-in-hand with local considerations. FERC can highlight positive cases like SB448 in Nevada, which incentivizes long-distance transmission and mandates the state’s participation in an RTO by 2030. FERC should encourage utility participation in RTOs but emphasize that long-distance transmission planning and implementation is the ultimate objective. Where RTO participation is not feasible, FERC can incentivize utility participation in regional transmission planning in other ways.
FERC should incentivize utility participation in regional transmission by encouraging joint-ownership structures, as explored in a 2019 incentives docket. In March 2019, FERC released a Notice of Inquiry seeking comments on “the scope and implementation of its electric transmission incentives regulations and policy.” Commenters supported non-public utility joint-ownership promotion, including equity in transmission lines that can offset customer rates, depending on the financing structure. In February 2023, FERC approved incentives for two of Great River Energy’s interstate transmission projects, in which it will own a 52.3% stake of the Minnesota Iron Range project and 5% of the Big Stone project. In the Iron Range project, Great River can use a 50% equity and 50% debt capital structure, placing the construction expenses on its rate base. The cash flow generated by this capital structure is necessary for the completion of this interstate transmission line, and FERC should encourage similar projects and incentives.
FERC should amend Order 1000—Transmission Planning and Cost Allocation. As former Commissioner Glick has noted, Order 1000 in its current iteration unintentionally encourages the construction of smaller lines over larger-scale regional transmission lines because utilities prefer not to engage in potentially lengthy, expensive competition processes. In April 2022, FERC published a Notice of Proposed Rulemaking (NOPR), which, among other things, attempts to address this perverse incentive by amending the order “to permit the exercise of a federal rights of first refusal for transmission facilities selected in a regional transmission plan for purposes of cost allocation, conditioned on the incumbent transmission provider establishing joint ownership of those facilities.” Amending this rule and allowing federal ROFR for joint ownership structures will encourage partnerships, spread risks across more parties, and allow greater access to large investments that traditionally require an insurmountable capital investment for most investors new to this sector. The NOPR also encouraged long-term regional transmission planning and improved coordination between local and regional entities and implementation goals. The amendment was supported by both utilities and environmental groups. Public comments were closed for submission in summer 2022. Now, over a year later, FERC should act quickly to issue a final rule on amending Order 1000.
In addition to incentivizing more regionally focused transmission planning at the utility level, federal agencies should work together to ensure that HVDC lines are strategically placed to facilitate the delivery of renewable energy to large markets.
Recommendation 3. The Biden-Harris Administration should encourage the Department of Transportation to work with the Grid Deployment Office (GDO) and approve state DOT plans for HVDC lines along existing highways and railroads.
In 2021, the Federal Highway Administration (FHWA) released a memorandum providing guidance that state departments of transportation may leverage “alternative uses” of existing highway rights of way (ROW), including for renewable energy, charging stations, transmission lines, and broadband projects, and that the FHWA may approve alternative uses for ROWs so long as they benefit the public and do not impair traffic. The GDO, created by the Biden-Harris Administration, should work directly with state DOTs to plan for future interstate lines. As these departments coordinate, they should use a future highway framework characterized by increased electric vehicle (EV) usage, increased EV charging station needs, and improved mass transit. This will allow DOT to reinterpret impeding the “free and safe flow of traffic.” The FHWA should encourage state DOTs to use the SOO Green HVDC Link as a blueprint. The idea of reconciling siting issues by building transmission lines along existing rights-of-way such as highways or railroads is known to this administration, as evidenced by President Biden’s reference in a 2022 White House Statement and by FERC’s June 2020 report on barriers and opportunities for HVDC transmission.
Recommendation 4. DOI, the Department of Agriculture (USDA), DOD, DOE, and the Environmental Protection Agency (EPA) should sign a new Memorandum of Understanding (MOU) that builds on their 2022 MOU but includes DOT.
In 2022, DOI, USDA, DOD, DOE, and the EPA signed an MOU that would expedite the review process of renewable energy projects on federal lands. DOT, specifically its FHWA and Federal Railroad Administration (FRA), should be included in this memorandum. The president should direct these agencies to sign a second MOU to work together to create a regional and national outline for future transmission lines and prioritize permit requests that align with that outline. This new MOU should add the DOT and illustrate the specific ways that FHWA and FRA can support its goals by repurposing existing transportation rights-of-ways.
Recommendation 5. All future covered transmission planning should align with the MOU proposed in Recommendation 4.
Under Section 50152 of the IRA, the DOE received $760 million to distribute federal grants for the development of covered transmission projects. Section 50153 appropriates an additional $100 million to DOE, which is specifically tailored to wind electricity planning and development, both offshore and interregional. The DOE should require that all transmission planning using this federal funding align with the long-term outline created under the MOU recommended above. Additionally, preference should be given to transmission lines (receiving federal funding) that link utility-scale renewable energy projects with large urban centers.
Recommendation 6. The EPA should fund technical and educational training to rural and disadvantaged communities that might benefit from an influx of high-demand green energy jobs.
The federal government should leverage existing funding to ensure that rural and disadvantaged communities directly benefit from economic development opportunities facilitated by the clean energy transition. The EPA should use funds from Section 60107 of the IRA to provide technical and educational assistance to low-income and disadvantaged communities in the form of job training and planning. EPA funding can be used to ensure that local communities have the technical knowledge to take advantage of the jobs and opportunities created by projects like the SOO Green HVDC Link. Because this section of the IRA only funds up to $17 million in job training, this should be allocated to supplement community colleges and other technical training programs that have established curricula and expertise.
To ensure that efforts are successful in the long term, federal agencies, utilities, and other stakeholders must have access to accurate and current information about transmission needs nationwide.
Recommendation 7. Congress should fund regular updates to existing future transmission needs studies.
Congress must continue to approve future research into both halves of the electrification equation: generation and transmission. Congress already approved funding for the NREL Electrification Futures Study and the NREL Interconnections SEAM Study, both published in 2021. These studies allow NREL to determine best-case scenario models and then communicate its research to the RTOs that are best positioned to help IOUs plan for future regional transmission. These studies also guide FERC and the GDO as they determine best-case scenarios for linking rural clean energy resources to urban energy markets.
In addition, Congress must continue to fund the GDO National Transmission Needs Study, which was funded by the Bipartisan Infrastructure Law (BIL). This study researches capacity constraints and congestion on the transmission grid and will help FERC and RTOs determine where future transmission should be planned in order to relieve pressure and meet needs. The final Needs Study was issued in summer 2023, but it must be updated on a regular basis if the country is to actively move toward grid coordination.
The Summer 2023 Needs Study included, for the first time, modeling and discussion of anticipated future capacity constraints and transmission congestion. As the grid continues to evolve and different types of renewable energy are integrated into the grid, future needs studies should continue to include forward-looking models under a variety of renewable energy scenarios.
Conclusion
The Biden-Harris Administration has rejoined the Paris Climate Agreement, affirming their commitment to significant decarbonization goals. To achieve this end, the administration must follow a two-pronged approach that facilitates the installation of utility-scale renewable energy on public lands in the Midwest and Southwest and expedites the implementation of HVDC transmission lines that will link these resources to urban energy markets.
It is impossible to meet the Biden-Harris Administration climate goals without drastic action to encourage further electrification, renewable energy development, and transmission planning. Fortunately, these actions are ripe for bipartisan coordination and are already supported through existing laws like the IRA and BIL. These recommendations will help meet these goals and secure a brighter future for Americans across the rural-urban divide.
FERC has made recent strides toward encouraging transmission modernization through Order No. 2023. While this rule primarily addresses the “largest interconnection queue size in history” and takes steps to accelerate the interconnection process, it does not address the lack of transmission capacity and infrastructure nationally. Order No. 2023 is a vital step forward in interconnection process modernization, and it should be the first of many toward large-scale transmission planning.
As of November 2021, BLM-managed lands produced 12 GW of power from renewable energy sources, through 36 wind, 37 solar, and 48 geothermal permitted projects. To put this number into perspective, 1 GW is enough to power approximately 750,000 homes. Helpfully, BLM maintains a list of planned and approved renewable energy projects on its lands. Additionally, the Wilderness Society maintains an interactive map of energy projects on public lands.
In contrast, BLM manages over 37,000 oil and gas leases, including over 96,000 wells.
Due to their high renewable-energy development potential, Midwest and Southwest states stand to disproportionately gain from a clean energy jobs boom in the fields of construction, management, and the technical trades. Given the West’s and Northeast’s desire for a decarbonized grid and their comparatively greater energy use, these states will benefit by receiving greater amounts of renewable energy to meet their energy needs and decarbonization goals.
The United States lags in the number of HVDC transmission lines, particularly compared to China and Europe. In 2022, only 552 miles of high voltage transmission were added to the United States. Currently, there are four regional transmission lines proposed, two of which expect to begin construction this year. Of these planned lines, three are in the Midwest and Southwest, and one is in the Northeast. While this is progress, China has recently invested $26 billion in a national network of ultra-high-voltage lines.
Five agencies manage federal land, including BLM, USFS, FWS, NPS, USDA, and DOD. However, only BLM and USFS operate under the FLPMA’s multiple-use, sustained-yield mandates, and their land-use mandates are similar. The other agencies’ mandates require them to protect and conserve animals and plants, promote tourism and engagement with public lands, and manage military installations and bases. This said, BLM and USFS are the best candidates for developing utility-scale renewable energy resources through their specific mandates. This memo focuses on the larger of those entities, which has greater potential for substantial renewable energy development and an established permitting system. As discussed in this USFS and NREL study, the study of renewable-energy resource construction on national forest system lands is still in early stages, whereas BLM’s policies and systems are developed.
It is not within the scope of this memo to address issues specific to Tribal lands. However, various federal agencies offer clean energy funding specifically for Tribes, such as the Tribal Energy Loan Guarantee Program. If desired by Tribal communities, the U.S. government should prioritize funding for HVDC transmission lines that link Tribal power generation to Tribal urban centers and utility grids. For tribes seeking guidance on implementing utility-scale projects, Navajo Nation can serve as one model. Navajo Nation has the highest solar potential of any tribal land in the country. They have successfully constructed the Kayenta Solar Project (55 MW of energy), and have finalized leases for the Cameron Solar Plant (200 MW) and the Red Mesa Tapaha Solar Generation Plant (70 MW). The Cameron project alone will generate $109 million over the next 30 years for tribal coffers through tax revenue, lease payments, and energy transmission payments. Another example is the solar energy portfolio of Moapa Band of Paiute Indians. The Tribe manages a growing portfolio of utility-scale solar projects, including Moapa Southern Paiute Solar Project (250 MW), and the first utility-scale installation on tribal land. Currently under development are the Arrow Canyon Solar Project, the Southern Bighorn Solar Project, and the Chuckwalla Solar Projects, all of which feature joint ownership between tribal, federal, and private stakeholders.
Engaging Coal Communities in Decarbonization Through Nuclear Energy
The United States is committed to the ambitious goal of reaching net-zero emissions globally by 2050, requiring rapid deployment of clean energy domestically and across the world. Reducing emissions while meeting energy demand requires firm power sources that produce energy at any time and in adverse weather conditions, unlike solar or wind energy. Advanced nuclear reactors, the newest generation of nuclear power plants, are firm energy sources that offer potential increases in efficiency and safety compared to traditional nuclear plants. Adding more nuclear power plants will help the United States meet energy demand while reducing emissions. Further, building advanced nuclear plants on the sites of former coal plants could create benefits for struggling coal communities and result in significant cost savings for project developers. Realizing these benefits for our environment, coal communities, and utilities requires coordinating and expanding existing efforts. The Foundation for Energy Security and Innovation (FESI), the US Department of Energy (DOE), and Congress should each take actions to align and strengthen advanced nuclear initiatives and engagement with coal communities in the project development process.
Challenge and Opportunity
Reducing carbon emissions while meeting energy demand will require the continued use of firm power sources. Coal power, once a major source of firm energy for the United States, has declined since 2009, due to federal and state commitments to clean energy and competition with other clean energy sources. Power generated from coal plants is expected to drop to half of current levels by 2050 as upwards of 100 plants retire. The DOE found that sites of retiring coal plants are promising candidates for advanced nuclear plants, considering the similarities in site requirements, the ability to reuse existing infrastructure, and the overlap in workforce needs. Advanced nuclear reactors are the next generation of nuclear technology that includes both small modular reactors (SMRs), which function similar to traditional light-water reactors except on a smaller site, and non-light-water reactors, which are also physically smaller but use different methods to control reactor temperature. However, the DOE’s study and additional analysis from the Bipartisan Policy Center also identified significant challenges to constructing new nuclear power plants, including the risk of cost overrun, licensing timeline uncertainties, and opposition from communities around plant sites. Congress took steps to promote advanced nuclear power in the Inflation Reduction Act and the CHIPS and Science Act, but more coordination is needed. To commercialize advanced nuclear to support our decarbonization goals, the DOE estimates that utilities must commit to deploying at least five advanced nuclear reactors of the same design by 2025. There are currently no agreements to do so.
The Case for Coal to Nuclear
Coal-dependent communities and the estimated 37,000 people working in coal power plants could benefit from the construction of advanced nuclear reactors. Benefits include the potential addition of more than 650 jobs, about 15% higher pay on average, and the ability for some of the existing workforce to transition without additional experience, training, or certification. Jobs in nuclear energy also experience fewer fatal accidents, minor injuries, and harmful exposures than jobs in coal plants. Advanced nuclear energy could revitalize coal communities, which have suffered labor shocks and population decline since the 1980s. By embracing advanced nuclear power, these communities can reap economic benefits and create a pathway toward a sustainable and prosperous future. For instance, in one case study by the DOE, replacing a 924 MWe coal plant with nuclear increased regional economic activity by $275 million. Before benefits are realized, project developers must partner with local communities and other stakeholders to align interests and gain public support so that they may secure agreements for coal-to-nuclear transition projects.
Communities living near existing nuclear plants tend to view nuclear power more favorably than those who do not, but gaining acceptance to construct new plants in communities less familiar with nuclear energy is challenging. Past efforts using a top-down approach were met with resistance and created a legacy of mistrust between communities and the nuclear industry. Stakeholders can slow or stop nuclear construction through lawsuits and lengthy studies under the National Environmental Policy Act (NEPA), and 12 states have restrictions or total bans on new nuclear construction. Absent changes to the licensing and regulatory process, project developers must mitigate this risk through a process of meaningful stakeholder and community engagement. A just transition from coal to nuclear energy production requires developers to listen and respond to local communities’ concerns and needs through the process of planning, siting, licensing, design, construction, and eventual decommissioning. Project developers need guidance and collective learning to update the siting process with more earnest practices of engagement with the public and stakeholders. Coal communities also need support in transitioning a workforce for nuclear reactor operations.
Strengthen and Align Existing Efforts
Nuclear energy companies, utilities, the DOE, and researchers are already exploring community engagement and considering labor transitions for advanced nuclear power plants. NuScale Power, TerraPower, and X-energy are leading in both the technical development of advanced nuclear and in considerations of community benefits and stakeholder management. The Utah Associated Municipal Power Systems (UAMPS), which is hosting NuScale’s demonstration SMR, spent decades engaging with communities across 49 utilities over seven states before signing an agreement with NuScale. Their carbon-free power project involved over 200 public meetings, resulting in several member utilities choosing to pursue SMRs. Universities are collaborating with the Idaho National Laboratory to analyze energy markets using a multidisciplinary framework that considers community values, resources, capabilities, and infrastructure. Coordinated efforts by researchers near the TerraPower Natrium demonstration site investigate how local communities view the cost, benefits, procedures, and justice elements of the project.
The DOE also works to improve stakeholder and community engagement across multiple offices and initiatives. Most notably, the Office of Nuclear Energy is using a consent-based siting process, developed with extensive public input, to select sites for interim storage and disposal of spent nuclear fuel. The office distributed $26 million to universities, nonprofits, and private partners to facilitate engagement with communities considering the costs and benefits of hosting a spent fuel site. DOE requires all recipients of funds from the Infrastructure Investment and Jobs Act and the Inflation Reduction Act, including companies hosting advanced nuclear demonstration projects, to submit community benefits plans outlining community and labor organization engagement. The DOE’s new Commercial Liftoff Reports for advanced nuclear and other clean energy technologies are detailed and actionable policy documents strengthened by the inclusion of critical societal considerations.
Through the CHIPS and Science Act, Congress established or expanded DOE programs that promote both the development of advanced nuclear on sites of former coal plants and the research of public engagement for nuclear energy. The Nuclear Energy University Program (NEUP) has funded technical nuclear energy research at universities since 2009. The CHIPS Act expanded the program to include research that supports community engagement, participation, and confidence in nuclear energy. The Act also established, but did not fund, a new advanced nuclear technology development program that prioritizes projects at sites of retiring coal plants and those that include elements of workforce development. An expansion of an existing nuclear energy training program was cut from the final CHIPS Act, but the expansion is proposed again in the Nuclear Fuel Security Act of 2023.
More coordination is required among DOE, the nuclear industry, and utilities. Congress should also take action to fund initiatives authorized by recent legislation that enable the coal-to-nuclear transition.
Plan of Action
Recommendations for Federal Agencies
Recommendation 1. A sizable coordinating body, such as the Foundation for Energy Security and Innovation (FESI) or the Appalachian Regional Commission (ARC), should support the project developer’s efforts to include community engagement in the siting, planning, design, and construction process of advanced nuclear power plants.
FESI is a new foundation to help the DOE commercialize energy technology by supporting and coordinating stakeholder groups. ARC is a partnership between the federal government and Appalachian states that supports economic development through grantmaking and conducting research on issues related to the region’s challenges. FESI and ARC are coordinating bodies that can connect disparate efforts by developers, academic experts, and the DOE through various enabling and connecting initiatives. Efforts should leverage existing resources on consent-based siting processes developed by the DOE. While these processes are specific to siting spent nuclear fuel storage facilities, the roadmap and sequencing elements can be replicated for other goals. Stage 1 of the DOE’s planning and capacity-building process focuses on building relationships with communities and stakeholders and engaging in mutual learning about the topic. FESI or ARC can establish programs and activities to support planning and capacity building by utilities and the nuclear industry.
FESI could pursue activities such as:
- Hosting a community of practice for public engagement staff at utilities and nuclear energy companies, experts in public engagement methods design, and the Department of Energy
- Conducting activities such as stakeholder analysis, community interest surveys, and engagement to determine community needs and concerns, across all coal communities
- Providing technical assistance on community engagement methods and strategies to utilities and nuclear energy companies
ARC could conduct studies such as stakeholder analysis and community interest surveys to determine community needs and concerns across Appalachian coal communities.
Recommendation 2. The DOE should continue expanding the Nuclear Energy University Program (NEUP) to fund programs that support nontechnical nuclear research in the social sciences or law that can support community engagement, participation, and confidence in nuclear energy systems, including the navigation of the licensing required for advanced reactor deployment.
Evolving processes to include effective community engagement will require new knowledge in the social sciences and shifting the culture of nuclear education and training. Since 2009, the DOE Office of Nuclear Energy has supported nuclear energy research and equipment upgrades at U.S. colleges and universities through the NEUP. Except for a few recent examples, including the University of Wyoming project cited above, most projects funded were scientific or technical. Congress recognized the importance of supporting research in nontechnical areas by authorizing the expansion of NEUP to include nontechnical nuclear research in the CHIPS and Science Act. DOE should not wait for additional appropriations to expand this program. Further, NEUP should encourage awardees to participate in communities of practice hosted by FESI or other bodies.
Recommendation 3. The DOE Office of Energy Jobs and the Department of Labor (DOL) should collaborate on the creation and dissemination of training standards focused on the nuclear plant jobs for which extensive training, licensing, or experience is required for former coal plant workers.
Sites of former coal plants are promising candidates for advanced nuclear reactors because most job roles are directly transferable. However, an estimated 23% of nuclear plant jobs—operators, senior managers, and some technicians—require extensive licensing from the Nuclear Regulatory Commission (NRC) and direct experience in nuclear roles. It is possible that an experienced coal plant operator and an entry-level nuclear hire would require the same training path to become an NRC-licensed nuclear plant operator.
Supporting the clean energy workforce transition fits within existing priorities for the DOE’s Office of Energy Jobs and the DOL, as expressed in the memorandum of understanding signed on June 21, 2022. Section V.C. asserts the departments share joint responsibility for “supporting the creation and expansion of high-quality and equitable workforce development programs that connect new, incumbent, and displaced workers with quality energy infrastructure and supply chain jobs.” Job transition pathways and specific training needs will become apparent through additional studies by interested parties and lessons from programs such as the Advanced Reactor Demonstration Program and the Clean Energy Demonstration Program on Current and Former Mine Land. The departments should capture and synthesize this knowledge into standards from which industry and utilities can design targeted job transition programs.
Recommendations for Congress
Recommendation 4. Congress should fully appropriate key provisions of the CHIPS and Science Act to support coal communities’ transition to nuclear energy.
- Appropriate $800 million over FY2024 to FY2027 to establish the DOE Advanced Nuclear Technologies Federal Research, Development, and Demonstration Program: The CHIPS and Science Act established this program to promote the development of advanced nuclear reactors and prioritizes projects at sites of retiring coal power plants and those that include workforce development programs. These critical workforce training programs need direct funding.
- Appropriate an additional $15 million from FY2024 to FY2025 to the NEUP: The CHIPS and Science Act authorizes an additional $15 million from FY 2023 to FY 2025 to the NEUP within the Office of Nuclear Energy, increasing the annual total amount from $30 million to $45 million. Since CHIPS included an authorization to expand the program to include nontechnical nuclear research, the expansion should come with increased funding.
Recommendation 5. Congress should expand the Nuclear Energy Graduate Traineeship Subprogram to include workforce development through community colleges, trade schools, apprenticeships, and pre-apprenticeships.
The current Traineeship Subprogram supports workforce development and advanced training through universities only. Expanding this direct funding for job training through community colleges, trade schools, and apprenticeships will support utilities’ and industries’ efforts to transition the coal workforce into advanced nuclear jobs.
Recommendation 6. Congress should amend Section 45U, the Nuclear Production Tax Credit for existing nuclear plants, to require apprenticeship requirements similar to those for future advanced nuclear plants covered under Section 45Y, the Clean Energy Production Tax Credit.
Starting in 2025, new nuclear power plant projects will be eligible for the New Clean Energy Production and Investment Tax Credits if they meet certain apprenticeship requirements. However, plants established before 2025 will not be eligible for these incentives. Congress should add apprenticeship requirements to the Nuclear Production Tax Credit so that activities at existing plants strengthen the total nuclear workforce. Credits should be awarded with priority to companies implementing apprenticeship programs designed for former coal industry workers.
Conclusion
The ambitious goal of reaching net-zero emissions globally requires the rapid deployment of clean energy technologies, in particular firm clean energy such as advanced nuclear power. Since the 1980s, communities around coal power plants have suffered from industry shifts and will continue to accumulate disadvantages without support. Coal-to-nuclear transition projects advance the nation’s decarbonization efforts while creating benefits for developers and revitalizing coal communities. Utilities, the nuclear industry, the DOE, and researchers are advancing community engagement practices and methods, but more effort is required to share best practices and ensure coordination in these emerging practices. FESI or other large coordinating bodies should fill this gap by hosting communities of practice, producing knowledge on community values and attitudes, or providing technical assistance. DOE should continue to promote community engagement research and help articulate workforce development needs. Congress should fully fund initiatives authorized by recent legislation to promote the coal to nuclear transition. Action now will ensure that our clean firm power needs are met and that coal communities benefit from the clean energy transition.
Transitioning coal miners directly into clean energy is challenging considering the difference in skills and labor demand between the sectors. Most attempts to transition coal miners should focus on training in fields with similar skill requirements, such as job training for manufacturing roles within the Appalachian Climate Technology Coalition. Congress could also provide funding for unemployed coal miners to pursue education for other employment.
A significant challenge is aligning the construction of advanced nuclear plants with the decommissioning of coal plants. Advanced nuclear project timelines are subject to various delays and uncertainties. For example, the first commercial demonstration of small modular reactor technology in the United States, the TerraPower plant in Wyoming, is delayed due to the high-assay low-enriched uranium supply chain. The Nuclear Regulatory Commission’s licensing process also creates uncertainty and extends project timelines.
Methods exist to safely contain radioactive material as it decays to more stable isotopes. The waste is stored on site at the power plant in secure pools in the shorter term and in storage casks capable of containing the material for at least 100 years in the longer term. The DOE must continue pursuing interim consolidated storage solutions as well as a permanent geological repository, but the lack of these facilities should not pose a significant barrier to constructing advanced nuclear power plants. The United States should also continue to pursue recycling spent fuel.
More analysis is required to better understand these impacts. A study conducted by Argonne National Laboratory found that while the attributes of spent fuel vary by the exact design of reactor, overall there are no unique challenges to managing fuel from advanced reactors compared to fuel from traditional reactors. A separate study found that spent fuel from advanced reactors will contain more fissile nuclides, which makes waste management more challenging. As the DOE continues to identify interim and permanent storage sites through a consent-based process, utilities and public engagement efforts must interrogate the unique waste management challenges when evaluating particular advanced nuclear technology options.
Similar to waste output, the risk of proliferation from advanced reactors varies on the specific technologies and requires more interrogation. Some advanced reactor designs, such as the TerraPower Natrium reactor, require the use of fuel that is more enriched than the fuel used in traditional designs. However, the safeguards required between the two types of fuel are not significantly different. Other designs, such as the TerraPower TWR, are expected to be able to use depleted or natural uranium sources, and the NuScale VOYGR models use traditional fuel. All reactors have the capacity to produce fissile material, so as the United States expands its nuclear energy capabilities, efforts should be made to expand current safeguards limiting proliferation to fuel as it is prepared for plants and after it has been used.