Solutions for mitigating climate change, advances in nuclear energy, and US leadership in high-performance computing discussed in two key House Science Committee hearings
Climate solutions and nuclear energy
The full House Science, Space, and Technology Committee discussed climate hurdles and solutions in a January 15 hearing titled, “An update on the climate crisis: From science to solutions.” Interestingly, the main point of debate during this hearing was not whether climate change was occurring, but rather the economic impacts of climate change mitigation. As predicted, the debate was split down party lines.
While the Democrats emphasized the negative consequences of climate change and the need to act, several Republican members insisted that China and India rein in their greenhouse gas emissions first.
Congressman Mo Brooks (R, AL-05) asked the most heated series of questions during the hearing, related to India and China’s carbon emissions. He asked if there was a way to force both to reduce their emissions, which, according to a report by the European Union, have seen increases of 305% and 354%, respectively, between 1990 and 2017.
Democrats focused their questions to highlight the science behind climate change. Chairwoman Eddie Bernice Johnson (D, TX-30) asked each witness about the biggest hurdles in their fields. Richard Murray, Deputy Director and Vice President for Research at Woods Hole Oceanographic Institution, said that more investments in large-scale ocean observations and data are needed. Pamela McElwee, Associate Professor of Human Ecology at Rutgers, said that a lot of advances in land conservation can be made with existing technology, but that investments in genetic modification of crops to restore nutrients to the soil, for example, could be developed. Heidi Steltzer, Professor of Environment and Sustainability at Fort Lewis College, encouraged the inclusion of diverse perspectives in climate research to develop the most creative solutions. Congressman Paul Tonko (D, NY-20) summed up the Democrats’ views on climate change by stating that the climate science performed by researchers like the witnesses should inform federal action and that inaction on this issue is costly.
While committee Republicans expressed concerns over the impact of climate regulations on business, members of the committee did emphasize the importance of renewing U.S. leadership in nuclear power, pointing to competition from Russia and China. Nuclear power continues to be the largest source of carbon free electricity in the country.
One of the witnesses, Michael Shellenberger, Founder and President of Environmental Progress noted that the US’ ability to compete internationally in nuclear energy was declining as Russia and China rush to complete new power plants. Losing ground in this area, he added, negatively impacts the U.S.’ reputation as a developer of cutting edge energy technology and dissuades developing countries interested in building nuclear power plants from contracting with the U.S.
As the impacts of climate change take their toll in California, the Caribbean, Australia, and elsewhere, the U.S. Congress remains divided on how to address it.
We thank our community of experts for helping us create an informative resource and questions for the committee.
Supercomputing a high priority for DOE Office of Science
While last week’s House Science Subcommittee on Energy hearing about research supported by the Department of Energy (DOE) Office of Science touched on a range of issues, competition with China on high-performance computing took center stage.
The big milestone that world powers are competing to reach in the high-performance computing field is the development of the first-ever exascale computer. An exascale computer would greatly enhance research areas like materials development for next-generation batteries, seismic analysis, weather and climate modeling, and even clinical health studies like “identifying risk factors for suicide and best practices for intervention.” It would be about a million times faster than a consumer desktop computer, operating at a quintillion calculations per second. The U.S., China, Japan, and European Union are all working to complete the first exascale system.
In the competition to develop faster and faster supercomputers, China has made rapid progress. In 2001, none of the 500 fastest supercomputers were made in China. As of June 2019, 219 of the 500 fastest supercomputers had been developed by China, and the US had 116. Notably, when the computational power of all these systems is totaled up for each country, China controls 30 percent of the world’s high-performance computing resources, while the U.S. controls 38 percent. In the past, China had asserted that it would complete an exascale computing system this year; however, it is unclear if the country will meet its goal.
A U.S. exascale system due in 2021 – Aurora – is being built at Argonne National Lab in Illinois, and hopes are high that it will be the world’s first completed exascale computer. During the hearing, Representatives Dan Lipinski (D, IL-03) and Bill Foster (D, IL-11) both raised the issue of progress on the project. According to DOE Office of Science director Dr. Christopher Fall, the Aurora project is meeting its benchmarks, with headway being made not only on the hardware, but also on a “once-in-a-generation” reworking and modernization of the software stack that will run on the system, as well as developing high-speed internet for linking generated data with the computation of that data. DOE believes that the U.S. is in a strong position to complete the first-ever exascale computing system, and that our holistic approach to high-performance computing is something that is missing from competitors’ strategies, giving the U.S. even more of an edge.
In addition to the Aurora project, two more exascale computing projects are underway at U.S. National Labs. Frontier, at Oak Ridge National Laboratory in Tennessee, is also projected to deploy in 2021, while El Capitan, based at Lawrence Livermore National Laboratory in California, should launch in 2022. El Capitan will only be used by individuals in the national security field.
In addition to research in high-performance computing, the diverse and impactful science supported by the DOE Office of Science is truly something to protect and promote. To review the full hearing, click here.
BLM’s right-of-way application materials should require applicants to address how solar arrays will be planned, designed, and operated to support traditional ranching practices and surrounding rural economies.
The energy transition underway in the United States continues to present a unique set of opportunities to put Americans back to work through the deployment of new technologies, infrastructure, energy efficiency, and expansion of the electricity system to meet our carbon goals.
The United States has the only proven and scalable tritium production supply chain, but it is largely reserved for nuclear weapons. Excess tritium production capacity should be leveraged to ensure the success of and U.S. leadership in fusion energy.
Increasingly, U.S. national security priorities depend heavily on bolstering the energy security of key allies, including developing and emerging economies. But U.S. capacity to deliver this investment is hamstrung by critical gaps in approach, capability, and tools.