Science Policy
day one project

Protecting Workers from Extreme Heat through an Energy-efficient Workplace Cooling Transformation

04.03.24 | 9 min read | Text by June Spector

Extreme heat is a growing threat to the health and productivity of U.S. workers and businesses. There is a high-impact opportunity to pioneer innovations in energy-efficient worker-centric cooling to protect workers from the growing heat while reducing the costs to businesses to install protections. With the impending Occupational Safety and Health Administration (OSHA) standard, the federal government should ensure that businesses have the necessary support to establish and maintain the infrastructure needed for existing and upcoming worker heat protection requirements while realizing economic, disaster resilience, and climate co-benefits. To achieve this goal, an Executive Order should form a multiagency working group that coordinates federal government and nongovernment partners to define a new building design approach that integrates both worker health and energy-efficiency considerations. The working group should establish roles and a process for coordinating and identifying leaders and funding approaches to advance a policy roadmap to accelerate, scale up, and evaluate equitable deployment and maintenance of energy-efficient worker-centric cooling. This plan presents a unique and timely opportunity to build upon existing national clean energy, climate, and infrastructure commitments and goals to ensure a healthier, more productive, resilient, and sustainable workforce.

Challenge and Opportunity

U.S. workers and businesses face a growing threat of illness, death, and reduced work productivity from extreme heat exposure. There were 436 work-related heat deaths recorded in the U.S. from 2011 to 2021. Workplace heat exposure is linked to heat illnesses, traumatic injuries, and reduced work productivity among otherwise healthy workers, costing the nation an estimated $100 billion each year in lost economic activity. Workers exposed to high heat include those in outdoor occupations in agriculture and construction and those working in hot manufacturing, transportation and warehousing, and food services environments. Spikes in worker heat illness have occurred during recent extreme heat events, such as the “heat dome” event of 2021, which are more likely to occur with climate change. Disproportionately exposed workers and small businesses often do not have the resources or capacity to implement, improve, or maintain existing workplace cooling infrastructure, thus increasing heat exposure inequities.

An energy-efficient workplace cooling transformation is needed to ensure businesses have the support required to comply with existing state heat rules and upcoming federal workplace heat prevention requirements. Several states—California, Colorado, Oregon, Minnesota, and Washington—have already adopted occupational indoor and/or outdoor heat exposure rules to protect workers from heat stress. OSHA is in the process of developing a national workplace heat standard. In addition to requirements for worker rest breaks, training, and hydration, OSHA is considering requirements for employers to implement protections when the measured heat index is 80°F or higher, including engineering controls such as air-conditioned cool-down areas. 

Using energy-efficient active or passive cooling systems and building designs in workplaces has numerous benefits. Cooling the environment is one of the most effective methods for reducing the risk of heat illness. Energy-efficient cooling reduces electricity consumption and greenhouse gas emissions compared to conventional systems. Energy-efficient buildings cost less to operate, allowing greater productivity at lower cost and reduced fossil fuel use and community air pollution. Energy-efficient cooling also decreases the amount of electricity on the grid at one time, reducing the chances of blackouts during extreme weather events. 

We must develop a new approach to building standards – energy-efficient, worker-centric cooling – that integrates both worker health and energy-efficiency considerations. Existing building-centric approaches that blanket-cool entire buildings to the same fixed temperature are energy inefficient and can lead to overcooling of unoccupied areas and increased costs. The urgent need for energy-efficient worker-centric cooling standards is highlighted, for example, by the 300–900 million ft2 per quarter rate of U.S. warehouse space under construction, and a growing warehouse workforce, in recent years.

There is a gap in standards that address both civilian worker health and energy-efficient cooling simultaneously. The U.S. Green Building Council (USGBC) has incorporated a worker-centric approach in its Leadership in Energy and Environmental Design (LEED) certification program. This approach includes pilot credits for Prevention through Design (PtD), which aims to minimize risks to workers by integrating safety measures into building design and redesign. One such example is ensuring roof features, such as vegetated roofs and solar panel installations, are arranged to minimize hazards like falls for maintenance personnel. However, there are no specific PtD standards or LEED credits for energy-efficient cooling approaches that address worker heat hazards. For example, there are no specific standards that incorporate the proximity of indoor cool-down areas to hot work areas, targeted cooling of certain work areas, or mobile outdoor cooling stations that leverage solar and electrochemical technology.

Although there are several potential mechanisms of support for energy-efficient cooling infrastructure for commercial buildings and small businesses, there is no program to assist employers and small businesses in integrating these technologies into worker-centric cooling infrastructure designs. Under the Inflation Reduction Act of 2022 (IRA), tax deductions are available through Internal Revenue Code (IRC) 179D for building owners to install or retrofit equipment aimed at improving energy efficiency, including HVAC systems such as heat pumps and building envelope improvements to “heat-proof” or weatherize structures. However, tax credits may be difficult to access and may not provide a sufficient degree of immediate support for small business owners struggling with inflation costs. While the Biden-Harris Administration has also launched a $14 billion National Clean Investment Fund that will provide Environmental Protection Agency (EPA) grants to small businesses for deploying clean technology projects, there are no earmarked funds for workplace solutions focused on energy-efficient cooling or resilience to extreme heat events that integrate worker health considerations. Current U.S. Small Business Administration efforts focus primarily on supporting small businesses with disaster recovery rather than resilience.

Effective cross-agency coordination is needed to accomplish an energy-efficient cooling transformation in U.S. workplaces, support small businesses, and contribute to the Healthy People 2030 goal of reducing workplace deaths. Coordination among existing agencies and external partners to address gaps in energy-efficient cooling technology, worker-centric designs, and heat-specific PtD building approaches will support a healthier, more productive, and sustainable U.S. workforce.

Plan of Action

Transforming workplace infrastructure to support a healthy, productive, and sustainable U.S. workforce against extreme heat requires coordination across multiple federal agencies. This plan offers the first steps in developing a structure for coordination, defining the approach, developing a roadmap for future actions, and ultimately catalyzing and piloting innovations and implementing and evaluating solutions.

This plan is guided by the following principles:

Following an executive order from the President, the Office of Management and Budget should convene a multiagency working group to develop a plan for coordination and to outline a roadmap toward an energy-efficient workplace cooling transformation for a healthy, productive, and sustainable workforce. The working group should:

Recommendation 1. Be chaired by an agency that has experience in convening multisectoral collaborations and advocating for equitable health outcomes, such as the Department of Health and Human Services (HHS) Office of Climate Change and Health Equity. The inclusion of representatives from the following agencies and offices should be considered:

Recommendation 2. Define roles and develop a plan to enhance coordination with public and private partners in developing and evaluating evidence-based worker-centric cooling infrastructure technologies and building designs. Partners should include those that develop or promote voluntary standards and guidelines for:

Recommendation 3. Establish a consensus definition of energy-efficient worker-centric cooling using a combination of established metrics, including:

Recommendation 4. Outline existing pathways to support an energy-efficient workplace cooling transformation, including: 

Recommendation 5. Articulate follow-on initiatives and identify leaders and potential funding approaches to advance the roadmap of policies to accelerate, scale up, and evaluate equitable deployment, maintenance, and evaluation of worker-centric energy-efficient cooling infrastructure. Policies considerations include:

Funding for agencies to work together to develop and implement approaches to track progress toward an energy-efficient workplace cooling transformation by combining data sources.


Given the growing threat to U.S. workers and businesses posed by illness, death, and reduced work productivity from increasing heat exposure, it is imperative to catalyze an energy-efficient workplace cooling transformation. There is currently a unique and timely opportunity to build upon national clean energy, climate, and infrastructure commitments and goals to address gaps in energy-efficient worker-centric cooling technology and PtD building standards. The proposed plan will incorporate high-level support, provide infrastructure for coordination among government agencies and nongovernmental partners, define the approach, and lay the groundwork for stimulating innovations in promising worker-centric cooling technologies and designs. This plan will produce a roadmap for an energy-efficient workplace cooling transformation that will support businesses in establishing the infrastructure needed for existing and upcoming workplace heat prevention requirements. The approach will build upon existing occupational health equity initiatives to reduce the risk of heat health effects for workers disproportionately affected by heat and small businesses. This initiative will ensure a healthier, more productive, and sustainable workforce with minimal cost and a substantial potential return on investment.

This idea of merit originated from our Extreme Heat Ideas Challenge. Scientific and technical experts across disciplines worked with FAS to develop potential solutions in various realms: infrastructure and the built environment, workforce safety and development, public health, food security and resilience, emergency planning and response, and data indices. Review ideas to combat extreme heat here.

Frequently Asked Questions
Why not just wait until a federal occupational heat rule is adopted to pursue an energy-efficient workplace cooling transformation? Why is technology part of the solution?

Under federal OSHA standards for employers, workplaces are currently only required to address workplace heat if it is causing or likely to cause death or serious harm to employees. This OSHA “General Duty Clause” requirement is insufficient, as workers experience negative effects from workplace heat exposure — ranging from heat illness to death. OSHA is in the process of developing a workplace heat standard that considers engineering controls, such as workplace cooling, along with other requirements related to worker breaks, training, and hydration. Workplace cooling is a proposed federal rule element and is already relevant for U.S. states with indoor workplace heat regulations. Energy-efficient workplace cooling infrastructure transitions do not happen overnight. Investment now is important for states with existing heat rules and to prepare for the future state and/or federal heat rules.

Why not just focus on energy-efficient cooling of homes?

Home cooling only partially addresses extreme heat health risks because many working-age adults spend half of their waking hours during the workweek at work. Further, increased energy-efficiency in the industrial sector, which currently accounts for 30% of U.S. greenhouse emissions, can reduce pollution in surrounding communities and blackout risk during extreme weather events.

Why not just direct business owners to existing incentives and grants?

Existing incentives and grants (e.g., IRA tax deductions for building owner energy-efficient installation or retrofitting, such as IRA 13303; IRC 179D; National Clean Investment Fund grants through EPA to small businesses deploying clean technology projects; and SBA Office of Disaster Recovery and Resilience loans) do not explicitly incorporate worker-centric designs that achieve climate, energy-efficiency, and worker health goals simultaneously. Further, tax deductions and grant programs provide short- and medium-term financial support for energy-efficient workplace cooling transitions. Without a roadmap to address explicit coordination, simplification in processes, and accessibility of incentives, small business owners may be unable to take advantage of these incentives.

What types of data sources could be considered for tracking progress toward an energy-efficient workplace cooling transformation?

Examples of data sources that could be considered are:

What would the workplace cooling transformation cost?
Costs for the formative steps of the transformation described in this brief would use existing agency resources and would not require additional congressional appropriations. As the working group develops the roadmap of future policies, the group can make recommendations for additional resources as part of agency annual budget cycles or congressional appropriations.