Nuclear Weapons

President’s Message: Legitimizing Iran’s Nuclear Program

02.25.14 | 9 min read | Text by FAS

Be careful of self-fulfilling prophecies about the intentions for Iran’s nuclear program. Often, Western analysts view this program through the lens of realist political science theory such that Iranian leaders seek nuclear weapons to counteract threats made to overthrow their regime or to exert dominance in the Middle East. To lend support to the former argument, Iranian leaders can point to certain political leaders in the United States, Israel, Saudi Arabia, or other governments that desire, if not actively pursue, the downfall of the Islamic Republic of Iran. To back up the latter rationale for nuclear weapons, Iran has a strong case to make to become the dominant regional political power: it has the largest population of any of its neighbors, has a well-educated and relatively technically advanced country, and can shut off the vital flow of oil and gas from the Strait of Hormuz. If Iran did block the Strait, its leaders could view nuclear weapons as a means to protect Iran against attack from powers seeking to reopen the Strait. (Probably the best deterrent from shutting the Strait is that Iran would harm itself economically as well as others. But if Iran was subject to crippling sanctions on its oil and gas exports, it might feel compelled to shut down the Strait knowing that it is already suffering economically.) These counteracting external threats and exerting political power arguments provide support for the realist model of Iran’s desire for nuclear bombs.

But viewed through another lens, one can forecast continual hedging by Iran to have a latent nuclear weapons capability, but still keeping barriers to proliferation in place such as inspections by the International Atomic Energy Agency (IAEA). In particular, Iranian leaders have arguably gained considerable political leverage over neighbors by just having a latent capability and have maintained some legitimacy for their nuclear program by remaining part of the IAEA’s safeguards system.

If Iran crosses the threshold to make its own nuclear weapons, it could stimulate neighbors to build or acquire their own nuclear weapons. For example, Saudi leaders have dropped several hints recently that they will not stand idly by as Iran develops nuclear weapons. The speculation is that Saudi Arabia could call on Pakistan to transfer some nuclear weapons or even help Saudi Arabia develop the infrastructure to eventually make its own fissile material for such weapons. Pakistan is the alleged potential supplier state because of stories that Saudi Arabia had helped finance Pakistan’s nuclear weapons program and thus, Islamabad owes Riyadh for this assistance. Moreover, Pakistan remains outside the Non-Proliferation Treaty and therefore would not have the treaty constraint as a brake on nuclear weapons transfer. Furthermore, one could imagine a possible nuclear cascade involving the United Arab Emirates, Jordan, and Egypt, all states that are developing or considering developing nuclear power programs. This proliferation chain reaction would likely then undermine Iran’s security and make the Middle East further prone to potential nuclear weapons use.

I would propose for the West to act optimistically and trust but verify Iran’s claim that its nuclear program is purely for peaceful purposes. The interim deal that was recently reached between Iran and the P5+1 (the United States, Russia, France, China, United Kingdom, and the European Union) is encouraging in that it places a temporary halt on some Iranian activities such as construction of the 40 MW reactor at Arak, the further enrichment of uranium to 20 percent uranium-235 (which is about 70 percent of the work needed to reach the weapons-grade level of 90 percent uranium-235), and continued expansion of the enrichment facilities. Iran also has become more open to the IAEA’s inspections. But these are measures that can be readily reversed if the next deal cannot be negotiated within the next several months. Iran is taking these actions in order to get relief from some economic sanctions.

Without getting into the complexities of the U.S. and Iranian domestic politics as well as international political considerations, I want to outline in the remaining part of this president’s message a research agenda for engineers and scientists. I offer FAS as a platform for these technical experts to publish their analyses and communicate their findings. Specifically, FAS will create a network of experts to assess the Iranian nuclear issues, publish their work on, and convene roundtables and briefings for executive and legislative branch officials.

Let’s look at the rich research agenda, which is intended to provide Iran with access to a suite of peaceful nuclear activities while still putting limits on the latent weapons capacity of the peaceful program. By doing so, we can engender trust with Iranians, but this will hinge on adequate means to detect breakout into a nuclear weapons program.

First, consider the scale of Iran’s uranium enrichment program. It is still relatively small, only about a tenth of the capacity needed to make enough low enriched uranium for even the one commercial nuclear plant at Bushehr. Russia has a contract with Iran for ten years of fuel supply to Bushehr. If both sides can extend that agreement over the 40 or more years of the life of the plant, then Iran would not have the rationale for a large enrichment capacity based on that one nuclear plant. However, Iran has plans for a major expansion of nuclear power. Would it be cost effective for Iran to enrich its own uranium for these power plants? The short answer is no, but because of Iranian concerns about being shut out of the international enrichment market and because of Iranian pride in having achieved even a modestly sized enrichment capacity, Iranian leaders will not give up enrichment. I would suggest that a research task for technical experts is to work with Iran to develop effective multi-layer assurances for nuclear fuel. Another task is to assess what capacity of enrichment is appropriate for the existing and under construction research and isotope production reactors or for smaller power reactors. These reactors require far less enrichment capacity than a large nuclear power plant. A first order estimate is that Iran already has the right amount of enrichment capacity to fuel the current and planned for research reactors. But nuclear engineers and physicists can and should perform more detailed calculations.

One reactor under construction has posed a vexing challenge; this is the 40 MW reactor being built at Arak. The concern is that Iran has planned to use heavy water as the moderator and natural uranium as the fuel for this reactor. (Heavy water is composed of deuterium, a heavy form of hydrogen with a proton and neutron in its nucleus, rather than the more abundant “normal” hydrogen, with a proton in its nucleus, which composes the hydrogen atoms in “light” or ordinary water.) A heavy water reactor can produce more plutonium per unit of power than a light water reactor because there are more neutrons available during reactor operations to be absorbed by uranium-238 to produce plutonium-239, a fissile material. The research task is to develop reactor core designs that either use light water or use heavy water with enriched uranium. The light water reactor would have to use enriched uranium in order to operate. A heavy water reactor could also make use of enriched uranium in order to reduce the available neutrons. Another consideration for nuclear engineers who are researching how to reduce the proliferation potential of this reactor is to determine how to lower the power rating, while still providing enough power for Iran to carry out necessary isotope production services and scientific research with the reactor. The 40 MW thermal power rating implies that if operated at near full power for a year, this reactor can make one to two bombs’ worth of plutonium annually. Another research problem is to design the reactor so that it is very difficult to use in an operational mode to produce weapons-grade plutonium. Safeguards and monitoring are essential mechanisms to forestall such production but might not be adequate. Here again, research into proliferation-resistant reactor designs would shed light on this problem.

Regarding isotope production, further research and development would be useful to figure out if non-reactor alternative technologies such as particle accelerators can produce the needed isotopes at a reasonable cost. Derek Updegraff and Pierce Corden of the American Association of the Advanced of Science have been investigating alternative production methods. Science progresses faster when additional researchers investigate similar issues. Thus, this research task could bear considerable fruit if teams can develop cost effective non-reactor means to produce medical and other industrial isotopes in bulk (or whatever quantity is required). If such development is successful, Iran and other countries could retire isotope production reactors that could pose latent proliferation concerns.

Finally, I will underscore perhaps the biggest research challenge: how to ensure that the Iranian nuclear program is adequately safeguarded and monitored. One of the next important steps for Iran is to apply a more rigorous safeguards system called the Additional Protocol and for a period of time, perhaps from five to ten years, apply inspection measures that go beyond the requirements of the Additional Protocol in order to instill confidence in the peaceful nature of Iran’s nuclear program. Dozens of states have ratified the Additional Protocol, which requires the IAEA to assess whether there are any undeclared nuclear material and facilities in the country being inspected. The Additional Protocol was formed in response to the finding in 1991 in Iraq that Saddam Hussein’s nuclear technicians were getting close to producing fissile material for nuclear weapons, despite the fact that Iraq was subject to regular IAEA inspections of its declared nuclear material and facilities. The undeclared facilities were often physically near declared facilities. There are concerns that given the large land area of Iran, clandestine nuclear facilities might go unnoticed by the IAEA or other means of detection and thus pose a significant risk for proliferation. The research task is to find out if there are effective means to find such clandestine facilities and to provide enough warning before Iran would be able to make enough fissile material and form it into bombs.

A key consideration of any part of this research agenda is how to cooperate with Iranian counterparts. For this plan to be acceptable and achievable, Iranian engineers, scientists, and leaders must own these concepts and believe that the plan supports their objectives to have a legitimate nuclear program that can generate electricity, produce isotopes for medical and industrial purposes, and provide other peaceful benefits including scientific research. Thus, we will need to leverage earlier and ongoing outreach to Iran by organizations such as the Pugwash Conferences on Science and World Affairs, the U.S. National Academy of Sciences, the American Association for the Advance of Science, and the Richard M. Lounsbery Foundation. Future workshops with Iranian counterparts are essential and companion studies by these counterparts would further advance the cause of legitimizing the Iranian nuclear program.

Several scientists and other technically trained experts in the United States have already been assessing aspects of this agenda as I indicated above with the mention of Updegraff and Corden’s research. Also, without meaning to slight anyone I may not know of or forget to mention, I would call out David Albright and his team at the Institute for Science and International Security, Richard Garwin of IBM, Frank von Hippel and colleagues at Princeton University, and Scott Kemp of MIT. This group is doing insightful work, but I believe that getting more engineers and scientists involved would bring more diverse ideas and more technical expertise to bear on this challenge to international security.

Engineers and scientists have a fundamental role to play in explaining the technical options to policy makers. For FAS, in particular, such work will help revitalize the organization as a true federation of scientists and engineers dedicated to devoting their talents to a more secure and safer world. FAS invites you to contact us if you have skills and knowledge you want to contribute to this proposal to help ensure Iran’s nuclear program remains peaceful.

Charles D. Ferguson, Ph.D.

President, Federation of American Scientists