
Integrating Automated Vehicles with 5G Networks to Realize the Future of Transportation
Summary
Widespread deployment of fully automated or “autonomous” vehicles (AVs) that can operate without human interaction would make travel easier, cheaper, and safer. Reaching this highest level of automation requires AVs to be connected to 5G networks, which in turn allows AVs to communicate with “smart”, 5G-connected roadway infrastructure. The federal government can support progress towards this goal through a three-part initiative. Part 1 would establish Transportation Infrastructure Pilot Zones to field-test the integration of AV technology with 5G networks in settings across the country. Part 2 would create a National Connected AV Research Consortium to pursue connected-vehicle research achieving massive scale. Part 3 would launch a targeted research initiative focused on ensuring safety in a connected AV era, and Part 4 would create a new U.S. Corps of Engineers and Computer Scientists for Technology to embed technically skilled experts into government. With primary support from the National Highway and Traffic Safety Administration (NHTSA), the National Science Foundation (NSF), and the Department of Defense (DOD), this initiative would also help develop a basic framework for achieving a 90% reduction in vehicle crashes nationwide, deliver new transportation services, and establish national standards for AV technology. Initiative outcomes would promote U.S. global leadership in AVs, create new jobs and economic opportunities, and prepare the U.S. workforce to integrate technology of the future into systems of the present.
We sat down with space technology startup K2 Space to find out just how big of a leap the next generation of launch vehicles will represent.
Despite their importance, programs focused on AI trustworthiness form only a small fragment of total funding allocated for AI R&D by the National Science Foundation.
Measuring how neurons integrate their inputs and respond to them is key to understanding the impressive and complex behavior of humans and animals. However, a complete measurement of neuronal Input-Output Functions (IOFs) has not been achieved in any animal.
Wearable health electronics are now ubiquitous, but continuous molecular monitoring is only widely available for glucose.