Have Your Data and Use It Too: A Federal Initiative for Protecting Privacy while Advancing AI
Summary
The Biden-Harris Administration should aim to make the United States a world leader in privacy-preserving machine learning (PPML), a collection of new artificial intelligence (AI) techniques capable of providing the benefits of machine learning while minimizing data-privacy concerns. By some estimates, improvements to the speed, accuracy, and scale of AI could augment global GDP by 14%, or $15.7 trillion, by 2030. Yet Americans fear that expansion of AI will have moderate to severe negative consequences. They are particularly concerned about the privacy implications of how companies and agencies use personal data to generate new developments. To assuage these concerns, this proposal recommends targeted initiatives for the Biden-Harris Administration to bring PPML techniques to maturity, including
- Investing in PPML research and development.
- Identifying compelling opportunities to apply PPML techniques at the federal level.
- Creating frameworks and technical standards to facilitate wider deployment of PPML techniques.
The U.S. government should establish a public-private National Exposome Project (NEP) to generate benchmark human exposure levels for the ~80,000 chemicals to which Americans are regularly exposed.
The federal government is responsible for ensuring the safety and privacy of the processing of personally identifiable information within commercially available information used for the development and deployment of artificial intelligence systems
The United States is in the midst of a once in a generation effort to rebuild its transportation and mobility systems. Meeting this moment will require bold investments in new and emerging transportation technologies.
Employee ownership is a powerful solution that preserves local business ownership, protects supply chains, creates quality jobs, and grows the household balance sheets of American workers and their families.