BioNETWORK: The Internet of Distributed Biomanufacturing
Summary
The future of United States industrial growth resides in the establishment of biotechnology as a new pillar of industrial domestic manufacturing, thus enabling delivery of robust supply chains and revolutionary products such as materials, pharmaceuticals, food, energy. Traditional centralized manufacturing of the past is brittle, prone to disruption, and unable to deliver new products that leverage unique attributes of biology. Today, there exists the opportunity to develop the science, infrastructure, and workforce to establish the BioNETWORK to advance domestic distributed biomanufacturing, strengthen U.S.-based supply chain intermediaries, provide workforce development for underserved communities, and achieve our own global independence and viability in biomanufacturing. Implementing the BioNETWORK to create an end-to-end distributed biomanufacturing platform will fulfill the Executive Order on Advancing Biotechnology and Biomanufacturing Innovation and White House Office of Science and Technology Policy (OSTP) Bold Goals for U.S. Biotechnology and Biomanufacturing.
Challenge and Opportunity
Biotechnology harnesses the power of biology to create new services and products, and the economic activity derived from biotechnology and biomanufacturing is referred to as the bioeconomy. Today, biomanufacturing and most other traditional non-biomanufacturing is centralized. Traditional manufacturing is brittle, does not enhance national economic impact or best use national raw materials/resources, and does not maximize innovation enabled by the unique workforce distributed across the United States. Moreover, in this era of supply chain disruptions due to international competition, climate change, and pandemic-sized threats (both known and unknown), centralized approaches that constitute a single point of attack/failure and necessarily restricted, localized economic impact are themselves a huge risk. While federal government support for biotechnology has increased with recent executive orders and policy papers, the overarching concepts are broad, do not provide actionable steps for the private sector to respond to, and do not provide the proper organization and goals that would drive outcomes of real manufacturing, resulting in processes or products that directly impact consumers. A new program must be developed with clear milestones and deliverables to address the main challenges of biomanufacturing. Centralized biomanufacturing is less secure and does not deliver on the full potential of biotechnology because it is:
- Reliant on a narrow set of feedstocks and reagents that are not local, introducing supply chain vulnerabilities that can halt bioproduction in its earliest steps of manufacturing.
- Inflexible for determining the most effective, stable, scalable, and safe methods of biomanufacturing needed for multiple products in large facilities.
- Serial in scheduling, which introduces large delays in production and limits capacity and product diversity.
- Bespoke and not easily replicated when it comes to selection and design of microbial strains, cell free systems, and sequences of known function outside of the facility that made them. Scale-up and reproducibility of biomanufacturing products are limited.
- Creating waste streams because circular economies are not leveraged.
- Vulnerable to personnel shortages due to shifting economic, health, or other circumstances related to undertraining of a biotechnology specialized workforce.
Single point failures in centralized manufacturing are a root cause of product disruptions and are highlighted by current events. The COVID-19 pandemic revealed that point failures in the workforce or raw materials created disruptions in the centralized manufacturing, and availability of hand sanitizers, rubber gloves, masks, basic medicines, and active pharmaceutical ingredients impacted every American. International conflict with China and other adversarial countries has also created vulnerabilities in the sole source access to rare earth metals used in electronics, batteries, and displays, driving the need for alternate options for manufacturing that do not rely on single points of supply. To offset this situation, the United States has access to workforce, raw materials, and waste streams geographically distributed across the country that can be harnessed by biomanufacturing to produce both health and industrial products needed by U.S. consumers. However, currently there are only limited distributed manufacturing infrastructure development efforts to locally process those raw materials, leaving societal, economic, and unrealized national security risks on the table. Nation-scale parallel production in multiple facilities is needed to robustly create products to meet consumer demand in health, industrial, energy, and food markets.
The BioNETWORK inverts the problem of a traditional centralized biomanufacturing facility and expertise paradigm by delivering a decentralized, resilient network enabling members to rapidly access manufacturing facilities, expertise, and data repositories, as needed and wherever they reside within the system, by integrating the substantial existing U.S. bioindustrial capabilities and resources to maximize nationwide outcomes. The BioNETWORK should be constructed as an aggregate of industrial, academic, financial, and nonprofit entities, organized in six regionally-aligned nodes (see figure below for notional regional distribution) of biomanufacturing infrastructure that together form a hub network that cultivates collaboration, rapid technology advances, and workforce development in underserved communities. The BioNETWORK’s fundamental design and construction aligns with the need for new regional technology development initiatives that expand the geographical distribution of innovative activity in the U.S., as stated in the CHIPS and Science Act. The BioNETWORK acts as the physical and information layer of manufacturing innovation, generating market forces, and leveraging ubiquitous data capture and feedback loops to accelerate innovation and scale-up necessary for full-scale production of novel biomaterials, polymers, small molecules, or microbes themselves. As a secure network, BioNETWORK serves as the physical and virtual backbone of the constituent biomanufacturing entities and their customers, providing unified, distributed manufacturing facilities, digital infrastructure to securely and efficiently exchange information/datasets, and enabling automated process development. Together the nodes function in an integrated way to adaptively solve biotechnology infrastructure challenges as well as load balancing supply chain constraints in real-time depending on the need. This includes automated infrastructure provisioning of small, medium, or large biomanufacturing facilities, supply of regional raw materials, customization of process flow across the network, allocation of labor, and optimization of the economic effectiveness. The BioNETWORK also supports the implementation of a national, multi-tenant cloud lab and enables a systematic assessment of supply chain capabilities/vulnerabilities for biomanufacturing.
Plan of Action
Congress should appropriate funding for an interagency coordination office co-chaired by the OSTP and the Department of Commerce (DOC) and provide $500 million to the DOC, Department of Energy (DOE), and Department of Defense (DOD) to initiate the BioNETWORK and use its structure to fulfill economic goals and create industrial growth opportunities within its three themes:
- Provide alternative supply chain pathways via biotechnologies and biomanufacturing to promote economic security. Leverage BioNETWORK R&D opportunities to develop innovative biomanufacturing pathways that could address supply chain bottlenecks for critical drugs, chemicals, and other materials.
- Explore distributed biomanufacturing innovation to enhance supply chain resilience. Leverage BioNETWORK R&D efforts to advance flexible and adaptive biomanufacturing platforms to mitigate the effects of supply chain disruptions.
- Address standards and data infrastructure to support biotechnology and biomanufacturing commercialization and trade. Leverage BioNETWORK R&D needed to enable data interoperability across the network to enable scale-up and increase global competitiveness.
To achieve these goals, the policy Plan of Action includes the following steps:
1. Congress should appropriate $10 million to establish an interagency coordination office within OSTP that is co-chaired by the DOC. This fulfills the White House Executive Order and CHIPs and Science mandates for better interagency coordination among the DOE, DOC, DOD, National Institute of Standards and Technology (NIST), and the National Science Foundation (NSF).
2. Congress should then appropriate $500 million to DOC and DOE to fund a biomanufacturing moonshot that includes creating the pilot network of three nodes to form the BioNETWORK in regions of the U.S. within six months of receiving funding. This funding should be managed by the interagency coordination office in collaboration with a not-for-profit organization whose mission is to build, deploy, and manage the BioNETWORK together with the federal entities. The role of the not-for-profit is to ensure that a trusted, unbiased partner (not influenced by outside entities) is involved, such that the interests of the taxpayer, U.S. government, and commercial sectors are all represented in the most beneficial way possible. The mission should include education, workforce development, safety/security, and sustainment as core principles, such that the BioNETWORK can stand alone once established. The new work to build the network should also synergize with the foundational science of the NSF and the national security focus of DOD biotechnology programs.
3. Continued investment of an additional $500 million should be appropriated by Congress to create economic incentives to sustain and transition the BioNETWORK from public funding to full commercial operation. This step requires evaluation of concrete go/no-go milestones and deliverables to ensure on-time, on-budget operations have been met. The interagency coordination office should work with DOC, DOE, DOD, and other agencies to leverage these incentives and create other opportunities to promote the BioNETWORK so that it does not require public funding to keep itself sustainable and can obtain private funding.
Create a Pilot Network of Three Nodes
To accelerate beyond current biomanufacturing programs and efforts, the first three nodes of the BioNETWORK should be constructed in three new disparate geographic regions (i.e., East, Midwest, West, or other locations with relevant feedstocks, workforce, or component infrastructure) to show the networking capabilities for distributed manufacturing. The scale of funding required to design, construct, and deploy the first three nodes is $500 million. The initiation and construction of the BioNETWORK should commence within six months. The DOE should lead the initiation and deployment of the technical construction of the BioNETWORK through Theme 2 of their Biomanufacturing goals, which “seeks alternative processes to produce chemicals and materials from renewable biomass and intermediate feedstocks by developing low-carbon-intensity product pathways and promoting a circular economy for materials.” Each node should create regional partnerships that have four entities (a physical manufacturing facility, a cell programming entity, an academic research and development entity, and a workforce/resource entity). All four entities will contain both physical facilities such as industrial fermentation and wet lab space, as well as the workforce needed to run them. On top of the pilot nodes, a science and technology/engineering integrator of the system should be identified to coordinate the effort and lead security/safety efforts for the physical network. Construction of the initial BioNETWORK should be completed within two years.
Achievement of the BioNETWORK goals requires the design plan to:
- Leverage and use regional feedstocks and reagents across the U.S. as inputs to bioproduction to create robustness in the earliest steps of manufacturing.
- Automate the integrated use of small, intermediate, and large-scale biomanufacturing facilities so that they are effective, stable, scalable, and safe for biomanufacturing demand.
- Parallelize scheduling of infrastructure and resources to minimize delays in production and maximize capacity and product diversity.
- Incorporate methods for replication when it comes to selection and design of microbial strains, cell free systems, and sequences of known function.
- Reuse waste streams to create circular economies.
- Include infrastructure biomanufacturing standards from NIST.
The BioNETWORK construction milestones should fulfill the White House OSTP bold goals through new capabilities delivered via distributed manufacturing infrastructure:
- Networked data for distributed biomanufacturing—“establishing a Data Initiative to ensure that high-quality, wide-ranging, easily accessible, and secure biological data sets can drive breakthroughs for the U.S. bioeconomy.”
- Domestic distributed biomanufacturing infrastructure—“expanding domestic capacity to manufacture all the biotechnology products we invent in the United States and support a resilient supply chain.”
- Local hubs for workforce development—“growing training and education opportunities for the biotechnology and biomanufacturing workforce of the future.”
Full Network: Plan for Sustainability
Congress and executive branch agencies establish economic incentives for commercial entities, state/local governments, and consumers of bioindustrial manufacturing products to create commercialization pathways that enhance local economies while also supporting the national network. These include tax credits, tax breaks, low interest loans, and underwritten loans as a starting point. To facilitate tech transition, unique lab-to-market mechanisms and proven tools to address market failure and applied technologies gaps should be used in conjunction with those in the Inflation Reduction Act. This includes prize and challenge competitions, market shaping procurement or loan programs, and streamlined funding of open, cross-disciplinary research, and funding at the state and local levels.
A new public-private partnership could coordinate across multiple efforts to ensure they drive toward rapid technology deployment and integration. This includes implementing a convertible debt plan that rewards BioNETWORK members with equity after reaching key milestones, providing an opportunity for discounted buyout by other investors during rounds of funding, and working with the federal government to design market-shaping mechanisms such as advance market commitments to guarantee purchase of a bioproduction company’s spec-meeting product.
Additionally, the BioNETWORK should be required to expand the repertoire of domestic renewable raw materials into a suite of high-demand, industry-ready products as prescribed in the DOC’s goals in biomanufacturing. This will ensure all regions have support for commercial goods and can automatically assess domestic supply chain capabilities and vulnerabilities, and are provided compensatory remediation on demand. The full BioNETWORK consists of six nodes—aligned to each of the major geographic regions and/or EDA regions in the United States—which have unique raw materials, workforce, infrastructure, and consumption of products that contribute to supporting the overall network functionality. The full BioNETWORK should be active within five years of project initiation and be evaluated against phased milestones throughout.
Conclusion
Networked solutions are resilient and enduring. A single factory is at risk of transfer to foreign ownership, closure, or obsolescence. The BioNETWORK creates connectivity among distributed biomanufacturing physical infrastructure to form a network with a robust domestic value chain. Today’s biomanufacturing investments suffer from the need to vertically integrate due to lack of flexible capacity across the value chain, which raises capital requirements and overall risk. The BioNETWORK drives horizontal integration through the network nodes via new infrastructure, connecting physical infrastructure of the nodes within the system. The result is a multi-sided marketplace for biotechnology innovation, products, and commercialization.
The federal government should initiate a new program and select performers within the next six months to begin the research, development, and construction of the first three nodes of the BioNETWORK. Taking action to establish the BioNETWORK ensures that the United States has the necessary physical and virtual infrastructure to grow the bioeconomy and its international leadership in biotechnology. The BioNETWORK creates new job opportunities for people across the country where training in biotechnology expands the skill sets of people with broad-spectrum applicability from trades to advanced degrees. The BioNETWORK drives circular economies where raw materials from rural and urban centers enter the network and are transformed into high-value products such as advanced materials, pharmaceuticals, food, and energy. The BioNETWORK protects U.S. supply chain resiliency through distributed manufacturing and links regional development into a national capability to establish biomanufacturing as a pillar of economic and technological growth for today and into the 22nd century.
Establishment of the BioNETWORK scales, connects, and networks the impact of a hub and tailors it to the needs of bioindustrial manufacturing, which requires regional feedstocks and integration of small-, intermediate-, and large-scale industrial fermentation facilities scattered across the United States to form an end-to-end distributed biomanufacturing platform. Similar to the goals of the EDA hub program, the BioNETWORK will accelerate regional economic activity, workforce development, and re-establishment of domestic manufacturing. Leveraging activity of the EDA and NSF Biofoundries program is an opportunity for coordination across the interagency.
Retrofitting existing small-, intermediate-, and large-scale biomanufacturing facilities/plants is necessary to construct the connected BioNETWORK. This includes new/modified fermentation equipment, scale-up and purification hardware, software/communications for networking, transportation, load-balancing, and security infrastructure.
Clear, measurable intermediate milestones and deliverables are required to ensure that the BioNETWORK is on track. Every three months, key performance metrics and indicators should be used to demonstrate technical functionality. Planned economic and workforce targets should be established every year and tracked for performance. Adjustments to the technical and business plans should be implemented if needed to ensure the overarching goals are achieved.
A major outcome of the BioNETWORK program is that biomanufacturing in the United States becomes on par with the other traditional pillars of manufacturing such as chemicals, food, and electronics. Workforce retraining to support this industry leads to new high-paying jobs as well as new consumer product sectors and markets with new avenues for economic growth. Failure to deploy the BioNETWORK leaves the United States vulnerable to supply chain disruption, little to no growth in manufacturing, and out competition by China and other peer nations that are investing in and growing biotechnology.
Secondary milestones include key performance indicators, including increased capacity, decrease in production time, robustness (more up time vs. down time), cheaper costs, better use of regional raw materials, etc.
September should be bioeconomy month. To celebrate, we took our experts to the Hill to share their research and recommendations with Congress.
We sat down with MicroByre CEO Dr. Sarah Richardson to talk about biomanufacturing, corn sugar’s pitfalls, and more.