Emerging Technology
day one project

An Institute for Scalable Heterogeneous Computing

07.16.21 | 2 min read | Text by Eric Breckenfeld

Summary

The future of computing innovation is becoming more uncertain as the 2020s have brought about a pivot point in the global semiconductor industry. We owe this uncertainty to several factors, including the looming end of Moore’s Law, disruptions in semiconductor supply chains, international competition in innovation investment, a growing demand for more specialized computer chips, and the continued development of alternate computing paradigms, such as quantum computing.

In order to address the next generation of computing needs, architectures are beginning to emphasize the integration of multiple, specialized computing components. Within this framework, the U.S. is well poised to emerge as a leader in the future of next-generation computing, and more broadly advanced semiconductor manufacturing. However, there remains a missing link in the United States’ computing innovation strategy: a coordinating organization which will down-select and integrate the wide variety of promising, next-generation computing materials, architectures, and approaches so that they can form the building blocks of advanced, high-performance, heterogeneous systems.

Armed with these facts, and using the existing authorization language in the 2021 National Defense Authorization Act (NDAA), the Biden Administration and Congress have a unique opportunity to establish a Manufacturing USA Institute under the National Institute of Standards and Technology (NIST) with the goal of pursuing advanced packaging for scalable heterogeneous computing. This Institute will leverage the enormous body of previous work in post-Moore computing funded by the federal government (Semiconductor Technology Advanced Research Network (STARnet), Nanoelectronics Computing Research (nCORE), Joint University Microelectronics Program (JUMP), Energy-Efficient Computing: From Devices to Architectures (E2CDA), Electronics Resurgence Initiative (ERI)) and will bridge a key gap in bringing these R&D efforts from the laboratory to real world applications. By doing this, the U.S. will be well positioned to continue its dominance in semiconductor design and potentially regain advanced semiconductor manufacturing activity over the coming decades.

publications
See all publications
Emerging Technology
Blog
Translating Vision into Action: FAS Commentary on the NSCEB Final Report and the Future of U.S. Biotechnology

Advancing the U.S. leadership in emerging biotechnology is a strategic imperative, one that will shape regional development within the U.S., economic competitiveness abroad, and our national security for decades to come.

06.27.25 | 15 min read
read more
Emerging Technology
day one project
Policy Memo
Measuring and Standardizing AI’s Energy and Environmental Footprint to Accurately Access Impacts

Inconsistent metrics and opaque reporting make future AI power‑demand estimates extremely uncertain, leaving grid planners in the dark and climate targets on the line

06.27.25 | 15 min read
read more
Emerging Technology
day one project
Policy Memo
A Holistic Framework for Measuring and Reporting AI’s Impacts to Build Public Trust and Advance AI 

As AI becomes more capable and integrated throughout the United States economy, its growing demand for energy, water, land, and raw materials is driving significant economic and environmental costs, from increased air pollution to higher costs for ratepayers.

06.26.25 | 15 min read
read more
Emerging Technology
Press release
Federation of American Scientists Statement on the Preemption of State AI Regulation in the One Big Beautiful Bill Act

Preempting all state regulation in the absence of federal action would leave a dangerous vacuum, further undermining public confidence in these technologies.

06.25.25 | 2 min read
read more