Emerging Technology
day one project

An Institute for Scalable Heterogeneous Computing

07.16.21 | 2 min read | Text by Eric Breckenfeld

Summary

The future of computing innovation is becoming more uncertain as the 2020s have brought about a pivot point in the global semiconductor industry. We owe this uncertainty to several factors, including the looming end of Moore’s Law, disruptions in semiconductor supply chains, international competition in innovation investment, a growing demand for more specialized computer chips, and the continued development of alternate computing paradigms, such as quantum computing.

In order to address the next generation of computing needs, architectures are beginning to emphasize the integration of multiple, specialized computing components. Within this framework, the U.S. is well poised to emerge as a leader in the future of next-generation computing, and more broadly advanced semiconductor manufacturing. However, there remains a missing link in the United States’ computing innovation strategy: a coordinating organization which will down-select and integrate the wide variety of promising, next-generation computing materials, architectures, and approaches so that they can form the building blocks of advanced, high-performance, heterogeneous systems.

Armed with these facts, and using the existing authorization language in the 2021 National Defense Authorization Act (NDAA), the Biden Administration and Congress have a unique opportunity to establish a Manufacturing USA Institute under the National Institute of Standards and Technology (NIST) with the goal of pursuing advanced packaging for scalable heterogeneous computing. This Institute will leverage the enormous body of previous work in post-Moore computing funded by the federal government (Semiconductor Technology Advanced Research Network (STARnet), Nanoelectronics Computing Research (nCORE), Joint University Microelectronics Program (JUMP), Energy-Efficient Computing: From Devices to Architectures (E2CDA), Electronics Resurgence Initiative (ERI)) and will bridge a key gap in bringing these R&D efforts from the laboratory to real world applications. By doing this, the U.S. will be well positioned to continue its dominance in semiconductor design and potentially regain advanced semiconductor manufacturing activity over the coming decades.

publications
See all publications
Emerging Technology
day one project
Policy Memo
Terminal Patients Need Better Access to Drugs and Clinical Trial Information

Modernizing ClinicalTrials.gov will empower patients, oncologists, and others to better understand what trials are available, where they are available, and their up-to-date eligibility criteria, using standardized search categories to make them more easily discoverable.

07.30.25 | 18 min read
read more
Emerging Technology
Blog
What’s Progress and What’s Not in the Trump Administration’s AI Action Plan

The current lack of public trust in AI risks inhibiting innovation and adoption of AI systems, meaning new methods will not be discovered and new benefits won’t be felt. A failure to uphold high standards in the technology we deploy will also place our nation at a strategic disadvantage compared to our competitors.

07.28.25 | 6 min read
read more
Emerging Technology
Policy Memo
A National Institute for High-Reward Research

We need a new agency that specializes in uncovering funding opportunities that were overlooked elsewhere. Judging from the history of scientific breakthroughs, the benefits could be quite substantial.

07.23.25 | 6 min read
read more
Emerging Technology
day one project
Policy Memo
Digital Product Passports: Transforming America’s Linear Economy to Combat Waste, Counterfeits, and Supply Chain Vulnerabilities

A shift toward more circular, transparent systems would not only reduce waste and increase efficiency, but also unlock new business models, strengthen supply chain resilience, and give consumers better, more reliable information about the products they choose.

07.16.25 | 10 min read
read more