The Fallacy of Proven and Adaptable Defenses
It is currently U.S. policy to deploy missile defenses that are “proven, cost-effective, and adaptable.” As outlined in the 2010 Ballistic Missile Defense Review, proven means “extensive testing and assessment,” or “fly before you buy.” Adaptive means that defenses can respond to unexpected threats by being rapidly relocated or “surged to a region,” and by being easily integrated into existing defensive architectures.
While “extensive testing” in the field is an important step towards proven defenses, this article argues that it is insufficient for truly proven—that is, trustworthy—defenses. Defenses against nuclear weapons face a very high burden of proof because a single bomb is utterly devastating. But even if defenses achieve this level of trustworthiness in one context, this article argues that they cannot immediately be trusted when they are adapted to another context. Calls for proven and adaptive defenses thus promote a dangerous fallacy: that defenses which are proven in one context remain proven when they are adapted to another.
To explain why defenses should not be regarded as both proven and adaptable, this article begins by outlining a little-noted yet critical challenge for missile defense: developing, integrating, and maintaining its complex and continually-evolving software. A second section uses experience with missile defense to illustrate three key reasons that software which is proven on testing ranges does not remain proven when it is adapted to the battlefield. A third section outlines some of the challenges associated with rapidly adapting missile defense software to new threat environments. The article concludes that while missile defenses may offer some insurance against an attack, they also come with new risks.
Missile defense as an information problem
Missile defense is a race against time. Intercontinental ballistic missiles travel around the globe in just thirty minutes, while intermediate, medium, and short range ballistic missiles take even less time to reach their targets. While defenders would ideally like to intercept missiles in the 3-5 minutes that they launch out of the earth’s atmosphere (boost phase), geographic and physical constraints have rendered this option impractical for the foreseeable future. The defense has the most time to “kill” a missile during mid-course (as it travels through space), but here a warhead can be disguised by decoys and chaff, making it difficult to find and destroy. As missiles (or warheads) re-enter the earth’s atmosphere, any decoys are slowed down, and the warhead becomes easier to track. But, this terminal phase of flight leaves only a few minutes for the defender to act.
These time constraints make missile defense not only a physical problem, but also an informational problem. While most missile defense publicity focuses on the image of a bullet hitting a bullet in the sky, each interception relies critically on a much less visible information system which gathers radar or sensor data about the locations and speeds of targets, and guides defensive weapons to those targets. Faster computers can speed along information processing, but do not ensure that information is processed and interpreted correctly. The challenge of accurately detecting targets, discriminating targets from decoys or chaff, guiding defensive weapons to targets, and coordinating complementary missile defense systems, all falls to a very complex software system.
Today’s missile defense systems must manage tremendous informational complexity—a wide range of threats, emerging from different regions, in uncertain and changing ways. Informational complexity stems not only from the diverse threats that defenses aim to counter, but also from the fact that achieving highly effective defenses requires layering multiple defensive systems over large geographic regions; this in turn requires international cooperation. For example, to defend the United States from attack by Iran, the ground-based midcourse defense (GMD) relies not only on radars and missiles in Alaska and California but also on radars and missiles stationed in Europe. Effective defenses require computers and software to “fuse” data from different regions and systems controlled by other nations into a seamless picture of the battle space. Missile defense software requirements constantly evolve with changing threats, domestic politics, and international relations.
Such complex and forever-evolving requirements will limit any engineer. But software engineers such as Fred Brooks have come to recognize the complexity associated with unpredictable and changing human institutions as their “essential” challenge. Brooks juxtaposes the complexity of physics with the “arbitrary complexity” of software. Whereas the complexity of nature is presumed to be governed by universal laws, the arbitrary complexity of software is “forced without rhyme or reason by the many human institutions and systems to which [software] interfaces must conform.”
In other words, the design of software is not driven by predictive and deterministic natural laws, but by the arbitrary requirements of whatever hardware and social organizations it serves. Because arbitrary complexity is the essence of software, it will always be difficult to develop correctly. Despite tremendous technological progress, software engineers have agreed that arbitrary complexity imposes fundamental constraints on our ability to engineer reliable software systems.
In the case of missile defense, software must integrate disparate pieces of equipment (such as missile interceptors, radars, satellites, and command consoles) with the procedures of various countries (such as U.S., European, Japanese, and South Korean missile defense commands). Software can only meet the ad hoc requirements of physical hardware and social organizations by becoming arbitrarily complex.
Software engineers manage the arbitrary complexity of software through modular design, skillful project management, and a variety of automated tools that help to prevent common errors. Nonetheless, as the arbitrary complexity of software grows, so too do unexpected interactions and errors. The only way to make software reliable is to use it operationally and correct the errors that emerge in real-world use. If the operating conditions change only slightly, new and unexpected errors may emerge. Decades of experience have shown that it is impossible to develop trustworthy software of any practical scale without operational testing and debugging.
In some contexts, glitches are not catastrophic. For example, in 2007 six F-22 Raptors flew from Hawaii to Japan for the first time, and as they crossed the International Date Line their computers crashed. Repeated efforts to reboot failed and the pilots were left without navigation computers, information about fuel, and much of their communications. Fortunately, weather was clear so they could follow refueling tankers back to Hawaii and land safely. The software glitch was fixed within 48 hours.
Had the weather been bad or had the Raptors been in combat, the error would have had much more serious consequences. In such situations, time becomes much more critical. Similarly, a missile defense system must operate properly within the first few minutes that it is needed; there is no time for software updates.
What has been proven? The difference between field tests and combat experience
Because a small change in operating conditions can cause unexpected interactions in software, missile defenses can only be proven through real-world combat experience. Yet those who describe defenses as “proven” are typically referring to results obtained on a testing range. The phased adaptive approach’s emphasis on “proven” refers to its focus on the SM-3 missile, which has tested better than the ground-based midcourse defense (GMD). The SM-3 Block 1 system is based on technology in the Navy’s Aegis air and missile defense system, and it has succeeded in 19 of 23 intercept attempts (nearly 83 percent), whereas the GMD has succeeded in only half (8 of 16) intercept attempts. Similarly, when Army officers and project managers call the theater high altitude area defense (THAAD) proven, they are referring to results on a test range. THAAD, a late midcourse and early terminal phase defense, has intercepted eleven out of eleven test targets since 2005.
While tests are extremely important, they do not prove that missile defenses will be reliable in battle. Experience reveals at least three ways in which differences between real-world operating conditions and the testing range may cause missile defense software to fail.
First, missile defense software and test programs make assumptions about the behavior of its targets which may not be realistic. The qualities of test targets are carefully controlled—between 2002 and 2008, over 11 percent of missile defense tests were aborted because the target failed to behave as expected.
But real targets can also behave unexpectedly. For example, in the 1991 Gulf War, short range Scud missiles launched by Iraq broke up as they reentered the atmosphere, causing them to corkscrew rather than follow a predictable ballistic trajectory. This unpredictable behavior is a major reason that the Patriot (PAC-2) missile defense missed at least 28 out of 29 intercept attempts.Although the Patriot had successfully intercepted six targets on a test range, the unpredictability of real-world targets thwarted its success in combat.
Second, missile defense tests are conducted under very different time pressures than those of real-world battle. Missile defense tests do not require operators to remain watchful over an extended period of days or weeks, until the precise one or two minutes in which a missile is fired. Instead crews are given a “window of interest,” typically spanning several hours, in which to look for an attack. Defenders of such tests argue that information about the window of attack is necessary (to avoid conflicts with normal air and sea traffic), and realistic (presumably because defenses will only be used during a limited period of conflict).
Yet in real-world combat, the “window of interest” may last much longer than a few hours. For example, the Patriot was originally designed with the assumption that it would only be needed for a few hours at a time, but when it was sent to Israel and Saudi Arabia in the first Gulf War, it was suddenly operational for days at a time. In these conditions, the Patriot’s control software began to accrue a timing error which had never shown up when the computer was rebooted every few hours. On February 25, 1991, this software-controlled timing error caused the Patriot to miss a Scud missile, which struck an Army barracks at Dhahran, Saudi Arabia, killing 28 Americans. The fix that might have helped the Patriot defuse the Dhahran attack arrived one day too late.
A third difference between test ranges and real-world combat is that air traffic is often present in and around combat zones, creating opportunities for friendly fire; the likelihood of friendly fire is increased by the stressful conditions of combat.For example, in the first Gulf War, the Patriot fired two interceptors at U.S. fighter jets (fortunately the fighters evaded the attack).When a more advanced version of the Patriot (PAC-3) was sent to Iraq in 2003, friendly fire caused more casualties. On March 23, 2003, a Patriot battery stationed near the Kuwait border shot down a British Tornado fighter jet, killing both crew members. Just two days later, operators in another battery locked on to a target and prepared to fire, discovering that it was an American F-16 only after the fighter fired back (fortunately only a radar was destroyed). Several days later, another Patriot battery shot down an American Navy Hornet fighter, killing its pilot.
A Defense Science Board task force eventually attributed the failure to several software-related problems. The Patriot’s Identify Friend or Foe (IFF) algorithms (which ought to have clearly distinguished allies from enemies) performed poorly. Command and control systems did not give crews good situational awareness, leaving them completely dependent on the faulty IFF technologies. The Patriot’s protocols, displays, and software made operations “largely automatic,” while “operators were trained to trust the software.” Unfortunately this trust was not warranted.
These three features—less predictable targets, longer “windows of interest,” and the presence of air traffic—are unique to combat, and are among the reasons that software which is proven on a test range may not be reliable in battle. Other differences concern the defensive technology itself—missile seekers are often hand-assembled, and quality is not always assured from one missile to the next. Missile defense aims to overcome such challenges in quality assurance by “layering” defensive systems (i.e. if one system fails to hit a missile, another one might make the kill). But unexpected interactions between missile defense layers could also cause failures. Indeed, some tests which produced “successful” interceptions by individual missile defense systems also revealed limitations in integrating different defensive systems. Layered defenses, like most individual defensive systems, have yet to be proven reliable in real-world battle.
The Fallacy of “Proven” and “Adaptive” Defenses
As this brief review suggests, field testing takes place in a significantly different operational environment than that of combat, and the difference matters. Missile defenses that were “proven” in field testing have repeatedly failed when they were adapted to combat environments, either missing missiles completely, or shooting down friendly aircraft. Thus, talk of “proven” and “adaptable” defense furthers a dangerous fallacy—that defensive systems that are proven in one context remain proven as they are adapted to new threats.
Defensive deployments do not simply “plug-and-play” as they are deployed to new operational environments around the world because they must be carefully integrated with other weapons systems. For example, to achieve “layered” defenses of the United States, computers must “fuse” data from geographically dispersed sensors and radars and provide commands in different regions with a seamless picture of the battle space. In the first U.S. missile defense test that attempted to integrate elements such as Aegis and THAAD, systems successfully intercepted targets, but also revealed failures in the interoperability of different computer and communications systems. In the European theater, these systems confront the additional challenge of being integrated with NATO’s separate Active Layered Theater Ballistic Missile Defence (ALTBMD).
Similar challenges exist in the Asia-Pacific region, where U.S. allies have purchased systems such as Patriot and Aegis. It is not yet clear how such elements should interoperate with U.S. forces in the region. The United States and Japan have effectively formed a joint command relationship, with both nations feeding information from their sensors into a common control room. However, command relationships with other countries in the Asian Pacific region such as South Korea and Taiwan remain unclear.
The challenge of systems integration was a recurring theme at the May 2014 Atlantic Council’s missile defense conference. Attendees noted that U.S. allies such as Japan and South Korea mistrust one another, creating difficulties for integrating computerized command and control systems. They also pointed to U.S. export control laws that create difficulties by restricting the flow of computer and networking technologies to many parts of the world.Atlantic Council senior fellow Bilal Saab noted that the “problem with hardware is it doesn’t operate in a political vacuum.”
Neither does software. All of these constraints—export control laws, mistrust between nations, different computer systems—produce arbitrarily complex requirements for the software, which must integrate data from disparate missile defense elements into a unified picture of the battle space. Interoperability that is proven at one time does not remain proven as it is adapted to new technological and strategic environments.
Risky Insurance
Although defenses cannot be simultaneously proven and adaptive, it may still make sense to deploy defenses. Missile defenses that have undergone robust field testing may provide some measure of insurance against attack. Additionally, cooperative defenses may provide a means of reducing reliance on massive nuclear arsenals—although efforts to share NATO or U.S. missile defenses with Russia are currently stalled.
But whatever insurance missile defense offers, it also comes with new risks due to its reliance on tremendously complex software. Other analyses of missile defense have pointed to risks associated with strategic instability, and noted that defenses appear to be limiting rather than facilitating reductions of offensive nuclear arsenals. An appreciation for the difficulty of developing, integrating, and maintaining complex missile defense software calls attention to a slightly different set of risks.
The risks of friendly fire are evident from experience with the Patriot. More fundamentally, the inability of complex software to fully anticipate target behavior limits its reliability in battle, as seen in the first Gulf War. The PAC-3 system appears to have performed better in the second Gulf War; according to the Army, the defenses incapacitated nine out of nine missiles headed towards a defended asset. Thus, the PAC-3 system may be regarded as truly proven against a particular set of targets. But however well defenses perform against one set of targets, we cannot be assured that they will perform equally well against a new set of targets.
Additionally, defenses must be exceedingly reliable to defend against nuclear-armed missiles. In World War II, a 10 percent success rate was sufficient for air defenses to deter bombers, but the destructive power of nuclear weapons calls for a much higher success rate. If even one nuclear weapon gets by a defensive system, it can destroy a major city and its surroundings.
The greatest risk of all comes not with defenses themselves, but with overconfidence in their capabilities. In 2002, faith in military technology prompted then Secretary of Defense Donald Rumsfeld to overrule seasoned military planners, insisting that high technology reduced the number of ground troops that were necessary in Iraq. As we now know, this confidence was tragically misplaced.
The decision to rely upon a missile defense deployment should thus weigh the risks of a missile attack against the risks of friendly fire and of unreliable defenses. While the fly-before-you-buy approach is an essential step towards trustworthy defenses, field testing does not yield truly proven, or trustworthy, defenses. However proven a defensive system becomes in one battle context, it does not remain proven when it is adapted to another. Ultimately, the notion of proven and adaptive defenses is a contradiction in terms.
White House Office of the Press Secretary, “Fact Sheet on U.S. Missile Defense Policy,” September 17, 2009. http://www.whitehouse.gov/the_press_office/FACT-SHEET-US-Missile-Defense-Policy-A-Phased-Adaptive-Approach-for-Missile-Defense-in-Europe/
Department of Defense, “Ballistic Missile Defense Review,” (January 2010): vi, 11. http://www.defense.gov/bmdr/docs/BMDR%20as%20of%2026JAN10%200630_for%20web.pdf
See National Research Council, Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives (Washington D.C.: National Academies Press, 2012). “Report of the American Physical Society Study Group on Boost Phase Intercept Systems for National Missile Defense,” July 2003. http://www.aps.org/policy/reports/studies/upload/boostphase-intercept.PDF
Frederick Brooks, “No Silver Bullet: Essence and Accidents of Software Engineering,” IEEE Computer (Addison-Wesley Professional, 1987), http://www-inst.eecs.berkeley.edu/~maratb/readings/NoSilverBullet.html.
When software engineers gathered for the twenty-year anniversary of Brooks’ article, they all agreed that his original argument had been proven correct despite impressive technological advances. See Frederick Brooks et al., “Panel: ‘No Silver Bullet’ Reloaded,” in 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), ed. Richard Gabriel et al. (Montreal, Canada: ACM, 2007).
For a summary of such techniques, and reasons that they are not sufficient to produce reliable software, see David Parnas, “Software Aspects of Strategic Defense Systems,” Communications of the ACM 28, no. 12 (1985): 1326.
“F-22 Squadron Shot Down by the International Date Line,” Defense Industry Daily, March 1 2007. http://www.defenseindustrydaily.com/f22-squadron-shot-down-by-the-international-date-line-03087/ Accessed June 15, 2014.
See for example, White House “Fact Sheet on U.S. Missile Defense Policy,” September 17, 2009 http://www.whitehouse.gov/the_press_office/FACT-SHEET-US-Missile-Defense-Policy-A-Phased-Adaptive-Approach-for-Missile-Defense-in-Europe
For results on the SM3 Block 1, see Missile Defense Agency, “Aegis Ballistic Missile Defense testing record,” http://www.mda.mil/global/documents/pdf/aegis_tests.pdf October 2013. On the GMD, see Missile Defense Agency, “Ballistic Missile Defense Intercept Flight Test record,” last updated October 4, 2013 http://www.mda.mil/news/fact_sheets.html
See for example, comments in “THAAD Soldiers take part in historic training exercise,” Fort Bliss Bugle, http://fortblissbugle.com/thaad-soldiers-take-part-in-historic-training-exercise/ ; BAE, “Bae Systems’ Seeker Performs Successfully In Historic Integrated Live Fire Missile Defense Test,” Press release, 7 February 2013, http://www.baesystems.com/article/BAES_156395/bae-systems-seeker-performs-successfully-in-historic-integrated-live-fire-missile-defense-test . Both accessed June 15, 2014.
Missile Defense Agency, “Ballistic Missile Defense Intercept Flight Test record,” last updated October 4, 2013 http://www.mda.mil/news/fact_sheets.html
This is based upon reports that 3 of 42 launches experienced target failures or anomalies between 2002-2005, and 6 of 38 launches experienced such failures from 2006-2007. See U.S. Government Accountability Office, “Sound Business Case Needed to Implement Missile Defense Agency’s Targets,” September 2008 http://www.gao.gov/assets/290/281962.pdf
George N. Lewis and Theodore A. Postol, “Video Evidence on the Effectiveness of Patriot During the 1991 Gulf War,” Science & Global Security 4 (1993).
Ibid; see also George N. Lewis and Theodore A. Postol, “Technical Debate over Patriot Performance in the Gulf War,” Science & Global Security 3 (2000). In fact, though Iraqis launched fewer Scuds after the Army deployed Patriot, evidence suggested that damage in Israel increased—suggesting that Patriot itself caused some damage. See George N. Lewis and Theodore A. Postol, “An Evaluation of the Army Report “Analysis of Video Tapes to Assess Patriot Effectiveness” Dated 31 March 1992,” (Cambridge MA: Defense and Arms Control Studies Program, Massachusetts Institute of Technology, 1992). Available online at /spp/starwars/docops/pl920908.htm
On the Patriot’s performance on the testing range before deployment, see “Performance of the Patriot Missile in the Gulf War,” Hearings before the Committee on Government Operations, 102nd Congress, 2nd sess., April 7, 1992.
Lt. Gen. Henry A. Obering III (ret.) and Rebeccah Heinrichs, “In Defense of U.S. Missile Defense,” Letter to the International Herald Tribune, September 27, 2011 http://www.nytimes.com/2011/09/28/opinion/28iht-edlet28.html?_r=2&
The Patriot was only designed to operate for 24 hours at a time before rebooting, and hence the timing problem did not matter in previous operating conditions. Technically this would be described as a “requirements failure.” GAO, “Patriot Missile Defense: Software Problem Led to System Failure at Dhahan, Saudi Arabia,” (Washington, D.C.: General Accounting Office, 1992).
GAO, “Patriot Missile Defense: Software Problem Led to System Failure at Dhahan, Saudi Arabia.”
These stresses were one contributing factor to the downing of Iran Air flight 655 by the Vincennes in 1988; for a closer analysis, see Gene Rochlin, Trapped in the Net: The Unanticipated Consequences of Computerization (Princeton: Princeton U, 1998).
Clifford Johnson, “Patriots,” posted in the RISKS forum, 29 January 1991 http://www.catless.com/Risks/10.83.html#subj4
Jonathan Weisman, “Patriot Missiles Seemingly Falter for Second Time; Glitch in Software Suspected,” Washington Post, March 26 2003.
Bradley Graham, “Radar Probed in Patriot Incidents,” Washington Post, May 8, 2003.
Michael Williams and William Delaney, “Report of the Defense Science Board Task Force on Patriot System Performance,” (Washington, D.C.: Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics, 2005).
Quality assurance has been a significant problem, for example, in the GMD. See David Willman, “$40 Billion Missile Defense System Proves Unreliable,” LA Times, June 15, 2014. http://www.latimes.com/nation/la-na-missile-defense-20140615-story.html#page=1 The “tacit knowledge” required to fabricate missile guidance technology has historically been a source of significant concern; see Donald MacKenzie, Inventing Accuracy: A Historical Sociology of Ballistic Missile Guidance (Cambridge, MA: MIT Press, 1990).
U.S. Government Accountability Office, “Missile Defense: Mixed Progress in Achieving Acquisition Goals and Improving Accountability,” April 2014, p 16-17.
The GAO has warned that the U.S. approach to European defenses, by developing these eclectic systems concurrently, is increasing the risks that the system “will not meet the warfighter’s needs, with significant potential cost and schedule growth consequences.” GAO, “Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization, Transparency, and Accountability Challenges,” (Washington, D.C.: GAO, 2010), 3. For more on the NATO Active Layered Theater Ballistic Missile Defence (ALTBMD), and efforts to coordinate its command and control systems with those of individual member nations, see http://www.nato.int/nato_static/assets/pdf/pdf_2011_07/20110727_110727-MediaFactSheet-ALTBMD.pdf
Sydney J. Freedberg Jr., “Trust, Not Tech, Big Problem Building Missile Defenses Vs. Iran, North Korea,”Ian E. Rinehart, Steven A. Hildreth, Susan V. Lawrence, Congressional Research Service Report, “Ballistic Missile Defense in the Asia-Pacific Region: Cooperation and Opposition,” June 24 2013. /sgp/crs/nuke/R43116.pdf
Sydney J. Freedberg Jr., “Trust, Not Tech, Big Problem Building Missile Defenses Vs. Iran, North Korea,” BreakingDefense.com, May 29, 2014, http://breakingdefense.com/2014/05/trust-not-tech-big-problem-building-missile-defenses-vs-iran-north-korea/
http://www.atlanticcouncil.org/events/past-events/missile-defense-in-the-asia-pacific
James E Goodby and Sidney D Drell, “Rethinking Nuclear Deterrence” (paper presented at the conference Reykjavik Revisited: Steps Towards a World Free of Nuclear Weapons, Stanford, CA, 2007).
For a discussion of both issues, and references for further reading, see Rebecca Slayton, Arguments That Count: Physics, Computing, and Missile Defense, 1949-2012, Inside Technology (Cambridge, MA: MIT Press, 2013).
Historically, the complexity of missile defense software has also made it prone to schedule delays and cost overruns.
Kadish testimony, Subcommittee on Defense, Committee on Appropriations, Department of Defense Appropriations, May 1 2003.
Thom Shanker and Eric Schmitt, “Rumsfeld Orders War Plans Redone for Faster Action,” New York Times, 2002.
Rebecca Slayton is an Assistant Professor in Science & Technology Studies at the Judith Reppy Institute for Peace and Conflict Studies at Cornell University. Her research examines how experts assess different kinds of risks in new technology, and how their arguments gain influence in distinctive organizational and political contexts. She is author of Arguments that Count: Physics, Computing, and Missile Defense, 1949-2012 (MIT Press: 2013), which compares how two different ways of framing complex technology—physics and computer science—lead to very different understandings of the risks associated with weapons systems. It also shows how computer scientists established a disciplinary repertoire—quantitative rules, codified knowledge, and other tools for assessment—that enabled them to construct authoritative arguments about complex software, and to make those analyses “stick” in the political process.
Slayton earned a Ph.D. in physical chemistry at Harvard University in 2002, and completed postdoctoral training in the Science, Technology, and Society Program at the Massachusetts Institute of Technology. She has also held research fellowships from the Center for International Security and Cooperation at Stanford University. She is currently studying efforts to manage the diverse risks—economic, environmental, and security—associated with a “smarter” electrical grid.
Public Interest Report: June 2014
A Scenario for Jihadist Nuclear Revenge
by Edward A. Friedman and Roger K. Lewis
When President Obama declared in 2009 that “nuclear terrorism is the most immediate and extreme threat to global security,” it was scarcely noticed. Yet when questionable sources announced that the Mayan Calendar predicted the end of the world in 2012, media and public attention was astonishing. The apocalyptic prediction arising from myth took hold, while a warning of potential catastrophe based in reality, put forth by Barack Obama in Prague, passed us by. Supernatural doomsday scenarios readily gain traction in our public discourse, but threats to our civilization from proven nuclear dangers elude us.
Keeping the Lights on: Fixing Pakistan’s Energy Crisis
by Ravi Patel and Nelson Zhao
From frequent attacks by Islamic militants across the country to a slowing economy, it is clear that there are many issues that threaten Pakistan’s stability. However, the most pressing issue that Pakistan faces today is its deteriorating economy. In particular, a crushing energy shortage across the country significantly constrains economic growth.
Hezbollah and the Use of Drones as a Weapon of Terrorism
by Milton Hoenig
Hezbollah’s first flight of an unmanned aerial vehicle, or drone, into Israeli airspace for reconnaissance purposes occurred in November 2004, catching Israeli intelligence off guard.
Misconceptions and the Spread of Infectious Disease
by Brittany Linkous
Myths and misperceptions regarding infectious diseases have detrimental effects on global health when a disease outbreak occurs. While it may seem that this problem is isolated to remote regions of the developing world, neither infectious diseases nor misconceptions regarding them are explicitly confined to certain areas.
The Evolution of the Senate Arms Control Observer Group
by Nickolas Roth
In March 2013, the Senate voted down an amendment offered by Senator Rand Paul (R-KY) to cut $700,000 from their budget that was set-aside for the National Security Working Group (NSWG). What many did not realize at the time was that this relatively small and obscure proposed cut would have eliminated one of the last traces of the bipartisan Congressional approach to debating arms control.
The Evolution of the Senate Arms Control Observer Group
In March 2013, the Senate voted down an amendment offered by Senator Rand Paul (R-KY) to cut $700,000 from their budget that was set-aside for the National Security Working Group (NSWG). What many did not realize at the time was that this relatively small and obscure proposed cut would have eliminated one of the last traces of the bipartisan Congressional approach to debating arms control.
The NSWG first began as the Arms Control Observer Group, which helped to build support for arms control in the Senate. In recent years, there have been calls from both Democrats and Republicans to revive the Observer Group, but very little analysis of the role it played. Its history illustrates the stark contrast in the Senate’s attitude and approach to arms control issues during the mid- to late 1980s compared with the divide that exists today between the two parties.
The Arms Control Observer Group
The Arms Control Observer Group was first formed in 1985. At the time, the United States was engaged in talks with the Soviet Union on the Intermediate Nuclear Forces Treaty. To generate support for ongoing negotiations, Majority Leader Senator Bob Dole (R-KS), and Minority Leader Senator Robert Byrd (D-WV), with the endorsement of President Ronald Reagan, created the bipartisan Arms Control Observer Group. The Observer Group consisted of twelve senators, with four senators, two from each party, serving as co-chairs and created an official role for senators to join U.S. delegations as they negotiated arms control treaties. As observers, its members had two duties: to consult with and advise U.S. arms control negotiating teams, and “to monitor and report to the Senate on the progress and development of negotiations.”
During meetings with U.S. State Department negotiators, senators were able to present their views, ask questions, and even engage in candid and confidential exchanges of ideas and information. Senators were also allowed to meet with members of the Soviet delegations on an “informal” basis. The Observer Group believed that the “interplay of ideas” would assist negotiators and, if negotiations failed, the members would help their fellow senators explain the reasons why to the American public.
The Observer Group served a number of purposes. First, it was intended to supplement the activities of the Senate Foreign Relations Committee. Senator Byrd argued that the process that existed up until that point—where the Foreign Relations Committee became experts on treaties and the full Senate only began to understand the issues after the negotiation—was not functioning properly. Its creators argued, “the full Senate has focused its attention in the past only sporadically on the vital aspects of arms control negotiations, usually developing a knowledge and understanding of the issues being negotiated after the fact…the result of this fitful process has been generally unsatisfactory in recent years.” During the previous decade, the Executive Branch had failed to garner enough Senate support for several arms control initiatives: the Peaceful Nuclear Explosions Treaty of 1976, the Threshold Test Ban Treaty of 1974, and the Strategic Arms Limitation Treaty (SALT II) of 1979, none of which were ratified by the United States. Although there had been previous attempts to involve senators in arms control negotiations, the Observer group provided “more regular and systematic involvement” from the full Senate long before a vote took place.
The formation of the Observer Group publicly demonstrated the important role of arms control in national security matters. The resolution that created the group states that senators have the “obligation to become as knowledgeable as possible concerning the salient issues, which are being addressed in the context of the negotiating process. Any accord with the Soviet Union to control or reduce our strategic weapons carries considerable weight for our nation.” According to Senator Sam Nunn (D-GA), a founding member of the Observer Group, “the goal [was] to have the Senate fulfill both halves of its constitutional responsibilities, not only the consent half—that’s what we’ve been looking to primarily in the past—but also the advice half.”
Additionally, the Observer Group helped develop institutional knowledge and expertise on arms control within the Senate. The Group’s founding members stated that they believed it was necessary to become “completely conversant” in issues related to treaty negotiations and that such knowledge was “critical” to the Senate’s understanding of the issues involved. To achieve that goal, they held regular behind closed-door briefings on negotiations for senators and their staff and some staffers were able to review related classified materials. Observer Group members were conversant in issues related to previous arms control treaties, missile defense, the connection between strategic offense and defense, and treaty compliance.
Above all, the Observer Group was intended to help build bipartisan support for President Reagan’s arms control initiatives. The group was seen as a mediating body. When it was formed, Senators Dole and Byrd co-authored a resolution stating that the Observer Group was part of “an ongoing process to reestablish a bipartisan spirit in this body’s consideration of vital national security and foreign policy issues.” Senator Richard Lugar (R-IN), who was one of the original members of the Observer Group, agreed by affirming, “The observer group is tremendously important to forming a consensus on which ratification might occur.” The Group’s 1985 report to Congress endorsed “the broad bipartisan support of the Senate for the Administration’s arms control efforts…determination to be as patient as necessary to achieve a sound agreement…the seriousness with which the Senate, including the Observer group intends to fulfill its constitutionally-mandated role in the treaty-making process.” This opinion was also shared by the Reagan administration. In a letter to Senators Dole and Byrd, Secretary of State George Shultz stated that he thought the Observer Group would help facilitate unity on arms control.
It is difficult to demonstrate the extent of its influence as the years the Observer Group was most active were also the years in which arms control was seen by both parties as a vital part of U.S. policy. The success of these initiatives was clearly not solely due to the Observer Group, but it did play a role. Every one of the original Group’s members voted in favor of the INF Treaty in 1988, which passed 93-5. Similarly, all of the senators within the Group voted in favor of ratifying the 1992 START Treaty, which passed 93-6.
The National Security Working Group
Towards the end of the 1990s, the Senate’s attitude towards arms control changed. Negotiations between the United States and Russia on a legally binding nuclear reduction treaty had stalled. The Senate had voted down the Comprehensive Test Ban Treaty. Reflecting this changing point of view, in 1999, Senator Trent Lott (R-MS), wanted to further diminish the Senate’s focus and expertise on arms control issues. He proposed an amendment that expanded the Observer Group’s purview to include observing talks related to missile defense and export controls and renamed it the National Security Working Group. For nearly a decade during the George W. Bush administration, which pursued relatively little in terms of legally binding arms control agreements, the NSWG was relatively dormant.
This changed in 2009 under the Obama administration when the Executive Branch started briefing senators about the ongoing New Strategic Arms Reduction Treaty (New START) negotiations. From July 6, 2009, when President Obama and Russian President Dmitry Medvedev signed an agreement to reduce American and Russian nuclear arsenals, to April 10, 2010, when they signed the negotiated treaty, the NSWG was revived in order to give senators a role in observing the negotiation process. During this ten-month period, the NSWG began meeting again. The meetings were open to members of the Armed Services and Foreign Relations committees and were well attended, with roughly 50 percent attendance from those who were invited. Senators who participated in the Working Group knew it was a serious matter and paid attention to it. As a result of their attendance, they left meetings better informed on issues related to arms control.
Throughout the course of Senate deliberation of New START, Senator Jon Kyl (R-AZ) served as the Republican Party’s key interlocutor with Democrats. Unlike his predecessors in the Observer Group, Senator Kyl did not see the Working Group as a vehicle for bipartisan cooperation and consensus building. Senator Kyl used his position as the chief negotiator to disrupt the Obama administration’s legislative agenda on arms control.
Senator Kyl used issues peripheral to the treaty, such as missile defense and modernization of the nuclear stockpile, to “slow roll” the legislative process and prevent the administration from pursuing the Comprehensive Test Ban Treaty, which he ardently opposed.1 According to one account, Senator Kyl “was not using the Working Group. It was just a tool to stop the policy. There wasn’t a getting to yes option. It wasn’t there to get to yes. If the members of the group aren’t inclined to get to yes, then the mechanism won’t get them there.” Further, he “came prepared to ask tough questions, not just to listen and probe. He was there to look for chinks in the arms and attack in front of his colleagues. He wanted his colleagues to see it.”
In an effort to prevent Senator Kyl from disrupting meetings, Senate staff made the NSWG open to all members of the Senate Foreign Relations and Armed Services Committees. They also made sure that senior Democratic leadership was present for all of the NSWG meetings. Either Senator John Kerry (D-MA) or Carl Levin (D-MI) served as Chair and were both prepared to answer all questions and concerns.
Despite this impediment, senators still appear to have found the Working Group useful. Senator Levin, Chairman of the Senate Armed Services Committee, said the NSWG provided an opportunity to bring senators in at the beginning of the negotiation process, and “through the group” there were “many opportunities to learn of the progress and details of negotiations and to provide our advice and views to the administration throughout the process.” He praised the NSWG’s work, arguing that it was a “key” part of the treaty ratification process because it allowed senators to begin meeting with the administration “early in the process of negotiation” before New START was finalized. He said that during the New START process, “members of the National Security Working Group asked a great number of questions, received answers at a number of meetings, stayed abreast of the negotiation details, and provided advice to the administration.” Finally, he added that, through the NSWG, the administration had the opportunity to respond to senators’ questions and concerns, which helped to avoid problems during the Senate’s consideration of the treaty.
The Senate was less supportive of arms control this time around. Even with senators actively involved in the NSWG, only 13 Republicans ended up supporting the treaty. Of those 13, only four Republicans were members of the Working Group (Senators Lugar, Corker, Voinovich, and Cochran). Among those four, only Senator Lugar was a particularly strong advocate for the treaty.
At best, the Working Group had a mixed track record and certainly did not have the same kind of success as the Observer Group. Only two senators traveled to observe New START negotiations. There was no spirit of cooperation or strong bipartisan support for the treaty. The Working Group essentially became a courtroom where New START could be prosecuted.
The Future of the NSWG
Since the vote on New START, the NSWG has not been any more successful in helping to foster bipartisanship. At the beginning of the 113th session of Congress, Senator Dianne Feinstein (D-CA) and Senator Marco Rubio (R-FL) were appointed co-chairs. Senator Rubio, like Senator Kyl, has attempted to impede the Obama Administration’s work on arms control.
While the cooperative atmosphere that surrounded the Arms Control Observer Group seems like an anachronism in today’s political climate, this is not meant to argue that senators within the Working Group need to agree on everything. There were major disagreements over nuclear policy during the Reagan administration and at times, heated discussions within the Observer Group. The difference was that the Observer Group was effective because the senators who were in it believed that arms control could advance U.S. national interests and wanted the group to succeed.
Today, the NSWG suffers from three broader trends within the United States that inhibit this attitude. The first is that the partisanship that exists in the Working Group is a reflection of the divisions in Congress. Given this dynamic, if there is any chance for the NSWG to serve as a valuable forum, individuals looking for the spotlight cannot be given the opportunity to hijack it. Secondly, since the end of the Cold War, detailed, negotiated arms control agreements are decreasingly seen as important to advancing U.S. national interests. There is diminishing prestige or interest in being a member of the NSWG or in supporting arms control. Thirdly, the Republican Party is far more skeptical about any legally binding international commitments than it once was.
These trends are unfortunate. The fact is that arms control still has a role to play in advancing U.S. interests and promoting international peace and stability. There are numerous issues that the United States and Russia will still need to address together. They continue to cooperate on issues related to Iran and reducing the risk of nuclear terrorism. They will likely still continue to communicate about issues related to U.S. missile defense deployment. Some think that current problems between the United States and Russia are evidence that this is not the case, but it was this kind of tension that led both countries to arms control in the first place. For this reason, diplomacy will remain an important policy tool for preventing catastrophic war between the two countries.
With diminishing nuclear policy expertise in a divided Senate, there is a need for a group of engaged, knowledgeable senators invested in arms control. For this reason, the NSWG will continue to have the opportunity to play a constructive role in informing the Senate on these issues and allowing senators into the diplomatic process.
The first members of the Group were Senator Ted Stevens (R-Alaska), Sam Nunn (D-Georgia), Richard Lugar (R-Indiana), Claiborne Pell (D-Rhode Island), Al Gore (D-Tennessee), Ted Kennedy (D-Massachusetts), Pat Moynihan (D-New York), Don Nickles (R-Oklahoma), John Warner (R-Virginia), and Malcolm Wallop (R-Wyoming).
Foreword, Report of the Senate Arms Control Observer Group Delegation to the Opening of the Arms Control, Negotiations with the Soviet Union in Geneva, Switzerland, March 9-12, (III) 1985.
Origin and Summary of Activities, Report of the Senate Arms Control Observer Group Delegation to the Opening of the ArmsControl, Negotiations with the Soviet Union in Geneva, Switzerland, March 9-12, 1985.
Transcript of Press Conference of Observer Group in Geneva, March 12, 1985, Report of the Senate Arms Control Observer Group Delegation to the Opening of the Arms Control, Negotiations with the Soviet Union in Geneva, Switzerland, March 9-12, 1985.
Origin and Summary of Activities, Report of the Senate Arms Control Observer Group Delegation to the Opening of the Arms Control, Negotiations with the Soviet Union in Geneva, Switzerland, March 9-12, 1985.
Janne E. Nolan, “Preparing for the 2001 Nuclear Posture Review,” Arms Control Today, November 2000, http://www.armscontrol.org/act/2000_11/nolan
Congressional Staffer (April 4, 2013), personal interview.
Kyl, Jon, Memo to National Security Working Group Republican Members: Report on the NSWG CODEL to Observe the Geneva Negotiations, November 23, 2009, http://www.foreignpolicy.com/images/091123_20091121_-_Kyl_Memo_to_NSWG_-_NSWG_START_mission.pdf.
Senator Carl Levin (MI), “Authorizing Expenditures by Committees,” Congressional Record (March 5, 2013), p. S1103.
Kristine Bergstrom, “Rubio vs Gottemoeller: The New Partisan Politics of Senate Nuclear Confirmations,” Carnegie Endowment for International Peace, March 7, 2014, http://carnegieendowment.org/2014/03/07/rose-gottemoeller-marco-rubio-and-new-partisan-politics-of-senate-nuclear-confirmations/h2mq.
Nickolas Roth is a research associate at the Project on Managing the Atom in the Belfer Center for Science and International Affairs at Harvard Kennedy School. Nickolas Roth previously worked as a policy analyst at the Union of Concerned Scientists, where he wrote extensively about the industrial infrastructure responsible for maintaining the nuclear weapons stockpile. Mr. Roth has a B.A. in History from American University and a Masters of Public Policy from the University of Maryland, where he is currently a research fellow. Mr. Roth’s written work has appeared or been cited in dozens of media outlets around the world, including the Washington Post, Los Angeles Times, USA Today, Asahi Shimbun, Boston Globe, and Newsweek.
American Scientists and Nuclear Weapons Policy
“Those who don’t know history are destined to repeat it,” warned British statesman and philosopher Edmund Burke more than 200 years ago. Having recently delved into reading about the history of the first group of American atomic scientists and their efforts to deal with the nuclear arms race, I have realized that Burke was right. More so, I would underscore that the ideas of these intellectual path-breakers are still very much alive today, and that even when we are fully cognizant of this history we are bound to repeat it. By studying these scientists’ ideas, Robert Gilpin in his 1962 book, American Scientists and Nuclear Weapons Policy, identifies three schools of thought: (1) control, (2) finite containment, and (3) infinite containment.
The control school had its origins in the Franck Report, which had James Franck, an atomic scientist at the Metallurgical Laboratory at the University of Chicago serve as the lead drafter of the report which argued that “any international agreement on prevention of nuclear armaments must be backed by actual and efficient controls.” Seventy Manhattan Project scientists signed this report in June 1945, which was then sent to Secretary of War Henry Stimson. They suggested that instead of detonating atomic bombs on Japan, the United States might demonstrate the new weapon on “a barren island” and thus say to the world, “You see what sort of a weapon we had but did not use. We are ready to renounce its use in the future if other nations join us in this renunciation and agree to the establishment of an efficient control.” As we all know, the United States government did not take this advice during the Second World War.
But in 1946, the United States put forward in the Acheson-Lilienthal Report (in which J. Robert Oppenheimer, scientific director of the Manhattan Project, served as the lead drafter) ideas for international control of atomic energy. In the form of the Baruch Plan, this proposal before the fledging United Nations faced opposition from the Soviet Union, which wanted to arm itself with nuclear weapons before accepting a U.S. plan that could leave the United States wielding a monopoly on nuclear arms. However, the control school has been kept alive in part, through the founding in 1957 of the International Atomic Energy Agency, which has the dual mission to promote peaceful nuclear power and safeguard these programs. Periodically, concepts are still put forward to create multilateral means to exert some control over uranium enrichment and reprocessing of plutonium, the methods to make fissile material for nuclear reactors or bombs. Many of the founders and leading scientists of FAS such as Philip Morrison and Linus Pauling belonged to the control school.
Starting in the late 1940s, disillusionment about the feasibility of international control was setting in among several atomic scientists active in FAS and advisory roles for the government. They began to see the necessity for making nuclear weapons to contain the Soviet Union. Nonetheless, there were those who believed that international controls should continue to be pursued in parallel with production of atomic bombs. Thus, a sharp division did not exist between the control and finite containment schools of thought. Oppenheimer exemplified this view in a speech on September 17, 1947, to the National War College where he extolled the “soundness” of the control proposals but lamented that “the very bases for international control between the United States and the Soviet Union were being eradicated by a revelation of their deep conflicts of interest, the deep and apparently mutual repugnance of their ways of life, and the apparent conviction on the part of the Soviet Union of the inevitably of conflict—and not in ideas alone, but in force.”
Reading this, I think of the dilemma the United States faces with Iran over efforts to control the Iranian nuclear program while confronting decades of mistrust. One big difference between Iran and the Soviet Union is that Iran, as a non-nuclear weapon state party to the Nuclear Non-Proliferation Treaty, is legally obligated to not make or acquire nuclear explosives whereas the Soviet Union never had such legal restrictions. Thus, Iran has already agreed to accept controls through safeguards on its nuclear program. The question is what additional controls Iran will agree to accept in order to provide needed assurances that it does not have a nuclear weapons program and will not develop such in the future. In parallel, the United States is strengthening containment mostly via a military presence in the Persian Gulf region and providing weapons and defense systems to U.S. allies in the Middle East. Scientists play vital roles both in improving methods of control via monitoring, safeguarding, and verifying Iran’s nuclear activities and in designing new military weapon systems for containment through the threat of force.
How much military force is enough to contain or deter? The scientists who believed in finite containment were generally reluctant, and even some were opposed, to advocating for more and more powerful weapons. As Gilpin examines in his book, the first major schism among the scientists was during the internal government debate in 1949 and 1950 about whether to develop the hydrogen bomb. In particular, the finite containment scientists on the General Advisory Committee to the Atomic Energy Commission assessed that “an American decision not to construct the hydrogen bomb would again symbolize the sincerity of America’s desire to end the atomic arms race.”
In contrast, the infinite containment school that included Edward Teller (who was instrumental in designing the hydrogen bomb), and Ernest Lawrence (who was a scientific leader during the Manhattan Project and was based at the University of California, Berkeley), “argued that control over nuclear weapons would only be possible in a completely open world such as that envisioned in the Baruch Plan. Under the conditions of modern science, the arms race would therefore be unavoidable until the political differences underlying that arms race were settled” in the words of Gilpin. Many of the infinite containment scientists were the strongest advocates for declassifying nuclear secrets as long as there were firm assurances that nations had joined together to prevent the use of nuclear energy for military purposes or that “peace-loving nations had a sufficient arsenal of atomic weapons [to] destroy the will of aggressive nations to wage war.” In effect, they were arguing for world government or for a coalition of allied nations to enforce world peace.
Readers will be reminded of many instances in which history has repeated itself as mirrored by the control, finite containment, and infinite containment ways of thought arising from the atomic scientists’ movement of the 1940s and 1950s. Despite the disagreements among these “schools,” a common belief is that the scientists “knew that technical breakthroughs rarely come unless one is looking for them and that if the best minds of the country were brought in to concentrate on the problem, someone would find a solution … if there were one to be found,” according to Gilpin. Gilpin also astutely recommended that “wisdom flourishes best and error is avoided most effectively in an atmosphere of intellectual give and take where scientists of opposed political persuasions are pitted against one another.” Finally, he uncovered a most effective technique for “bring[ing] about the integration of the technical and policy aspects of policy” through “the contracted study project … wherein experts from both inside and outside of the government meet together over a period of months to fashion policy suggestions in a broad area of national concern.”
This, in effect, is the new operational model for much of FAS’s work. We are forming study groups and task forces that include diverse groups of technical and policy experts from both inside and outside the government. Stay tuned to reports from FAS as these groups tackle urgent and important science-based national security problems.
Charles D. Ferguson, Ph.D.
President, Federation of American Scientists
Misconceptions and the Spread of Infectious Disease
New and improved medical treatments for infectious diseases are vital to improving global health security; however, public education is equally important. Myths and misperceptions regarding infectious diseases have detrimental effects on global health when a disease outbreak occurs. While it may seem that this problem is isolated to remote regions of the developing world, neither infectious diseases nor misconceptions regarding them are explicitly confined to certain areas.
Outbreaks can be highly disruptive to the movement of people and goods, often leading to increased regulations and restrictions on travel and trade to reduce the potential for further spread of disease. The Severe Acute Respiratory Syndrome (SARS) epidemic in 2003 was but one of the numerous examples in which international travel was disrupted. The disease quickly infected thousands of people around the world and disrupted national economies. Due to the rapid transmissibility of SARS, the World Health Organization (WHO) issued a travel advisory in effort to reduce the international public threat. In 2001, the United Kingdom experienced a detrimental hit to the agricultural sector as foot-and-mouth disease spread throughout livestock. Because of the highly transmissible nature of the disease (which affected cattle, pigs, sheep, and goats), the government banned all exports of live animals, meat, and dairy products in an effort to mitigate the spread of the disease and on February 24, mass slaughtering of pigs and cattle began. Later that same year, the tourist industry estimated that businesses lost nearly £250 million ($421 million U.S. dollars).
In the developing world, pneumonia, diarrhea, malaria, measles, and HIV/AIDS are some of the primary causes of death, especially among children. This is in part attributable to socioeconomic factors that prevent people from having access to routine health services and immunizations. Poor nutrition and unsanitary living conditions also place people at-risk. In Africa, the death rate among children from measles, a viral respiratory disease, has reached an average rate of one per minute. Measles weakens the child’s immune system, rendering them susceptible to further fatal complications such as diarrhea, pneumonia, and malnutrition. Yet, in the developed regions of the world, measles is commonly treated through immunizations.
Tetanus, an infection caused by the bacteria Clostridium tetani (which is ubiquitous in the soil), is common in developing areas that continue to practice unsanitary medical techniques during procedures such as child birth, circumcision, and use of contaminated medical bandages during such procedures. While proper sanitary resources are scarce in these regions, it is evident that the lack of supplies is not the only cause of disease transmission as proper sanitation techniques could have mitigated transmission. Due to the lack of education and misinformation regarding public health, sanitation, and the mechanisms of disease transmission, the spread of infectious diseases like tetanus continues.
Developed countries are also susceptible to infectious disease outbreaks despite modern medical advances and technology. Disease outbreaks in developed regions have been due in part to the misconceptions of vaccines and anti-bacterial drugs that have been used to deter the spread of infectious diseases. While some individuals have the perception that antibiotics are a “cure-all” drug, their effectiveness is only on infections caused by bacteria, not viruses. When improperly used (for example- taking when they are not needed, ingesting the wrong type of antibiotic or one that is not of the proper dose), the bacterial cells that survive can result in reinfection or the emergence of an antibiotic-resistant strain of the bacteria. This was evident in the recent reemergence of pertussis, also known as “Whooping Cough,” in the mid-1970s when Great Britain, Sweden and Japan reduced their usage of the pertussis vaccine as there was a common fear of vaccinations. The effect was immediate and drastic- there were over 100,000 cases and 36 deaths in Great Britain, 13,000 cases and 41 deaths in Japan, and 3,200 cases in Sweden. The United States witnessed a similar outbreak in the northwest region of the country in 2012, when over 17,000 cases emerged shortly after an increased rate of vaccine refusals for pertussis. While no vaccine is 100% effective, it is evident that popular misconceptions regarding infectious diseases and their spread can have detrimental repercussions on the populace and need to be addressed head-on.
Education, early detection, and access to are all essential in containing and preventing the spread of disease in a globalized society. Myths and misconceptions have hindered the effectiveness of vaccinations, as individuals have become skeptical of their effectiveness. However, vaccinations can drastically reduce the chances of contracting many diseases. Additionally, developing and utilizing programs that educate the public regarding the implications of infectious diseases and treatments pertaining to them, the spread of disease is likely to be significantly reduced.
Infectious disease outbreaks are a significant threat to global health security and thus have the potential to impact nearly every facet of daily life. Even in an era of medical advancements, increased sanitary practices, and knowledge of microbes, infectious diseases are still prevalent throughout the world. While having better medical practices and medicines available is beneficial in combating the transmission of infectious diseases, there is no substitute for better public health education.
U.S. National Library of Medicine. “Severe Acute Respiratory Syndrome (SARS).” Last Modified Jan. 28, 2013. Accessed March 20, 2014. http://www.ncbi.nlm.nih.gov/pubmedhealth/PMH0004460/
Eco Health Alliance. “7 Common Myths About Pandemics and New Diseases.” Last modified June 27, 2013. Accessed on March 19, 2014. http://www.ecohealthalliance.org/blog/99-7_common_myths_about_pandemics_and_new_diseases
BBC. “Foot-and-Mouth Crisis Remembered.” Last modified February 17, 2011. Accessed on May 13, 2014. http://www.bbc.com/news/uk-england-12483017
UNICEF. “Immunization: Why Children Are Dying.” Accessed on March 19, 2014. http://www.unicef.org/immunization/index_why.html
Medical News Today. “What is Tetanus? What Causes Tetanus?” Last modified Sept. 4, 2009. Accessed on March 19, 2014. http://www.medicalnewstoday.com/articles/163063.php
Mayo Clinic. “Antibiotics: Misuse Puts You and Others at Greater Risk.” Last Modified 2014. Accessed March 20, 2014. http://www.mayoclinic.org/healthy-living/consumer-health/in-depth/antibiotics/art-20045720
Koo, Ingrid. About.com, “The Truth About Antibiotics.” 6 Nov. 2008. 6 Apr. 2014. http://infectiousdiseases.about.com/od/treatment/a/antibiotic_myth.htm
Center for Disease Control. “Some Common Misconceptions About Vaccination and How to Respond to Them.” Last modified Feb. 18, 2011. Accessed on March 19, 2014. http://www.cdc.gov/vaccines/vac-gen/6mishome.htm
Forbes. “Anti-Vaccine Movement Causes The Worst Whooping Cough Epidemic in 70 Years.” Last Modified July 23, 2012. Accessed on March 19, 2014. http://www.forbes.com/sites/stevensalzberg/2012/07/23/anti-vaccine-movement-causes-the-worst-whooping-cough-epidemic-in-70-years/
Mayo Clinic. “Infectious Diseases.” Last modified Jan. 23, 2013. Accessed on May 23, 2014. http://www.mayoclinic.org/diseases-conditions/infectious-diseases/basics/prevention/con-20033534
Brittany Linkous is a graduate of King University with a double major in Cellular and Molecular Biology and Political Science and History, and a minor in Security and Intelligence Studies. While at King, she served as Executive Officer of the King Security and Intelligence Studies Group and Executive Editor of the Security and Intelligence Studies Journal. She also interned in Washington, DC, at the William J. Perry Center for Hemispheric Defense Studies at the National Defense University, and the Federation of American Scientists. In the fall of 2014, Brittany will be entering the Biodefense Program at George Mason University.
Hezbollah and the Use of Drones as a Weapon of Terrorism
The international terrorist group Hezbollah, driven by resistance to Israel, now regularly sends low flying drones into Israeli airspace. These drones are launched and remotely manned from the Hezbollah stronghold in Lebanon and presumably supplied by its patron and strategic partner, Iran. On the U.S. State Department’s list of terrorist organizations since 1995, Hezbollah has secured its presence in Lebanon through various phases. It established a strong social services network, and in 2008 it became the dominant political party in the Lebanese government and supported the Assad regime in the Syrian Civil War.
Hezbollah’s drone flights into Israeli airspace
Hezbollah’s first flight of an unmanned aerial vehicle (UAV) or drone, into Israeli airspace for reconnaissance purposes occurred in November 2004, catching Israeli intelligence off guard. A Mirsad-1 drone (an updated version of the early Iranian Mohajer drone used for reconnaissance of Iraqi troops during the 1980s Iran-Iraq War), flew south from Lebanon into Israel, hovered over the Western Galilee town of Nahariya for about 20 minutes and then returned to Lebanon before the Israeli air force could intercept it.
Hezbollah leader Hassan Nasrallah boasted that the Mirsad could reach “anywhere, deep, deep” into Israel with 40 to 50 kilograms of explosives. One report at the time was that Iran had supplied Hezbollah with eight such drones, and over two years some 30 Lebanese operatives had undergone training at Iran Revolutionary Guard Corps bases near Isfahan to fly missions similar to the Mirsad aircraft.
The second drone flight into Israel was a short 18-mile incursion in April 2005 (again by a Mirsad-1 drone), that eluded Israeli radar and returned to Lebanon before Israeli fighter planes could be scrambled to intercept it. A third drone mission in August 2006 during the Lebanon War was intended for attack; Hezbollah launched three small Ababil drones into Israel each carrying a 40-50 kilogram explosive warhead intended for strategic targets. This time Israeli F-16s shot them down, one on the outskirts of Haifa, another in Western Galilee, and the third in Lebanon near Tyre.
Abruptly, the incursion of Hezbollah drones into Israeli airspace stopped – only to be started up again after a six year hiatus. Presumably, drone launches by Hezbollah into Israel are planned and carried out to meet the political agenda of Iran, while shielding Iran’s involvement and allowing a measure of deniability. The involvement of Shiite Hezbollah with Iran dates back to financial support and training from the Iran Revolutionary Guard Corps and the suicide attacks in Beirut in October 1983 on the U.S. embassy and the Marine Corps barracks attacks. This was followed by Iranian sponsorship of Hezbollah attacks on the Israeli embassy and the Jewish Community Center in Buenos Aires, Argentina in 1992 and 1994, and the Khobar Towers bombing in Saudi Arabia in 1996.
The drones sent out from Lebanon were small objects moving at slow speed and low elevation and as such they were difficult to detect by radar. The Mirsad-1 and the Ababil were each only about 9.5 feet in length. The low speed (120 miles per hour for the Mirsad-1 and 180 miles per hour for the Ababil) minimized the Doppler shift in the reflected radar beam and made detection difficult. The low ceiling (6,500 feet for the Mirsad-1 and 9,800 feet for the Ababil) would limit detection as it is obscured by ground clutter, glare, and other environmental conditions. In the past it has been reported that drones could penetrate Israel’s radar and air defense systems, even the Iron Dome. But ongoing upgrades in detection capability suggest progress has been made in improving sensitivity and limiting detection failure to areas lacking air defenses, or suppressed defenses, or when the drones are indeed very small.
A daring mission to the nuclear complex at Dimona
The next appearance of a Hezbollah drone on October 6, 2012, was a spectacular foray that took Israel by surprise. An Iranian drone called “Ayub” flew south from Lebanon over the Mediterranean and into Israel via the Gaza Strip, moving westward about 35 miles into the Negev and penetrating to a point near the town of Dimona, the site of Israel’s nuclear weapons complex. There it was shot down over a forest by Israeli aircraft. Examining the wreckage, Israeli military said that it was possible the drone could have transmitted imagery of the nuclear research center.
Observers immediately interpreted this incursion as a message from Iran that Israel’s nuclear facilities were vulnerable to attack should Israel attempt any military action against Iran’s nuclear facilities. Apparently the propaganda victory was significant enough for Iran to admit spying on Israel several weeks later: an influential member of the Iranian Parliament announced that Iran had pictures of sensitive Israeli facilities transmitted by the drone.
In a more recent flight in April 2013, an unmanned aircraft attributed to Hezbollah reached the coast near the city of Haifa, where an Israeli warplane brought it down, demonstrating that these drones are still vulnerable to counter-attack.
Each drone flight into Israel is potentially a significant propaganda victory for Hezbollah. As Matthew Levitt of the Washington Institute has noted, “They love being able to say, ‘Israel is infiltrating our airspace, so we’ll infiltrate theirs, drone for drone.’”
Israeli drones are sophisticated, deadly and widely used in policing and assassinations of Hamas operatives in Gaza, while Hezbollah’s drones appear to lag behind. While the 145 mile excursion from Lebanon to Dimona in October 2012 showed substantial gain in Hezbollah’s reconnaissance capability, a willingness by Iran to transfer its latest designs to give Hezbollah deadly capabilities is questionable since Iran is unlikely to risk having their advanced drones shot down over Israel. In addition, Hezbollah would surely have second thoughts about using drones in an assassination campaign in Israel since this would be met with a strong military response.
Emerging strategies and possibilities
Primarily sent to cause panic in Israel, Hezbollah’s drones that were shot down in 2006 were armed with explosive warheads. As their sophistication grows, Hezbollah’s drones will be increasingly valuable for reconnaissance missions to: gather information on troop movements and facilities, in prepare for future infiltrations or rocket attacks, and calibrate the accuracy of rocket targeting in real time. Adding weight to a drone’s load reduces its range; but once developed to carry heavier loads, drones become launching platforms for guided missiles or bombs. Drones could potentially carry and launch some weapons of mass destruction — biological and chemical weapons and even radioactive “dirty” bombs. In the hands of a jihadist group such as Al Qaeda, they could be used to kill civilians as a substitute for on-ground suicide attacks.
All sides in the worldwide drone wars have been working on countermeasures to neutralize each other’s attacks. Aside from radar detection and shooting drones down with land based missiles or airplanes, one viable countermeasure is jamming the frequencies used for navigation. A further step would be to intercept or “hack” into the signal that the controller transmits via satellite/aircraft and thereby gain control of the drone and its technology. Iran claims to have done this in the mysterious landing of a U.S. RQ-170 drone in Iran in 2011.
Important legal, moral and humanitarian challenges are being raised in connection with the use of drones for targeted killings by the United States in Yemen, Pakistan, and Afghanistan and by Israel in Gaza. Drones are a surgical tool that shields the people guiding them from the real horrors of war fighting. Their effectiveness in military attacks has been well demonstrated by the U.S. military in attacks to ferret out suspected terrorists. Drones are cheap, so other countries might be expected to follow suit; whether this is a desirable outcome is open to question.
Limiting drone proliferation
The export of large drones for military purposes raises issues for arms control and nonproliferation; exports are already a major multi-billion dollar business for both Israel and the United States. The sales are currently limited to drones for reconnaissance missions and civilian use, except for the U.S. supplying military attack drones to Britain. The Missile Technology Control Regime (MTCR) is a voluntary agreement between 34 countries that was initiated some three decades ago to stop the export of ballistic missiles with nuclear payloads greater 500 kilograms and ranges greater than 300 kilometers and was amended in 1992 to cover proliferation of UAV’s carrying all weapons of mass destruction. While Israel is not a member, it has agreed to follow the MTCR export rules. Nevertheless, there is increasing pressure on the U.S. government to liberalize and weaken controls, so that U.S. manufacturers of military aircraft are not left out of the burgeoning drone market.
The prospects for Hezbollah’s future drone force are closely aligned with political decisions made by Iran. Although information about Iran’s drone fleet remains hidden, Iran has made great strides in range, speed and lethality. In mid-2010, it unveiled the “Ambassador of Death” drone which can carry four cruise missiles or two large bombs with a range of 250 miles, and in November 2013, it announced the missile-carrying Fotros drone that could fly over 430 miles and remain aloft for 30 hours. In May 2014, Iran unveiled what it says is a reverse-engineered copy of the CIA RQ-170 stealth reconnaissance drone, which, it claims the Iranian Armed Forces’ electronic warfare unit commandeered and brought to a safe landing in Iran in December 2011. If Iran now has a copy of an advanced U.S. drone, this raises its drone capabilities to yet another level, as it seeks to play a dominant role in the Middle East.
Conclusion
Incursions of Hezbollah drones supplied by its patron Iran into Israel from Lebanon have occurred with increased frequency and sophistication since 2012. Now used only for purposes of reconnaissance, they have the potential for future attacks on military and civilian targets. Much depends on the political agenda of Iran. For the present, attacks on Israel from Lebanon either with drones or rockets may be receiving only divided attention from Hezbollah, as it focuses on pressing its support for Syria’s president Bashar Assad in the Syrian civil war.
Only a handful of countries presently manufacture military drones; the United States and Israel are the two major manufacturers. Russia and China have shown an interest in producing drones for military purposes, and India and Pakistan may also have developed them. Now is the time to give serious thought to a convention or treaty to ban the manufacture and use of UAVs for military purposes. In the United States, drones for commercial purposes are expected to be licensed in the next few years and the “rules of the road” in space are being considered by the Federal Aeronautics Administration. A focus on ensuring the benefits of drones in civil society should take the highest priority.
“Hezbollah says it has capability to bomb Israel from air,” Haaretz, Nov 12, 2004.
Eugene Miasnikov, “Terrorists Develop Unmanned Aerial Vehicles,” Center for Arms Control, Energy and Environment Studies at MIPT, Dec 2004, http://www.armscontrol.ru/uav/mirsad1.htm
“Hezbollah Mirsad-1 UAV Penetrates Israeli Air Defenses,” Defense Industry Daily, April 20, 2005.
Ronen Bergman, “Hezbollah Stockpiling Drones In Anticipation of Israeli Strike,” Yediot Ahronot, Feb 15, 2013.
Yochi Dreazen, “The Next Arab-Israeli War Will Be Fought With Drones,” New Republic, March 26, 2014.
Eugene Miasnikov, Terrorists Develop Unmanned Aerial Vehicles.” Center for Arms Control, Energy and Environment Studies at MIPT, Dec 2004, http://www.armscontrol.ru/uav/mirsad1.htm
Chandler P. Atwood, Joshua C. Burgess, Michael Eisenstadt, and Joseph D. Wawro, “Between Not-In and All-In: U.S. Military Options in Syria,” Policy Notes 18, Washington Institute, May 2014.
Carlo Munoz, “Iran claims drones gained access to secret Israeli facilities,” The Hill, October 29, 2012.
Gil Cohen, Barak Ravid and Jack Khoury, IDF shoots down drone from Lebanon opposite Haifa coast,” April 25, 2013.
Yochi Dreazen, “The Next Arab-Israeli War,” New Republic, March 26, 2014.
“UAV Drone Unmanned Aerial Vehicle,” UAV – DRONE.NET, 2013, http://uav-drone.net/anti-drone-uav.htm
Micah Zenko, Reforming U.S. Drone Strike Policies, Council on Foreign Relations, Council Special Report No. 65, January 2013.
Tia Goldenberg, “Israel is World’s Largest Drones Exporter,” Associated Press, June 5, 2013.
Jefferson Morley, “Drone Proliferation Tests Arms Control Treaties,” Arms Control Today, April 2014.
Brad Lendon, “Iran says it built copy of captured U.S. drone,” CNN, May 12 2014, http://www.cnn.com/2014/05/12/world/meast/iran-u-s-drone-copy/
Ben Hubbard, “Syrian Fighting Gives Hezbollah New but Diffuse Purpose,” New York Times, May 20, 2014.
Milton Hoenig is a nuclear physicist and consultant on weapons of mass destruction and nonproliferation issues.
Keeping the Lights on: Fixing Pakistan’s Energy Crisis

A stable and thriving Pakistan is the key to preserving harmony and facilitating progress in the broader South Asia region. Afghanistan, which is to the west of Pakistan, has a long border that divides the Pakhtun people between the countries. As a result of this border, Pakistan not only has a significant role in the Afghan economy, but instability in the loosely governed Pakistani frontier region spills across the border into Afghanistan. Because of this relationship, Pakistan has a direct impact on the outcome on the 13 year U.S. led war in Afghanistan. On the other hand, an unstable Pakistan would not only shatter budding trade relations with India, but could also spark conflict between the two nuclear armed rivals.
From frequent attacks by Islamic militants across the country to a slowing economy, it is clear that there are many issues that threaten Pakistan’s stability. However, the most pressing issue that Pakistan faces today is its deteriorating economy. In particular, a crushing energy shortage across the country significantly constrains economic growth. This fiscal year, Pakistan’s Gross Domestic Product (GDP) is forecasted to grow by measly 3.4 percent. At the same time, the country’s population is expected to grow by 1.8 percent adding to the 189 million people living there today. If there aren’t jobs available for the millions of young Pakistanis entering the work force, not only will poverty increase, but there is a strong possibly that some of these youth could vent their frustrations by joining the countless Islamic militant groups active in the country.
To build a more prosperous economy, Pakistan needs to address its energy problems. Without a reliable source of electricity or natural gas, how can Pakistani businesses compete on the global market? Large parts of the country today face blackouts lasting an average of 10 hours each day because of the electricity shortage. The current gap between electricity generation and demand is roughly 2500 MW, a shortage large enough to keep a population of 20 million or the city of Karachi in the dark.
These power shortages are only expected to become worse in the coming summer months. This is because demand for electricity peaks in the sizzling heat, while hydroelectric generation decreases as the water flow in the rivers drops due to seasonal fluctuation. This article will focus on the causes of the country’s energy problems involving the electricity sector and explore possible directions Pakistan can take to improve its energy situation, building its economy in the process.
How Does Pakistan Generate its Electricity?

Figure 1 breaks down Pakistan’s electricity generation by source. Thermal power, which includes natural gas, oil, and coal generated electricity, accounts for 70 percent of Pakistan’s total electricity generation, while hydroelectric generation is roughly responsible for the remaining 30 percent.
Electricity generated from furnace oil accounts for slightly over a third of Pakistan electricity. In the early 1990s, the country faced a power shortage of about 2000 MW when there was a peak load on the electricity grid. To resolve the growing crisis, the Pakistani government implemented a new policy in 1994, which was designed to attract foreign investment in the power sector and as a result there was construction of oil based power plants. These power plants were cheaper and faster to construct compared to other electricity generation plants such as hydroelectric dams. At the same time, the relatively low prices (below $17 a barrel) of crude oil meant that these plants generated electricity fairly cheaply. Fast forward to present times, the price of crude oil has risen to hover roughly around $100 a barrel. Unlike nearby Saudi Arabia, Pakistan is naturally not well endowed in crude oil reserves. This means that Pakistan must ship increasing amount of valuable currency abroad to secure the oil it needs to keeps these power plants running.
Along with furnace oil power plants, natural gas is used to generate about another third of electricity; it is provided by domestic reserves, thereby helping Pakistan’s economy and energy security. According to the U.S. Energy Information Administration, Pakistan has proven natural gas reserves of 24 trillion cubic feet (Tcf) in 2012. These reserves will last Pakistan an estimated 17 years based on the country’s annual consumption rate of 1.382 Tcf in 2012. At the same time, consumption rates are estimated to increase four fold to nearly 8 Tcf per year by the year 2020, further reducing the size of the domestic reserves.
The Pakistani government in 2005 under President Pervez Musharraf promoted the conversion of cars to run on compressed natural gas (CNG) instead of gasoline. The rationale was that this conversion would reduce the amount of money spent on purchasing and importing oil abroad. At the same time, CNG is cleaner for the environment than burning gasoline. As a result of this policy, more than 80 percent of Pakistan’s cars today run on CNG.But because of this surging demand for its limited natural gas, there is a critical shortage of it which has adversely impacted the country’s ability to use this fuel source to generate electricity. Essentially Pakistanis are forced to decide whether to use natural gas to fuel their cars, cook their food, or generate electricity.
Power Theft and the Circular Debt Issue
The reliance on oil and natural gas to generate electricity is incredibly inefficient, but these inefficiencies alone are not responsible for the crippling power shortages. The other source of tension involves the accumulation of circular debt in the electricity sector over the past few years. Circular debt is a situation where consumers, electricity producers and the government all owe each other money and are unable to pay. By June 2013 when the new government led by Prime Minister Nawaz Sharif took control, this circular debt had ballooned to $5 billion.
There are several reasons for the accumulation of this debt; the largest problem stems from power theft. Many Pakistani elites and even parts of the government do not pay their electricity bills. The law and order situation also prevent power companies from collecting bills in certain parts of the country. As a result, Pakistani electricity companies currently recover only 76 percent of the money that electricity consumers owe them. In fact, the Pakistani Minister for Water and Power, Mr. Khwaja Muhammad Asif, has acknowledged that the Pakistani government is one of the country’s largest defaulters of electricity bills. As part of recent crackdown, the power ministry cut supplies to the Prime Minister’s home and the Parliament House (among many government offices) because they were delinquent on their electricity bills. While many Pakistanis don’t pay their electricity bills, others steal power by illegally hooking into the power grid. This theft coupled with an inefficient electricity grid and the associated transmission loss means that Pakistan’s electricity generators are left with huge financial losses.
All these losses accumulate to form the circular debt and it places power producers in a position where they are unable to purchase enough fuel from abroad to operate power plants at full capacity. With an installed generation capacity of 22500 MW, Pakistan currently has more than enough installed capacity to meet peak demand levels today. The power producers are in reality only able to generate between 12000MW and 15000MW because of both inefficient energy infrastructure and circular debt. This actual amount of electricity generated is far less than the 17000 MW of demand nationwide during peak hours of electricity usage.
The circular debt also makes it more difficult for power producers to invest in upgrading existing electricity infrastructure. If power producers don’t have the money to operate oil based power plants at full capacity, they certainly do not have enough capital to build newer, more efficient power plants. Even when the lights are on, the inefficient electricity system takes an additional toll on the country’s economy. Pakistanis today pay more than double their Indian neighbors for electricity (16.95 Pakistani Rupees vs. 7.36 Pakistani Rupees per KWh respectively), putting Pakistani firms at a further disadvantage compared to regional competitors.
Fixing Pakistan’s Electricity Problems
One of Prime Minister Nawaz Sharif’s first actions after taking office was to pay off the $5 billion in circular debt that had accumulated by July 2013. Unfortunately, this step alone will not solve the power woes as it does not fix the underlying causes of the country’s power crisis. In fact, the circular debt has accumulate again, and stood at $1.8 billion by January 2014. To sustainably address the power crisis, Pakistanis need to change their attitude towards power theft by forcing the government and those delinquent to clear outstanding bills. At the same time, Pakistan must improve the efficiency of its electricity sector as well as expand and diversify its electricity generating capacity in order to ensure that the country can handle the expected growth in demand over the coming years.
Hydroelectric Generation
Pakistan has tremendous potential to expand its electricity generating capacity by developing its renewable energy resources. At nearly 30 percent, hydroelectricity is already a major source of electricity generation, but according to the Pakistani government, this reflects only 13 percent of the total hydroelectric potential of the country. There are several drawbacks of major hydroelectric projects including that they are capital intensive and require extensive time to build. Furthermore, hydroelectric dams are harmful to the local ecosystem and can displace large populations. The U.S. government is actively investing in helping Pakistan develop its hydroelectric resources; in 2011, USAID funded the renovation of the Tarbela Dam. In the process, this added generation capacity of 128 MW, which is enough electricity for 2 million Pakistanis.
Solar Energy

According to the USAID map of solar potential in Pakistan, the country has tremendous potential in harnessing the sun to generate electricity. Pakistan has an average daily insolation rate of 5.3 kWH/m2, which is similar to the average daily insolation rate in Phoenix (5.38 kWH/m2) or Las Vegas (5.3 kWH/m2), which are some of the best locations in the United States for solar generated electricity. So far, Pakistan has begun construction on a photovoltaic power plant in Punjab that will begin to produce 100 MW by the end of 2014.According to the World Bank some 40,000 villages in Pakistan are not electrified. Tapping into these solar resources could easily electrify many of these off the grid villages, while avoiding an increase in demand on the national electricity grid.
Nuclear Energy
Pakistan has three currently active nuclear power plants: two located in Punjab and one in the southern port city of Karachi. The two Chinese built nuclear power plants in Punjab each have a net generation capacity of 300 MW. The Karachi power plant, which was built with a reactor supplied by Canada in 1972, has a net generation capacity of 125 MW, enough to provide power to 2 million Pakistanis. China has been a key supplier and investor in Pakistani nuclear energy, but there are some concerns regarding the transfer of nuclear technology to Pakistan, where A.Q. Khan’s nuclear network was headquartered. Specifically, China argues that its alliance with Pakistan predates its joining of the Nuclear Suppliers Group (NSG), which has restricted nuclear sales to Pakistan, so this justifies its desire to supply Pakistan with the technology. The Chinese are helping construct four more nuclear power plants, the first of which is expected to be online starting in 2019. While these plants will add 2,200 MW of generation capacity, these nuclear power projects are expensive; the current nuclear power plants under construction are said to cost about $5 billion per plant, an investment that China is helping finance.
Coal Power
There is a large amount of coal located in the Thar Desert in the southeastern part of the country. While the quality of the coal isn’t the best, Pakistan has a lot of it, nearly 175 billion tons, which is enough to meet current electricity demands for more than 300 years. However, Pakistan currently only has one operational coal power plant.
Pakistan is taking steps to develop this resource. In January 2014, Prime Minister Nawaz Sharif and former President Zardari broke ground on a $1.6 billion coal power project in the Thar Desert. This particular project is expected to be operational by 2017.
Pakistan has taken some clear steps such as developing its renewable resources and tapping its coal reserves, which can help expand and diversify where and how it generates its electricity. Further harnessing these resources will help alleviate the electricity shortfall. However, these steps alone will not solve the energy crisis. The more difficult solution involves changing the country’s attitude toward power theft, both by private citizens and the government. Convincing people to pay their electricity bills is difficult when even the government itself doesn’t pay its fair share. At the same time, there is less incentive to pay when citizens don’t even have access to a dependable source of electricity when they need it. As long as this attitude is prevalent among Pakistanis from all walks of life as well as the government, the country cannot sustainably solve its energy woes. Circular debt will continue to accumulate and large sections of the country will face hours of darkness each day.
Tackling the energy problem is the first step to strengthening the economy; over time, a growing economy will attract greater investment in the energy sector. Pakistan’s sensitive geographic location could become a strategic asset as it would serve as a bridge linking the economies of Afghanistan and Central Asia with the broader Indian subcontinent. Not only does the population provide Pakistan with a large domestic market, but it also empowers the country with a young, entrepreneurial workforce. This gives Pakistan tremendous potential, but can only be unleashed if the country figures out a way to keep the lights on and the factories humming.
Population Projection Tables by Country: Pakistan. The World Bank. 2014.
“Global Economic Prospects: Pakistan,” The World Bank, 2014. http://www.worldbank.org/en/publication/global-economic-prospects/regional-outlooks/sar
Ghumman, Khawar, “Increased loadshedding worries Prime Minister,” Dawn, April 24 2014. http://www.dawn.com/news/1102953
“Electricity shortfall reaches 2,500MW,” The Nation, Jan 2 2014. http://www.nation.com.pk/national/02-Jan-2014/electricity-shortfall-reaches-2-500mw
“Pakistan Energy Yearbook,” Hydrocarbon Development Institute of Pakistan, 2012. http://www.kpkep.com/documents/Pakistan%20Energy%20Yearbook%202012.pdf
“Policy Framework and Package of Incentives for Private Sector Power Generation Projects in Pakistan,” Government of Pakistan, 1994. http://www.ppib.gov.pk/Power%20Policy%201994.pdf
Beg, Fatima and Fahd Ali, “The History of Private Power in Pakistan,” Sustainable Development Policy Institute, 2007. http://www.sdpi.org/publications/files/A106-A.pdf
“Crude Oil Purchase Price.” U.S. Energy Information Administration, 2014. http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=F004056__3&f=M
Pakistan. U.S. Energy Information Administration. http://www.eia.gov/countries/country-data.cfm?fips=pk
Tirmizi, Farooq, “The Myth of Pakistan’s infinite gas reserves,” The Express Tribune, Mar 14 2011. http://tribune.com.pk/story/132244/the-myth-of-pakistans-infinite-gas-reserves/
“Natural Gas Allocation and Management Policy,” Government of Pakistan: Ministry of Petroleum & Natural Resources, Sept 2005. http://www.ogra.org.pk/images/data/downloads/1389160019.pdf
Boone, Jon, “Pakistan’s government deflates dream of gas-powered cars,” The Guardian, Dec 25 2013. http://www.theguardian.com/world/2013/dec/25/cars-pakistan-compressed-natural-gas-rationing
Bhutta, Zafar, “Circular debt: Power sector liabilities may cross Rs1 trillion by 2014,” The Express Tribune, May 26 2013. http://tribune.com.pk/story/554370/circular-debt-power-sector-liabilities-may-cross-rs1-trillion-by-2014/
Pakistan’s Energy Crisis: Power Politics. The Economist, May 21 2012.http://www.economist.com/blogs/banyan/2012/05/pakistan%E2%80%99s-energy-crisis
Jamal, Nasir. “Amount of unpaid power bills increases to Rs286bn.” Dawn. Apr 16 2014. http://www.dawn.com/news/1100237
“Govt one of the biggest electricity defaulters, says Khawaja Asif.” Dawn, May 2 2014. http://www.dawn.com/news/1103707
“Pakistan cuts prime minister’s electricity for not paying bills” Reuters. Apr 29 2014. http://in.reuters.com/article/2014/04/29/uk-pakistan-electricity-idINKBN0DF1DL20140429
Kazmi, Shabbir. “Pakistan’s Energy Crisis.” The Diplomat, Aug 31 2013. http://thediplomat.com/2013/08/pakistans-energy-crisis/
Abduhu, Salman. “Lack of funds real reason behind loadshedding.” The Nation, May 9 2014. http://www.nation.com.pk/lahore/09-May-2014/lack-of-funds-real-reason-behind-loadshedding
Electricity Shock: “Pakistanis Paying the Highest Tariffs in Region.” The Express Tribune, Jan 31 2014. http://tribune.com.pk/story/665548/electricity-shock-pakistanis-paying-highest-tariffs-in-region/
Chaudhry, Javed. “Circular Debt: ‘All dues will be cleared by July’.” The Express Tribune, June 14 2013. http://tribune.com.pk/story/563095/circular-debt-all-dues-will-be-cleared-by-july/
“Hydropower Resources of Pakistan.” Private Power and Infrastructure Board, Feb 2011. http://www.ppib.gov.pk/HYDRO.pdf
USAID Issues $6.66 m for Tarbela Units. Dawn. Mar 9 2011. http://www.dawn.com/news/612058/usaid-issues-666m-for-tarbela-units
“Tarbela Dam Project.” USAID, Sept 26 2013. http://www.ppib.gov.pk/HYDRO.pdf
“Pakistan Resource Maps.” National Renewable Energy Laboratory, Aug 2006. http://www.nrel.gov/international/ra_pakistan.html
The Feasibility of Renewable Energy in Pakistan, Triple Bottom-Line, 2012. http://www.tbl.com.pk/the-feasibility-of-renewable-energy-in-pakistan/
“Surface Meteorology and Solar Energy,” NASA, 2013. https://eosweb.larc.nasa.gov/sse/RETScreen/
Quad-e-Azam Solar Power. http://www.qasolar.com/
Renewable Energy in Pakistan: Opportunities and Challenges, COMSATS-Science Vision, December 2011. http://www.sciencevision.org.pk/BackIssues/Vol16_Vol17/02_Vol16_and_17_Renewable%20Energy%20in%20Pakistan_IrfanAfzalMirza.pdf
CHASNUPP-1. Nuclear Threat Initiative, 2014. http://www.nti.org/facilities/112/
CHASNUPP-2. Nuclear Threat Initiative, 2014. http://www.nti.org/facilities/113/
KANUPP. Nuclear Threat Initiative, 2014. http://www.nti.org/facilities/111/
Shah, Saeed. “Pakistan in Talks to Acquire 3 Nuclear Plants From China.” The Wall Street Journal, Jan 20 2014. http://online.wsj.com/news/articles/SB10001424052702304757004579332460821261146
Mahr, Krista. “How Pakistan and China Are Strengthening Nuclear Ties.” Time, Dec 2 2013. http://world.time.com/2013/12/02/how-pakistan-and-china-are-strengthening-nuclear-ties/
“Pakistan’s Thar Coal Power Generation Potential.” Private Power and Infrastructure Board, July 2008.http://www.embassyofpakistanusa.org/forms/Thar%20Coal%20Power%20Generation.pdf
“Discovery Of Ignite Coal In Thar Desert.” Geological Survey of Pakistan, 2009. http://www.gsp.gov.pk/index.php?option=com_content&view=article&id=30:thar-coal&catid=1:data
“Nawaz, Zardari launch Thar coal power project.” Dawn, Jan 31 2014. http://www.dawn.com/news/1084003
Ravi Patel is a student at Stanford University where he recently completed a B.S. in Biology and is currently pursuing an M.S. in Biology. He completed an honors thesis on developing greater Indo-Pakistan trade under Sec. William Perry at the Center for International Security and Cooperation (CISAC). Patel is the president of the Stanford U.S.-Russia Forum. He also founded the U.S.-Pakistan Partnership, a collaborative research program linking American and Pakistani university students. In the summer of 2012, Patel was a security scholar at the Federation of American Scientists. He also has extensive biomedical research experience focused on growing bone using mesenchymal stem cells through previous work at UCSF’s surgical research laboratory and Lawrence Berkeley National Laboratory.
Nelson Zhao is a fourth year undergraduate at University of California, Davis pursuing degrees in economics and psychology. Nelson is the Vice-President at the Stanford U.S.-Russia Forum and the Program Director at the U.S.-Pakistan Partnership. At the U.S.-Pakistan Partnership, he aims to develop a platform to convene the brightest students in order to cultivate U.S.-Pakistan’s bilateral relations.
A Scenario for Jihadist Nuclear Revenge
The Greatest Threat
The weapon was ready, a simple fission device similar to the bomb that destroyed Hiroshima. It had been finally assembled in a rented storage space on the outskirts of Las Vegas. Gulbuddin Hekmatyar had spent years quietly contemplating while meticulously planning this diabolical, logistically challenging mission. Among other things, the plot necessitated recruiting and directing a number of operatives, some technically skilled, located in several countries. All were individuals devoted to his cause and committed to the Jihadist goal of detonating a nuclear bomb in an American city. He chose Las Vegas because the city epitomized western decadence.
The bomb’s essential component – 140 pounds of highly enriched uranium (HEU) – had been stolen or secretly purchased, bit-by-bit, mostly from Pakistan, but also from India, North Korea, Russia, Ukraine and Kazakhstan. It took years to collect, hide and safeguard all the necessary HEU in northwest Pakistan. From there, small pieces of the fissile material and some structural bomb components, hidden and well shielded in multiple shipments, were transported to U.S. ports or border crossings, and eventually to Las Vegas and the rented storage space. With all the components covertly acquired or fabricated by dedicated Jihadists in Pakistan and the United States, the relatively simple bomb finally could be assembled. It was comprised of a long, large-bore, artillery-type barrel; a heavy-duty breech; and enough chemical explosive to propel an appropriately shaped, 70-pound HEU piece through the barrel at very high velocity into another appropriately shaped, 70-pound piece of HEU affixed to the end of the barrel. Slamming together these two sub-critical masses would create the critical mass needed for an explosive chain reaction.
It was time. The plan of attack was straightforward and foolproof. Weighing under a ton and less than a dozen feet long, the weapon in its lead-lined crate fit easily inside a small, rented truck. A lone, suicidal operative drove and parked the truck near the Strip, then activated the electronic device triggering the detonator that set off the chemical explosion. The HEU bullet accelerated through the barrel and merged almost instantaneously with the target HEU. Within microseconds, the critical mass exploded, releasing kilotons of energy, a blinding, rapidly expanding ball of light, heat and deadly radiation. A shock wave propagated through the atmosphere, flattening almost every building within a half-mile of the detonation point. Tens of thousands were dead or injured. Las Vegas was in ruins. The threat had become reality.
When President Obama declared in 2009 that “nuclear terrorism is the most immediate and extreme threat to global security,” it was scarcely noticed. Yet when questionable sources announced that the Mayan Calendar predicted the end of the world in 2012, media and public attention was astonishing. The apocalyptic prediction arising from myth took hold, while a warning of potential catastrophe based in reality, put forth by Barack Obama in Prague, passed us by. Supernatural doomsday scenarios readily gain traction in our public discourse, but threats to our civilization from proven nuclear dangers elude us.
The public and press largely ignored other sobering news in 2010 when Wikileaks revealed that a 2009 cable from the U.S. Ambassador to Pakistan, Anne W. Patterson, warned that “our major concern is not having an Islamic militant steal an entire weapon, but rather the chance someone working in government of Pakistan facilities could gradually smuggle out enough enriched uranium to eventually make a weapon.”
By raising the specter of nuclear terrorism, the Wikileaks revelation gave concrete urgency to President Obama’s abstract concerns. But few paid attention, in part because few understand nuclear weapons risks and realities.
Passage of time and reluctance to think the unthinkable have generated complacency. No nuclear weapon has been used aggressively since the August 9, 1945, attack on Nagasaki. Despite the existence of vast numbers of nuclear weapons, Americans expect nuclear restraint because they believe Mutually Assured Destruction (MAD) is a reliable deterrent. MAD presumably ensures that a country first using nuclear weapons will be wiped out by a retaliatory blow. But if a non-state entity were to perpetrate a nuclear weapons attack, at whom and where would retaliation be directed? An act of nuclear terrorism would obviate 69 years of stability engendered by MAD, an appropriately chosen topic of satirical banter in the film “Dr. Strangelove,” yet a grim reality.
Obama’s words that nuclear terrorism is an “immediate and extreme threat” are not an exaggeration. Terrorists now have new opportunities to covertly fabricate nuclear weapons on their own, and the threat is compounded by the potential anonymity of the attackers.
The cable allegedly sent by Ambassador Patterson leads to several questions: what is enriched uranium and how available is it? How is it used in a bomb, and who could use it? Where and how could it be delivered? What would be its effect? And perhaps the first and biggest question – why would terrorists aspire to manufacture, deploy, and detonate a nuclear weapon?
The 9/11 attacks marked the beginning of a “Terrorist Era” with a capital T. That triple attack profoundly disturbed, shocked and injured the nation, psychologically as well as physically. It suggested that a goal of certain terrorists is the destruction of the United States and its allies, and nuclear capability would make that goal attainable.
In 1998, Osama bin Laden declared that it was his Islamic duty to acquire weapons of mass destruction. Because Islam deplores killing women and children, religious justification was sought for such weapons. In 2003, three Saudi clerics associated with Al Qaeda provided justification in a fatwa that stated:“One kills in a good manner only when one can.”
Thus the “why” can be revenge for the deaths of Muslim civilians or Osama bin Laden, Jihadist punishment of a decadent, anti-Islamic civilization, or retribution for western support of Israel. Still, the easily stated words “nuclear revenge” are not readily internalized. Unlike “tsunami” or “colon cancer,” the term “nuclear terrorism” does not usually evoke a visceral reaction. Such a response is unlikely until people intellectually and emotionally comprehend the potential threat of rogue nuclear weapons. And comprehension requires some understanding of the bomb itself.
In addition to understanding the weapon, people also must grasp the feasibility and consequences of an act of nuclear terrorism. A credible scenario can provide this. In his book, The Second Nuclear Age, Yale Professor Paul Bracken argues that war games based upon scenarios involving nuclear weapons played a significant role in clarifying and shaping strategic thinking during the height of the Cold War. “Scenarios set the stage for the game’s interactions,” he wrote. “Scenarios…are hypothetical plot outlines of plausible future developments. They are not forecasts or predictions…”
The Pentagon hypothesizes terrorist scenarios, but the public does not. Our opening Las Vegas scenario attempts to focus the reader’s mind on the real potential for nuclear catastrophe.
But first the Bomb.
The Bomb
Tremendous energy can be released when the nucleus or inner core of an atom undergoes a transformation. For uranium, the energy releasing transformation is the splitting apart or fission of the nucleus, producing various combinations of lighter atoms such as barium and krypton as “fission products.”
Uranium can exist in different forms or “isotopes,” but all isotopes of uranium contain 92 positively charged protons in the nucleus with 92 negatively charged electrons dancing around the nucleus. These charged particles determine uranium’s chemical properties. However, the uranium nucleus also can contain varying numbers of uncharged neutrons. Somewhat greater than ninety-nine percent of uranium found in nature – uranium isotope 238 – has 146 neutrons in the nucleus. Thus the isotope’s 92 protons and 146 neutrons account for its atomic weight of 238.
Uranium-235, with only 143 neutrons, is the dangerous isotope –because it tends to easily fission if it absorbs a neutron. The fissioning of U-235 powered the bomb that exploded over Hiroshima. Fortunately this isotope is very rare; less than one percent of all forms of uranium found in the earth consist of U-235. Uranium can create an explosive chain reaction—only if U-235 is in highly concentrated form, which is extremely difficult to obtain as described later. But first we explain the basics of nuclear bomb design.
While modern hydrogen-plutonium bombs use a fission-fusion reaction to create the most powerful explosions (which can also use highly enriched uranium instead of plutonium to start the fission reaction), the easiest first-generation atomic bomb to construct entails only fission of highly enriched uranium (HEU), with a concentration of typically 80 percent or greater in the fissile isotope U-235. The Hiroshima bomb was essentially an artillery gun in which chemical explosives fired one 70-pound piece of HEU into another 70-pound piece of HEU, with an average enrichment of 80 percent U-235. The design was so simple that J. Robert Oppenheimer, scientific director of Los Alamos, decided that the prototype did not need to be tested. (One of the reasons not to do a proof test was due to the very limited HEU available during the Second World War.) Indeed the first test of this gun-type bomb occurred when it exploded with such devastating effect at 1,900 feet above Hiroshima on August 6, 1945, killing nearly 100,000 people. Weapons developers at Los Alamos avoided using the word bomb, instead giving euphemistic names such as gadget to their creations. The Hiroshima weapon was inaptly named “Little Boy.”
During the Manhattan Project, the great challenge was collecting and concentrating fissionable U-235. Because U-238 and U-235 have identical chemical properties, separation can only be achieved by exploiting the slight difference in mass arising from one isotope having three more neutrons than the other. One method of separation for enrichment purposes was developed using electric and magnetic forces in a modified form of the cyclotron called the calutron. A second method involved creating a compound in gaseous form of uranium and fluorine, then passing the gas through successive microscopic filters making use of the principle of diffusion.
After the Second World War, improved centrifuges emerged as a more efficient method for enriching uranium. A Dutch company, which became part of the Urenco consortium that also includes Germany and the United Kingdom, was an early adopter of the improved centrifuge technology. Commercial production of enriched uranium for nuclear power plants became a worldwide activity. A. Q. Khan, a Pakistani metallurgist working at the Dutch facility, stole the centrifuge design drawings and brought the technology to Pakistan by the mid-1970s. Throughout the 1980s to the early 2000s, he then sold enrichment equipment to Iran, North Korea, and Libya, and had a vast network of suppliers in at least a dozen other countries.
Having used these centrifuge designs to enable large-scale production of enriched uranium, today Pakistan is rapidly achieving status as having one of the largest and fastest growing stockpile of nuclear weapons after the United States, Russia and China. While some nuclear-armed countries are reducing their weapons count, Pakistan has a vigorous program of nuclear weapons development. Its stockpile is thought to have 100 to 200 nuclear weapons.
Production of nuclear weapons is of great concern, but production of highly enriched uranium is even more worrisome. Although a nuclear bomb might be stolen from a country’s stockpile, it would have anti-activation safeguards (such as access codes and electronic locks) that a thief would find very difficult to penetrate. However, highly enriched uranium for a terrorist is like flour for a baker. Each material is simply one ingredient from which something much more impressive can be concocted. Pakistan continues to produce weapons-grade U-235 at a more intense rate than any country in the world. It is reliably estimated that they have stockpiled thousands of pounds of enriched U-235 that could lead to the fabrication of dozens of new nuclear weapons.
Eyes continue to focus on Pakistan as a potential source of nuclear bomb material. Yet unsecured highly enriched uranium elsewhere has been a worry for many years. Of particular concern have been the vast amounts of weapons-grade uranium that were left relatively unguarded in Russia, Ukraine, Belarus and Kazakhstan after the break-up of the Soviet Union. These have been potential access points for terrorists. Hundreds of secret bombs could have been fabricated.
Prior to 9/11, we could not imagine rogue, non-state entities having the ability to construct a nuclear weapon. Yet vast numbers of reports, documents, drawings and photographs from the Manhattan Project have been declassified. The Little Boy development work at Los Alamos is available for the world to examine. Following 9/11, government agents visited war museums in the United States to remove publicly displayed, artillery-gun components replicating Little Boy. But the proverbial horse was already out of the barn.
Conceivably, determined terrorists could acquire 140 pounds of weapons-grade uranium-235, the amount used in the Hiroshima bomb. While a person weighing 140 pounds would fully occupy a seat at a dinner table, 140 pounds of uranium, the densest of all naturally occurring elements, is less than the size of a football.With the material in hand, processing and fabrication steps for constructing a weapon rely on well-established and widely known metallurgical and manufacturing techniques. Who then might do this? Where would construction take place? And under whose leadership?
A Return to Our Scenario
The villain of our hypothetical scenario is the leader of a militant group located in the tribal territory of Northwestern Pakistan.Skeptics may doubt that our protagonist, Gulbuddin Hekmatyar, could obtain the equipment and expertise needed for weaponization of highly enriched uranium. While not on Abercrombie and Kent tourist itineraries, the frontier region of Northwest Pakistan is the site of the colorful village of Darra Adam Khel. This unique tribal enclave near the Khyber Pass, just 20 miles South of Peshawar, has been manufacturing copies of small weapons since the late 19th century using basic lathes, drills and other readily available tools. During the Mujahideen struggle with the Soviet Union in the 1980s, the United States was not unhappy to see their production of anti-aircraft weapons. Darra Adam Khel is a major source of weapons in the South Asia region. The potential to fabricate the components for a Little Boy clone clearly exists there.
Osama bin Laden and other Al Qaeda leaders have been eliminated, but other militant jihadists have the capacity and the will to engage in development and use of a nuclear weapon. We chose Gulbuddin for our scenario because he was involved with the 1993 bombing of the World Trade Center, he controls a formidable belligerent organization with the resources to actualize this sequence of events, and he is not part of Al Qaeda or the Taliban. An Afghan student of engineering at Kabul University in the early 1970s, he organized at that time what was probably the first militant Islamic organization in Afghanistan. His student group shot at and threw acid at women in Kabul who were wearing mini-skirts. In a confrontation in 1972 with the rival Maoist political group on campus, Gulbuddin shot and killed their leader. After being imprisoned, he escaped and was given refuge by Islamic fundamentalist elements of the Pakistani government in 1975. Some officials in Pakistan, which had border region disputes with Afghanistan since its founding in 1947, saw in Gulbuddin a potential ally in future conflicts with Afghanistan.
In the early 1980s, when the United States started channeling large amounts of funds and weapons to the Mujahideen for their struggle with the Soviet Union, the Pakistan intelligence agency, the ISI, provided Gulbuddin with a substantial portion of those resources. This enabled the charismatic fanatic to establish a formidable organization known as Hezb-e-Islami.
During the mid-1980s Gulbuddin was instrumental in organizing terrorist training camps in Afghanistan to which “Arab” fighters were invited. Gulbuddin welcomed Osama bin Laden, who first came to Afghanistan to fight the infidel Soviets.
Gulbuddin and his organization did not pursue the Soviets as fully as they might have, since he was waiting to use his fighting potential in a putsch to take over Afghanistan following the departure of the Red Army. He did indeed engage in a civil war for control of Afghanistan that began in 1992. But after achieving the position of Prime Minister of Afghanistan in 1993, Gulbuddin was eventually defeated by the Northern Alliance led by Massoud. With the fall of Gulbuddin, the ISI of Pakistan threw their support in 1994 to the newly organized Taliban.
Few are aware of Gulbuddin’s contacts with the perpetrators of the 1993 bombing of the World Trade Center. Those connections and his meetings with the Blind Sheik were revealed in the trials of the World Trade Center bombers held in New York City. It is too often said that the weakening of Al Qaeda ensures the safety of the U.S. from terrorist attack. However, the 1993 bombing of the World Trade Center involved non-Al Qaeda players and leadership figures from that event are still active. This is just one example of a non-Al Qaeda terrorist group that might become a perpetrator of nuclear terrorism.
Today, Gulbuddin maintains a militant presence in the frontier region and has the organizational ability to engage in ambitious terrorist actions. Gulbuddin is neither a tribal “war lord” nor a narrowly educated religious militant. He is a sophisticated intellectual and political leader who completed two years of engineering education. There is every indication that he is as vicious a proponent of terrorism as was Osama bin Laden.
Nothing suggests that Gulbuddin is, in fact, plotting a nuclear attack on an American city. But he is the key player in our scenario because he has the knowledge, resources and frame of mind for implementing such an attack. If there is one such person and group, there are likely others.
The fissile materials available in Pakistan can be fabricated in the Khyber region to serve as components for a gun-type Hiroshima bomb. The amount of radiation released by the highly enriched uranium can be easily shielded and thus easily elude detection at border crossings or from aerial drones. Since suicidal jihadists probably would assemble it, many of the features that were built into Little Boy 69 years ago to ensure safe delivery and controlled detonation could be ignored.
While this scenario has focused on terrorism originating in the Afghanistan-Pakistan border area, other scenarios might be equally plausible. In May 2011, the Belfer Center for Science and International Affairs at Harvard University issued a report entitled, “The U.S.-Russia Joint Assessment on Nuclear Terrorism.” The study group analyzed possible threats from three terrorist organizations known to have systematically sought to obtain nuclear weapons: Al Qaeda, groups in the Northern Caucasus, and the Japanese cult group, Aum Shinrikyo. Each could be a suitable scenario protagonist. If Iran began producing tens of pounds of HEU, then the possibility of Hezbollah obtaining that material would also merit consideration.
Additional scenarios can be hypothesized with sociopaths who are American citizens. Two figures stand out as prototypes with the organizational and technical capacity needed for implementation. One is Timothy McVeigh, whose homemade bomb destroyed the Alfred P. Murrah Federal Building in Oklahoma City on April 19, 1995. The other is Ted Kaczynski, the mathematics genius known as the Unabomber. He perpetrated seventeen explosive attacks killing three people between 1978 and his arrest in 1996.
The first public alert to the possibility of a small group of individuals in the United States building a nuclear bomb to attack society came in the early 1970s from Theodore B. Taylor, a physicist who invented highly efficient, small sized nuclear weapons at Los Alamos National Laboratory. He recognized and was obsessed by the possibility that fissile material could be stolen from commercial facilities that were enriching uranium. The U.S. government had encouraged corporations to process uranium for use in nuclear reactors. In his book, The Curve of Binding Energy, award-winning writer John McPhee documented the story of this eccentric but highly creative physicist. His account was first published in the New Yorker in 1973. Both Taylor and McPhee seemed convinced that a rogue nuclear weapon would detonate somewhere in the United States prior to the beginning of the 21st Century.
The vulnerabilities of enriched uranium supplies in the United States in the 1970’s were astonishing. We assume that such homeland dangers have been ameliorated. Yet we are aghast at the July 28, 2012, spectacle of an 82-year-old nun and two equally unlikely compatriots penetrating the innermost sanctum of the highly enriched uranium facility at Oak Ridge, Tennessee, and spraying the storage building with graffiti. The words they posted said, “Plowshares Please Isaiah.” If such lax security is exposed in Bear Creek Valley, U.S.A., what might be the case in Pakistan, Russia, North Korea or China?
Implications and Actions
A successful act of nuclear terrorism would, in a blinding flash, change the nature of civilization, as we know it. When the consequences of an action are so enormous, perhaps one should pause to reflect upon it, even if scenarios and anecdotes may not be persuasive. But our lives are frequently influenced by low probability events. We wear seat belts. We buy lottery tickets.
Perhaps we should be more proactive in supporting our government’s actions to ameliorate potential risks. The international community is currently discussing at least three treaties. One is to create uniform legal frameworks for prosecuting terrorists who seek to use nuclear materials, another is to develop uniformly effective security procedures for safeguarding nuclear materials, and the third is the Fissile Material Cut-off Treaty. It is likely that these issues are far more important and could have much greater consequences than some of the actions that might be taken to thwart nuclear weapons development in Iran or North Korea. Nuclear policy priorities need to emphasize non-state weapons proliferation at least at the same level as state-centered weapons proliferation.
In the non-government sector, non-state weapons proliferation also should be as central in public forums, the press, blogs, general discourse and academic discussions as the continuing crises in North Korea and in Iran.
The fact that the Federal Emergency Management Agency (FEMA) and the Department of Homeland Security are engaging in detailed analyses of emergency responses to a Hiroshima-type bomb detonation in central Washington D.C. means that they are taking that possibility seriously. While the Gulbuddin scenario chose Las Vegas as a symbolic target, another team of jihadists might choose to focus on our nation’s capital.
Today, the news media continually reports about the potential for North Korea to attack the United States with nuclear-tipped intercontinental ballistic missiles. But an attack using a crate holding a lead-shielded, twelve-foot long artillery gun, delivered by sea to one of America’s busiest container ports, such as ports in New Jersey, New York, or California, is a more likely mode of attack and would be equally effective and deadly.
“Nuclear Fuel Memos Expose Wary Dance With Pakistan,” New York Times, November 30, 2010.
Nasir Bin Hamad Al-Fahd, “A Treatise on the Legal Status of Using Weapons of Mass Destruction Against Infidels,” 2003, available at http://ahlussunnahpublicaties.files.wordpress.com/2013/04/42288104-nasir-al-fahd-the-ruling-on-using-weapons-of-mass-destruction-against-the-infidels.pdf
Paul Bracken, “The Second Nuclear Age: Strategy, Danger, and the New Power Politics” (Times Books, 2012)
See FAS’s world nuclear forces chart: /issues/nuclear-weapons/status-world-nuclear-forces/ . This estimate shows that Pakistan has 120-199 nuclear weapons, and the UK and France have about 225-300. But the Pakistani nuclear weapons program is estimated to be growing while the UK and France have stopped producing new nuclear weapons.
See the video at http://www.downvids.net/light-engineering-in-darra-adam-khel-pakistan-amazig–472252.htm, accessed on May 14, 2014. This YouTube video shows the light manufacturing equipment in Darra Adam Khel with capacity to manufacture a Hiroshima firing unit.
For example, the profile by Michael Crowley, “Our Man in Kabul?” New Republic, March 9, 2010, http://www.newrepublic.com/article/politics/our-man-kabul
Belfer Center study is available at http://belfercenter.ksg.harvard.edu/publication/21087/usrussia_joint_threat_assessment_of_nuclear_terrorism.html
John McPhee, The Curve of Binding Energy (Farrar, Straus and Giroux, New York, 1973) “He (Ted Taylor) did say he thought it was already too late to prevent the making of a few bombs (by terrorists), here and there, now and then. Society would just have to take that, and go on. None of this was said with the least trace of cynicism or despair.” (p. 196)
Matthew L. Wald and William J. Broad, “Security Questions are Raised by Break-In at a Nuclear Site,” New York Times, August 7, 2012, http://www.nytimes.com/2012/08/08/us/pacifists-who-broke-into-nuclear-weapon-facility-due-in-court.html and see the following website for the image the protestors made: http://cdn.knoxblogs.com/atomiccity/wp-content/uploads/sites/11/2013/07/heumf-blood.jpg
National Capital Region Key Response Planning Factors for the Aftermath of Nuclear Terrorim – November 2011 – FEMA, Homeland Security and Lawrence Livermore National Laboratory, available at /irp/agency/dhs/fema/ncr.pdf
Edward A. Friedman is Professor Emeritus of Technology Management at Stevens Institute of Technology in Hoboken, N.J. He holds a B.S. in Physics from MIT and a Ph.D. in Physics from Columbia University. He was director of a USAID program to develop an indigenous college of engineering in Afghanistan (1970-73) when Gulbuddin Hekmatyar was arrested for murder of a political rival at Kabul University. Dr. Friedman was a founder and senior vice president of the Afghanistan Relief Committee (1979-1995). In 2012 he developed and taught a graduate course on Nuclear Weapons in International Relations as an Adjunct Professor at The John C. Whitehead School of Diplomacy and International Relations at Seton Hall University.
Roger K. Lewis is an Architect and Planner. He has been a long-term columnist for the Washington Post’s “Shaping the City.” He is Planning and Preservation Trustee for the National Children’s Museum and President and Director of the Peace Corps Commemorative Foundation. His book, “Architect? A Candid Guide to the Profession” is known as the best basic introduction to the profession. He is Professor Emeritus of Architecture at the University of Maryland School of Architecture.
A Conversation with Nobel Laureate Dr. Jack Steinberger
On January 27, 2014, I had the privilege and pleasure of meeting with Dr. Jack Steinberger at CERN, the European Organization for Nuclear Research, in Geneva, Switzerland. In a wide-ranging conversation, we discussed nuclear disarmament, nonproliferation, particle physics, great scientific achievements, and solar thermal power plants. Here, I give a summary of the discussion with Dr. Steinberger, a Nobel physics laureate, who serves on the FAS Board of Sponsors and has been an FAS member for decades.
Dr. Steinberger shared the Nobel Prize in 1988 with Leon Lederman and Melvin Schwartz “for the neutrino beam method and the demonstration of the doublet structure of the leptons through the discovery of the muon neutrino.” Dr. Steinberger has worked at CERN since 1968. CERN is celebrating its 60th anniversary this year and is an outstanding exemplar of multinational cooperation in science. Thousands of researchers from around the world have made use of CERN’s particle accelerators and detectors. Notably, in 2012, two teams of scientists at CERN found evidence for the Higgs boson, which helps explain the origin of mass for many subatomic particles. While Dr. Steinberger was not part of these teams, he helped pioneer the use of many innovative particle detection methods such as the bubble chamber in the 1950s. Soon after he arrived at CERN, he led efforts to use methods that recorded much larger samples of events of particle interactions; this was a necessary step along the way to allow discovery of elusive particles such as the Higgs boson.
In addition to his significant path-breaking contributions to physics, he has worked on issues of nuclear disarmament which are discussed in the book A Nuclear-Weapon-Free World: Desirable? Feasible?, (was edited by him, Bhalchandra Udgaonkar, and Joseph Rotblat). The book had recently reached its 20th anniversary when I talked to Dr. Steinberger. I had bought a copy soon after it was published in 1993, when I was a graduate student in physics and was considering a possible career in nuclear arms control. That book contains chapters by many of the major thinkers on nuclear issues including Richard Garwin, Carl Kaysen, Robert McNamara, Marvin Miller, Jack Ruina, Theodore Taylor, and several others. Some of these thinkers were or are affiliated with FAS.
While I do not intend to review the book here, let me highlight two ideas out of several insightful ones. First, the chapter by Joseph Rotblat, the long-serving head of the Pugwash Conferences, on “Societal Verification,” outlined a program for citizen reporting about attempted violations of a nuclear disarmament treaty. He believed that it was “the right and duty” for citizens to play this role. Asserting that technological verification alone is not sufficient to provide confidence that nuclear arms production is not happening, he urged that the active involvement of citizens become a central pillar of any future disarmament treaty. (Please see the article on Citizen Sensor in this issue of the PIR that explores a method of how to apply societal verification.)
The second concept that is worth highlighting is minimal deterrence. Nuclear deterrence, whether minimal or otherwise, has held back the cause of nuclear disarmament, as argued in a chapter by Dr. Steinberger, Essam Galal, and Mikhail Milstein. They point out, “Proponents of the policy of nuclear deterrence habitually proclaim its inherent stability… But the recent political changes in the Soviet Union [the authors were writing in 1993] have brought the problem of long-term stability in the control of nuclear arsenals sharply into focus. … This development demonstrates a fundamental flaw in present nuclear thinking: the premise that the world will forever be controllable by a small, static, group of powers. The world has not been, is not, and will not be static.”
Having laid bare this instability, they explain that proponents of a nuclear-weapon-free world also foresee that minimal deterrence will “encourage proliferation” because nations without nuclear weapons would argue that if minimal deterrence appears to strengthen security for the nuclear-armed nations, then why shouldn’t the non-nuclear weapon states have these weapons. After examining various levels for minimum nuclear deterrence, the authors conclude that any level poses a catastrophic risk because it would not “eliminate the nuclear threat.”
While Dr. Steinberger demurred that he has not actively researched nuclear arms control issues for almost 20 years, he is following the current nuclear political debates. He expressed concern that President Barack Obama “has said that he would lead toward nuclear disarmament but he hasn’t.” Dr. Steinberger emphasized that clinging to nuclear deterrence is “a roadblock” to disarmament and that “New START is too slow.”
On Iran, he said that if he were an Iranian nuclear scientist, he would want Iran to develop nuclear bombs given the threats that Iran faces. He underscored that if the United States stopped threatening Iran and pushed for global nuclear disarmament, real progress can be made in halting Iran’s drive for the latent capability to make nuclear weapons. He also believes that European governments need to decide to “get rid of U.S. nuclear weapons based in Europe.”

Another major interest of his is renewable energy that can provide reliable, around the clock electrical power. In particular, he has repeatedly spoken out in favor of solar thermal power. A few solar thermal plants have recently begun to show that they can generate electricity reliability even during the night or when clouds block the sun. Thus, they would provide “baseload” electricity. For example, the Gemasolar Thermosolar Plant in Fuentes de Andalucia, Spain, has an electrical power of 19.9 MW and uses a “battery” to generate power. The battery is a molten salt energy storage system that consists of a mixture of 60 percent potassium nitrate and 40 percent sodium nitrate. This mixture can retain 99 percent of the thermal energy for up to 24 hours. More than 2,000 specially designed mirrors, or “heliostats,” arrayed 360 degrees around a central tower, reflect sunlight onto the top part of the tower where the molten salt is heated up. The heated salt is then directed to a heat exchanger that turns liquid water into steam, which then spins a turbine coupled to an electrical generator.
Dr. Steinberger urges much faster accelerated development and deployment of these types of solar thermal plants because he is concerned that within the next 60 years the world will run out of relatively easy access to fossil fuels. He is not opposed to nuclear energy, but believes that the world will need greater use of true renewable energy sources.
Turning to the future of the Federation of American Scientists, Dr. Steinberger supports FAS because he values “getting scientists working together,” but he realizes that this is “hard to do” because it is difficult “to make progress in understanding issues” that involve complex politics. Many scientists can be turned off by messy politics and prefer to stick within their comfort zones of scientific research. Nonetheless, Dr. Steinberger urges FAS to get scientists to perform the research and analysis necessary to advance progress toward nuclear disarmament and to solve other challenging problems such as providing reliable renewable energy to the world.
Prospects for a Middle East Regional Safeguards Organization
Recent efforts to convene a conference on a Middle East zone free of weapons of mass destruction (WMDs) have stalled, reflecting the political difficulties in working towards that goal in the region. Pursuing a regional safeguards organization for nuclear energy programs in the Middle East could be an easier diplomatic and strategic alternative, given the growing energy demands by some of the countries in the region. In addition, if established, the institutions and fora for nuclear discussions could facilitate the eventual establishment of a Middle East zone free of WMDs. For example, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) performed a crucial function in helping Argentina and Brazil verify one another’s non-nuclear weapon status and enact policies to officially renounce any interest in nuclear weapons. Given the resurgent interest in the pursuit of nuclear energy in the Middle East coupled with concerns of a nuclear-armed Iran, the phased establishment of a regional organization similar to ABACC could (1) prevent further nuclear proliferation in the region and (2) pave the way for the establishment of a Middle East zone free of WMDs.
ABACC is a relatively unknown non-proliferation success story within the foreign policy and international security expert community. Currently, this community is concerned about the prospects of a nuclear-armed Iran, especially since fears abound that should Iran’s suspected nuclear weapons program become fully realized, it is quite possible that a nuclear cascade in the Middle East would ensue. Important lessons learned from the creation and subsequent implementation of ABACC – notably (1) the importance of sustained dialogue, (2) confidence and trust building, and (3) political leadership/political will – could be useful to assist in the creation of a regional safeguards organization for nuclear energy programs in the Middle East.
ABACC was established under an agreement reached between Argentina and Brazil to ensure the exclusively peaceful uses of nuclear energy in 1991. It is the world’s only bi-national safeguards agency responsible for verifying that the nuclear materials existing in both countries are being used exclusively for peaceful purposes. It is vested with the power to designate inspectors, carry out and evaluate inspections, and take legal action. It is made up of an equal number of representatives from Argentina and Brazil. Today, nuclear physicists from both countries continue to conduct mutual inspections at nuclear facilities on a cross-national basis through ABACC. These inspectors render their services to ABACC only during the periods encompassed by the missions for which they are appointed. Brazilian inspectors verify the Argentine facilities, and Argentine inspectors verify the Brazilian facilities. The inspections include verification of inventories of nuclear materials, unannounced and short-notice inspections, and inspections carried out along with the International Atomic Energy Agency (IAEA). It is important to stress that their work is undertaken with the full support of both governments.
Skeptics may argue that ABACC might not be the best model to use as a comparison for the Middle East region for three important reasons. First, tensions are high and deep-rooted feelings of suspicion and mistrust are currently rampant in the region. Second, existing indigenous nuclear capabilities are very limited in the region. Third, within the states across the region, sustained dialogue is overshadowed by veiled threats, confidence and trust building measures are simply not an option, and due to the inherent distrust, the political will is certainly not there. However, the lessons learned from the creation and subsequent sustained success of ABACC provide a starting point for assessing a regional safeguards organization for nuclear energy programs in the Middle East.
Options for a Regional Safeguards Organization in the Middle East
No two regions in the world can be deemed geographically or culturally alike. Equally, no two regions can be expected to have identical characteristics politically, militarily, or economically. Therefore, if a mutual inspections and safeguards verification system works well in one region, there is no guarantee that it will work just as well in another region. The Middle East has more dissimilarities than similarities with the Southern Cone. In the Southern Cone, there is a shared culture, shared religion, shared history, shared interests, and in all but one country, a shared language. In the Middle East, however, there are extensive ethnic divides including: Persians, Jews, Kurds, Druze, Turkic, Azeri, Baloch, Arabs, and others. The region has seen armed conflicts amongst various groups and there are long standing divisions between Shiites and Sunnis and tensions among other religious lines. Arguably, one of the only things the people of the Middle East share with one another is the geographical location. Cultures, languages, religions, and interests in the region are as widespread and disparate as the peoples’ political beliefs.
Yet, issues such as the verification procedures and the structure of various regional nuclear non-proliferation agreements exhibit similarities. The scope of these provisions, however, is usually a reflection upon the expectations and intentions of the parties involved. In the case of ABACC, there was shared and mutual interest from both Argentina and Brazil to create a mutual inspections and safeguards verification system, which developed over time. Even though the nuclear rapprochement of both countries can be traced back to the late 1960s/early 1970s, the idea of both countries participating in bilateral inspections was unfathomable back then. It took years of sustained dialogue, trust building, creation of democracies, and, perhaps most importantly, having political leaders that shared the political will to turn these desires into actual policy. Furthermore, the willingness to promote a collaborative nuclear partnership did not come from both countries at the same time. In fact, it was Argentina that proposed a partnership; Argentina’s earliest official statement on nuclear cooperation was prepared in 1978 by the Foreign Ministry’s policy planning staff, which led to the May 1980 joint nuclear accord. Five years after the 1980 joint nuclear accord was signed – by which time, both countries had become democracies (Argentina in 1983; Brazil in 1985) – both the Argentine and Brazilian governments agreed to create the Joint Working Group on Nuclear Affairs (JWG) to discuss nuclear issues, which, by 1988, had been institutionalized as the Permanent Committee on Nuclear Affairs (PCNA).1 The PCNA not only furthered nuclear negotiations, but also facilitated the presidential and technical nuclear installation visits – important confidence and trust building steps that led to the creation of ABACC.
It is not clear to what extent the countries in the Middle East could develop a shared and mutual interest to create a regional safeguards organization in the way that Argentina and Brazil did. The last minute cancellation of the December 2012 conference on a Middle East zone free of WMDs would indicate that neither the timing nor the political will exists at the present moment (no official reason was given for the cancellation). However, the region’s resurgent interest in the pursuit of nuclear energy in the Middle East could motivate such an arrangement. In December 2006, the six nations of the Gulf Cooperation Council (GCC) – Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the UAE – announced their intention to explore a joint nuclear development program.2 In November 2012, the GCC announced that its member states would set up a center to monitor nuclear radiation and to act as a platform to use nuclear energy for peaceful purposes and avoid radiation hazards.3 If realized, it could form a regional organization similar to ABACC with the following three phase process: (1) the establishment of the GCC’s joint nuclear development program including the formation of an institution similar to ABACC with an inspection mandate, (2) extending the institutional arrangement in the region, and (3) bringing in the outliers: Iran and Israel.
The first phase would include the establishment of the GCC’s joint nuclear development program, which would manage the peaceful uses of nuclear energy. It is not clear (a) how long it would take for such an ambition to be realized, or (b) how feasible this might be given that none of the council’s member states has a significant nuclear infrastructure. All member states lack power and research reactors, and none of the member states has all the necessary components of the nuclear fuel cycle. In addition, most of the GCC members lack trained personnel, a nuclear regulatory structure, and a record of transparency and non-proliferation credentials.4 While the program was announced in December 2009, it remains in the early planning stages as the GCC member states commissioned a study to assess the feasibility of developing a joint nuclear energy program. IAEA officials are involved with the feasibility study and it has been reported that the GCC members would like the agency to have continued involvement in and regulation over the project.5
Since the commissioning of the feasibility study, some of the GCC members have made efforts to set up a nuclear infrastructure with technical help from the United States and other countries. For example, the UAE, Saudi Arabia, and Bahrain signed memorandums of understanding (MOU) on nuclear energy cooperation with the United States in 2008.6 Kuwait signed an MOU with the United States on nuclear safeguards and other non-proliferation topics in June 2010.7 These efforts may help the GCC countries establish a nuclear infrastructure so that the joint nuclear development program can be realized.
The next phase in the process would be to extend this program to energy-hungry countries in the region, including Jordan, Egypt, Lebanon, Syria, Turkey, and Yemen. One option might be to build joint power stations with the assistance of third parties between bordering GCC states and the energy-hungry states, like Oman and Yemen, Saudi Arabia and Jordan. In the case of ABACC, Argentina and Brazil independently pursued an autonomous nuclear fuel cycle. Their first nuclear accord – the May 1980 agreement – helped to establish a common nuclear policy, which was defined as “cooperation in the use of nuclear energy” and the “development and application of the peaceful uses of nuclear energy.” This accord called for bilateral technical collaboration and joint ventures for the production of reactor components and fuel elements, with the aim of minimizing dependence on western supplier countries.8 It was not, however, an arms control agreement, but a call for technical-scientific collaboration in nuclear research. Even though the agreement did not offer an inspection regime, it offered verbal assurances and some limited technical cooperation between their respective atomic energy authorities. It was through this agreement that both sides took the first tentative steps towards a preliminary mutual inspection and verification regime since it was the first of many joint nuclear cooperation agreements. As a result of the agreement, Argentina leased uranium concentrate to Brazil and sold zircalloy tubing for nuclear fuel elements. In exchange, Brazil supplied Argentina with a portion of the pressure vessel for its Atucha II nuclear power generator. Even though the agreement did not put an end to the nuclear technology race, it was the first major step towards a comprehensive nuclear regime based on proliferation restraint and mutual safeguards. The GCC countries extending their shared nuclear program resources to the energy-hungry countries in the region would therefore mark an important second phase.
The final phase would be to bring in the outliers in the region, notably Iran and Israel. This would undoubtedly be the hardest phase to conquer politically. It is no secret how the two governments publically perceive one another. However, contrary to the other Middle Eastern states, Israel and Iran are united by being the region’s only non-Arab governments although each has Arabs living in their countries. Yet, neither country share the same culture, language, history, identity, religion, or politics, so bringing them both into the regional safeguards organization for nuclear energy programs will be incredibly difficult. None of the three key lessons learned from the creation of ABACC can be applied to Iran and Israel. First, the concept of dialogue between these two states is shrouded in belligerent threats. Second, confidence and trust building measures are notably absent. Third, the political will of both countries is to continue to engage in war-mongering. Interestingly though, both countries are keen to participate in the eventual establishment of a Middle East zone free of WMDs, yet the inherent political differences across the countries in the region are creating a stumbling block. While the previous two phases are no easy feat- given the inherent lack of a significant nuclear infrastructure- if these technical barriers are overcome through the GCC’s vast amount of amalgamated financial resources, Iran and Israel may be able to set aside their political differences to participate in this regional organization.
Verification, Safeguards, and Enforcement
Having laid the groundwork for the three-phased approach in creating a regional safeguards organization for nuclear energy programs in the Middle East, it is important to address verification, safeguards, and enforcement issues. The overall set of verification provisions should enable the inspectors from the regional organization to have suitable access to carry out their job effectively during all types of inspections (i.e., ad hoc, routine, and challenge). During the first high-level technical visit of the Brazilian delegation to the Argentine unsafeguarded Pilcaniyeu pilot uranium enrichment facility in July 1987, the Brazilian delegation asked the Argentines many sensitive questions. To their surprise, the Argentines answered all their questions, showed them the entire facility, and provided information on top-secret sites. This was a very important step in confidence and trust building and accounts for ABACC’s continuing success. It is therefore important that members of a regional safeguards organization in the Middle East be fully transparent and provide regular and detailed information on the operations in their facilities.
Regarding the actual inspections themselves, in the case of ABACC, inspections are carried out by both the IAEA and ABACC (even though there is no obligation for both agencies to work together in any given inspection). The facilities and the material under safeguards are the same for both agencies. All inspections are previously coordinated by the agencies. Each one of the agencies has the right to trigger inspections (short notice and announced inspections) on its own while informing the other agency. The agencies share equipment such as cameras and counters. Even though the inspections are carried out jointly, the conclusions of the inspections are independent. Therefore, it would be expected that the regional safeguards organization in the Middle East would work in conjunction with the IAEA, similar to ABACC.
Finally, in relation to enforcement issues, the Middle East regional organization would need to have the authority and the capacity to effectively sanction the violators. In this regard, it is difficult to draw from the ABACC experience since both countries have been open and transparent with one another with no reported violations from either side. In fact, in the creation of ABACC, non-compliance was not discussed given that the two nations were embarking on confidence and trust building measures; if the issue of non-compliance were to be raised, it may have conveyed feelings of mistrust. Therefore, given the lack of trust that already exists across the countries in the Middle East, it would be pertinent to avoid discussing issues of non-compliance at an early stage and instead address them (if necessary), once effective confidence and trust building measures are in place. However, if there are issues of non-compliance that the regional organization is unable to overcome, the IAEA Board of Governors could discuss the issue with the Director General. If non-compliance persists, the issue can then be reported to the United Nations Security Council.
Benefits and Limitations for a Regional Safeguards Organization in the Middle East
There would be many benefits to consider should the creation of a regional safeguards organization for nuclear energy programs in the Middle East be realized. Equally, however, there are important limitations to consider.
Benefits
The first benefit would be the development of confidence and trust building, which would be an incremental step in easing suspicions and diffusing tensions in the region. In the case of ABACC, each of the ten nuclear cooperation agreements signed by Argentina and Brazil facilitated closer nuclear cooperation and instilled greater confidence between the two nations. Earlier declarations stressed the decision to increase reciprocal technical visits and consultations; today Argentina and Brazil continue to share information on nuclear technological developments, radiological security and protection. They also called for strengthening the coordination of policy positions before international fora to defend common interests and protect the region from the risk of nuclear weapons. The high-level reciprocal presidential and technical visits to unsafeguarded and sensitive nuclear facilities and the subsequent nuclear accords played a decisive role in assuring each other and the international community that their nuclear programs were of a peaceful nature. All the presidential visits were followed by visits of specialized technical personnel, which represented another step towards nuclear transparency and subsequent trust building.
The GCC countries could adopt nuclear cooperation agreements similar to Argentina and Brazil using the same common elements. The GCC, through INFCIRC/225 (which strengthens the security of nuclear materials through physical protection measures), could promote robust nuclear physical security measures at sites in the region as a step towards confidence and trust building.
A second benefit to consider includes the Middle Eastern countries’ greater involvement in the nuclear non-proliferation regime. In the case of Argentina and Brazil, both nations were initially hostile to the international nuclear non-proliferation regime; notably after the creation of ABACC, they both became fully integrated within the non-proliferation regime by signing various non-proliferation agreements. Soon after ABACC was created, Argentina, Brazil, and ABACC signed the Quadripartite Agreement with the IAEA to establish coordination between it and ABACC on full-scope safeguards (which means safeguards on all declared nuclear facilities and materials). Their bilateral cooperation and subsequent agreement with the IAEA made it possible for Argentina and Brazil to reconsider their opposition to existing nuclear non-proliferation treaties. By the end of the decade, both countries had ratified the Tlatelolco Treaty (the South American and Caribbean Nuclear Weapon Free Zone), the Nuclear Non-Proliferation Treaty and then became members of the Nuclear Suppliers Group. Even though Argentina always took the lead in signing these agreements first, Brazil eventually signed, indicating a willingness to continue their nuclear partnership.
Not all the countries in the Middle East are parties to various nuclear non-proliferation agreements, which is a similar situation that Argentina and Brazil found themselves in, prior to the creation of ABACC. Middle Eastern countries are all NPT signatories (with the exception of Israel), and they all have signed a full-scope safeguards agreement with the IAEA, except for Qatar. However, only a handful has either a modified Small Quantities Protocol (SQP) or an Additional Protocol (AP) in force.9 Based on the ABACC experience, it could be argued that once a regional safeguards organization has been created in the Middle East, all parties might become further integrated into the nuclear non-proliferation regime and potentially agree to a Middle East zone free of WMDs. However, neither Argentina nor Brazil has signed the AP, which calls into question their position within the nuclear non-proliferation regime (even though ABACC inspections cover what the AP stipulates, just without the IAEA). This begs the question whether the Middle Eastern states would sign an AP if such an organization were created. One way to alleviate this concern might be to ensure that the GCC members sign an AP before its joint nuclear program is developed, which might be difficult to achieve. Third party countries helping the GCC states with their nuclear infrastructure may be able to entice/influence the GCC states to sign an AP before construction of power plants begins. Then, insofar as Phase 2 is concerned, the energy-hungry countries can only receive help if they too have signed an AP.
The final benefit to the creation of a regional safeguards organization in the Middle East would include further cooperation in other areas, notably economic, technical, and energy provision. The next phase would be for the GCC to help the energy-hungry countries acquire energy through the joint nuclear energy program discussed above. In the case of ABACC, the nuclear agreements signed between Argentina and Brazil promoted the peaceful uses of nuclear energy and encouraged joint nuclear research and development plans.
Limitations
Given the inherent political problems and internal barriers within the Middle Eastern countries, it is difficult to assess the feasibility of a “neighbors watching neighbors” organization being created and even sustained in the region. One of the most obvious internal barriers is the existence of conflict, distrust, deep-rooted enmity, and overt hostility in the region. Argentina and Brazil’s relationship was previously marked by a strong rivalry since they were the two major industrial, economic, and military powers in the Southern Cone. Their individual attempt to acquire the nuclear fuel cycle was viewed as yet another competition between the two longstanding rivals. However, unlike states in the Middle East, their relationship was a competitive rivalry, and not an enmity. There was no real cause for armed conflict between the two states; instead, they were both striving for technological and indigenous superiority. However, in the Middle East there are severe regional conflicts, with some countries not recognizing the existence of other countries, and some countries threatening to destroy other countries. This climate does not make the idea of a regional safeguards organization where trust is key to its success conceivable. It would, in fact, strongly suggest otherwise.
A further limitation to consider might be the existence of more nuclear fuel cycles in the region. Currently, there are fears that should Iran’s suspected nuclear weapons program become fully realized, it is quite possible that a nuclear cascade in the Middle East would ensue. However, should the phased approach outlined be conceived, the GCC members states would not need an entire nuclear fuel cycle, thereby alleviating the fear of a greater number of nuclear fuel cycles in the region. Finally, the prospects of sensitive technology transfer from countries within the regional organization (e.g., Iran to Syria, Lebanon, Iraq) would also need to be considered.
Conclusion
The political and technical realities of the Middle East suggest that the likelihood of creating such a regional safeguards model is far from being accomplished, at least in the immediate future. That is not to say that this issue should not be addressed. Nonetheless, discussing a regional safeguards organization in the Middle East is to be encouraged because if it is created, it could very well lead to the overall goal of creating a further WMD-free zone in the world. ABACC is an underrated success story, but importantly, it took Argentina and Brazil a few decades before ABACC could be realized. Furthermore, once both countries became democracies, the transition to a nuclear rapprochement became a lot smoother. The Middle Eastern countries should consider starting the conversation about a joint nuclear technical program to be used exclusively for peaceful purposes given that the current approach of trying to convene a conference on a Middle East zone free WMDs has failed for four decades. Furthermore, there has yet to be a new initiative offered to this persistent problem, and, as such, creativity is required, whatever the obstacles it might face.
Dr. Sara Z. Kutchesfahani is a Senior Research Associate at the Center for International Trade & Security at the University of Georgia (CITS/UGA), where she works on nuclear security culture projects. In addition, she teaches a graduate class on “Nuclear History and Security Policy” at UGA’s School of Public and International Affairs. She came to the Center from the Nuclear Engineering and Nonproliferation Division at Los Alamos National Laboratory (LANL), where she was the only political science research associate among a pool of 440 at the laboratory. At LANL, her work focused on nuclear non-proliferation policy-related research projects, with an emphasis on international safeguards. From LANL, she also taught a graduate distance-learning education course, titled “Nuclear Safeguards & Security Policy,” at the New Mexico Institute of Mining and Technology, a premier science and engineering research university.
She has worked on nuclear non-proliferation policy issues for most of the past decade holding research positions at the International Institute for Strategic Studies (London), the European Union Institute for Security Studies (Paris), and the RAND Corporation (Washington). She holds a Ph.D. in Political Science from University College London. She is the author of the recently published book: Politics and the Bomb: The Role of Experts in the Creation of Cooperative Nuclear Non-Proliferation Agreements (Routledge/Taylor & Francis, 2013).
50 Years Later “Dr. Strangelove” Remains a Must-See Film and Humorous Reminder of Our Civilization’s Fragility
Fifty years ago on January 30th, “Dr. Strangelove: Or How I Learned to Stop Worrying And Love the Bomb,” a seminal political-military satire and dark comedic film premiered. Based on Peter George’s novel Red Alert, the film gave us some of the most outrageously humorous and simultaneously satirical dialog in the history of the silver screen. For example, Peter Sellers as the President of the United States, “Gentleman, you cannot fight in here. This is the War Room.” Director/producer Stanley Kubrick produced a masterpiece that not only entertained viewers but turned out to be incredibly predictive about U.S.-Soviet Cold War nuclear policies, strategies, and outcomes.
The U.S. Air Force refused to cooperate with Kubrick and his production company because they felt that the premise of an accidental nuclear war being launched by a U.S. general wasn’t credible. In fact, on December 9, 1950, General Douglas MacArthur requested authorization to use atomic bombs against 26 targets in China after the People’s Liberation Army entered the Korean War. The Soviet Union had tested their first A-bomb the year before, so it is certainly possible that MacArthur’s use of such weapons could have triggered a nuclear conflict. In terms of nuclear accidents or “broken arrows” as the U.S. military refers to such events, there have been dozens of incidents including a January 17, 1966 Air Force crash involving nuclear warheads that contaminated thousands of acres in Palomares, Spain (although thankfully fail-safe switches on the damaged atomic bombs prevented any nuclear explosions). A computer generated false alert (one of countless false warnings over the years), on November 9, 1979 almost triggered nuclear Armageddon when President Jimmy Carter’s National Security Adviser Zbigniew Brzezinski was informed at 3 a.m. that 2,200 Soviet missiles were within minutes of impacting on the U.S. mainland. It turned out to be a training exercise loaded inadvertently into SAC’s early warning computer system.
Actor George C. Scott played a Strategic Air Command (SAC) general named Buck Turgidson not unlike real life Chief of Naval Operations Admiral Thomas Moorer. In 1969, Moorer proposed salvaging the war by targeting North Vietnam with two nuclear bombs – a proposal allegedly lobbied for by President Nixon’s Secretary of State Dr. Henry Kissinger. After it is discovered that Sterling Hayden’s character, General Jack D. Ripper has on his own authority (a credible possibility until coded locks were installed on most U.S. nuclear weapons later in the 1960s and on submarine-launched nuclear missiles in the late 1990s)1 ordered an all-out nuclear attack on Russia by his squadrons of B-52 bombers (an aircraft the United States still relies on after sixty years of deployment), General Turgidson pleads with Peter Sellers’ character President Merkin Muffley to consider, “…if on the other hand, we were to immediately launch an all-out and coordinated (nuclear) attack on all their airfields and missile bases, we’d stand a damn good chance of catching them with their pants down…I’m not saying we wouldn’t get our hair mussed, but I do say no more than 10-20 million (Americans) killed, tops, depending on the breaks.” Ironically nuclear war advocates Colin Gray and Keith Payne literally quoted Turgidson’s casualty figures verbatim when in 1980 they advised then presidential candidate Ronald Reagan that America could fight and win such a war against the Soviet Union.2
But Peter Sellers, who incredibly played three roles in the film, excelled as the title character Dr. Strangelove, an amalgam of NASA’s Werner von Braun, who built Nazi V-2 rockets by turning his back when SS soldiers worked thousands of Jewish conscripts to death and was part of Operation Paperclip, a group of German scientists amnestied by the United States (and the Soviet Union handpicked its own Nazi brainpower) after the war to help build Cold War weapons, Edward Teller, who worked on the hydrogen bomb, helped found Lawrence Livermore National Laboratory, was an Atoms for Peace enthusiast and advocated for the Strategic Defense Initiative (SDI- the “Star Wars” missile shield), and Herman Kahn, who worked at RAND, then founded the Hudson Institute, and wrote the seminal “thinking about the unthinkable” book On Thermonuclear War, published in 1960.
Deep in the bowels of the War Room, Dr. Strangelove responded to the Russian ambassador’s fearful notification that even if only one of the U.S. nuclear bombs struck Russia, the result would be the triggering of a doomsday machine. Sellers’ character admonished the ambassador, “But the whole point of a doomsday machine is lost if you keep it a secret. Why didn’t you tell the world, aye?” Coincidentally again, truth followed fiction according to David Hoffman’s Pulitzer Prize-winning 2009 work The Dead Hand, as in November 1984, the Soviets did indeed construct a partially automated retaliatory nuclear strike system called Perimetr and tested it. Stranger still, Colonel Valery Yarynich of the Soviet Union’s Strategic Rocket Forces pointed out to his superiors that it was irrational and inconsistent with deterrence theory for them to go out of their way to hide Perimetr’s existence from U.S. leaders. This occurred during the height of the Cold War when the United States possessed 11,000 strategic nuclear warheads to the Soviet’s 9,900. In total, including tactical and intermediate-range bombs, the United States led 20,924 to 19,774 warheads.
When General Turgidson expressed skepticism that the Russians had the brains to build such a doomsday machine, Dr. Strangelove strongly disagreed, noting that such a system was entirely feasible. “The technology required is even within the means of the smallest nuclear power. It requires only the will to do so….It is remarkably simple to [build]. When you merely wish to bury bombs, there’s no limit to the size. After that they are connected to a gigantic complex of computers.” This echoed the real life February 1955 radio broadcast of German Nobel Laureate Otto Hahn, who first split the uranium atom in the late 1930s. Hahn warned that the detonation of as few as ten cobalt bombs, each the size of a naval vessel, would cause all mankind to perish. In the early 1980s, astronomer Carl Sagan and other scientists3 examined and subsequently built-on analyses of the last few decades via the TTAPS study. They concluded that as few as 100-200 nuclear warheads exploding within the span of a few hours could credibly trigger a nuclear winter, plunging temperatures dramatically in the northern hemisphere as tremendous nuclear firestorms block the sun’s rays, leading to wholesale starvation, exposure, and the radiation-borne deaths of billions of people worldwide.4
Dr. Strangelove was originally scheduled for its first screening on Friday, November 22, 1963. The assassination of President Kennedy earlier that day caused the producers to delay the film’s release date by several weeks. Time was needed to not only heal the nation’s gaping wound but to edit the film to remove some objectionable material relating to the murder of the president. Coincidental references by the hydrogen bomb-riding Slim Pickens character Major T.J. “King” Kong that the survival kits carried by each bomber crewman could help provide them a pretty good time in Dallas was redubbed to “Vegas.” A concluding sequence of a free-for-all pie fight in the War Room was edited out for stylistic reasons and also removed George C. Scott’s objectionable dialogue that, “Our commander-in-chief has been struck down in the prime of his life.” Not so coincidentally, perhaps, JFK’s murder and Nikita Khrushchev’s Politburo ouster in 1964 (the year of the film’s actual release), ended a post-Cuban Missile Crisis-Almost Armageddon (October 1962) apotheosis by both leaders to prevent another nuclear crisis. They cooperated in an earnest effort to prevent another visit to the brink of extinction by working to end the Cold War and reverse the nuclear arms race in favor of peaceful coexistence. The results of their labors cannot be underestimated—the Hot Line Agreement and the Limited Test Ban Treaty.
Today in 2014, “Dr. Strangelove,” along with other antiwar films like “Fail Safe,” “The Sum of All Fears,” “On the Beach,” “War Games,” and “Olympus Has Fallen,” remind us that all of humanity must acknowledge that nuclear war is not a blast from the past or an obsolete fear from a remote period in history. It is a real life current and future threat to our global civilization – indeed to our species’ continued existence on this planet.
But has anyone studied the actual possibilities of a nuclear Armageddon? Aside from Dr. Strangelove’s analysis discussing a study on nuclear war made by “the Bland Corporation” (which is obviously a reference to the real-life Rand Corporation), the answer is a definitive “yes.” According to Ike Jeane’s 1996 book Forecast and Solution: Grappling with the Nuclear, the risks of large-scale nuclear war average about 1-2 percent per year, down from a high of 2-3 percent annually during the Cold War (1945-1991). But Dr. Martin Hellman of Stanford and other analysts believe that as more decades pass since the only recorded use of nuclear weapons in combat (Hiroshima and Nagasaki in August 1945), the probability may increase to ten percent over the duration of this century.5
While President Barack Obama has called for the elimination of nuclear weapons, so too have past American leaders as diverse politically as Jimmy Carter, Ronald Reagan, and Ralph Nader. Meanwhile thousands of nuclear warheads – 90-plus percent in the hands of America and Russia – still exist in global arsenals. Both countries continue to spend tens of billions of dollars annually to update, improve, and modernize their nuclear forces. For example, U.S. submarine-launched ballistic missiles (SLBMs) have increased dramatically in accuracy from a 12 percent chance of destroying a hardened Russian missile silo to 90-98 percent effectiveness; thus giving these weapons a highly effective “kill” probability and putting pressure on Russia to launch its silo-based ballistic missiles on warning of attack. While U.S. missile “defenses” may soon include “Rods from God,” 20-30 foot long, two-foot wide tungsten cylinders fired from U.S. Air Force space-based assets, the Russians have also upgraded their aging Cold War arsenal by building dozens of new Topol-M ICBMs and Bulava SLBMs.
Substantial progress in reducing this Armageddon threat cannot be accomplished until decades-long objections by overly conservative members of Congress, the Russian Duma and both nations’ military leadership are lifted. Such multilateral, verifiable (new technologies make this relatively easy to achieve), measures include a global comprehensive nuclear test ban (laboratory sub-critical nuclear tests not excluded), and the standing down from heightened alert levels of not only Russian and American strategic and tactical nuclear weapons but those of China, France, Britain, Israel, Pakistan and India. This would transition all sides’ dangerous nuclear weapons from the physical capability of being fired in 15 minutes or less to 72 hours or longer—don’t we at least deserve three days to think about it before we destroy the world? We also need an accelerated global zero nuclear reduction agreement as well as an essential, little-mentioned but critically important move that the mainstream corporate media has rarely granted its stamp of legitimacy. This would be a unanimous United Nations demand as voiced by leaders in America and Russia, for the phase-out of all nuclear power plants, research as well as production facilities (with the exception of a handful of super-guarded medical radioisotope manufacturing and storage facilities) in the next 10-15 years.
Eliminating not just existing stocks of nuclear weapons, but also all of the 400 global nuclear power facilities is the trump card in the deck of human long-term survival. There are numerous issues including: proliferation, nuclear accidents, the long-term sequestration of tremendous amounts of deadly nuclear wastes, the economic non-competitiveness of nuclear energy, and the realization that nuclear plants are not a viable, safe or reasonable solution to global warming especially in the long term (since plutonium-239 has a half-life of an amazing duration of more than 20,000 years)! Dr. Strangelove’s circular slide rule-assisted calculation requiring humanity to survive the war by remaining in deep underground mineshaft spaces for merely a century was ergo a definite miscalculation—sorry Herr Merkwurdichliebe. 6
Five decades later, the hauntingly humorous end title lyrics and music of “Dr. Strangelove,” accompanied by actual images of awesome Cold War-era nuclear tests, serves as a read-between-the-lines warning to the human race: “We’ll meet again, don’t know where, don’t know when, but I know we’ll meet again some sunny day.” Nuclear weapons and nuclear power – indistinguishable in terms of the deadly threat to our species – must be eliminated now before it is too late. A penultimate but overwhelmingly appropriate edit of George C. Scott’s last line in the film is especially relevant here. “We must not allow a nuclear Armageddon!”
Additional Sources
Walter J. Boyne, Beyond the Wild Blue: A History of the U.S. Air Force, 1947- 1997, New York: St. Martin’s Press, 1997, p. 394.
Columbia Pictures Corporation-Sony Pictures, 40th Anniversary Edition: Dr. Strangelove. Documentary- “Inside Dr. Strangelove,” 2004.
Bruce Cumings, The Origins of the Korean War, Volume 2. Princeton University Press, 1990, pp. 749-751.
The Defense Monitor (Center for Defense Information), Vol. 15, No. 7, “Accidental Nuclear War: A Rising Risk?” by Michelle Flournoy, 1986.
The Defense Monitor (Center for Defense Information), Vol. 36, No. 3, “Primed and Ready- Special Report: Nuclear Issues,” by Bruce G. Blair, May/June 2009.
Peter Janney, Mary’s Mosaic: The CIA Conspiracy to Murder John F. Kennedy, Mary Pinchot Meyer, and Their Vision for World Peace. New York: Skyhorse Publishing, 2012, pp. 242-247; 261-263.
Premiere (Magazine), “The 100 Greatest Movie Characters of All-Time,” April 2004, p. 58.
Carl Sagan, “The Case Against SDI,” Discover, September 1985, pp. 66-75.
H. Eric Semler, et al., The Language of Nuclear War: An Intelligent Citizen’s Dictionary. New York: Harper & Row Publishers, 1987, p. 44.
Oliver Stone and Peter Kuznick, The Untold History of the United States. New York: Gallery Books-Simon & Schuster, 2012, pp. 272, 362, 540-42.
John Tierman, editor, Empty Promise: The Growing Case Against Star Wars. Boston:
Beacon Press, 1986, pp. 2-3.
Louis Weber, editor, Movie Trivia Mania. Beekman House-Crown Publishers, Inc., 1984 p. 21.
Jeffrey W. Mason is a nuclear weapons, arms control, outer space, and First Contact scholar, published author and scriptwriter for acclaimed PBS-TV documentaries who possesses two MA degrees—one in international security. He has worked for the Center for Defense Information (11 years) where he helped produce award-winning PBS-TV documentaries on child soldiers, the Hiroshima bombing, and “The Nuclear Threat at Home.” He worked for the Defense Threat Reduction Agency, the State Department, Professionals’ Coalition for Nuclear Arms Control, Congressional Research Service, Amnesty International, Clean Water Action, and the International Studies Association.
Hedging and Strategic Stability
The concept of strategic stability emerged during the Cold War, but today it is still unclear what the term exactly means and how its different interpretations influence strategic decisions. After the late 1950s, the Cold War superpowers based many of their arguments and decisions on their own understanding of strategic stability1 and it still seems to be a driving factor in the arms control negotiations of today. However, in absence of a common understanding of strategic stability, using this argument to explain certain decisions or threat perceptions linked to the different aspects of nuclear policy tend to create more confusion than clarity.
In the 2010 Nuclear Posture Review (NPR) report,2 the Obama administration used the term strategic stability as a central concept of U.S. nuclear policy vis-à-vis Russia and China. Altogether it appeared 29 times in the report, in reference to issues mostly related to nuclear weapons capabilities. In the U.S.-Russian bilateral relationship, strategic stability was associated with continued dialogue between the two states to further reduce U.S.-Russian nuclear arsenals, to limit the role of nuclear weapons in national security strategies, and to enhance transparency and confidence-building measures. At the same time, the United States pledged to sustain a safe, secure, and effective nuclear arsenal by modernizing its nuclear forces, retaining the triad, and “hedging against potential technical problems or vulnerabilities.”
On the other hand, Russia seems to use the term strategic stability in a broader context, claiming that the question of ballistic missile defense, conventional prompt global strike, and the militarization of outer space all affect strategic stability between Moscow and Washington. U.S. modernization efforts in these areas are seen as attempts to undermine the survivability of the Russian nuclear arsenal and steps to gain strategic advantage over Russia. Therefore, Moscow has been repeatedly arguing that any future arms control agreement should address all factors which affect strategic stability.3
Although these are the issues which Russia explicitly mentions in reference to strategic stability, there is another “hidden” issue which might also have a counterproductive impact on long term stability because of its potential to undermine strategic parity (which seems to be the basis of Russian interpretation of strategic stability).4 This issue is the non-deployed nuclear arsenal of the United States or the so-called “hedge.”
During the Cold War, both superpowers tried to deploy the majority of their nuclear weapons inventories. Reserve nuclear forces were small as a result of the continuous development and production of new nuclear weapons, which guaranteed the rapid exchange of the entire stockpile in a few years. The United States started to create a permanent reserve or hedge force in the early 1990s. The role of the hedge was twofold: first, to guarantee an up-build capability in case of a reemerging confrontation with Russia, and second, a technical insurance to secure against the potential failure of a warhead type or a delivery system. Despite the dissolution of the Soviet Union, during the first years of the 1990s, the United States was skeptical about the democratic transition of the previous Eastern Block and the commitment of the Russian Federation to arms control measures in general. Therefore, the Clinton administration’s 1994 NPR officially codified – for the first time – the concept of a hedge force against the uncertainties and the potential risks of the security environment.5 This concept gradually lost importance as the number of deployed strategic and non-strategic nuclear weapons kept shrinking on both sides and relations improved between Washington and Moscow. By the end of the 1990s, the main rationale for upholding the hedge force shifted towards the necessity of maintaining a back-up against technical failures. Although the nuclear arsenal was aging, a moratorium was declared on nuclear weapons testing, and several production facilities were closed. Therefore, it seemed imperative to retain fully functional nuclear warheads in reserve as an insurance policy.6
While the Clinton administration’s NPR was not too explicit about what the hedge really was, both the Bush and the Obama administrations made the specific role of the hedge clearer. Although technical considerations remained important, the Bush administration’s 2001 NPR refocused U.S. hedging policy on safeguarding against geopolitical surprises. The administration tried to abandon Cold War “threat-based” force planning and implemented a “capabilities-based” force structure which was no longer focused on Russia as an imminent threat but broadened planning against a wider range of adversaries and contingencies: to assure allies, deter aggressors, dissuade competitors and defeat enemies.7 This shift in planning meant that the force structure was designed for a post-Cold War environment with a more cooperative Russia. Therefore, the primary goal of the hedge was to provide guarantees in case this environment changed and U.S.-Russian relations significantly deteriorated.
Regardless of the main focus of the acting administration, the hedge has always served two different roles which belong to two separate institutions: the military considers the hedge a responsive force against the uncertainties of the international geopolitical environment, while the National Nuclear Security Administration (NNSA) views the hedge as a repository to safeguard the aging U.S. nuclear arsenal. These two institutions advise the administration on the required size of the hedge. Since the end of the Cold War, both the United States and Russia considerably reduced their deployed nuclear warheads, but Washington retained many of these weapons in the hedge. By now there are more non-deployed nuclear weapons than deployed nuclear weapons in its military stockpile.
According to the Federation of American Scientists,8 the United States has a military stockpile of 4,650 nuclear weapons, of which roughly 1,900 strategic nuclear weapons are deployed (this includes bomber weapons on bomber bases as deployed) and another approximately 200 non-strategic nuclear weapons are deployed in Europe. Altogether this leaves around 2,500 non-deployed nuclear weapons in reserve – approximately 2,200 strategic and 300 non-strategic.9 This hedge force10 provides the United States with a capability to increase its deployed nuclear arsenal to more than 4000 nuclear weapons within three years.11 In the long run, this capability might feed into Russian paranoia over anything that can potentially undermine strategic parity and it could become a serious roadblock on the way toward further reductions in deployed strategic as well as non-strategic nuclear arsenals.
The Obama administration has already indicated in the 2010 NPR that it is considering reductions in the nuclear hedge. According to the document, the “non-deployed stockpile currently includes more warheads than required” and the “implementation of the Stockpile Stewardship Program and the nuclear infrastructure investments” could set the ground for “major reductions” in the hedge. However, in parallel to these significant reductions, the United States “will retain the ability to ‘upload’ some nuclear warheads as a technical hedge against any future problems with U.S. delivery systems or warheads, or as a result of a fundamental deterioration of the security environment.” In line with the 2010 NPR, the 2013 Presidential Employment Guidance also envisions reductions in the deployed strategic nuclear arsenal and reaffirms the intention to reduce the hedge as well. The Pentagon report on the guidance12 discusses an “alternative approach to hedging” which would allow the United States to provide the necessary back-up capabilities “with fewer nuclear weapons.” This alternative approach puts the main emphasis on the technical role of the hedge, claiming that “a non-deployed hedge that is sized and ready to address these technical risks will also provide the United States the capability to upload additional weapons in response to geopolitical developments.” According to Hans Kristensen, Director of the Nuclear Information Project at the Federation of American Scientists, this might imply that the hedge will no longer contain two categories of warheads – as there will be enough reserve warheads to protect against technical failures and potential geopolitical challenges.13 However, at this point it is still unclear if (and when) this new approach will lead to actual force reductions in the non-deployed nuclear arsenal.
In the meantime, the United States could achieve several benefits by reducing the hedge. First, reducing the number of warheads (which require constant maintenance and periodic life extension) could save a few hundred million dollars in the federal budget. Second, it could send a positive signal to Russia about U.S. long-term intentions. In his 2013 Berlin address, President Obama indicated that his administration would seek “negotiated cuts with Russia” to reduce the number of deployed strategic nuclear weapons below the ceilings of the New START Treaty.14 In terms of deployed strategic nuclear weapons, Moscow has already met the limits of the Treaty and seems to be reluctant to negotiate any further cuts until the 2018 New START implementation deadline or until the United States also meets the Treaty limits15 (which – in light of the current trends – is probably not going to happen earlier than 2018). In addition, the deeper the two sides reduce their deployed strategic nuclear arsenals, the harder Russia tries to press the United States to include all other issues which affect strategic stability (especially ballistic missile defense). The United States has tried to alleviate Russian concerns over missile defense by offering some cooperative and transparency measures but Moscow insists that a legally binding treaty is necessary, which would put serious limits on the deployment of the system (a condition that is unacceptable to the United States Congress at the moment). Therefore, the future of further reductions seems to be blocked by disagreements over missile defense. But the proposed reduction of the hedge could signal U.S. willingness to reduce its strategic advantage against Russia.
Despite the potential benefits, U.S. government documents16 have been setting up a number of preconditions for reducing the size of the hedge. Beyond “geopolitical stability,” the two most important preconditions are the establishment of a responsive infrastructure by constructing new warhead production facilities and the successful completion of the warhead modernization programs. The Department of Energy’s FY 2014 Stockpile Stewardship and Management Plan (SSMP) proposes a so-called 3+2 warhead plan that would create three interoperable warheads for ballistic missiles and two for long-range bombers.17 The transition to interoperable warheads could, according to the plan, permit a reduction of the number of warheads in the hedge. In light of the current budget constraints, it is still unclear if the program will start as planned and even if completed according to schedule, the gradual reduction of the technical hedge would not begin until the mid-2030s. Similar challenges will arise if the administration wishes to link the reduction of the hedge to the construction of new warhead production facilities – some of which have already been delayed due to budget considerations, and the exact dates and technical details of their future completion are still unclear.
The preconditions would mean that significant reductions in the hedge18 are unlikely to materialize for at least another 15 years. Meanwhile, the deployed arsenal faces two scenarios in the coming decades: the number of warheads and delivery platforms could keep shrinking or arms control negotiations might fail to produce further reductions as a result of strategic inequalities (partly caused by the huge U.S. non-deployed arsenal). Under the first scenario, keeping the hedge in its current size would be illogical because a smaller deployed arsenal would require fewer replacement warheads19 in case of technical failures, and because fewer delivery platforms would require fewer up-load warheads in case of geopolitical surprises. Maintaining the current non-deployed arsenal would not make any more sense under the second scenario either. If future arms control negotiations get stuck based on arguments over strategic parity, maintaining a large hedge force will be part of the problem, not a solution. Therefore, insisting on the “modernization precondition” and keeping the current hedge for another 15 years would not bring any benefits for the United States.
On the other hand, President Obama could use his executive power to start gradual reductions in the hedge. Although opponents in Congress have been trying to limit his flexibility in future nuclear reductions (which could happen in a non-treaty framework), current legislative language does not explicitly limit cuts in the non-deployed nuclear arsenal. After the successful vote on the New START Treaty, the Senate adopted a resolution on the treaty ratification which declares that “further arms reduction agreements obligating the United States to reduce or limit the Armed Forces or armaments of the United States in any militarily significant manner may be made only pursuant to the treaty-making power of the President.”20 However, if gradual cuts in the hedge would not be part of any “further arms reduction agreement” but instead implemented unilaterally, it would not be subject to a new legally binding treaty (and the necessary Senate approval which comes with it). Similarly, the FY2014 National Defense Authorization Act (NDAA), which was adopted in December 2013, does not use explicit language against unilateral reductions in the hedge.21 The NDAA only talks about preconditions to further nuclear arms reductions with Russia below the New START Treaty levels and it does not propose any limitations on cutting the non-deployed arsenal. In fact, the NDAA encourages taking into account “the full range of nuclear weapons capabilities,” especially the non-strategic arsenals – and this is exactly where reducing the United States hedge force could send a positive message and prove beneficial.
The 2013 Presidential Employment Guidance appears to move towards an alternative approach to hedging. This new strategy implies less reliance on non-deployed nuclear weapons which is a promising first step towards their reduction. However, the FY 2014 Stockpile Stewardship and Management Plan links this reduction to the successful completion of the ongoing nuclear modernization programs, anticipating that the number of warheads in the hedge force will not change significantly in the near future. Its fate will mainly depend on congressional budget fights.
This might send a bad signal to Russia, where U.S. missile defense developments and its alleged impact on strategic stability are already a primary source of concern to the Kremlin. As a result of aging technologies and necessary retirements, Russian nuclear forces have been constantly decreasing, and despite all modernization efforts,[ref]Russian has an ongoing modernization program, in the framework of which it has already begun to build a new heavy ICBM and a multiple-warhead Bulava SLBM.[/ref] it is expected that by the early 2020s the ICBM arsenal will shrink to 220 missiles.22 Russia already deploys 40 percent less strategic delivery systems than the United States and tries to keep the balance of deployed weapons by higher warhead loadings. This does not give Russia the ability to significantly increase the deployed number of warheads – not just because of the lower number of delivery vehicles but also because of the lack of reserve warheads comparable in number to the United States hedge force. In this regard there is an important asymmetry between Russia and the United States – while Washington keeps a hedge for technical and geopolitical challenges, Moscow maintains an active production infrastructure, which – if necessary – enables the production of hundreds of new weapons every year. It definitely has its implications for the long term (10-15 years) status of strategic parity, but certainly less impact on short term prospects.
In the meantime, the United States loads only 4-5 warheads on its SLBMs (instead of their maximum capacity of 8 warheads) and keeps downloading all of its ICBMs to a single warhead configuration.23 Taken into account the upload potential of the delivery vehicles and the number of warheads in the hedge force, in case of a dramatic deterioration of the international security environment the United States could increase its strategic nuclear arsenal to above 4000 deployed warheads in about three years.
Whether one uses a narrow or a broader interpretation of strategic stability, these tendencies definitely work against the mere logic of strategic parity and might have a negative effect on the chances of further bilateral reductions as well. Cutting the hedge unilaterally would definitely upset Congress and it could endanger other foreign policy priorities of the United States (such as the CTBT ratification or negotiations with Iran), but it would still be worth the effort as it could also indicate good faith and contribute to the establishment of a more favorable geopolitical environment. It could signal President Obama’s serious commitment to further disarmament, send a positive message to Russian military planners and ease some of their paranoia about U.S. force structure trends.
Anna Péczeli is a Fulbright Scholar and Nuclear Research Fellow at the Federation of American Scientists. Additionally, Péczeli is an adjunct fellow at the Hungarian Institute of International Affairs, where she works on nuclear arms control. Péczeli earned a master’s degree in international relations from Corvinus University of Budapest, and is currently working on her doctoral dissertation, which focuses on the Obama administration’s nuclear strategy.