Integrating Automated Vehicles with 5G Networks to Realize the Future of Transportation
Summary
Widespread deployment of fully automated or “autonomous” vehicles (AVs) that can operate without human interaction would make travel easier, cheaper, and safer. Reaching this highest level of automation requires AVs to be connected to 5G networks, which in turn allows AVs to communicate with “smart”, 5G-connected roadway infrastructure. The federal government can support progress towards this goal through a three-part initiative. Part 1 would establish Transportation Infrastructure Pilot Zones to field-test the integration of AV technology with 5G networks in settings across the country. Part 2 would create a National Connected AV Research Consortium to pursue connected-vehicle research achieving massive scale. Part 3 would launch a targeted research initiative focused on ensuring safety in a connected AV era, and Part 4 would create a new U.S. Corps of Engineers and Computer Scientists for Technology to embed technically skilled experts into government. With primary support from the National Highway and Traffic Safety Administration (NHTSA), the National Science Foundation (NSF), and the Department of Defense (DOD), this initiative would also help develop a basic framework for achieving a 90% reduction in vehicle crashes nationwide, deliver new transportation services, and establish national standards for AV technology. Initiative outcomes would promote U.S. global leadership in AVs, create new jobs and economic opportunities, and prepare the U.S. workforce to integrate technology of the future into systems of the present.
A National Framework for AI Procurement
Summary
As artificial intelligence (AI) applications for public use have proliferated, there has been a large uptick in challenges associated with AI safety and fairness. These challenges are due in part to poor transparency in and standardization of AI procurement protocols, particularly for public-use applications. In this memo, we propose a federal framework—orchestrated through the Office of Federal Procurement Policy (OFPP) situated in the Office of Management and Budget (OMB)—to standardize and guide AI procurement in a safer, fairer manner. While this framework is designed for federal implementation, it is important to recognize that many decisions on AI usage are made by municipalities. The principles guiding the federal framework outlined herein are intended to also help guide development and implementation of similar frameworks for AI procurement at the local level.
Establish a $100M National Lab of Neurotechnology for Brain Moonshots
A rigorous scientific understanding of how the brain works would transform human health and the economy by (i) enabling design of effective therapies for mental and neurodegenerative diseases (such as depression and Alzheimer’s), and (ii) fueling novel areas of enterprise for the biomedical, technology, and artificial intelligence industries. Launched in 2013, the U.S. BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative has made significant progress toward harnessing the ingenuity and creativity of individual laboratories in developing neurotechnological methods. This has provided a strong foundation for future work, producing advances like:
- 3-D microscopy and ultra-fast imaging that enables real-time observations of brain-cell activity in intact tissues: key data for understanding circuit principles underlying human behavior.
- A sophisticated genetic method that could be helpful for finding new druggable targets that could be engaged to manage pain effectively, helping avoid the risks and harms of opioid drug addiction.
- A portable backpack supporting (i) simultaneous recording from a stimulator implanted into a human subject’s brain (part of an early-stage clinical trial), (ii) measurement of other biomarkers, and (iii) recording of the subject’s positions and movements within their environment. This integrated and comprehensive dataset is helping researchers understand links between neural-circuit activity and behavior in humans.
However, pursuing these ambitious goals will require new approaches to brain research, at greater scale and scope.
Given the BRAIN Initiative’s momentum, this is the moment to expand the Initiative by investing in a National Laboratory of Neurotechnology (NLN) that would bring together a multidisciplinary team of researchers and engineers with combined expertise in physical and biomedical sciences. The NLN team would develop large-scale instruments, tools, and methods for recording and manipulating the activity of complex neural circuits in living animals or humans — studies that would enable us to understand how the brain works at a deeper, more detailed level than ever before. Specific high-impact initiatives that the NLN team could pursue include:
- Developing a multibeam, large-scale electron microscope to map the wiring of neural circuits.
- Determining the molecular components of each cell of the brain.
- Fabricating a diverse array of implantable and wearable devices.
- Conducting supercomputer-enabled mining of large datasets to support neurotechnology development.
The BRAIN Initiative currently funds small teams at existing research institutes. The natural next step is to expand the Initiative by establishing a dedicated center — staffed by a large, collaborative, and interdisciplinary team — capable of developing the high-cost, large-scale equipment needed to address complex and persistent challenges in the field of neurotechnology. Such a center would multiply the return on investment in brain research that the federal government is making on behalf of American taxpayers. Successful operation of a National Laboratory of Neurotechnology would require about $100 million per year.
To read a detailed vision for a National Laboratory of Neurotechnology, click here.
How to Unlock the Potential of the Advanced Research Projects Agency Model
Summary
America faces a host of daunting problems that demand forward-looking solutions. Addressing these challenges will require us to unleash the full potential of our research and development community, leveraging new approaches to innovation that break through both technical and institutional barriers and initiate wholly new capabilities. The Advanced Research Projects Agency (ARPA) model has resulted in exactly this kind of high-impact innovation in defense, intelligence, and energy. This model can be applied to other critical societal challenges such as climate, labor, or health. But an ARPA must have the right core elements if it is to create the fresh solutions the country needs.
The ARPA model is distinctly different from other federal agencies in mission, operations, and culture. ARPA organizations are part of a much broader ecosystem that spans from research to implementation. Their role is to create breakthrough, paradigm-shifting solutions and capabilities. In order to position a new ARPA for success, Congress, the Administration, and the agency’s founding leaders must understand the unique properties of an ARPA and the process by which ARPAs approach and manage risk to develop game-changing advances.
To establish a strong foundation for a new ARPA to do this work, Congress and the Administration will need to address four factors:
- Purpose: Clearly and succinctly define the vital national purpose for the new ARPA.
- Operations: Set the agency up to function autonomously, with its own budget, staff, and operating practices.
- Authorities: Give the new ARPA flexible hiring and contracting authorities to draw new and extraordinary talent to the nation’s challenges.
- Leadership: Appoint an exceptional leadership team, hold them to a high standard for impact, and create room for them to deliver on the full potential of the ARPA model.
Over the course of a few years, a new ARPA can grow into a powerfully effective organization with people, practices, and culture honed to create breakthroughs. If well implemented, new ARPAs can be extraordinary additions to our R&D ecosystem, providing unimagined new capabilities to help us meet our most essential societal challenges.
Challenge and Opportunity
America faces some daunting problems today. Many millions of Americans are unable to access our nation’s rich opportunities, leaving all of us poorer without their contributions. Dozens of other countries have longer life spans and lower infant mortality rates, although we spend more per capita on healthcare than any other country. We are not yet on track to contain the damages of a changing climate or to manage its impacts. Global competition has resulted in more and more U.S. research advances being used to create jobs elsewhere. R&D alone won’t solve any of these problems. But every one of these challenges demands creative new solutions.
However, America’s phenomenally productive R&D ecosystem—with its half a trillion dollars spent annually by the public and private sectors—is not aimed at these large, society-wide challenges. How do we create a generational shift in our innovation ecosystem so that it contributes as much to meeting this century’s challenges as it did for those of the last century? What can we learn from our successful R&D history, and what approaches can we adapt to address the problems that we now face?
One part of the answer lies in the Advanced Research Projects Agency (ARPA) model for innovation. This kind of innovation knocks down both technical and institutional barriers to create transformational new capabilities. ARPA organizations are part of a much broader ecosystem, spanning from research to implementation, in which their role is to create breakthrough solutions and capabilities that fundamentally change what we define as possible. In pursuit of revolutionary advances, they accept and manage a level of risk for which companies and other government agencies have no incentive.
The first ARPA, the Defense Advanced Research Projects Agency (DARPA), was launched in 1958 at the height of the Cold War. DARPA shifted military capabilities from mass bombing to precision strike with GPS, stealth technologies, and integrated combat systems. These innovations recast defense systems, changed military outcomes, and shaped geopolitics over decades. Meanwhile, DARPA’s programs in enabling technologies also seeded artificial intelligence, developed advanced microelectronics, and started the internet. In recent years, DARPA programs have built the first ship able to navigate from the pier and cross oceans without a single sailor on board,1 created a radical new approach to reconfigurable military capabilities to outpace global adversaries,2 developed the first systems—now in operation by the Port Authority of New York and New Jersey—for cities to continuously monitor for dangerous nuclear and radiological materials,3 and created a rapid-response mRNA vaccine platform4 that enabled the astonishingly fast development5 of today’s mRNA vaccines for COVID-19.
We are also starting to show that the ARPA model can be successfully adapted to other national purposes. In 2006, the Intelligence Advanced Research Projects Activity (IARPA) was formed to serve the intelligence community. One of IARPA’s programs has developed methods to overcome individual cognitive biases by weighting and synthesizing the judgments of many analysts. This approach provides important gains in prediction and is a new paradigm for forecasting events in a complex world. In 2009, the Advanced Research Projects Agency–Energy (ARPA-E) launched in the Department of Energy. Its programs have created new power semiconductors, new battery technologies, and new methods to improve appliance efficiency, making vital contributions to our clean energy future. Both ARPAs have invigorated R&D communities by connecting them to hard, important problems and giving them a pathway to drive impact.
Implementing the ARPA model to meet other critical challenges could have enormous impact. Indeed, President Biden has already proposed ARPAs for health and climate,6 and others have advanced visions for ARPAs for agriculture,7 labor8 and education. In addition, the Endless Frontier Act9 takes inspiration from the ARPA model in its vision for an expanded technology function at NSF to address economic competitiveness.
Behind each call for an “ARPA for X” is a yearning for R&D that throws open new doors to radically better solutions. But the ARPA model is very different from other federal agencies and unlocking its potential will require much more than affixing the name. The starting point is an understanding of how ARPAs generate their outsized advances.
Though specifics vary according to the mission of a new ARPA, the essential operating model is based on these elements:
- An ARPA designs and conducts programs that run for limited periods, typically 3-5 years. Each ARPA program sets out to achieve a specific, bold goal that may seem impossible but that, if demonstrated, can initiate a major advance. Each ARPA program contracts with companies, universities, and other organizations to execute R&D efforts. It also engages the parties who can implement and scale successful program results.
- An ARPA requires exceptionally talented program managers with a rare combination of expertise, vision, and the ability to execute and deliver results.
- ARPA leadership approves a series of individual programs, constructing and overseeing a full and diversified portfolio.
ARPA Programs
An ARPA generates major advances through intelligently managed risk-taking. The fundamental unit of work for an ARPA is a solutions-oriented R&D program that aims at achieving a previously unimaginable goal. Each program has a fixed term, typically 3-5 years, and each is designed, executed, and transitioned by an ARPA program manager.
Design
The program manager designs the program to achieve a bold goal—one that may seem impossible but that, if demonstrated, could catalyze a major advance. They build a rigorous plan to achieve the goal. A set of questions known as the Heilmeier Catechism10 (from an iconic DARPA director in the 1970s) guides program development:
- What are you trying to do? Articulate your objectives using absolutely no jargon.
- How is it done today, and what are the limits of current practice?
- What is new in your approach and why do you think it will be successful?
- Who cares? If you are successful, what difference will it make?
- What are the risks?
- How much will it cost?
- How long will it take?
- What are the mid-term and final “exams” to check for success?
These questions are easy—even obvious—to ask, but surprisingly difficult to answer well. Program managers typically grapple with them over 6-12 months to design a strong program, and agency leaders use them to guide their judgement about the potential of a new program for approval. The questions also guide program execution.
Execution
Once a program is launched, the program manager contracts with whichever organizations are needed to achieve the program’s goal. That typically means companies, universities, nonprofits, other parts of government, and other organizations with the talent and capacity to conduct the necessary R&D. Contracting this work has the obvious benefit that the ARPA doesn’t have to hire staff and provide facilities for this R&D. But even more important is the fact that this approach mobilizes individuals and organizations. Over the course of the program, these participants become a community that not only delivers the program vision but can help drive it forward beyond the term of the ARPA program.
The work of the program is to weave the threads of research from multiple domains together with lessons from the reality of use and practice in order to develop and demonstrate prototype systems or capabilities. The program rigorously evaluates how well its innovation works, how it works in specific environments, and how it can be scaled.
An ARPA program often draws on basic research and often generates fresh research, but research is an input rather than the objective. Unlike the management of basic research, these programs drive to a specific goal. They may sometimes resemble product development, but for a prototype product that serves a public purpose rather than a visible market opportunity. Often, they require a much higher degree of risk than product development because they reach for a barely feasible goal.
An ARPA program aims to demonstrate that a powerful new approach can work despite the risk inherent in trying something radically different. This requires actively managing the multiple efforts within the ARPA program. An ARPA program manager accelerates lines of work that show great promise and redirects or stops work that is not yielding results. They nimbly reallocate resources to keep wringing out risk and driving to the program’s objective.
Transition
In parallel, the program manager engages the decision makers who can advance, adopt, implement, and fully scale the results of the program. If the breakthrough will require commercialization, that could include additional companies, investors, and entrepreneurs. If full-scale implementation requires changes in policies and practices, that means engaging regulators, policy makers, and community organizations. Understanding the needs and realities of implementers is important from the early stages of program design. It is sometimes the case that these implementers are skeptical about the program’s bold goal at the start. As the program unfolds, they are invited to program reviews and demonstrations. The program strives to address their concerns and may even provide support for their internal analyses, evaluations, and trials. When these engagements work well, the ARPA program manager is able to bring implementers along on the journey from wild dream to demonstrated reality. Successful transition starts when they change their minds about what’s possible. And the ultimate societal impact of the ARPA program comes when these implementers have fully scaled the ARPA breakthrough.
A fully successful program ends with a convincing demonstration of a new capability; a community that can carry it forward; and decision makers who are ready to support and fund implementation in products, services, policies, and practices.
The structure of a hypothetical ARPA program
A labor-oriented ARPA program aimed at a new training approach might fund (1) a handful of university and company teams to advance promising research, (2) a company to develop a prototype that integrates research results into a practical system, and (3) a nonprofit to conduct and evaluate trials with people seeking to upgrade their skills. In parallel, the program manager would engage other agencies at the Department of Labor and other levels of government, both to learn from their perspectives and, as the program develops, to show them the progress and possibilities if the program is successful. The program manager would also engage companies and investors that can commercialize tools coming from the program. A fully successful program would demonstrate a training approach that is far more effective, takes a fraction of the time, and costs significantly less than current approaches, with robust evidence about how it works for people with different backgrounds and for different kinds of training. The program would end with companies, workforce boards, DoL, community organizations, and employers energized to implement the new approach and taking steps to scale it.
ARPA program managers
None of this can happen without exceptionally capable program managers. An ARPA organization hires program managers on fixed terms to design, manage, and transition these high-impact programs. ARPA leadership coaches program managers, helps build partnerships and remove obstacles, and approves and oversees all programs. But it puts enormous responsibility and authority on the shoulders of program managers.
ARPA program managers come from backgrounds in companies, universities, nonprofits, and other parts of government, and they serve at different times in their careers. They bring a “head in the stars, feet on the ground” blend of these key characteristics:
- The program manager is an expert in a relevant area.
- They see the big picture and navigate easily from details to strategic outcomes.
- They are driven to achieve a major impact. Sometimes this is manifested as a constructive impatience with the limitations of conventional organizations and approaches.
- They are able to project a vision.
- They are able to build and lead a community to accomplish goals.
- They have a sound ethical core.
ARPA portfolios
ARPA leadership approves a series of individual programs, constructing and managing a full portfolio that is diversified to maximize total impact despite the risk inherent in each program. Every program learns, not all succeed, and failure is accepted as integral to the mission.
Plan of Action
Based on these core elements of a successful ARPA model, we offer four recommendations for policy makers as they establish new ARPA organizations.
Purpose
Clearly and succinctly define the vital national purpose for the new ARPA. An ARPA exists to create breakthroughs for an important public need. For DARPA, this is national security. For ARPA-E, it is economic and energy security, and for IARPA, it is national intelligence.
Operations
Set up the agency to function autonomously, with its own budget, staff and organization, and operating practices. An ARPA is a deliberate counterpoint to work already underway, originating from a recognition that something more and different is needed to achieve our national goals. An ARPA will not succeed if it is tightly integrated into its parent organization. Ironically, it may be more difficult to start a successful new ARPA in an area that already has robust federal research, because of the inclination to fit the square-peg ARPA into round-hole traditional research methods. The ARPA model is completely different than our well-honed approach to sponsoring fundamental research. The ARPA solutions-driven approach would not work well for greatly needed and highly valued basic research, and conversely, funding methods for fundamental research will not lead to ARPA-scale breakthroughs for our societal problems. This work is different, and it will require different people, different practices, and a different culture to succeed.
Independent funding is also necessary. To develop a portfolio of programs with the potential for high impact, an ARPA requires funding that is sufficient to achieve its programs’ objectives. ARPA programs are sized not just to generate a new result, but to convincingly demonstrate a new approach, often across a variety of circumstances, in order to prove that the method can succeed and scale.
The agency’s chain of command and Congressional authorizers and appropriators provide important oversight. However, the ARPA organization itself must bear the responsibility for designing, selecting, managing, and transitioning its programs. A new ARPA should report directly to the cabinet secretary to maintain independence and secure the support needed to achieve its mission.
Authorities
Give the new ARPA flexible hiring and contracting authorities to draw new and extraordinary talent to the nation’s challenges. Flexible hiring mechanisms have proven to be very valuable in allowing ARPAs to attract the rare combination of expertise, vision, and execution required in great program managers. In addition, program managers must be able to contract with exceptional people and teams in companies, universities, nonprofits, and other government entities to achieve their aggressive program goals. ARPAs have used flexible contracting mechanisms to move fast and work effectively with all kinds of organizations, not just those already designed to work with government.
Flexible hiring and contracting authorities are extremely helpful tools for an ARPA organization. It’s worth noting, though, that flexible authorities by themselves do not an ARPA make.
Leadership
Appoint an exceptional leadership team, hold them to a high standard for impact, and create room for them to deliver on the full potential of the ARPA model. A new ARPA’s director will be responsible for building an organization with people, practices, and culture honed for the mission of creating breakthroughs. This person must bring fresh and creative ways of looking at seemingly impossible problems, a rigorous approach to managing risk, a drive to achieve outsized impact, and an ability to lead people. A strong ethical orientation is also essential for a role that will grapple with the implications of powerful new capabilities for our society.
The person to whom the ARPA director reports also plays an essential role. This individual must actively prevent others from trying to set the agenda for the ARPA. They enable the ARPA organization to hire program managers who don’t look like other department staff, undertake programs that conventional wisdom decries, manage programs actively, and develop a culture that celebrates bold risk-taking in pursuit of a great national purpose. They hold the ARPA organization accountable for the mission of creating breakthroughs and create room for the unconventional methods needed to realize that mission.
Note that these four recommendations about purpose, independence, authorities, and leadership are interconnected. All are necessary to build the foundation for a successful new ARPA, and cherry-picking the easy ones will not work.
Conclusion
A total of 87 years of experience across three different ARPA organizations have provided many lessons about how to build and run an organization that creates breakthroughs for an important national purpose. In establishing any new ARPA, both Congress and the Administration must create the space and allocate the resources that will allow it to flourish and realize its mission.
Like its programs, a new ARPA will itself be a high-risk, high-reward experiment. If our challenges were modest, or if our current innovation methods were sufficient, there would be no need to try these kinds of experiments. But the problems we face today demand powerful new approaches. Adapting the ARPA model and aiming it at the most critical challenges ahead can create breakthroughs that redefine what is possible for our future. Let’s do everything possible to start new ARPAs on the right track/
ARPAs create radically better approaches to hard problems by conducting solutions-oriented R&D. The Department of Defense (DOD)’s Defense Advanced Research Projects Agency (DARPA), now in its seventh decade, conducted the pivotal R&D for new military capabilities such as stealth and precision strike and, more broadly, for new information technologies ranging from the internet to artificial intelligence. DARPA’s track record inspired the establishment of the Department of Energy’s ARPA-E and the Office of the Director of National Intelligence’s IARPA. Both of these new ARPAs are well underway, with robust portfolios of R&D programs and encouraging results. They show that it is possible to adapt DARPA’s model for different public purposes.
For the independence, authority, and responsibility that a new ARPA requires, its Directorship should be a senior appointment reporting directly to the Secretary of the appropriate department. If this role is filled by a Senate-confirmed Presidential appointment, it will be important for stability to have a civil servant to serve as the Deputy Director.
ARPA leaders and program managers communicate with their entire ecosystem: other parts of government, the R&D community, and the entities that can implement and scale ARPA results. An ARPA holds the responsibility for selecting and executing its programs.
solution for a social problem may come from implementing new insights from behavioral science.
It is helpful to think about the desired future state a program will aim to realize, and then work
backwards to the new approaches, methods, or tools that could enable it, as well as the
institutional changes that will be needed. These solutions may or may not involve technology.
the customer. But the internet, miniaturized GPS receivers, microelectromechanical systems,
and new waves of artificial intelligence did not make their mark through Pentagon procurement. As part of the design of an ARPA program, the program manager needs to think
through how their advance could be adopted and fully scaled. That could involve a
government agency that procures a product or service, companies that commercialize the
results, policy makers or regulators who can design rules and laws that are more effective
because of the program’s results, and/or other avenues
Support Electrification at Regional Airports to Preserve Competitiveness & Improve Health Outcomes
Summary
The Biden-Harris Administration, Congress, and state legislatures should adopt measures to reduce the substantial health and environmental impact of America’s 5,000+ public airports while improving the competitiveness of American aviation. Aviation is our largest non-agricultural export industry, but we are losing our technological advantage to countries that have prioritized sustainable aviation technologies. Because our airports and aircraft use outdated technology, they disproportionately pollute the often-disadvantaged communities adjacent to them, causing health externalities while providing few benefits and job opportunities to local residents. Fixing this public health problem should start with the immediate phaseout of leaded aviation fuel, which is the largest source of lead emissions in the U.S. This should also be coupled with incentivizing advancements in sustainable aviation technology. The phaseout and innovation incentivization can be accomplished through regulatory agency mandates, new fees collected from combustion aircraft users, reprioritization of existing recurring federal funds for aviation, and allocation of additional funding—such as from the proposed national infrastructure plan—towards sustainable solutions. The focus of this funding should be comprehensive electrification of the entire aviation ecosystem, including airports, ground vehicles, support equipment, and aircraft. Electrification will remove the lead concern while also reducing other pollution and creating jobs. Funding for pollution mitigation and green job creation should be directed toward disadvantaged communities located near airports and U.S.-based small businesses developing green aviation technologies. These actions must be taken immediately, lest our public health continue to suffer, and lest we jeopardize the future of the U.S. aviation industry.
Challenge and Opportunity
Small aircraft are the largest source of environmental lead pollution in the US. Blood lead levels are significantly elevated for children living within 0.6 mi (1,000m) of airports where leaded aviation fuel (avgas) is used. An estimated 16 million Americans are at risk of elevated blood lead levels because they live near a regional airport, where the majority of flight operations are undertaken by small piston engine aircraft burning leaded fuel. Lead is a neurotoxin for which there is no safe level of exposure, as determined by both the Centers for Disease Control (CDC) and the Environmental Protection Agency (EPA). However, the EPA has continued to permit over 2 grams of lead content per gallon of aviation gasoline, which is aerosolized into extremely dangerous microscopic particulate matter (PM) when burned in an aircraft piston engine. When inhaled, small PM is capable of directly entering the bloodstream. This lead exposure is especially dangerous for fetal development and for cognitive development in children. The science behind these effects is very well established because of decades of research into the effects of leaded automotive gasoline; this resulted in a complete ban of leaded gasoline in 1996, although aviation successfully lobbied for a special temporary exemption.

Monthly average child blood lead levels vs. sum of piston engine aircraft takeoffs and landings over time. This data was collected from over 1 million children living within 6.2 miles of 27 airports in Michigan with piston aircraft traffic. It is clear that blood lead levels rise and fall in concert with piston aircraft traffic.
Although most attention has been focused on about 30 large hub airports in the U.S., lead pollution occurs primarily at smaller regional airports due to their reliance on piston-engine aircraft. There are over 10,000 airstrips and over 5,000 public airports in the U.S., or a public airport within a 16-minute drive of the average American. The nearly 200,000 leaded-fuelburning aircraft operating from these airports are incapable of readily switching to unleaded fuel due to their outdated engine technology and the lack of availability of unleaded gasoline at most airports.

This is a map of regional airports where leaded avgas and other polluting fossil fuels are used. There are over 5,000 public airports in the US — or one within a 16-minute drive of the average American.
For both economic and technical reasons, a widespread, drop-in replacement for leaded aviation gasoline (avgas) has failed to emerge, despite the fact that leaded fuel was fully eliminated on our roads decades ago. Because of limited unleaded fuel supply, reduced power output, safety concerns, and pilot retraining needs, even engines theoretically capable of switching to unleaded fuel continue to use leaded fuel almost exclusively. However, simply switching to planes that use diesel or jet fuel is not the answer. Unlike cars, aircraft have no emissions control systems, and there is no existing way to install such systems. As a result, even aircraft that do not burn leaded fuel emit very high levels of PM and other forms of pollution detrimental to human health. For example, LAX alone produces nearly as much particulate pollution as all LA-area freeways combined, and LAX is just one of 39 airports in the local air district. It is critical to American public health that any policies to phase out leaded avgas concurrently foster adoption of reduced-emission and reduced-fuel-burn technologies (such as electric propulsion), rather than encourage switching to fuel-hungry and high-pollution unleaded gasoline engines, diesel engines, turboprops, and jet engines.
This is also critical to American economic health: European and Asian companies are beating the U.S. at developing efficient unleaded-fuel engines and electric propulsion technology, winning market share in regions traditionally dominated by US-built light aircraft (e.g. where leaded fuel is unavailable or expensive). We need to invest in sustainable propulsion systems to maintain U.S. competitiveness, and lack of supportive policy action has hampered technological advancement.
Zero funding, for example, has been allocated in the proposed American Jobs Plan to deal with dangerous aerosolized lead pollution from aviation, even though the plan dedicates $45B toward replacing lead pipes. Combating aviation pollution, however, offers a significant opportunity to pursue electrification, with a wide variety of shovel-ready airport project locations. The U.S. workforce can electrify airport infrastructure, ground vehicles, and aircraft domestically using existing and proposed federal funding as well as revenue from fees targeted at polluting aircraft. Shared charging infrastructure should be a special priority. Installing basic charging infrastructure at every one of the 5,000 public airports in the U.S. — focusing first on the 500 most heavily-used airports located closest to populated areas and in disadvantaged communities — is a highly achievable near-term goal at moderate expense. For instance, installing a 30-60 kW DC fast charger, which could charge small electric planes or ground vehicles, at the 500 highestpriority airports would cost less than $25M and could be completed in 2-3 years with sufficient federal backing.
Transitioning to biofuels or other so-called “sustainable” fuels can play a role, but should not be considered a substitute for fuel use reduction via electrification because their emissions can still be harmful. Both the biofuel supply chain and burning of biofuels, for example, emit a wide range of pollutants. Even green hydrogen, currently a tiny fraction of the world’s mostly fossil-fuel derived hydrogen supply, would still lead to emissions of water vapor. Water vapor is a powerful greenhouse gas when emitted at high altitude, and in some proposed implementations (such as direct hydrogen turbine combustion) hydrogen aircraft could also lead to significant high altitude nitrogen oxide pollution.
Electrification also offers an opportunity to better integrate airports into both urban and rural transit networks, provide clean energy and charging services to local communities (e.g., charging buses overnight), and improve resilience to power outages by offering grid storage. Electrification infrastructure at airports could include, for example, solar panels and grid storage doubling as power backup systems at airports. This would serve not just airport power needs but also those of surrounding communities, especially in remote areas prone to outages. This power system resilience is especially critical in disaster situations, where airports often serve as hubs for emergency responders.
In the near term, electrifying aviation entails plugging planes into gate power instead of burning fuel, using electric power to taxi to the runway, and operating electric tugs and ground equipment. Electrifying aviation also means investing in R&D, scaleup, and adoption of electric trainer aircraft, hybrid electric short-range cargo and passenger planes, and eventually longerrange commercial planes. As batteries and electronics improve, larger and larger planes will become more and more electric over time. To facilitate these technological advances in electric aviation and maximize public benefit, federal funding should focus on promoting adoption of electrification on routes not currently serviced or readily serviceable by rail or other alternative rapid, sustainable forms of transportation.
Plan of Action
Infrastructure Funding
Reprioritize existing funding sources, such as the Federal Aviation Administration (FAA) Voluntary Airport Low Emissions Program (VALE) program, to focus on sustainable infrastructure such as solar, storage, and chargers at both public airports and military airports. Supplement this funding by dedicating at least $10B of the proposed $25B of airport funding in the American Jobs Plan, or $20B of the proposed $56B Republican counter-offer, towards electrification across airports of all sizes. Initially prioritize:
- The 500 most heavily-used airports located closest to populated areas and in disadvantaged communities,
- Regional airports that have far fewer logistical barriers to infrastructure projects than congested hubs, and
- Airports supporting routes not currently serviced or readily serviceable by rail.
R&D Funding
Reprioritize existing federal research funding toward technologies aimed at reducing fuel burned by aircraft, such as significantly expanding current hybrid and electric aviation initiatives at the National Aeronautics and Space Administration (NASA), Department of Defense (DOD), Department of Transportation (DOT), and Department of Energy (DOE).1 Additional funding paid for by fees on polluting aircraft should be added to these existing pools of research dollars (see “Plan of Action” items 4-6). To remain competitive with accelerating civil and defense aviation technology development overseas, the government should direct a minimum of $2B in annual federal funding to electric aviation R&D. Funding should prioritize the development of US-designed and manufactured electric and hybrid electric aircraft technologies, including both retrofit and new-build planes, ground equipment, and ground vehicles. At least 50% of funds should be dedicated to small businesses.
The U.S. is currently the world leader in small aircraft production, but we are falling far behind Europe and Asia on electrifying fixed wing aircraft, funding development of new efficiency technologies, and implementing relevant policies. U.S. companies have instead focused primarily on low-capacity “flying cars” for carrying high-net-worth individuals short distances over traffic. The lack of funding and policy support for practical, high-impact innovation poses a significant threat to future U.S. competitiveness and jobs, especially in the export market.
Regulations
The EPA should issue its final endangerment finding banning leaded fuels, and the Biden-Harris Administration should issue an executive order instructing the EPA and FAA to work together to eliminate lead pollution. This includes immediately implementing a 10-year phaseout mandate for the sale of leaded fuel, with use of leaded fuel banned after 2030 except for a limited number of historic aircraft. This phaseout timeline should be extended to 2040 in Alaska, due to the disproportionate impact on the greater than 80% of Alaskan communities reliant on small planes for year-round access. During the Obama Administration, an attempt was made to phase out leaded avgas, but it stalled largely because of the perceived impact on mobility in Alaska. It is critical to ensure that a phaseout plan recognizes Alaska’s needs and funds sustainable solutions suitable for an arctic operating environment.
It is not enough to simply ban lead, because this may incentivize switching to other highly polluting technologies like dirty unleaded gasoline engines, diesel engines, and far less fuelefficient turboprop or jet engines. Thus, it is critical that a leaded fuel ban be accompanied by the immediate implementation of a fuel efficiency mandate for aircraft that are based in or that regularly fly to the U.S. Inspired by the federal automotive Corporate Average Fuel Economy (CAFE) Standards program, this efficiency mandate should utilize multiple aircraft size categories with targets based on maximum takeoff weight (e.g., <1,000 lb, 1,000-5,000 lb, 5,000- 19,000 lb, 19,000-75,000 lb, 75,000-250,000 lb, and 250,000 lb+ categories). Efficiency targets should take into consideration typical missions and technical difficulty in reducing fuel burn for various types of aircraft. For instance, <19,000 lb aircraft are readily able to use hybrid electric propulsion — and, in some cases, pure electric propulsion — with existing technology and regulations. The largest aircraft flying long distance routes, on the other hand, will initially need to focus on smaller steps such as more efficient flight patterns, plugging into gate power/HVAC, electric taxi (either onboard or via tug), etc. until future technologies are developed; therefore, larger aircraft should have less aggressive targets (similar to less aggressive CAFE standards for larger vehicles). Technologies piloted in smaller electric aircraft will eventually make their way to larger aircraft, initially as high-power subsystems. Thus, these technologies are key early targets for federal funding and mandates. The overall “CAFE” goal should be a 25% reduction in overall U.S. aviation fossil fuel burned per passenger by 2030, and a 50% reduction by 2040.
Taxes
The following programs offer pathways for making electrification programs financially sustainable beyond the initial infusions of funding for infrastructure transformation and R&D.
Immediately implement a national $10 per flight hour use tax on all aircraft with 19 passenger seats or below. This should include an additional $2 per flight hour tax on leaded fuel burning aircraft and on any other aircraft burning more than 4 gallons of fuel per seat per flight hour. It is essential to avoid solely targeting leaded fuel piston aircraft, which would incentivize a switch to less fuel-efficient turboprop aircraft and business jets. 100% of tax revenues should be dedicated to the aviation industry and airports, and at least 50% of funds should go to small businesses. Tax revenues should be allocated toward:
- The electrification of airports
- A “cash for clunkers” program to retire or retrofit polluting aircraft, with commercial and government operators receiving priority for funding. This funding should only be provided for US-manufactured or US-retrofit electrified aircraft.
- Jobs training and career development for airport-adjacent communities.
This would not be an undue burden on air travelers, because the owners and users of small aircraft are generally affluent. The Aircraft Owners and Pilots Association reports that the net worth of its average member is over $1.6 million. Aircraft operating in Alaska should be exempt from this tax until 2030. Revenue should exceed $260M/year based only on the base $10 fee, assuming pre-pandemic flight hour totals.
Immediately implement a $10 “Clean Skies Fee” per passenger for all international flights on planes with more than 19 passenger seats, excluding flights within North America, to be collected by air carriers from passengers at the time air transportation is purchased. The September 11 Security Fee offers a precedent for this type of fee.
An optional “Clean Skies Fund” contribution with suggested donations of $5, $10, $25, and $50 should also be offered at time of purchase for all flights on planes with more than 19 passenger seats—both domestic and international—to allow passengers an opportunity to further fund pollution-reducing technologies across the aviation ecosystem and to offset their personal environmental impact from flying. This fund is modeled after optional federal contributions such as the Presidential Election Campaign Fund.
A portion of collected funds should be provided to airlines and travel booking services in order to implement and maintain this contribution mechanism, which must be prominently featured in the booking process. Carriers will remit the fees to federal programs promoting reduction in fuel use, airport electrification, and jobs training. At least 50% of funds should go to small businesses. Revenue should exceed $2.34B/year assuming pre-pandemic international flight passenger demand.
For planes with more than 19 passenger seats, implement a similar $0.25/mile per passenger fee on all domestic and North America region flights effective in 2030 to fund fuel burn reduction and airport electrification. At least 50% of funds should go to small businesses, and all funds should be dedicated to projects that directly benefit airports and aviation, as well as increasing accessibility to all Americans.
Jobs
The actions above should be immediately implemented in order to preserve the millions of U.S. jobs in the aerospace industry. Aircraft are the largest non-agricultural U.S. export product and one of the largest domestic manufacturing industries. As of 2018, the aerospace industry was directly responsible for over 2.4 million primarily high-paying U.S. jobs, many of which are union jobs or in STEM fields. Airlines directly employ nearly 500,000 Americans, and a wide variety of indirect jobs in travel agencies, airports, construction, and related industries are reliant on aviation. Although we support expanded low-emissions rail transportation, continued modal shift away from aviation towards automobiles would be devastating to the airline industry and increase overall emissions.
The U.S. currently leads the world in aviation manufacturing, but we are falling behind in electric aviation technology, including both airport-based ground vehicles and aircraft. We are headed towards an inflection point that will determine the future of the U.S. aviation industry. Either U.S. policy will promote adoption of more efficient technologies for aircraft as well as airport vehicles and equipment, thereby maintaining U.S. world leadership in aviation, or the U.S. will lose this market to other nations in Asia and Europe. The only way to preserve aviation jobs is by investing in efficiency and by enacting smart policies that promote private investment in and adoption of cleaner technologies.
Not only can aviation jobs be preserved, but electrification of the aviation ecosystem will serve to create new green jobs related to air travel. This will include jobs in charging infrastructure installation, solar and storage construction, as well as related industries, which must be based locally and use U.S. labor. Further, if the U.S. leads in developing aviation electrification, there will be substantial export opportunities as other nations look to reduce aviation emissions and improve mobility. Potential clean aviation technology markets include countries such as Norway, which has committed to an electrified aircraft fleet by 2040 for all flights under 90 minutes duration, and Scotland, which has committed to a zero emissions airspace. Numerous other countries are actively considering similar policies, creating a significant opportunity for U.S. products.
Conclusion
Aviation emissions, especially lead, are a clear and present danger to the health of Americans and the global climate. Failing to develop and deploy more efficient technology represents an equal danger to U.S. jobs and competitiveness. Thankfully, practical solutions exist today and even more are being developed to mitigate these dangers. To advance this mitigation, the Biden-Harris Administration and legislators should ensure that existing and new federal funding prioritizes holistic electrification of the aviation ecosystem, in addition to enacting legislation and regulations that ensure the success of this transition.
Mitigating Doxing Risks: Strategies to Prevent Online Threats from Translating to Offline Harms
Summary
The Biden-Harris Administration should act to address and minimize the risks of malicious doxing, given the rising frequency of online harassment inciting offline harms. This proposal recommends four parallel and mutually reinforcing strategies that can improve protections, enforcement, governance, and awareness around the issue.
The growing use of smartphones, social media, and other channels for finding and sharing information about people have made doxing increasingly widespread and dangerous in recent years. A 2020 survey by the Anti-Defamation League found that 44% of Americans reported experiencing online harassment. 28% of Americans reported experiencing severe online harassment, which includes doxing as well as sexual harassment, stalking, physical threats, swatting, and sustained harassment. In addition, a series of disturbing events in 2020 suggest that some instances of coordinated doxing efforts have reached a level of sophistication that poses a serious threat to U.S. national security. The pronounced spike in doxing cases against election officials, federal judges, and local government officials should serve as evidence for the severity and urgency of this issue. Meanwhile, private citizens have faced elevated doxing risks as disruptions from the COVID-19 pandemic and tensions around contentious sociopolitical issues have provoked cycles of online harassment.
While several states have proposed anti-doxing bills over the past year, most states do not offer adequate protections for doxing victims or mechanisms to hold perpetrators accountable. The doxing regulations that do exist are inconsistent across state lines, and partially applicable federal laws—such as the Interstate Communications Statute and the Interstate Stalking Statute—neither fully address the doxing problem nor are sufficiently enforced. New federal legislation is a crucial step for ensuring that doxing risks and harms are appropriately addressed, and must come with complementary governance structures and enforcement capabilities in order to be effective.
Prioritize Funding for High-Speed Internet Connectivity that Rural Communities Can Afford to Adopt
Summary
Access to high-speed internet is essential for all Americans to participate in society and the economy. The American Jobs Plan (AJP) proposal to build high-speed broadband infrastructure to achieve 100% high-speed internet coverage is critical for reaching unserved and underserved communities. Yet widespread access to high-speed broadband infrastructure is insufficient. Widespread adoption is required for individuals and communities to realize the benefits of being online. Federal programs that have recently funded new broadband infrastructure—namely the Federal Communications Commission (FCC) Connecting America Fund Phase II (CAF II) and Rural Digital Opportunity Fund (RDOF) reverse auctions—have not adequately tied the input of broadband infrastructure funding to the desired outcome of broadband adoption. Consequently, funding has gone to internet service providers (ISPs) that offer expensive internet service that communities are unlikely to adopt. To use the AJP’s broadband infrastructure funds most effectively, the Biden-Harris Administration should prioritize affordability in funding allocation and ensure that all recipients of federal subsidies, grants, or loans meet requirements for affordable service. Doing so will support widespread internet adoption and contribute to the AJP’s stated aims of reducing the price of internet service, holding ISPs accountable, and saving taxpayers money.
Creating a National Infrastructure for Digital Mental Health Services
Summary
The COVID-19 pandemic is exacerbating an existing mental health crisis to such a degree that many fear it will overwhelm the fragmented mental health delivery system in the United States. Rates of mental health problems—including depression, trauma- and stressor-related disorders, substance abuse, suicidal ideation, and suicide attempts—have increased during the COVID-19 pandemic. Scarce access to mental health services compounds the problem. Nearly 25 million Americans with mental health needs go untreated each year, and half of U.S. counties have no access to mental health care whatsoever. However, the current moment presents an opportunity. Even as the pandemic increased needs for mental health services, so too did pandemic-related shifts reveal the broad utility of and interest in digital solutions such as mobile apps, digital therapeutics, and digital therapy.
In the absence of regulation, however, ineffective and potentially harmful digital mental health products may make their way into consumer hands. Estimates suggest that over 20,000 digital mental health products exist, yet only five have received Food and Drug Administration (FDA) clearance. The FDA temporarily reduced their enforcement and review of these products due to COVID-19. But moving forward, addressing the largely unregulated space of digital mental health products is critical to mitigate harm of unverified digital mental health solutions. As examples of potential harms, companies have used digital products to offer services but from unlicensed providers, withheld client information from providers, or made data available to various third parties without following stated terms of services. Developing an infrastructure to regulate these products while also helping provide and reimburse effective and safe digital mental health solutions is essential to meet the overwhelming need for mental health services and ensure quality and equity in mental health care.
Competitiveness Through Immigration
Summary
Immigration reform is a national security imperative. A net inflow of science and technology talent is a defining source of strength and key competitive advantage for the United States. Highly skilled science and technology workers provide our nation with an economic edge and drive innovation. However, intensifying competition for skilled workers abroad and self-imposed barriers to immigration at home are deterring potential talent from coming to the United States, instead routing them to competitor countries.
The Biden-Harris Administration should act to attract and retain foreign science and technology talent through a focused overhaul of U.S. immigration laws and procedures. Specifically, the Administration should draw top talent to the United States by streamlining the visa process and providing greater flexibility for foreign scholars and workers. Steps should be taken to ground visa processes in evidence-based procedures, expand visa limits and classes, redesign security-screening procedures to ease bottlenecks, and reallocate resources to build analytic capabilities. Doing so will enhance our national competitiveness, a top government-wide priority. Imminent action is crucial: the suppressed demand for U.S. visa services due to the COVID-19 pandemic has opened a once-in-a-century window to implement reform.
“Quorkforce”: Developing a National Quantum Workforce
The Biden-Harris Administration should establish a national initiative to develop a workforce pipeline for the new and emerging quantum ecosystem – call it the “Quorkforce.” Due to the rapid growth in the fields of quantum computing and technology along with fears of losing competitiveness, both the public and private sectors are struggling to find skilled employees. Quantum skills are derived from a mixture of many disciplines such as physics, computer science, applied mathematics and engineering, and there is no unique path to enter the quantum sphere. Through partnerships between the National Science Foundation (NSF), the Department of Education, the Department of Energy, and the private quantum industry, the Biden-Harris Administration should establish an educational plan to train the next quantum generation across K-12, undergraduate, graduate and postgraduate levels. The Administration should initiate an open call to create ten national quantum education centers with a baseline funding of $300M over a period of 10-12 years. The short-term goal would be to train the existing workforce with adequate quantum skills, while the long-term goal would be to provide a steady flow of quantum-literate graduates capable of advancing the field and fulfilling the needs of this growing industry.
Challenge and Opportunity
In December 2018, the U.S. Congress passed the National Quantum Initiative (NQI) Act to establish goals and priorities for a ten-year plan to accelerate the development of quantum information science and technology applications. Quantum information science is defined as the use of the laws of quantum physics for the storage, transmission, manipulation, or measurement of information. Title III of the NQI states that the National Science Foundation shall carry out a basic research and education program on quantum information science and engineering, and award grants for the establishment of Multidisciplinary Centers for Quantum Research and Education. This proposal aims at extending these efforts with a special focus on preparing a steady stream of quantum-ready workers.
The acceleration in the advancement of quantum technologies has created an urgent need to develop a workforce pipeline by expanding the number of researchers, educators, and students with training in quantum information science and technology. Human capital in this field is necessary both for national security purposes and in order to remain dominant in the present and the future. Already, both the Federal Government and the private sector are facing a significant talent problem in quantum technologies due to the shortage in quantum-trained college graduates. In the related field of computer science, only 400,000 graduates from U.S. universities were available to fill the 1.4 million computing jobs open in 2020 (~29%). This gap between labor force demand and supply is only expected to grow as the applications of quantum information science become more germane to innovation and global technology competition. A steady flow of quantum-literate workers on all levels will make the US stand out among its allies as well as surpass its adversaries.
Quantum education and research fall under the big STEM umbrella (Science, Technology, Engineering, and Mathematics). Broadly speaking, the demand for STEM workers is projected to continuously increase for the foreseeable future. The Education Commission of the States estimates that in the next decade, STEM-related jobs will increase by 13%, while non-STEM-related jobs will only grow by 9%. Currently, there are around 18 million STEM employees in the U.S. out of a total of 160 million total jobs, which accounts to roughly 11.25% of the American labor force.
The main challenge for the fast-growing quantum industry is that the quantum-ready workforce supply is not keeping up with demand. This has the potential to hinder long-run scientific advancement and impact U.S. dominance in the quantum field of research on the global level. China in particular has aggressively invested in quantum research and development at a rate that may soon surpass U.S. research and development funding levels. In 2019 for example, China’s patent office received more than twice as many applications as its U.S. counterpart, indicating the increase in the Chinese scientific workforce. To address this pressing issue, a longitudinal educational path needs to be established with the aim of closing the workforce gap in the next 10-15 years. Three main pillars will be essential for the success of this endeavor: middle/high school outreach, undergraduate/graduate education, and current employee training. To ensure the success and the longevity of such a mission, central hubs must be created for coordination purposes. At a time when U.S. officials worry that the country is losing ground to other nations, it is important to realize that the American people are the real asset, and that quantum education is the key to fortifying the country’s status as a global leader in quantum discovery and innovation.
The National Science Foundation has been the leader of science innovation and education for over 70 years. This institution is the best fit to lead the effort of creating and managing the quantum centers. Such an endeavor could be accomplished either through existing research directorates (Computer and Information Science and Engineering, Engineering, Mathematical and Physical Sciences, and Education and Human Resources), or via the establishment of a new directorate for quantum research and education.
Plan of Action
The Biden-Harris Administration should work through the White House Office of Science and Technology Policy (OSTP) to oversee and strengthen federal support for quantum education in the United States. In order to ensure the widest spread of a successful initiative, the National Science Foundation should, as a first step, dedicate seed funds for the establishment of ten quantum hubs across the United States Northeast, South, Midwest, and West. Once the top candidate for each of the centers is announced, a follow-up grant of $15 million per center should be provided for founding and launching these centers over a period of 2-3 years. A similar amount of funding for the following 5 years will give sufficient time for these centers to take root and succeed. The underlying mission of the quantum educational centers will be three-fold:
- Facilitating the wider accessibility of undergraduate/graduate degrees to develop a larger and more diverse quantum-ready workforce.
- Training current employees to ensure the quantum workforce remains relevant and up to date in the field.
- Planning outreach activities for middle and high school students to encourage the future generation to pursue this exciting new career path.
This ten-year plan will gradually fill the current workforce gap in the quantum industry as well as furnish a steady flow of workers skilled in quantum science and technology to keep up with the growing demands of the field.
1. Tertiary Education
Because quantum skills stem from a mixture of academic departments such as physics, chemistry, mathematics, computer science and engineering, they cannot be acquired via an existing, simple, old-fashion major or degree. The quantum centers should form a consortium of universities within their geographical bounds that offer courses and classes in the disciplines that together form quantum science and technology. It is crucial to understand that quantum education is not only relevant for PhD programs at elite universities but should be considered from the earliest years of science and engineering education. The ultimate outcome will be the creation of well-defined paths for students to pursue degrees at the bachelor’s, master’s, and doctoral levels. Having a commonwealth of colleges in a common geographical region guarantees the long-term continuation of a quantum education program: a single institution might not realize sufficient demand from students and sponsors to make a quantum program financially sustainable.
Building quantum laboratories within the centers will be their most pressing task. Experimental skills related to quantum technologies are equally, or even more, important for entering the workforce than courses in complex quantum theory, which is still ahead of industrial quantum systems. As quantum concepts are being transformed into commercial products, there is an urgent need for a workforce which possess hands-on experience with quantum systems.
Building a successful quantum education program will require that each center gather subject matter experts, develop strong relationships with industry, ensure institutional commitment, acquire resources for laboratories, hire faculty clusters, and set up dissemination mechanisms. Most current educational systems stress separate academic subjects rather than a multidisciplinary approach to quantum education, a trend that has led to the graduation of physics majors with very little experience in building quantum devices and engineering majors with little to no exposure to quantum mechanics. The role of the centers in this context will be to install cohesive benchmarks and standards across the multiple disciplines involved rather than create a unified curriculum for all degrees and specializations.
Partners from the private sector will play a major role in this paradigm. They are the main drivers of workforce demand in the quantum industry in their respective areas of operations (sensors, networks, communications, computing, etc.). The skills the private sector requires range from hardware knowledge to quantum programming, and even pure quantum information theory. Due to its very early stage of development, it remains challenging to quantify the number and size of companies within the quantum industry, let alone the distribution of jobs. There must be a continuous dialogue between higher education institutions and quantum employers to ensure that the former are preparing graduates to fulfill the needs of the latter. Mutual contributions will enable smooth supply and demand dynamics and avoid the potential for misuse of resources. A town hall every 3-6 months with the main players on each side would allow for exchanging ideas, sharing successful milestones, and anticipating potential challenges.
2. Current Workforce Training
In 5-10 years, the centers will be providing a steady flow of college graduates ready to be employed in the quantum industry. However, there is a dire need to fill the intermediate gap in the quantum workforce across a range of applications from devices to software and everything in between (e.g., fabrication of novel quantum materials, software compilers for quantum computers, etc.).
In the past couple of years, quantum technology has been transitioning into commercial products with the potential to solve real-world problems. As a result, many companies have begun to hire more engineers and technicians to ensure the new systems are reliable. Due to the shortage of such skilled employees, many physicists and engineers are facing the challenge of learning a whole new set of skills to prepare themselves to participate in the quantum revolution.
Hence, another overarching goal for the quantum centers will be to provide substantial training for current employees in the quantum industry. Week-long workshops, monthly seminars, summer training, etc., will each focus on a specific topic or a specific technology (optical-metrology, cryogenics, microwave electronics, etc.). On the experimental level, the centers’ labs will be responsible for designing hands-on training at their facilities to give physicists, engineers, and chemists the practical skills they need for proficiency in the latest quantum technologies. This endeavor could be sponsored by private quantum companies, which will be the main beneficiaries from the re-training of their employees.
3. K-12 Outreach
To ensure the long-term success of these efforts, special attention should be devoted to the K12 sector. The quantum centers should each have a division for outreach to public and private middle/high schools within their geographical boundaries. This is an essential step to introduce the younger generation to quantum science and technology, which is generally not already included in their current curricula.
It is impossible to change middle and high school science curricula overnight. The centers should work with existing STEM educational material and make strategic additions to it. The goal is to give American teenagers a glimpse into the area of quantum research and ignite their curiosity and motivation to pursue a future career in the field. Moreover, the centers should organize summer boot camps for advanced students at their facilities to give them hands-on experience with quantum lab demos, invite them to meet-the-scientists events, and introduce them to toy models and experiments. Such activities could range between 7-10 weeks in the summer and introduce students to quantum algorithms, quantum computer prototypes (D-wave, Microsoft, Google, IBM, etc.), post-quantum cryptography (PQC), and other topics in the field. Many similar efforts have been initiated by private companies to do outreach to and site visits with students; the task of the centers would be to strengthen this kind of collaboration and make it more established for the long run. The overarching goal would be to motivate these students to pursue further explorations in and around the quantum area of research and applications. All the above efforts should be coordinated with several relevant associations such as the American Association of Physics Teachers (AAPT), the Association of Mathematics Teacher Educators (AMTE), the American Association of Chemistry Teachers (AACT), and the Computer Science Teachers Association (CSTA). Most importantly, centers around the country should organize workshops in the form of “train the trainer” events in order to equip high school teachers with the right tools and set them up for success.
Inclusion and Diversity
As the National Science Foundation continues to expand its investments in the quantum space, it is important to improve the diversity of the quantum workforce. The foundational work in both quantum research and education should be diverse and inclusive across multiple attributes: geography, demographics, and technology. Broadening participation in STEM fields is a challenge that has not yet been overcome. However, to ensure that the quantum community will meet the workforce needs of the present and the future, it is imperative to utilize the broadest possible range of human capital. If research and education in the quantum field progresses without addressing barriers to diversity and inclusion, these problems will be solidified in the next generation. Therefore, each center should prioritize efforts to ensure that the quantum community is representative of the country’s diversity in race, gender, ethnicity, social class, etc.
To date, the field of quantum research has been developed primarily by disciplines with some of the lowest representation of women and minority populations. For example, women make up 21% of Computer Science (CS) bachelor’s degree graduates and 20.3% of CS doctoral graduates, and domestic underrepresented minorities make up 14.7% of CS bachelor’s degree graduates and only 3.1% of doctoral CS graduates. The most significant barrier to fostering students’ passion for STEM education at all age levels is the persistent and still-widening gap in opportunity in underserved communities. Educating parents in these communities about the opportunities that STEM education in general — and quantum education in particular — can offer their children should start with showing them hard data on the continued growth of these jobs.
Many initiatives in the past decade have shown their effectiveness in reaching previously marginalized communities. The great successes achieved by movements like CS for all, AI for all, Black in AI, etc. should be a strong motivation to launch the next organization: Quantum for all or Q4ALL. Such a movement would promote wider inclusion in the quantum fields of research and education. Primary channels which these models have established to accomplish this include scholarships, fellowships, national meetings, summer camps, workgroups, and other activities geared towards a diverse student corps around the country. Previous successes have been accomplished by setting a collective agenda with the cooperation of content providers, education associations, researchers, and supporters to help schools and districts provide all students with rigorous K-12 STEM education. The national quantum centers could support a Quantum for all movement by serving as a platform for connecting diverse stakeholders, providing support to new and developing initiatives, tracking and sharing progress, and communicating about the work to local and national audiences.
The national quantum centers, separately and in collaboration, must make the issue of inclusion and diversity a priority. Some relevant organizations and events are already emerging, such as the Women in Quantum Development Symposium, the American Physical Society Bridge Program, the Inclusive Graduate Education Network, etc. They are shaping how PhD programs approach admissions, retention, and professional development with the aim of increasing participation of underrepresented racial and ethnic minority groups. The quantum centers should coordinate these efforts, while engaging both public and the private industry to reduce factors that hinder participation in the future quantum workforce such as pay disparities. discrimination in hiring, affordable childcare provision, inappropriate expectations for working hours.
National Collaboration and Monitoring
Critical to this plan’s success will be the collaboration with two partners: government labs and the private sector. Government labs like Brookhaven National Laboratory (BNL), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL) play an important role in developing quantum systems through their facilities. The private sector, meanwhile, will be the main beneficiary of the development of a quantum workforce, and their participation in the efforts led by the centers will be vital to the appropriate allocation of resources and focus areas. To monitor the plan’s success, the NSF should audit the progress of the centers and engage them in annual general meetings to share, evaluate, and coordinate their respective efforts and accomplishments. Finally, the US Bureau of Labor Statistics should start taking into account purely quantum jobs in their census, as this will be the main metric for measuring the saturation of the quantum job market and hence the successful outcomes of this plan.
Conclusion
As the quantum industry is growing rapidly, there is an urgent need for a workforce skilled in quantum science and technology. By creating a group of national centers under the guidance of the National Science Foundation, education in quantum information science can be provided on all levels from middle school to post-doctoral, while simultaneously training the current non-quantum workforce for this new and exciting field. Over the next decade, this plan would achieve job market saturation in the quantum industry and furnish a steady flow of quantum-ready workers.
Demystifing Tech Careers: Industry-Driven Transparency for Expanding Access to the New Economy
The White House Office of Science and Technology Policy and/or the National Economic Council and Department of Labor should convene a Transparent Tech Training Alliance, a coalition of public and private sector leaders called to expand access to early tech careers by codifying and communicating industry hiring standards. To meet the economy’s urgent and growing demand for tech workers, innovative educators have developed tens of thousands of short courses and bootcamps to rapidly upskill workers. But this landscape is complicated to navigate, especially for low-wage workers and small- and medium-sized enterprises (SMEs) who are training and hiring in tech at increasing numbers. Without intervention, this nascent system will exacerbate the divide between the “haves and have nots” of our economy, further endangering the health of our workforce, communities, and businesses.
In response, the Alliance should:
- make a highly publicized commitment to unprecedented transparency in hiring practices and the annual publication of hiring data;
- generate a clear, industry-driven guide of certified credentials, career pathways, and funding sources;
- utilize this guide and more for a prize competition that modernizes CareerOneStop; and
- reconvene annually to publicize their progress and update resources.
Challenge and Opportunity
America’s pool of tech talent will grow too slowly and homogeneously to meet the economy’s needs. An estimated 400,000 STEM college students graduate every year, but by 2030 there will still be a shortage of 6 million tech workers in the United States. The accelerated demand for tech workers has driven educators to create innovative training methods, like short-courses and bootcamps. Now, the tech-training space has become crowded and governed by an opaque universe of unwritten rules: Which bootcamps and credentials are reputable? What projects make a compelling portfolio? What types of questions will be asked in an interview?
Those with personal or professional networks in the technology industry have access to information that helps them navigate to the “right” programs and credentials for upskilling. However, those without access to this information risk investing time and financial resources into low-quality training programs with limited guarantees of joining the new economy.
This unnecessarily blocks a new pipeline of workers ready to fill high-demand vacancies, while also cementing the industry’s homogeneous hiring practices and exacerbating racial and gender inequality. Considering their total workforce participation, women and Black and Latinx workers are severely underrepresented along the career spectrum. Given the anticipated rapid expansion of jobs in technology, and the compression of jobs in other fields, there is an urgent need to address these gaps and provide access to upskilling for all workers, especially in the technology industry.
The “alphabet soup” of tech training programs and failures of existing federal tools to guide workers bear large responsibility for the system’s failure.
Alphabet Soup
The tech credential and training space is often referred to as “alphabet soup” to denote the myriad of available options: workers must decide between more than 12,000 cybersecurity, 4,000 IT Helpdesk and 17,000 web programming credential options, and there are many more categories of tech professions.
On one hand, the saturation of credentialing services indicates educators are innovatively upskilling and reskilling workers to fill in-demand jobs. On the other, it creates a significant challenge of reliability for workers looking for a program or credential that will enable their gainful employment. It also creates a barrier for SMEs, who are rapidly hiring tech talent but may not have the technical expertise to assess highly qualified workers among the universe of credential options. Without clear metrics for quality, both candidates and businesses waste precious time and financial resources navigating this nontransparent process.
Black and Latinx individuals are disproportionately in a position of reliance on short-term tech training such as bootcamps to enter the industry due to lack of equitable access to traditional four-year degree programs. Compared to their representation in the tech industry, Black and Latinx workers are 29% and 38% more likely to use bootcamps, respectively. Therefore, these already vulnerable workers incur the disproportionate risk created by such a vast, unregulated landscape, exasperating the existing disparities in access to tech careers.
Failures in Existing Federal Tools
The existing federal tool, CareerOneStop, is ill-equipped to support the needs of the growing tech workforce. Outdated and difficult to use, CareerOneStop provides an incomplete picture of the breadth of career and program options available. CareerOneStop also does not provide comparative tools for workers deciding between different careers or educational pathways. For example, it includes over 70 certifications in cybersecurity without information on cost, results, or anticipated wages after their completion. Information on training, jobs and local support are not integrated by industry verticals, making it tedious to compare one’s options. Lastly, the site is entirely literacy intensive, failing to incorporate video footage or other media to reach workers at lower reading levels or different means of accessibility.
These features disadvantage both workers and counselors, who rely on CareerOneStop to make high-stakes financial investments in reskilling.
A Call for Transparency to Increase Access and Accountability
To maintain its global competitiveness and support the growing tech needs in businesses across all industries, the United States must rapidly upskill workers into programming, cybersecurity and IT jobs. Clear pathways, quality benchmarks, and program options will not only make these careers more accessible, but also less risky to marginalized populations. There is a crucial opportunity to bring transparency to careers in the new economy while the industry is still nascent and developing.
Plan of Action
The White House Office of Science and Technology Policy and/or the National Economic Council, in close partnership with the Department of Labor’s Employment and Training Administration (ETA), should assemble a Transparent Tech Training Alliance, a cross-sector coalition of leaders with a mandate to increase transparency and therefore access and accountability in tech hiring. They should meet in a highly publicized convening in order to make two public commitments:
- Unprecedented transparency in hiring standards: sharing the “unwritten rules” via accessible documentation that codifies standards and norms in tech recruiting to guide Americans into these careers.
- Accountability through public data: committing to a method and timeline for publishing their hiring demographics (e.g. race, gender, educational background and training), no more than one year from the convening.
Spearheaded by the ETA, but including representatives from the broader Departments of Labor and Education, a coalition of federal leaders can accomplish these outcomes through the following three steps:
Step I. Preparation
Assemble a Roster
First, the ETA should propose a cross-sector Alliance, including representatives from major tech companies, large national or regional employers across multiple industries, academia, local government, tech investment and nonprofit organizations that are committed to increasing diversity and inclusion in tech hiring. This will require the ETA to gather research regarding the relevant stakeholders and experts who would have the greatest impact on the group with their attendance whose hiring footprint is either large and growing or most representative of the country’s employers.
Outreach should be conducted by a highly visible member of the Department of Labor such as Secretary of Labor Marty Walsh or Chief Innovation Officer Chike Aguh in order to elevate the importance and urgency of the Alliance.
Publicize a Call to Action for the Alliance
The White House Office of Science and Technology Policy and/or the National Economic Council must make a Call for Action to the Alliance, drawing an explicit connection between transparency, economic mobility, and equity. This will empower consumers to hold industry accountable for their role in rebuilding the economy justly. In other words, not participating should be equivalent to denouncing equity initiatives in tech. Federal government leaders should apply pressure to companies not only to participate, but to follow through on their commitment to transparent data sharing.
Step II. Convene the Alliance
Host a Formal and Public Initial Convening
A representative from the White House Office of Science and Technology Policy and/or the National Economic Council or the Department of Labor should open the event with a call to action – clearly connecting access to good jobs with our economic recovery, equity, and global competitiveness. Then, the Alliance members would make the two aforementioned commitments: unprecedented transparency in hiring standards and accountability through public data. These should be documented and signed in a highly public fashion, including a social media campaign and press reporting on the event. Awards should be given to the firms that have made the most progress in hiring diversity and inclusivity in the last decade through data and storytelling spotlights. The convening is also an opportunity to announce the prize competition to modernize CareerOneStop (i.e. Step III).
Appoint Representatives to a Task Force
The Alliance must recommend representatives for a Task Force to accomplish the following goals:
- Create a list of high-demand tech jobs and the pathways to obtain them at various educational levels.
- Identify gaps in the current training systems and invite short-term courses such as bootcamps to fill them.
- Certify reliable credentials that industry uses for hiring.
- Determine to norms for publishing hiring data that increases transparency across the industry and expanding access to jobs in tech through long-term action.
- Convene bi-monthly to re-evaluate the above goals to ensure their current relevance to the industry.
Reconvene the Alliance Annually to Review Data and Recommit to Transparency
The Alliance should meet annually to:
- Formally and publicly share key data points from their hiring systems, such as race, gender, educational background and tech training, and their long-term plans for expanding access to tech jobs for underrepresented groups.
- Recommit to transparency in hiring practices.
- Draw attention to updates in the hiring practices they previously published.
- Create a formal opportunity for industry to communicate their needs to the educational community, ensuring our training systems are driven by demand and informed by actual industry trends.
- Celebrate up and coming educational programs that show promise, and further expand the list of certified credentials.
Step III. Use a Prize Competition to Update Federal Resources
Driven by the ETA, the Department of Labor should launch a prize competition to modernize CareerOneStop, the existing federal career exploration platform. The new platform should spotlight the Alliance Task Force’s information on transparency on high-demand tech jobs, and the educational levels needed to attain them. It should also clarify pathways between skills, credentials, and jobs on a platform that is user friendly for workers, counselors and small- and medium- business leaders who are hiring in fields like programming, IT and cybersecurity. The best platforms will include resources for integrating the content into other sites such as LinkedIn, a corresponding smart phone application, and multi-language access.
The Prize Competition will also bring attention to the broader initiative, driving both employer and worker traffic to the site upon publication. There should be a monetary prize of approximately $100,000 for the winner and runners up, and a multi-year contract for the winner to manage the platform. It should be publicized in the coder community, via tech investors, and publicly on federal sites such as www.challenge.gov.
Conclusion
The potential of the Transparent Tech Training Alliance lies in government leaders’ “power of the podium” to motivate industry leaders to increase transparency about their hiring practices and data. Equipped with relevant knowledge about the credentials and training experiences industry most values, delivered via a modernized, user-friendly tool, workers can invest their time and financial resources in upskilling and reskilling in tech. By making “insider information” about industry preferences public, the White House and ETA will create opportunities for all Americans to access gainful employment in the technology industry.
Federal Accessibility Standards for Fully Autonomous Vehicles
Summary
Self-driving technology is uniquely positioned to benefit people who cannot drive, including people with travel-limiting disabilities and many older adults. However, the lack of federal policy guiding the development of this technology has led to piecemeal recommendations that largely fail to guarantee accessible use in both public and private implementation scenarios. To leverage the full potential of self-driving technology, the Department of Transportation (DOT) should adopt accessibility standards to support autonomous transportation for people with disabilities and older adults. The Biden-Harris Administration has an important opportunity to reimagine accessible transit, capitalize on ongoing federal research programs such as the Inclusive Design Challenge, and extend the benefits of self-driving technology to those who need it most. If enacted, these recommendations will lead to increased independence, workforce participation, and mobility in the future of transportation.