Expanding Pathways for Career Research Scientists in Academia
Summary
The U.S. university research enterprise is plagued by an odd bug: it encourages experts in science, technology, engineering, and math (STEM) to leave it at the very moment they become recognized as experts. People who pursue advanced degrees in STEM are often compelled by deep interest in research. But upon graduation from master’s, Ph.D., or postdoctoral programs, these research-oriented individuals face a difficult choice: largely cede hands-on involvement in research to pursue faculty positions (which increasingly demand that a majority of time be spent on managerial responsibilities, such as applying for grants), give up the higher pay and prestige of the tenure track in order to continue “doing the science” via lower-status staff positions (e.g., lab manager, research software engineer), or leave the academic sector altogether.
Many choose the latter. And when that happens at scale, it harms the broader U.S. scientific enterprise by (i) decreasing federal returns on investment in training STEM researchers, and (ii) slowing scientific progress by creating a dearth of experienced personnel conducting basic research in university labs and mentoring the next generation of researchers. The solution is to strengthen and elevate the role of the career research scientist1 in academia—the highly trained senior research-group member who is hands-on and in the lab every day—in the university ecosystem. This is, fundamentally, a fairly straightforward workforce-pipeline issue that federal STEM-funding agencies have the power to address. The National Institutes of Health (NIH) and the National Science Foundation (NSF) — two of the largest sources of academic research funding — could begin by hosting high-level discussions around the problem: specifically, through an NSF-led workshop and an NIH-led task force. In parallel, the two agencies can launch immediately tractable efforts to begin making headway in addressing the problem. NSF, for instance, could increase visibility and funding for research software engineers, while NSF and/or NIH could consider providing grants to support “co-founded” research labs jointly led by an established professor or principal investigator (PI) working alongside an experienced career research scientist.
The collective goal of these activities is to infuse technical expertise into the day-to-day ideation and execution of science (especially basic research), thereby accelerating scientific progress and helping the United States retain world scientific leadership.
Challenge and Opportunity
The scientific status quo in the United States is increasingly diverting STEM experts away from direct research opportunities at universities. STEM graduate students interested in hands-on research have few attractive career opportunities in academia: those working as staff scientists, lab managers, research software engineers, and similar forego the higher pay and status of the tenure track, while those working as faculty members find themselves encumbered by tasks that are largely unrelated to research.
Making it difficult for STEM experts to pursue hands-on research in university settings harms the broader U.S. scientific enterprise in two ways. First, the federal government disburses huge amounts of money every year—via fellowship funding, research grants, tuition support, and other avenues—to help train early-career STEM researchers. This expenditure is warranted because, as the Association of American Universities explains, “There is broad consensus that university research is a long-term national investment in the future.” This investment hinges on university contributions to basic research; universities and colleges account for just 13% of overall U.S. research and development (R&D) activity, but nearly half (48%) of basic research. Limited career opportunities for talented STEM researchers to continue “doing the science” in academic settings therefore limits our national returns on investment in these researchers.
Box 1. Productivity benefits of senior researchers in software-driven fields. |
Cutting-edge research in nearly all STEM fields increasingly depends on software. Indeed, NSF observes that software is “directly responsible for increased scientific productivity and significant enhancement of researchers’ capabilities.” Problematically, there is minimal support within academia for development and ongoing maintenance of software. It is all too common for a promising research project at a university lab to wither when the graduate student who wrote the code upon which the project depends finishes their degree and leaves. The field of deep learning (a branch of artificial intelligence (AI) and machine learning) underscores the value of research software. Progress in deep learning was slow and stuttering until development of user-friendly software tools in the mid-2010s: a development spurred mostly by private-sector investment. The result has been an explosion of productivity in deep learning. Even now, top AI research teams cite software-engineering talent as a critical input upon which their scientific output depends. But while research software engineers are some of the most in-demand and valuable team members in the private sector, career positions for research software engineers are uncommon at academic institutions. How much potential scientific discovery are U.S. university labs failing to recognize as a result of this underinvestment? |
Second, attrition of STEM talent from academia slows the pace of U.S. scientific progress because most hands-on research activities are conducted by graduate students rather than more experienced personnel. Yet, senior researchers are far more scientifically productive. With years of experience under their belt, senior researchers possess tacit knowledge of how to effectively get research done in a field, can help a team avoid repeating mistakes, and can provide the technical mentorship needed for graduate students to acquire research skills quickly and well. And with graduate students and postdocs typically remaining with a research group for only a few years, career research scientists also provide important continuity across projects. The productivity boosts that senior researchers can deliver are especially well established for software-driven fields (see box).
The absence of attractive job opportunities for career research scientists at most academic institutions is an anomaly. Such opportunities are prevalent in the private sector, at national labs (e.g., those run by the NIH and the Department of Energy) and other government institutions, and in select well-endowed university labs that enjoy more discretionary spending ability. As the dominant funder of university research in the United States, the federal government has massive leverage over the structure of research labs. With some small changes in grant-funding incentives, federal agencies can address this anomaly and bring more senior research scientists into the academic research system.
Plan of Action
Federal STEM-funding agencies — led by NSF and NIH, as the two largest sources of federal funding for academic research — should explore and pursue strategies for changing grant-funding incentives in ways that strengthen and elevate the role of the career research scientist in academia. We split our recommendations into two parts.
The first part focuses on encouraging discussion. The problem of limited career options for trained STEM professionals who want to engage in hands-on research in the academic sector currently flies beneath the radar of many extremely knowledgeable stakeholders inside and outside of the federal government. Bringing these stakeholders together might result in excellent actionable suggestions on how to retain talented research scientists in academia. Second, we suggest two specific projects to make headway on the problem: (i) further support for research software engineers and (ii) a pilot program supporting co-founded research labs. While the recommendations below are targeted to NSF and NIH, other federal STEM-funding agencies (e.g., the Departments of Energy and Defense) can and should consider similar actions.
Part 1. Identify needs, opportunities, and options for federal actions to support and incentivize career research scientists.2
Shifting academic employment towards a model more welcoming to career research scientists will require a mix of specific new programs and small and large changes to existing funding structures. However, it is not yet clear which reforms should be prioritized. Our first set of suggestions is designed to start the necessary discussion.
Specifically, NSF should start by convening key community members at a workshop (modeled on previous NSF-sponsored workshops, such as the workshop on a National Network of Research Institutes [NNRI]) focused on how the agency can encourage creation of additional career research scientist positions at universities. The workshop should also (i) discuss strategies for publicizing and encouraging outstanding STEM talent to pursue such positions, (ii) identify barriers that discourage universities from posting for career research scientists, and (iii) brainstorm solutions to these barriers. Workshop participants should include representatives from federal agencies that sponsor national labs as well as industry sectors (software, biotech, etc.) that conduct extensive R&D, as these entities are more experienced employers of career research scientists. The workshop should address the following questions:
- How can NSF minimize the effects of the “research scientist tax”?3
- What are the specific problems that a research scientist-centered workforce could address?
- What tools does NSF have to affect academic-employment structures? Are there ways to incentivize the employment of research scientists within a project-based funding framework?
- Are there ways to relax grant-funding constraints such that PIs could hire contract research scientists when appropriate?
- In what areas of research and education does the faculty-as-manager paradigm dominate and in what areas are senior research scientists critical but currently unavailable? To what extent do these areas (problematically) overlap?
- How could career research scientists support NSF’s core mission of “advancing research and education” (including by training graduate students)?
- In an industry-employment landscape that provides highly paid opportunities for career research scientists, how can NSF support universities in talent retention?
- What best practices for hiring and retaining career research scientists can be gleaned from existing employment models in national labs and industry?
- Are there tools that would increase the prestige and attractiveness of non-faculty but research-oriented positions within academia?
The primary audience for the workshop will be NSF leadership and policymakers. The output of the workshop should be a report suggesting a clear, actionable path forward for those stakeholders to pursue.
NIH should pursue an analogous fact-finding effort, possibly structured as a working group of the Advisory Committee to the Directorate. This working group would identify strategies for incentivizing labs to hire professional staff members, including expert lab technicians, professional biostatisticians, and RSEs. This working group will ultimately recommend to the NIH Director actions that the agency can take to expand the roles of career research scientists in the academic sector. The working group would address questions similar to those explored in the NSF workshop.
Part 2. Launch two pilot projects to begin expanding opportunities for career research scientists.
Pilot 1. Create a new NSF initiative to solicit and fund requests for research software engineer (RSE) support.
Research software engineers (RSEs) build and maintain research software, and train scientists to use that software. Incentivizing the creation of long-term RSE positions at universities will increase scientific productivity and build the infrastructure for sustained scientific progress in the academic sector. Though a wide range of STEM disciplines could benefit from RSE involvement, NSF’s Computer and Information Science and Engineering (CISE) Directorate is a good place to start expanding support for RSEs in academic projects.
CISE has previously invested in nascent support structures for professional staff in software and computing fields. The CISE Research Initiation Initiative (CRII) was created to build research independence among early-career researchers working in CISE-related fields by funding graduate-student appointments. Much CRII-funded work involves producing — and in turn, depends on — shared community software. Similarly, the Campus Research Computing Consortium (CaRCC) and RCD Nexus are NSF-supported programs focused on creating guidelines and resources for campus research computing operations and infrastructure. Through these two programs, NSF is helping universities build a foundation of (i) software production and (ii) computing hardware and infrastructure needed to support that software.
However, effective RSEs are crucial for progress in scientific fields outside of CISE’s domain. For example, one of this memo’s authors has personal experience with NSF-funded geosciences research. PIs working in this field are desperate for funding to hire RSEs, but do not have access to funding for that purpose. Instead, they depend almost entirely on graduate students.
As a component of the workshop recommended above, NSF should highlight other research areas hamstrung by an acute need for RSEs. In addition, CISE should create a follow-on CISE Software Infrastructure Initiative (CSII) that solicits and funds requests from pre-tenure academic researchers in a variety of fields for RSE support. Requests should explain how the requested RSE would (i) catalyze cutting-edge research, and (ii) maintain critical community open-source scientific software. Moreover, academia severely lacks strong mentorship in software engineering. A specific goal of CSII funding should be to support at least a 1:3 ratio of RSEs to graduate students in funded labs. Creative evaluation mechanisms will be needed to assess the success of CSII. The goal of this initiative will be a community of university researchers productively using software created and supported by RSEs hired through CSII funding.
Pilot 2. Provide grants to support “co-founded” research labs jointly led by an established professor or principal investigator (PI) working alongside an experienced career research scientist.
Academic PIs (typically faculty) normally lead their labs and research groups alone. This state of affairs leads to high rates of burnout, possibly leading to poor research success. In some cases, starting an ambitious new project or company with a co-founder makes the endeavor more likely to succeed while being less stressful and isolating. A co-founder can provide a complementary set of skills. For example, the startup incubator Y Combinator is well known for wanting teams to include a CEO visionary and manager working alongside a CTO builder and designer. By contrast, academic PIs are expected to be talented at all aspects of running a modern scientific lab. Developing mechanisms to help scientists come together and benefit from complementary skill sets should be a high priority for science-funding agencies.
We recommend that NSF and/or NIH create a pilot grant program to fund co-founded research labs at universities. Formally co-founded research groups have been successful across scientific domains (e.g., the AbuGoot Lab at MIT and the Carpenter-Singh Lab at the Broad Institute), but remain quite rare. Federal grants for co-founded research labs would build on this proof of concept by competitively awarding 5–7 years of salary and equipment funding to support a lab jointly run by an early-career PI and a career research scientist. A key anticipated benefit of this grant program is increased retention of outstanding researchers in positions that enable them to keep “doing the science.” Currently, the most talented STEM researchers become faculty members or leave academia altogether. Career research scientist positions simply cannot offer competitive levels of compensation and prestige. Creating a new, high-profile, grant-funded opportunity for STEM talent to remain in hands-on university lab positions could help shift the status quo. Creating a pathway for co-founded and co-led research labs would also help PIs avoid isolation and burnout while building more robust, healthy, and successful research teams.
Conclusion
Many breakthroughs in scientific progress have required massive funding and national coordination. This is not one of them. All that needs to be done is allow expert research scientists to do the hands-on work that they’ve been trained to do. The scientific status quo prevents our nation’s basic research enterprise from achieving its full potential, and from harnessing that potential for the common good. Strengthening and elevating the role of career research scientists in the academic sector will empower existing STEM talent to drive scientific progress forward.
Yes. The tech sector is a good example. Multiple tech companies have developed senior individual contributor (IC) career paths. These IC career paths allow people to grow their influence while remaining mostly in a hands-on technical role. The most common role of a senior software engineering IC is that of the “tech lead”, guiding the technical decision making and execution of a team. Other paths might involve prototyping and architecting a critical new system or diving in and solving an emergency problem. For more details on this kind of career, look at the Staff Engineer book and accompanying discussion.
The United States has long been the international leader in scientific progress, but that position is being threatened as more countries develop the human capital and infrastructure to compete in a knowledge-oriented economy. In an era where humankind faces mounting existential risks requiring scientific innovation, maintaining U.S. scientific leadership is more important than ever. This requires retaining high-level scientific talent in hands-on, basic research activities. But that goal is undermined by the current structure of employment in American academic science.
Key federal STEM-funding agencies that could also consider ways to support and elevate career research scientist positions include the Departments of Agriculture, Defense, and Energy, as well as the National Aeronautics and Space Administration (NASA).
Regulating Use of Mobile Sentry Devices by U.S. Customs and Border Protection
Summary
Robotic and automated systems have the potential to remove humans from dangerous situations, but their current intended use as aids or replacements for human officers conducting border patrols raises ethical concerns if not regulated to ensure that this use “promot[es] the safety of the officer/agent and the public” (emphasis added). U.S. Customs and Border Protection (CBP) should update its use-of-force policy to cover the use of robotic and other autonomous systems for CBP-specific applications that differ from the military applications assumed in existing regulations. The most relevant existing regulation, Department of Defense Directive 3000.09, governs how semi-autonomous weapons may be used to engage with enemy combatants in the context of war. This use case is quite different from mobile sentry duty, which may include interactions with civilians (whether U.S. citizens or migrants). With robotic and automated systems about to come into regular use at CBP, the agency should proactively issue regulations to forestall adverse effects—specifically, by only permitting use of these systems in ways that presume all encountered humans to be non-combatants.
Challenge and Opportunity
CBP is currently developing mobile sentry devices as a new technology to force-multiply its presence at the border. Mobile sentry devices, such as legged and flying robots, have the potential to reduce deaths at the border by making it easier to locate and provide aid to migrants in distress. According to an American Civil Liberties Union (ACLU) report, 22% of migrant deaths between 2010 and 2021 that involved an on-duty CBP agent or officer were caused by medical distress that began before the agent or officer arrived on the scene. However, the eventual use cases, rules of engagement, and functionalities of these robots are unclear. If not properly regulated, mobile sentry devices could also be used to harm or threaten people at the border—thereby contributing to the 44% of deaths that occurred as a direct result of vehicular or foot pursuit by a CBP agent. Regulations on mobile sentry device use—rather than merely acquisition—are needed because even originally unarmed devices can be weaponized after purchase. Devices that remain unarmed can also harm civilians using a limb or propeller.
Existing Department of Homeland Security (DHS) regulations governing autonomous systems seek to minimize technological bias in artificially intelligent risk-assessment systems. Existing military regulations seek to minimize risks of misused or misunderstood capabilities for autonomous systems. However, no existing federal regulations govern how uncrewed vehicles, whether remotely controlled or autonomous, can be used by CBP. The answer is not as simple as extending military regulations to the CBP. Military regulations governing autonomous systems assume that the robots in question are armed and interacting with enemy combatants. This assumption does not apply to most, if not all, possible CBP use cases.
With the CBP already testing robotic dogs for deployment on the Southwestern border, the need for tailored regulation is pressing. Recent backlash over the New York Police Department testing similar autonomous systems makes this topic even more timely. While the robots used by CBP are currently unarmed, the same company that developed the robots being tested by CBP is working with another company to mount weapons on them. The rapid innovation and manufacturing of these systems requires implementation of policies governing their use by CBP before CBP has fully incorporated such systems into its workflows, and before the companies that build these systems have formed a powerful enough lobby to resist appropriate oversight.
Plan of Action
CBP should immediately update its Use of Force policy to include restrictions on use of force by mobile sentry devices. Specifically, CBP should add a chapter to the policy with the following language:
- A “Mobile Sentry Device” should be defined as any remotely controlled, autonomous, or semi-autonomous mobile technology used for surveillance. Examples of Mobile Sentry Devices include self-driving cars, legged robots, or quadcopter drones.
- No amount of force may be determined “reasonable” if administered by a Mobile Sentry Device, whether the Device is (i) completely controlled by an agent or officer, or (ii) operating in an autonomous or semi-autonomous mode.
- No Mobile Sentry Device may be authorized to administer Lethal Force, Less-Lethal Force, or any type of force applied directly by contact with the Device (i.e., contact equivalent to an “Empty Hand” technique). For example, a legged robot may not be used to discharge a firearm, disperse Oleoresin Capsicum spray (pepper spray), or strike a human with a limb.
- A Mobile Sentry Device may not be used as a Vehicular Immobilization Device (or used to deploy such a device), whether the Mobile Sentry Device is (i) completely controlled by an agent or officer, or (ii) operating in an autonomous or semi-autonomous mode.
- When powered on, Mobile Sentry Devices must maintain a distance of at least two feet from any humans not authorized to operate the Device. The Device and its operator are responsible for maintaining this distance.
- Mobile Sentry Devices may not be used to detain or perform arrests, nor to threaten or intimidate with the implicit threat of detainment or arrest.
- A Mobile Sentry Device may be used to administer humanitarian aid or provide a two-way visual or auditory connection to a CBP officer or agent.
- When approaching people to offer humanitarian aid, the Device must use de-escalation techniques to indicate that it is not a threat. These techniques will necessarily vary based on the specific technology. Some examples might include a flying device landing and immediately unfolding a screen playing a non-threatening video, or a legged device sitting with its legs underneath it and cycling through non-threatening audio recordings in multiple languages.
- When used for humanitarian purposes, the Device may not touch its human target(s) or request them to touch it. To transfer an item (such as food, water, or emergency medical supplies) to the target(s), the Device must drop the package with the items while maintaining at least two feet of distance from the closest person.
- When used to provide a two-way visual or auditory connection with a CBP officer or agent, the Device must indicate that such a connection is about to be formed and indicate when the connection is broken. For example, the Device could use an audio clip of a ringing phone to signal that a two-way audio connection to a CBP officer is about to commence.
These regulations should go into effect before Mobile Sentry Devices are moved from the testing phase to the deployment phase. Related new technology, whether it increases capabilities for surveillance or autonomous mobility, should undergo review by a committee that includes representatives from the National Use of Force Review Board, migrant rights groups, and citizens living along the border. This review should mirror the process laid out in the Community Control over Police Surveillance project, which has already been successfully implemented in multiple cities.
Conclusion
U.S. Customs and Border Patrol (CBP) is developing an application for legged robots as mobile sentry devices at the southwest border. However, the use cases, functionality, and rules of engagement for these robots remain unclear. New regulations are needed to forestall adverse effects of autonomous robots used by the federal government for non-military applications, such as those envisioned by CBP. These regulations should specify that mobile sentry devices can only be used as humanitarian aids, and must use de-escalation methods to indicate that they are not threatening. Regulations should further mandate that mobile sentry devices maintain clear distance from human targets, that use of force by mobile sentry devices is never considered “reasonable,” and that mobile sentry devices may never be used to pursue, detain, or arrest humans. Such regulations will help ensure that the legged robots currently being tested as mobile sentry devices by CBP—as well as any future mobile sentry devices—are used ethically and in line with CBP’s goals, alleviating concerns for migrant advocates and citizens along the border.
Regulations on purchasing are not sufficient to prevent mobile sentry device technology from being weaponized after it is purchased. However, DHS could certainly also consider updating its acquisition regulations to include clauses resulting in fines when mobile sentry devices acquired by the CBP are not used for humanitarian purposes.
DOD Directive 3000.09 regulates the use of autonomous weapons systems in the context of war. For an autonomous, semi-autonomous, or remotely controlled system that is deployed with the intention to be a weapon in an active battlefield, this regulation makes sense. But applications of robotic and automated systems currently being developed by DHS are oriented towards mobile sentry duty along stretches of American land where civilians are likely to be found. This sentry duty is likely to be performed by uncrewed ground robots following GPS breadcrumb trails along predetermined regular patrols along the border. Applying Directive 3000.09, the use of a robot to kill or harm a person during a routine patrol along the border would not be a violation as long as a human had “meaningful control” over the robot at that time. The upshot is that mobile sentry devices used by CBP should be subject to stricter regulations.
Most companies selling legged robots in the United States have explicit end-user policies prohibiting the use of their machines to harm or intimidate humans or animals. Some companies selling quadcopter drones have similar policies. But these policies lack any enforcement mechanism. As such, there is a regulatory gap that the federal government must fill.
No, but it is an immediately actionable strategy. An alternative—albeit more time-consuming—option would be for CBP to form a committee comprising representatives from the National Use of Force Review Board, the military, migrant-rights activist groups, and experts on ethics to develop a directive for CBP’s use of mobile sentry devices. This directive should be modeled after DoD Directive 3000.09, which regulates the use of lethal autonomous weapons systems by the military. As the autonomous systems in DOD Directive 3000.09 are assumed to be interacting with enemy combatants while CBP’s jurisdiction consists mostly of civilians, the CBP directive should be considerably more stringent than Directive 3000.09.
The policies proposed in this memo govern what mobile sentry devices are and are not permitted to do, regardless of the extent to which humans are involved in device operation and/or the degree of autonomy possessed by the technology in question. The policies proposed in this memo could therefore be applied consistently as the technology continues to be developed. AI is always changing and improving, and by creating policies that are tech-agnostic, CPB can avoid updating regulations as mobile sentry device technology evolves.
CLimate Improvements through Modern Biotechnology (CLIMB) — A National Center for Bioengineering Solutions to Climate Change and Environmental Challenges
Summary
Tackling pressing environmental challenges — such as climate change, biodiversity loss, environmental toxins and pollution — requires bold, novel approaches that can act at the scale and expediency needed to stop irreversible damage. Environmental biotechnology can provide viable and effective solutions. The America COMPETES Act, if passed, would establish a National Engineering Biology Research and Development Initiative. To lead the way in innovative environmental protection, a center should be created within this initiative that focuses on applying biotechnology and bioengineering to environmental challenges. The CLimate Improvements through Modern Biotechnology (CLIMB) Center will fast-track our nation’s ability to meet domestic and international decarbonization goals, remediate contaminated habitats, detect toxins and pathogens, and deliver on environmental-justice goals.
The CLIMB Center would (i) provide competitive grant funding across three key tracks — bioremediation, biomonitoring, and carbon capture — to catalyze comprehensive environmental biotechnology research; (ii) house a bioethics council to develop and update guidelines for safe, equitable environmental biotechnology use; (iii) manage testbeds to efficiently prototype environmental biotechnology solutions; and (iv) facilitate public-private partnerships to help transition solutions from prototype to commercial scale. Investing in the development of environmental biotechnology through the CLIMB Center will overall advance U.S. leadership on biotechnology and environmental stewardship, while helping the Biden-Harris Administration deliver on its climate and environmental-justice goals.
Challenge and Opportunity
The rapidly advancing field of biotechnology has considerable potential to aid the fight against climate change and other pressing environmental challenges. Fast and inexpensive genetic sequencing of bacterial populations, for instance, allows researchers to identify genes that enable microorganisms to degrade pollutants and synthesize toxins. Existing tools like CRISPR, as well as up-and-coming techniques such as retron-library recombineering, allow researchers to effectively design microorganisms that can break down pollutants more efficiently or capture more carbon. Biotechnology as a sector has been growing rapidly over the past two decades, with the global market value estimated to be worth nearly $3.5 trillion by 2030. These and numerous other biotechnological advances are already being used to transform sectors like medicine (which comprises nearly 50% of the biotechnology sector), but have to date been underutilized in the fight for a more sustainable world.
One reason why biotechnology and bioengineering approaches have not been widely applied to advance climate and environmental goals is that returns on investment are too uncertain, too delayed, or too small to motivate private capital — even if solving pressing environmental issues through biotechnology would deliver massive societal benefits. The federal government can act to address this market failure by creating a designated environmental-biotechnology research center as part of the National Engineering Biology Research and Development Initiative (America COMPETES act, Sec. 10403). Doing so will help the Biden-Harris Administration achieve its ambitious targets for climate action and environmental justice.
Plan of Action
The America COMPETES Act would establish a National Engineering Biology Research and Development Initiative “to establish new research directions and technology goals, improve interagency coordination and planning processes, drive technology transfer to the private sector, and help ensure optimal returns on the Federal investment.” The Initiative is set to be funded through agency contributions and White House Office and Science and Technology Policy (OSTP) budget requests. The America COMPETES Act also calls for creation of undesignated research centers within the Initiative. We propose creating such a center focused on environmental-biotechnology research: The CLimate Improvements through Modern Biotechnology (CLIMB) Center. The Center would be housed under the new National Science Foundation (NSF) Directorate for Technology, Innovation and Partnerships and co-led by the NSF Directorate of Biological Sciences. The Center would take a multipronged approach to support biotechnological and bioengineering solutions to environmental and climate challenges and rapid technology deployment.
We propose the Center be funded with an initial commitment of $60 million, with continuing funds of $300 million over five years. The main contributing federal agencies research offices would be determined by OSTP, but should at minimum include: NSF; the Departments of Agriculture, Defense, and Energy (USDA, DOD, and DOE); the Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geological Survey (USGS).
Specifically, the CLIMB Center would:
- Provide competitive grant funding across three key tracks — bioremediation, biomonitoring, and carbon capture — to catalyze comprehensive environmental-biotechnology research.
- House a bioethics council to develop and update guidelines for safe, equitable environmental-biotechnology use.
- Manage testbeds to efficiently prototype environmental-biotechnology solutions.
- Facilitate public-private partnerships to help transition solutions from prototype to commercial scale.
More detail on each of these components is provided below.
Component 1: Provide competitive grant funding across key tracks to catalyze comprehensive environmental biotechnology research.
The CLIMB Center will competitively fund research proposals related to (i) bioremediation, (ii) biomonitoring, and (iii) carbon capture. These three key research tracks were chosen to span the approaches to tackle environmental problems from prevention, monitoring to large-scale remediation. Within these tracks, the Center’s research portfolio will span the entire technology-development pathway, from early-stage research to market-ready applications.
Track 1: Bioremediation
Environmental pollutants are detrimental to ecosystems and human health. While the Biden-Harris Administration has taken strides to prevent the release of pollutants such as per- and polyfluoroalkyl substances (PFAS), many pollutants that have already been released into the environment persist for years or even decades. Bioremediation is the use of biological processes to degrade contaminants within the environment. It is either done within a contaminated site (in-situ bioremediation) or away from it (ex-situ). Traditional in-situ bioremediation is primarily accomplished by bioaugmentation (addition of pollutant-degrading microbes) or by biostimulation (supplying oxygen or nutrients to stimulate the growth of pollutant-degrading microbes that are already present). While these approaches work, they are costly, time-consuming, and cannot be done at large spatial scales.
Environmental biotechnology can enhance the ability of microbes to degrade contaminants quickly and at scale. Environmental-biotechnology approaches produce bacteria that are better able to break down toxic chemicals, decompose plastic waste, and process wastewater. But the potential of environmental biotechnology to improve bioremediation is still largely untapped, as technology development and regulatory regimes still need to be developed to enable widespread use. CLIMB Center research grants could support the early discovery phase to identify more gene targets for bioremediation as well as efforts to test more developed bioremediation technologies for scalability.
Track 2: Biomonitoring
Optimizing responses to environmental challenges requires collection of data on pollutant levels, toxin prevalence, spread of invasive species, and much more. Conventional approaches to environmental monitoring (like mass spectrometry or DNA amplification) require specialized equipment, are low-throughput, and need highly trained personnel. In contrast, biosensors—devices that use biological molecules to detect compounds of interest—provide rapid, cost-effective, and user-friendly alternatives to measure materials of interest. Due to these characteristics, biosensors enable users to sample more frequently and across larger spatial scales, resulting in more accurate datasets and enhancing our ability to respond. Detection of DNA or RNA is key for identifying pathogens, invasive species, and toxin-producing organisms. Standard DNA- and RNA-detection techniques like polymerase chain reaction (PCR) require specialized equipment and are slow. By contrast, biosensors detect minuscule amounts of DNA and RNA in minutes (rather than hours) and without the need for DNA/RNA amplification. SHERLOCK and DETECTR are two examples of highly successful, marketed tools used for diagnostic applications such as detecting SARS-CoV-2 and for ecological purposes such as distinguishing invasive fish species from similar-looking native species. Moving forward, these technologies could be repurposed for other environmental applications, such as monitoring for the presence of algal toxins in water used for drinking, recreating, agriculture, or aquaculture. Furthermore, while existing biosensors can detect DNA and RNA, detecting compounds like pesticides, DNA-damaging compounds, and heavy metals requires a different class of biosensor. CLIMB Center research grants could support development of new biosensors as well as modification of existing biomonitoring tools for new applications.
Track 3: Carbon capture
Rising atmospheric levels of greenhouse gases like carbon dioxide are driving irreversible climate change. The problem has become so bad that it is no longer sufficient to merely reduce future emissions—limiting average global warming below 2°C by 2100 will require achieving negative emissions through capture and removal of atmospheric carbon. A number of carbon-capture approaches are currently being developed. These range from engineered approaches such as direct air capture, chemical weathering, and geologic sequestration to biological approaches such as reforestation, soil amendment, algal cultivation, and ocean fertilization.
Environmental-biotechnology approaches such as synthetic biology (“designed biology”) can vastly increase the amount of carbon that could be captured by natural processes. For instance, plants and crops can be engineered to produce larger root biomass that sequesters more carbon into the soil, or to store more carbon in harder-to-break-down molecules such as lignin, suberin, or sporopollenin instead of easily more metabolized sugars and cellulose. Alternatively, carbon capture efficiency can be improved by modifying enzymes in the photosynthetic pathway or limiting photorespiration through synthetic biology. Microalgae in particular hold great promise for enhanced carbon capture. Microalgae can be bioengineered to not only capture more carbon but also produce a greater density of lipids that can be used for biofuel. The potential for synthetic biology and other environmental-biotechnology approaches to enhanced carbon capture is vast, largely unexplored, and certainly under commercialized. CLIMB Center research grants could propel such approaches quickly.
Component 2: House a bioethics council to develop and update guidelines for safe, equitable environmental-biotechnology use.
The ethical, ecological, and social implications of environmental biotechnology must be carefully considered and proactively addressed to avoid unintended damage and to ensure that benefits are distributed equitably. As such, the CLIMB Center should assemble a bioethics council comprising representatives from:
- The NSF’s Directorate for Biological Sciences, which oversees funding biological research and has insights into the ethical implications of such technologies.
- The DOE’s Offices of Science, Energy Efficiency and Renewable Energy, Fossil Fuel and Carbon Management, and Joint Genome Institute, as well as ARPA-E. These entities each have interests in proposed CLIMB Center research, especially research related to carbon capture.
- The National Institutes of Standard and Technology (NIST)’s Biomarker and Genomic Sciences Group, which sets standards for tracking, monitoring, and classifying biological and genomic tools.
- NOAA’s National Ocean Service Office, which oversees the Harmful Algal Bloom Monitoring Network and could speak to the implications of environmental monitoring in ocean environments.
- The National Institutes of Health’s Office of Science Policy and Office of Biosafety, Biosecurity, and Emerging Biotechnology, which are responsible for assessing the ethical implications of emerging biotechnologies. Representatives from these offices can also provide insights and lessons learned from the biomedical field.
- The EPA’s Office of Land and Emergency Management, which oversees the Superfund program and will identify key bioremediation priorities and feasible, safe deployment strategies.
- The USGS’s Ecosystems Division, which has interests in species and land management, biological threats, and environmental health and toxins monitoring.
- The USDA’s Office of the Chief Scientist, Natural Resources Conservation Center, Agricultural Research Service, and Forest Service, which oversee research and management efforts in agriculture, energy, and land management.
- The White House Environmental Justice Advisory Council, which was recently established by Executive Order 14008 and provides recommendations for environmental-justice issues related to climate-change mitigation along with toxins, pesticides, and pollution reduction. Council representatives can provide guidance for equitable ways to deploy technologies that prioritize underserved communities.
The bioethics council will identify key ethical and equity issues surrounding emerging environmental biotechnologies. The council will then develop guidelines to ensure transparency of research to the public, engagement of key stakeholders, and safe and equitable technology deployment. These guidelines will ensure that there is a framework for the use of field-ready environmental-biotechnology devices, and that risk assessment is built consistently into regulatory-approval processes. The council’s findings and guidelines will be reported to the National Engineering Biology Research and Development Initiative’s interagency governance committee which will work with federal and state regulatory agencies to incorporate guidance and streamline regulation and oversight of environmental biotechnology products.
Component 3. Manage testbeds to efficiently prototype environmental-biotechnology solutions.
The “valley of death” separating early research and prototyping and commercialization is a well-known bottleneck hampering innovation. This bottleneck could certainly inhibit innovation in environmental biotechnology, given that environmental-biotechnology tools are often intended for use in complex natural environments that are difficult to replicate in a lab. The CLIMB Center should serve as a centralized node to connect researchers with testing facilities and test sites where environmental biotechnologies can be properly validated and risk-assessed. There are numerous federal facilities that could be leveraged for environmental biotechnology testbeds, including:
- DOE National Laboratories
- Smithsonian Institution field stations
- NOAA field laboratories
- NIST Laboratories and Research Test Beds
- U.S. Forest Service Research Stations
- USDA National Wildlife Research Center Stations
- USGS Science Centers
- NSF Long Term Ecological Research Stations
- The Centers for Disease Control and Prevention’s Biotechnology Core Facility
- DOD Environmental Laboratories
The CLIMB Center could also work with industry, state, and local partners to establish other environmental-biotechnology testbeds. Access to these testbeds could be provided to researchers and technology developers as follow-on opportunities to CLIMB Center research grants and/or through stand-alone testing programs managed by the CLIMB Center.
Component 4: Facilitate public-private partnerships to help transition solutions from prototype to commercial scale.
Public-private partnerships have been highly successful in advancing biotechnology for medicine. Operation Warp Speed, to cite one recent and salient example, enabled research, development, testing, and distribution of vaccines against SARS-CoV-2 at unprecedented speeds. Public-private partnerships could play a similarly key role in advancing the efficient deployment of market-ready environmental biotechnological devices. To this end, the CLIMB Center can reduce barriers for negotiating partnerships between environmental engineers and biotechnology manufacturers. For example, the CLIMB center can develop templates for Memoranda of Understandings (MOUs) and Collaborative Research Agreements (CDAs) to facilitate the initial establishment of the partnerships, as well as help connect interested parties.The CLIMB center could also facilitate access for both smaller companies and researchers to existing government infrastructure necessary to deploy these technologies. For example, an established public-private partnership team could have access to government-managed gene and protein libraries, microbial strain collections, sequencing platforms, computing power, and other specialized equipment. The Center could further negotiate with companies to identify resources (equipment, safety data, and access to employee experts) they are willing to provide. Finally, the Center could determine and fast-track opportunities where the federal government would be uniquely suited to serve as an end user of biotechnology products. For instance, in the bioremediation space, the EPA’s purview for management and cleanup of Superfund sites would immensely benefit from the use of novel, safe, and effective tools to quickly address pollution and restore habitats.
Conclusion
Environmental and climate challenges are some of the most pressing problems facing society today. Fortunately, advances in biotechnology that enable manipulation, acceleration, and improvement of natural processes offer powerful tools to tackle these challenges. The federal government can accelerate capabilities and applications of environmental biotechnology by establishing the CLimate Improvements through Modern Biotechnology (CLIMB) Center. This center, established as part of the National Engineering Biology Research and Development Initiative, will be dedicated to advancing research, development, and commercialization of environmental biotechnology. CLIMB Center research grants will focus on advances in bioremediation, biomonitoring, and biologically assisted carbon capture, while other CLIMB Center activities will scale and commercialize emerging environmental biotechnologies safely, responsibly, and equitably. Overall, the CLIMB Center will further solidify U.S. leadership in biotechnology while helping the Biden-Harris Administration meet its ambitious climate, energy, and environmental-justice goals.
Environmental biotechnology can help address wide-reaching, interdisciplinary issues with huge benefits for society. Many of the applications for environmental biotechnology are within realms where the federal government is an interested or responsible party. For instance, bioremediation largely falls within governmental purview. Creating regulatory guidelines in parallel to the development of these new technologies will enable an expedited rollout. Furthermore, environmental biotechnology approaches are still novel and using them on a wide scale in our natural environments will require careful handling, testing, and regulation to prevent unintended harm. Here again, the federal government can play a key role to help validate and test technologies before they are approved for use on a wide scale.
Finally, the largest benefits from environmental biotechnology will be societal. The development of such technology should hence be largely driven by its potential to improve environmental quality and address environmental injustices, even if these are not profitable. As such, federal investments are better suited than private investments to help develop and scale these technologies, especially during early stages when returns are too small, too uncertain, and too future-oriented.
Bioengineered products already exist and are in use, and bioengineering innovations and technology will continue to grow over the next century. Rather than not develop these tools and lag behind other nations that will continue to do so, it is better to develop a robust regulatory framework that will address the critical ethical and safety concerns surrounding their uses. Importantly, each bioengineered product will present its own set of risks and challenges. For instance, a bacterial species that has been genetically engineered to metabolize a toxin is very different from an enzyme or DNA probe that could be used as a biosensor. The bacteria are living, can reproduce, and can impact other organisms around them, especially when released into the environment. In contrast, the biosensor probe would contain biological parts (not a living organism) and would only exist in a device. It is thus critical to ensure that every biotechnology product, with its unique characteristics, is properly tested, validated, and designed to minimize its environmental impact and maximize societal benefits. The CLIMB Center will greatly enhance the safety of environmental-biotechnology products by facilitating access to test beds and the scientific infrastructure necessary to quantify these risk-benefit trade-offs.
The Biden-Harris Administration has recognized the vast disparity in environmental quality and exposure to contaminants that exist across communities in the United States. Communities of color are more likely to be exposed to environmental hazards and bear the burden of climate change-related events. For example, the closer the distance to a Superfund site—a site deemed contaminated enough to warrant federal oversight—the higher the proportion of Black and the lower the proportion of White families. To address these disparities, the Administration issued Executive Order 14008 to advance environmental justice efforts. Through this order, President Biden created an Environmental Justice Advisory Council and launched the Justice40 initiative, which mandates that 40% of the benefits from climate investments be delivered to underserved communities. The Justice40 initiative includes priorities such as the “remediation and reduction of legacy pollution, and the development of critical clean water infrastructure.” The Executive Order also calls for the creation of a “community notification program to monitor and provide real-time data to the public on current environmental pollution…in frontline and fenceline communities — places with the most significant exposure to such pollution.” Environmental biotechnology offers an incredible opportunity to advance these goals by enhancing water treatment and bioremediation and enabling rapid and efficient monitoring of environmental contaminants.
President Biden has set targets for a 50–52% reduction (relative to 2005 levels) in net greenhouse-gas pollution by the year 2030, and has directed federal government operations to reach 100% carbon-pollution-free electricity by 2030 (Executive Order 14057). It is well established that meeting such climate goals and limiting global warming to less than 2°C will require negative emissions technologies (carbon capture) in addition to reducing the amount of emissions created by energy and other sectors. Carbon-capture technologies will need to be widely available, cost-effective, and scalable. Environmental biotechnology can help address these needs by enhancing our capacity for biological carbon capture through the use of organisms such as microalgae and macroalgae, which can even serve the dual role of producing biofuels, feedstock, and other products in a carbon-neutral or carbon-negative way. The CLIMB Center can establish the United States as the global leader in advancing both biotechnology and the many untapped environmental and climate solutions it can offer.
There are multiple avenues for funding foundational research and development in bioengineering. Federal agencies and offices that currently fund bioengineering with an environmental focus include (but are not necessarily limited to):
- DOE’s Office of Science’s various research programs, ARPA-E, and DOE’s Bioenergy Technologies Office
- EPA’s Office of Research and Development, Science to Achieve Results (STAR) Program
- National Science Foundation’s Biological Sciences and Engineering Directorates
- USDA’s National Institute of Food and Agriculture, Biotechnology Risk Assessment Research Grants Program
- NOAA’s Office of Ocean Exploration and Research
- NASA’s Space Technology Mission Directorate
- The National Institute of Health’s Environmental Health Services and National Institute of Biomedical Imaging and Bioengineering Institutes
- DOD’s DARPA, Biological Technologies Office
Research funding provided by these offices often includes a biomedical focus. The research and development funding provided by the CLIMB Center would seek to build upon these efforts and help coordinate directed research towards environmental-biotechnology applications.
Compared to conventional analytical techniques, biosensors are fast, cost-effective, easy-to-use, and largely portable and largely portable. However, biosensors are not always poised to take-over conventional techniques. In many cases, regulatory bodies have approved analytical techniques that can be used for compliance. Novel biosensors are rarely included in the suite of approved techniques, even though biosensors can complement conventional techniques—such as by allowing regulators to rapidly screen more samples to prioritize which require further processing using approved conventional methods. Moreover, as conventional methods can only provide snapshot measurements, potentially missing critical time periods where toxins, contaminants, or pathogens can go unnoticed. Biosensors, on the other hand, could be used to continuously monitor a given area. For example, algae can accumulate (bloom) and produce potent toxins that accumulate in seafood. To protect human health, seafood is tested using analytical chemical approaches (direct measurement of toxins) or biological assays (health monitoring in exposed laboratory animals). This requires regulators to decide when it is best to sample. However, if a biosensor was deployed in an monitoring array out in the ocean or available to people who collect the seafood, it could serve as an early detection system for the presence of these toxins. This application will become especially important moving forward since climate change has altered the geographic distribution and seasonality of these algal blooms, making it harder to forecast when it is best to measure seawater and seafood for these toxins.
Communities of color are more likely to live near Superfund sites, be disproportionately exposed to pollutants, and bear the heaviest burdens from the effects of climate change. These communities have also been disproportionately affected by unethical environmental and medical-research practices. It is imperative that novel tools designed to improve environmental outcomes benefit these communities and do not cause unintended harm. Guidelines established by the CLIMB Center’s bioethics council coupled with evaluation of environmental biotechnologies in realistic testbeds will help ensure that this is the case.
Putting Redlines in the Green: Economic Revitalization Through Innovative Neighborhood Markets
Summary
The systemic effects of past redlining in more than 200 U.S. cities continue to persist. Redlining was a 20th-century policy that explicitly denied Black Americans the opportunity to secure federal mortgage loans—and future wealth. Adverse impacts of redlining not only reduce quality of life for communities of color and low-income communities, but also have spillover effects that cost taxpayers upwards of $308 million per year.
The Biden-Harris administration can combat the impacts of redlining through a new place-based program called “Putting Redlines in the Green”. Through this program, the federal government would repurpose a fraction of its thousands of excess and underutilized properties as rent-free or rent-subsidized sites for Innovative Neighborhood Markets (INMs): multipurpose, community-operated spaces that serve as grocery-delivery hubs, house culturally significant businesses, and support local entrepreneurs in historically redlined areas. While recent federal initiatives (such as the Opportunity Zone and Promise Zone programs) have sought to stimulate development in economically distressed communities through top-down grants and tax incentives, “Putting Redlines in the Green” will give historically redlined communities access to a key asset—real estate—needed to spur revitalization from the bottom up.
Challenge and Opportunity
The term “redlining” derives from racially discriminatory practices carried out by government homeownership programs in the 1930s. The pernicious systemic effects of historical redlining continue to be felt today. Historically redlined areas, for instance, possess less urban-forest cover (and thus suffer from higher summer temperatures and greater pollution), experience poorer health outcomes and decreased earning potential, and are exploited by predatory lending practices that make it nearly impossible to rebuild wealth. Historic redlining can also be linked directly to the prevalence and distribution of “food deserts” and “food apartheid” in U.S. cities.
In 2021, the Department of Justice (DOJ)—in collaboration with the Consumer Financial Protection Bureau (CFPB) and the Office of the Comptroller of the Currency (OCC)—launched the Combating Redlining Initiative to ensure equal credit opportunity for communities of color. While laudable, this effort seeks to forestall future instances of redlining rather than to combat inequities associated with redlining in the past. Recent federal initiatives—such as the Trump-era Opportunity Zone program, the Obama-era Promise Zone program,1 the Bush II-era Renewal Community program, and the Clinton-era Empowerment Zone program—have aimed to spur revitalization in economically distressed communities, including historically redlinedcommunities, through grants and/or tax incentives. The success of this approach has proven mixed at best. Opportunity Zones, for instance, have been criticized for subsidizing gentrification and funneling benefits to wealthy private investors. Community leaders in designated Promise Zones have struggled to productively integrate federal grants into comprehensive, synergistic initiatives. Finally, the pattern of different administrations layering similar programs on top of each other has created confusion and lack of sustained buy-in among stakeholders. It is time for a new approach. The Plan of Action below describes a new vision for federal investment in historically redlined areas: one that relies on repurposing federal assets to empower community-driven enterprises.
Plan of Action
The Biden-Harris administration should jointly launch “Putting Redlines in the Green”, a new, interagency, and place-based program to combat inequities of historical redlining. Historically redlined communities suffer from lack of investment and inequity in financial acquisition. Through “Putting Redlines in the Green”, excess and underutilized (E&U) federal properties in historically redlined communities would be repurposed as rent-free or rent-subsidized sites for Innovative Neighborhood Markets (INMs). INMs are envisioned as multipurpose, community-operated spaces designed to spur revitalization from the bottom up by combining elements of farmers’ markets, community banks, and business improvement districts (BIDs). For instance, INMs could provide hubs for farm-to-market grocery-delivery services (see Activity 5, below), house culturally significant businesses threatened by the impacts of gentrification and the COVID-19 pandemic, and give local entrepreneurs the retail and co-working space needed to launch and grow new ventures.
A stepwise plan of action for the program is outlined below.
Activity 1. Assemble an interagency task force to define program targets and criteria.
The Department of Housing and Urban Development (HUD)’s Office of Community Planning and Development is well-placed to identify redlined communities where INMs could deliver especially large impacts. The Environmental Protection Agency (EPA)’s Office of Community Revitalization (OCR) is already experienced insupporting locally led, community-driven efforts to protect the environment, expand economic opportunity, and revitalize neighborhoods. These two offices should jointly assemble and chair a task force comprising representatives from relevant federal agencies (e.g., the Departments of Agriculture, Commerce, and Justice (USDA, DOC, and DOJ); the General Services Administration (GSA)) and external stakeholder groups (e.g., civic groups, environmental-justice organizations, fair-housing experts). The task force would lay the foundation for “Putting Redlines in the Green” by:
- Identifying and mapping priority areas. The task force should begin by overlaying maps of historically redlined communities with maps of federally recognized food deserts. Areas lying at the intersection of these two datasets could be further prioritized for investment using tools such as EJSCREEN and CEJST, which provide governmental agencies and the public with a nationally consistent approach to the screening and mapping of disadvantaged populations and distressed communities.
- Defining criteria for potential INM sites. A variety of factors could promote or stymie the success and long-term sustainability of INMs. These factors run the gamut from physical characteristics (e.g., structural integrity of the building(s) intended for repurposing as an INM site) to locational characteristics (e.g., proximity to parking and public transportation) to resource availability (e.g., access to high-speed Internet) to zoning designation. The task force should identify the factors most likely to affect INM viability, and use its findings to develop a set of criteria for potential INM sites. As part of this effort, the task force should consult development finance, law, public policy, planning, and business to identify which types of INM-based enterprises would best foster revitalization and combat inequities imposed by redlining in different communities—and what resources INMs will need to be equipped with to support these enterprises.
- Establishing relationships with funders and community groups. Partnerships with external entities will be essential to the success of “Putting Redlines in the Green”. The task force should begin building relationships with funders willing to cover a share of the costs of converting former government buildings into INM sites, as well as with community groups2 that will be able to (i) confirm that the community can make use of an INM, (ii) ensure that individual INMs are tailored to the needs of local residents, and (iii) raise awareness about forthcoming INMs among potential business participants and customers.
- Defining other key programmatic elements. The task force should explore programmatic elements that (i) entrench community governance into “Putting Redlines in the Green”, and (ii) help set INMs up to ultimately become self-sustaining entities. For instance:
- INMs could utilize a local taxation and community profit-sharing plan. Under such a plan, all INM-associated transactions would be subject to a small community tax. Tax revenues would be earmarked to support community workforce training, greening and beautification projects, infrastructure repairs, and similar. Additionally, a barter system or non-cash component could be used to catalyze community involvement and stimulate community enterprise.
- EPA could explore opportunities for leveraging Smart Growth Programs (i.e., Local Foods, Local Places) so as to produce customized INMs that reflect the “brand” of their home communities.
- HUD and EPA could work with the Small Business Administration (SBA),2 the Department of Education (Ed), DOC’s Economic Development Administration (EDA), and external partners such as Community Economics, Inc. (CEI) on technical-assistance programs that help interested local entrepreneurs develop and implement plans for INM-based businesses. The plans could include strategies for ultimately transitioning to permanent, non-INM-based locations within the community. This would (i) free up space for other local entrepreneurs, (ii) allow for expansion of community enterprise, and (iii) transform historically redlined areas into concentrated economic centers. Federally sponsored technical assistance could also be made available to INM participants on an ongoing, as-needed basis leading up to and following business launch. EPA already runs a collection of Smart Growth Technical Assistance Programs to support sustainable development in communities nationwide. The agency can build on this experience and infrastructure for “Putting Redlines in the Green”. HUD could consider creating a specialized Community Development Block Grant (CDBG) for INM-based businesses that need financial support as well as technical assistance to launch.
- INMs could include a community-based governance structure whereby local residents and representatives of regional partner organizations would collaboratively review business proposals from potential INM participants and democratically select businesses to be granted INM space. The governance body would also help manage the INM, perform oversight, and evaluate outcomes and impacts.
Activity 2. Conduct a review to identify E&U federal properties that could be repurposed as INM sites.The portfolio of federally owned real property in the United States includes thousands of E&U properties. While the number of E&U properties catalogued in the Federal Real Property Profile (FRPP) fluctuates from year to year (due to changes in government operations, acquisition and disposal of various properties, and inconsistencies in data reporting, among other factors), the pandemic induced a notable spike: from approximately 15,000 in FY 2020 (Figure 1). With virtual and hybrid work now firmly embedded across the federal government even as the acute phase of the pandemic has ended, it is likely that a significant fraction of these properties will not return to full utilization. With maintenance of E&U federal properties costing taxpayers tens of millions of dollars annually, there is hence a timely opportunity to augment ongoing processes for federal property reallocation.


The task force should work with the GSA to review the federal government’s inventory of excess and underutilized properties to identify sites that could be repurposed as INMs. The goal of this review would be to generate a list of 10–15 sites for near-term repurposing and investment to pilot the INM concept, as well as a longer list of additional candidate sites that could be considered for INMs in the future. A first step for the review would be to crosswalk the E&U properties logged in the FRPP database with the map of priority areas developed in Activity 1. E&U properties located in priority areas should be downselected by building type. For instance, E&U hospital and lab buildings, as likely poor candidate INM sites, could be excluded while E&U housing, office, and warehouse space could be retained. Next, the remaining candidate sites should be screened against the criteria developed in Activity 1. This process stage would also be an appropriate time to identify and eliminate highly problematic candidate sites: for instance, sites that are in badly deteriorated condition or that have already proven uniquely difficult to repurpose. Finally, the task force should prioritize the final list of candidate sites for investment. Prioritization should consider factors such as geographic location (striving to achieve an equitable distribution of INMs nationwide) and buy-in from funders and community groups engaged as part of Activity 1.
Activity 3. Pilot the INM model in an initial 10–15 sites.
HUD and EPA should lead on repurposing the 10–15 sites identified in Activity 2 into a network of INMs distributed across historically redlined communities nationwide. This process will involve (i) acquiring ownership of the sites; (ii) acquiring necessary permits, (iii) performing requisite site inspections and remediation; (iv) performing requisite construction and demolition needed to transform the sites into usable INM spaces; (v) establishing site-specific governance structures; and (vi) soliciting, selecting, and following through on locally led business proposals for the INMs. HUD and EPA should strive to have the initial suite of INMs operational within three years of program launch, and the federal government should allocate $1 million per site to achieve this goal. Funding could come from the bipartisan Infrastructure Investment and Jobs Act (specifically, through the Act’s $1.5 billion RAISE grant program), the Justice40 initiative, and/or from already-existing allocations at HUD, EPA, and partner federal agencies for activities related to economic development, community revitalization, and business/entrepreneurship. Funding could be leveraged with matching funds and/or in-kind support from philanthropies, nonprofits, local governments, and community organizations.
Activity 4. Ensure that E&U federal properties that become available in the future are systematically evaluated for suitability as INM sites.
Federal law governs the disposal process for properties no longer needed by federal agencies to carry out their program responsibilities. The first step in this process is for GSA to offer “excess property to other federal agencies that may have a program need for it.” A task force should work with GSA to ensure that the “Putting Redlines in the Green” program is incorporated into the federal agency stage of the process. The task force should also develop internal processes for efficiently evaluating E&U properties that become available as candidate sites for INMs. Steps of these internal processes would likely be broadly similar to the steps of the larger review conducted in Activity 2.
Activity 5. Launch an INM-centered “farm to neighborhood” model of grocery delivery.
To combat the specific issue of “food apartheid” in historically redlined communities, USDA’s Office of the Assistant Secretary for Civil Rights (OASCR) should spearhead creation of an INM-centered “farm to neighborhood” model (F2NM) of grocery delivery. In the F2NM, federal agencies would partner with local government and non-governmental organizations to support community gardens and nearby (within a defined radius) farms. Support, which could come in the form of subsidized crop insurance or equipment grants, would be provided to community gardeners and farmers in exchange for pledges to sell produced crops and other foods (e.g., eggs and meat) at INMs. USDA and EPA could also consider subsidizing distributors to sell key foodstuffs that cannot be produced locally (e.g., due to agricultural or logistical limitations) at affordable prices at INMs. Finally, USDA and EPA could consider working with local partners (e.g., the Detroit Black Community Food Security Network; the Center for Environmental Farming Systems [CEFS]’s Committee on Racial Equity in the Food System) to launch meal-kit services that provide community subscribers with INM-sourced ingredients and accompanying recipes. Such services will expand access to locally produced food while promoting healthier lifestyles.
Conclusion
The 11 million+ Americans that currently live in historically redlined areas deserve attention from policymakers. Historic redlining galvanizes the prevalence of food deserts, lead exposure, discriminatory practices, and other adversities, and encourages predatory markets.
Implementation of “Putting Redlines in the Green” will empower historically redlined areas through profit-driven, self-sustaining community enterprises (INMs). “Putting Redlines in the Green” would also reinforce the Combating Redlining Initiative in ensuring that historically redlined neighborhoods receive “fair and equal access” to the lending opportunities that are—and always have been—available to non-redlined, and majority-White, neighborhoods. Ultimately, transforming excess and underutilized federal properties into INMs will strengthen urban sustainability, reduce taxpayer burdens, and promote restorative, economic, and environmental justice. “Putting Redlines in the Green” will therefore not only provide restitution for historically redlined communities, but will enfranchise the people and revitalize the place.
The figure below, created by the GSA, diagrams the disposal process. Generally speaking, E&U federal properties are first assessed for possible public purposes, then made available to private individuals and companies by competitive bid. Note that not every E&U federal property goes through every step of the process illustrated below.
Community organizations such as the Oakland Community Land Trust (CLT) in California and the Dudley Street Neighborhood Initiative (DSNI) in Boston, MA have revitalized their once economically distressed communities from the bottom up. Even initiatives such as the Wynwood Business Improvement District (BID) in Miami, which became susceptible to extreme gentrification following the recent removal of its Arts & Entertainment district status, succeeded in economically revitalizing an area that was once herald as the “Crime Center of Miami.” However there has never been an urban policy that has attempted to recreate the success of these localized initiatives within distressed areas across the United States. Additionally, no governmental effort has attempted to achieve urban revitalization of distressed areas through the framework of financial empowerment, community autonomy, and community-owned enterprise. “Putting Redlines in the Green” is the first to amalgamate the best elements of community-driven initiatives like those cited above and convert them into implementable urban policy.
Gentrification occurs when new development in area displaces current residents and business within that area through economic pressures (such as rising rents, mortgages, and property taxes). Gentrification requires urban revitalization, but urban revitalization does not inevitably lead to gentrification. “Putting Redlines in the Green” would promote “development without displacement.” To ensure that Innovative Neighborhood Markets (INMs) remain community-based and -oriented leading up to and after their launch, “Putting Redlines in the Green” would empower residents through a community-governance structure that controls development, creates economic opportunity, and vastly mitigates the likelihood of gentrification. The Dudley Street Neighborhood Initiative (DSNI) is one example of such a governance structure that has succeeded.
History suggests that the creation of community enterprise within areas susceptible to “gentrification” (i.e., historically redlined neighborhoods) will systematically attract buy-in. As some economists, scholars, and historians have postulated since the 1900’s, gentrification is a consumer cycle that is heavily driven by the movement of money (usually in the form of affluent individuals looking for the newest housing stock) into areas that are nearing the end of their economic life. Thus, the new development associated with INMs will likely attract funders and buy-in from external parties.
According to the U.S. General Services Administration (GSA)’s Office of Real Property Utilization and Disposal (ORPUD), most excess property does not get transferred between the 34 federal agencies due to “specificity” of the buildings. Thus, there is limited interagency competition for disposed government property. In fact, most E&U federal properties move onto the surplus-property stage, where they may be acquired by state and local governments (i.e., “public benefit conveyance”).
At the public benefit conveyance stage, there are currently 12 legislative actions that grant special consideration for transfer or conveyance of surplus real and related personal property to state government, local government, and certain nonprofits at up to 100% discount for public benefit use. It is therefore preferable that E&U sites for INMs be acquired during the federal stage of the disposal process.
Regional partners could include nonprofits (e.g., Center for Environmental Farming Systems [CEF]’s Curriculum on Racial Equity [CORE]) could advise on best practices for expanding access to locally produced food while promoting healthier lifestyles) or private-sector entities (e.g., Community Development Financial Institutions [CDFIs]) could advise on how to help local entrepreneurs achieve their financial goals and how INMs can support business development by leveraging legislation like the Community Reinvestment Act of 1977). Regardless of size or sector, the role of regional partners, would be to empower the communities participating in “Putting Redlines in the Green” as they help shape, launch, and maintain INMs.
“Putting Redlines in the Green” could be accurately described as a specialized smart-growth technical-assistance program that specifically addresses sustainable development in redlined communities. “Putting Redlines in the Green” could also be accurately described as an economic-revitalization effort. But while other federally sponsored economic-development and -revitalization programs have relied heavily on top-down grants and tax incentives, “Putting Redlines in the Green” will take a bottom-up approach based on community-led transformation of excess and underutilized federal properties into vibrant, locally grounded business enterprises.
Addressing the Mental Health Crisis Among Predoctoral and Postdoctoral Researchers in STEM
Summary
The growing mental–health crisis among science, technology, engineering, and math (STEM) doctoral and postdoctoral researchers threatens the future and competitiveness of science and technology in the United States. The federal government should tackle this crisis through a four-part approach to (i) improve data collection on the underlying drivers of mental-health struggles in STEM, (ii) discourage behaviors and cultures that perpetuate stress, (iii) require Principal Investigators (PIs) to submit a statement of their mentoring philosophy as part of applications for federally supported research grants, and (iv) increase access to mental-health care for predoctoral and postdoctoral researchers.
Challenge and Opportunity
The prevalence of mental-health problems is higher among Ph.D. students than in the highly educated general population: fully half of Ph.D. students experience psychological distress. In a survey of postdoctoral researchers conducted by Nature, 51% of respondents reported considering leaving science due to work-related mental-health concerns. 65% of respondents reported experiencing power imbalances or bullying during their postdoctoral appointments, and 74% reported observing the same. Stress accumulation not only leads to the development of neuropsychiatric disorders among the developing STEM workforce — it also contributes to burnout. At a time when advancing U.S. competitiveness in science and technology is of utmost importance, the mental-health crisis is depleting our nation’s STEM pipeline when we should be expanding and diversifying it. This is a crisis that the federal government is well-positioned to and must solve.
Plan of Action
The federal government should counter the mental-health crisis for U.S. doctoral and postdoctoral researchers through a four-part approach to (i) improve data collection on the underlying drivers of mental-health struggles in STEM, (ii) discourage behaviors that perpetuate stress, (iii) require PIs to submit a statement of their mentoring philosophy as part of applications for federally supported research grants, and (iv) increase access to mental-health care for doctoral and postdoctoral researchers. Detailed recommendations associated with each of these steps are provided below.
Part 1. Improve data collection
Data drives public policy. Various organizations conduct surveys evaluating the mental health of doctoral and postdoctoral researchers in STEM, but survey designs, target audiences, and subsequent follow-up and monitoring are inconsistent. This fragmented information ecosystem makes it difficult to integrate and act on existing data on mental health in STEM. To provide a more comprehensive picture of the STEM mental-health landscape in the United States, the National Institutes of Health (NIH) and the National Science Foundation (NSF) should work together to conduct and publish biennial evaluations of the state of mental health of the STEM workforce. The survey format could be modeled on the NSF’s Survey of Doctorate Recipients or the Survey of Earned Doctorates — and, like those surveys, resultant data could be maintained at NSF under the National Center for Science and Engineering Statistics. Once established, the data from the survey can be used to track effectiveness of programs that are implemented and direct the federal government to change or start new initiatives to modify the needs of doctoral and postdoctoral researchers. Additionally, the NSF and NIH could partner with physicians within HHS to define and establish what “healthy” means in terms of mental-health guidelines in order to establish new program guidelines and goals.
Part 2. Discourage problematic behaviors
The future of a doctoral or postdoctoral researcher depends considerably on the researcher’s professional relationship with their PI(s). Problems in the relationship — including bullying, harassment, and discrimination — can put a trainee in a difficult situation, as the trainee may worry that confronting the PI could compromise their career opportunities. The federal government can take three steps to discourage these problematic behaviors by requiring PIs to submit and implement training and mentorship plans for all grant-supported trainees.
First, the White House Office of Science and Technology Policy (OSTP) should assemble a committee of professionals in psychology, social sciences, and human resources to define what behaviors constitute bullying and harassment in academic work environments. The committee’s findings should be publicized via a web portal (similar to NSF’s website on Sexual Harassment), and included in all requests for grant applications issued by federal STEM-funding agencies (in order to raise awareness among PIs).
Second, federal STEM-funding agencies should require universities to submit annual reports of bullying to federal, grant-issuing agencies. NSF already requires institutions to report findings of sexual harassment and other forms of harassment and can revoke grants if a grantee is found culpable. NSF and other STEM-funding agencies should add clarity to this definition and broaden this reporting to include bullying and retaliation to include bullying and retaliation attempts by PIs, with similar consequences for repeated offenses. Reinstatement of privileges (e.g., reinstatement of eligibility for federal grant funding) would be considered on a case-by-case basis by the grant-issuing institution and could be made contingent on implementation of an adequate “re-entry” plan by the PI’s home institution. The NIH Office of Behavioral and Social Science Research should be consulted to help formulate such “re-entry” plans to benefit both researchers and PIs.
Third, STEM-funding agencies could work together to establish a mechanism whereby trainees can anonymously report problematic PI behaviors. NSF has a complaint form for those who wish to report incidents for incidents of sexual harassment or harassment. Thus, NSF could expand their system to accept broader incidents such as bullying and retaliation attempts and NIH could use this complaint form as a template for reporting as well. In conjunction with reporting misconduct, a “two-strike” accountability system should be imposed if a PI is found guilty of harassment, bullying, or other behaviors that could contribute to the development of a neuropsychiatric disorder. After receiving a first strike (report of problematic behavior and a guilty verdict), the PI would be given a warning and be required to participate in relevant training workshops and counseling using a plan outlined by social science professionals at NIH. If a second strike is received, the PI would lose privileges to apply for federal grant funding and opportunities to serve on committees that are often favored for tenure and promotion, such as grant review committees. Again, reinstatement of privileges would be considered on a case-by-case basis by the grant-issuing institution and could be made contingent on implementation of an adequate “re-entry” plan.
Part 3. Require submission of mentoring philosophies
NIH F31 predoctoral and F32 postdoctoral award applications already require PIs to submit mentoring plans for their trainees to receive professional-development training. Federal STEM-funding agencies should build on this precedent by requiring PIs applying for federal grants to submit not just mentoring plans, but brief summaries of their mentoring philosophies. As the University of Colorado Boulder explains, a mentoring philosophy
“…defines [a mentor’s] approach to engaging with students as [they] guide their personal growth and professional development, often explaining [the mentor’s] motivation to mentor with personal narratives while highlighting their goals for successful relationships and broader social impact. These statements may also be considered ‘living documents’ that are updated as [the mentor] refine[s[ [their] approach and the context and goals of [their] work changes.”
Mentoring philosophies help guide development of and updates to individualized mentoring plans. Mentoring philosophies also promote equity and inclusion among mentees by providing a common starting point for communication and expectations. Requiring PIs to create mentoring philosophies will elevate mental health among doctoral and postdoctoral researchers in STEM by promoting effective top-down mentorship and discouraging unintended marginalization. And since a growing number of university faculty are already creating mentoring philosophies, this new requirement shouldn’t be seen as just another administrative burden; rather, it would serve as a means to quickly perpetuate a best practice that is already spreading. The federal government can support PIs in adhering to this new requirement by working with external partners to collect and broadly share resources related to preparing mentoring philosophies. The Center for the Improvement of Mentored Experiences in Research, for instance, has already assembled a suite of such resources on its web platform.
Part 4. Increase access to mental health care
Concurrent with reducing causes of mental health burdens, the federal government should work to expand doctoral and postdoctoral researchers’ access to adequate mental-health care. Current access may vary considerably depending on the level of insurance coverage offered by a researcher’s home institution. Inspired by legislation (S. 3048 – Stopping the Mental Health Pandemic Act, where funds can be used to support and enhance mental health services) introduced in the 117th Congress, the Department of Health and Human Services (HHS) should partner with federal STEM-funding agencies to design and implement new pathways, programs, and opportunities to strengthen mental-health care among early-career STEM professionals. In particular, the federal government could create a library of model policies that federally funded public and private institutions could adopt to strengthen mental-health care for employed early-career researchers. Examples include allowing trainees to take time off during the workday to receive mental-health treatment without expectations to make up hours outside of business hours, providing a supplemental stipend for trainees to pay for therapy costs that are not covered by insurance, and addressing other sources of stress that can exacerbate stressful situations, such as increasing stipends to decrease financial stress.
Conclusion
The U.S. science and technology enterprise is only as strong as the workforce behind it. Failing to address the mental-health crisis that plagues early-career researchers will lead the United States to fall behind in global research and development due to talent attrition. President Biden’s 2022 State of the Union address cited mental health as a priority area of concern. There is an especially clear need for a culture change around mental health in academia. The four actions detailed in this memo align with the President’s policy agenda. By improving data collection on the mental-health status of STEM doctoral and postdoctoral researchers, discouraging behaviors and cultures that produce stress among this population, improving training and mentorship at universities, and expanding access to mental-health care among STEM doctoral and postdoctoral researchers, the federal government can ensure that success for early-career STEM professionals does not demand mental-health sacrifice.
STEM fields are closely tied to the U.S. economy, supporting two-thirds of U.S. jobs and 69% of the U.S. Gross Domestic Product (GDP). Attrition of U.S. researchers from STEM fields due to mental-health challenges has disproportionately adverse effects on American society and undermines U.S. competitiveness. Policymakers should prioritize actions designed to combat the mental-health crisis in STEM.
NSF already requires that universities who receive federal research funding conduct internal investigations to validate claims of harassment and sexual harassment. Similar policies could be implemented regarding reported bullying and/or workplace harassment. If an allegation is found to be false, it should be handled by university-specific policies.
The goal of requiring PIs to attend workshops on mentorship and therapy sessions is to help them better themselves and improve their ability to mentor the next generation of STEM professionals. Re-entry to mentoring trainees will be closely monitored by leadership faculty who should conduct surveys of both mentors and mentees to determine if the PI understands (a) their previous misconduct and (b) the lasting mental health effects that their previous actions inflicted on their trainees.
NIH and NSF are arguably the two leading federal agencies when it comes to providing federal funding for graduate students. That said, recommendations presented in this memo could easily be extended to other STEM-funding agencies. For instance, there is a timely opportunity to extend these recommendations to the Department of Energy (DOE). DOE is currently working to manage the President’s major FY23 investment in clean energy and sustainability, including through significant research-grant funding. Coupling these new grants with policies designed to mitigate mental-health burdens among early-career researchers could help foster a more resilient and productive clean-energy workforce and serve as a pilot group for the NIH and NSF to follow.
The administrative responsibilities for reporting are minimal. NSF’s Organizational Notification of Harassment Form can — at a minimum — be used as a template for NSF, NIH, and other agencies to notify the federal government of guilty verdicts from universities. Alternatively, doctoral and postdoctoral researchers can submit incidents for reporting by federal agencies similar to NSF’s existing complaint form, which would reduce the initial administrative burden of university employees but may create additional hours of work once federal agencies conduct their investigations.
While the strategies above teach researchers how to cope with stress, a long-term, more supportive approach would be to reduce stress by going straight to the source. Actions such as addressing harassment and bullying will benefit not only the researcher themselves, but others in the work environment by fostering a responsible, low-stress culture.
7. How are mentoring philosophies different from mentoring plans?
The submission of mentoring plans by PIs are currently required for NIH pre- and post-doctoral fellowship applications. They are meant to supplement the training of a researcher by focusing on the logistics of skill building. However, mentorship of a researcher transcends knowledge and skill-building — it also encompasses the holistic development of a researcher, supporting and respecting their interests, values, and considerations of their individual situations. Thus, submission of a mentoring philosophy is meant to stimulate thoughts and conversations about how a PI wants to communicate openly and honestly with their trainee and how they can adapt to support the mentoring style that best fits their trainee.
Reduce, Repurpose, Recharge: Establishing a Collaborative Doctrine of Groundwater Management in the Ogallala Aquifer
Summary
Climate change has resulted in extreme and irregular rain events across the United States. Consequently, farmers in the High Plains region have been increasingly dependent on the Ogallala Aquifer for water supplies. With an estimated value of $35 billion, this aquifer supports one-fifth of the nations’ wheat, corn, cotton, and cattle. The Ogallala once held enough water to fill Chicago’s Sears Tower over 2,000 times. Today, the aquifer has lost 30% of its supply — and it is being recharged at half the rate it is being depleted. The consequence of inaction is 70% aquifer depletion by 2060, which will reduce crop output by 30–40%.

This $14 billion loss to the High Plains agricultural production may be slowed and eventually reversed by (1) reducing Ogallala use, (2) repurposing existing supplies, and (3) recharging the aquifer. The U.S. Department of Agriculture (USDA), in collaboration with the Department of the Interior (DOI) and the Federal Emergency Management Agency (FEMA), should accordingly create the Reduce, Repurpose, Recharge Initiative (RRRI), a voluntary program designed to keep farmers engaged in groundwater conservation. This multi-state program will provide financial incentives to participating farmers in exchange for pledges to limit groundwater withdrawal and participate in training that will equip them with knowledge needed to fulfill those pledges. The RRRI will also make expert advisors available to consult with farmers on policies and funding opportunities related to groundwater conservation. Finally, this program will connect farmers across state lines, allowing them to learn from each other and work together on sustainable management of the Ogallala. The program should be funded through the various water-sustainability budgets of the DOI and USDA, as well as through FEMA’s Building Resilient Infrastructure and Communities grant program.
Challenge and Opportunity
Climate-change-induced droughts have increased the nation’s dependence on groundwater as a source for agriculture, industry, and domestic use. Excessive groundwater pumping has led to land subsidence and deterioration of water quality, increasing water-use cost and jeopardizing crop yield. The problem is especially acute in the Ogallala Aquifer of the High Plains region. The aquifer underlies eight states of the nation’s breadbasket — including Nebraska, Kansas, and Texas — and spans 175,000 square miles. Dependence on the Ogallala has depleted its supply by 30% to date, as shown in Figure 1. 90% of water withdrawn from the Ogallala is used for agricultural irrigation.
Strategic plans for the USDA and DOI make it clear that drought preparedness and water conservation/sustainability are national priorities. Multiple federal efforts exist to advance these priorities. Publicly accessible platforms hosting and providing groundwater data exist at the United States Geological Survey (USGS), the National Institute of Food and Agriculture (NIFA), and the cross-agency National Integrated Drought Information System (NIDIS) partnership. The 2018 Farm Bill strengthened technical- and financial-assistance programs to help individual farms implement water-conservation technology; the bill also created an incentive program for agriculture-to-wetland conversion. From 2011–2018, the USDA’s Natural Resources Conservation Service (NRCS) ran the Ogallala Aquifer Initiative (OAI) to “support targeted, local efforts to conserve the availability of water, both its quantity and quality, in each of the States” covering the Ogallala. The OAI was successful in meeting its water-conservation goals. Recent surveys found that 93% of agricultural producers in the High Plains region believe that water conservation is important.
These past and ongoing initiatives demonstrate that federal will and stakeholder buy-in for aquifer conservation and restoration are there. The key need is for a program that provides farmers the incentives and technical assistance needed to minimize groundwater reliance, ending the tragedy of the commons in the Ogallala once and for all.
Plan of Action
USDA, DOI, and FEMA should launch a joint program designed to embed the three pillars of groundwater conservation — Reduce, Repurpose, and Recharge — into the practices of farmers in Ogallala states. The RRRI will provide a financial incentive to farmers in exchange for farmer commitments to:
- Achieve specified water-conservation targets.
- Participate in training opportunities and workshops teaching best practices for water conservation and aquifer recharge.
To succeed, the RRRI will require enthusiastic, voluntary participation from farmers across the High Plains region. Participation should be voluntary because studies have shown that voluntary programs are significantly more effective than mandates in achieving water-conservation goals. In a comparative case study about implementing
In a comparative case study about implementing a voluntary versus mandated water restriction, farmers under the voluntary restriction conserved more water relative to the mandatory regulation. A survey of these farmers attributed the group-education component of the voluntary program as the driving force for their restriction. Another survey similarly found that farmers’ altruistic views of water conservation led to longer-lasting participation in water-conservation activities. A comprehensive review of the outcomes of different water policies found that educational programs about water conservation were more effective in water use reduction and improving attitudes towards water conservation relative to mandatory water use restrictions.
To encourage voluntary participation, farmers who enroll in the RRRI would receive a financial incentive. The exact nature of the incentive would need to be determined by the implementing agencies, but could include preferential price setting, preferential market placement, or subsidies based on crop type. In exchange, farmers would agree to an initial water-use assessment performed by field experts (either employees or contractors of USDA or DOI). An appointed advisor (again, either employees or contractors of USDA or DOI) would then work with each farmer to establish long-term (5-year) water-conservation targets based on the assessment results. Each participating farmer would meet quarterly with their advisor to review their water-conservation plan, assess progress towards targets, make mutually agreeable target adjustments, and discuss challenges and solutions. Advisors would also be available in between quarterly meetings for interim questions and concerns.
Farmers who enroll in the RRRI would also commit to attending group trainings and workshops designed to help them identify and implement best water-conservation practices. These learning opportunities would be led by experts sourced from existing agricultural committees (e.g., NRCS Conservation Planners and Technical Service Providers, State Technical Committees, etc.) and water-conservation groups (e.g., Ogallala Water Coordinated Agriculture Project, Groundwater Protection Council, etc.). The group-education curriculum would cover the three tenets of groundwater conservation: reduce, repurpose, and recharge. Table 1 provides a brief description of each tenet, along with examples of aligned activities and potential sources of funding for those activities. The curriculum would teach farmers how each tenet contributes to groundwater conservation, existing and emerging technologies and practices that farmers can implement to achieve each tenet, and financial vehicles available to fund implementation. An added benefit of the group education will be the establishment of a community of farmers across the Ogallala states in which ideas and experiences can be shared.
Tenet | Definition | Example activities | Potential funding source(s) |
Reduce | Minimizing water needs for existing systems | More efficient irrigation | NRCS’s Agricultural Management Assistance and Conservation Innovation Grants |
Repurpose | Move away from water-intensive practices | Switch to less water-intensive crops | NRCS’s Regional Conservation Partnership Program andConservation Stewardship Program |
Recharge | Replenish groundwater source (aquifer) | Capture excess stormwater; convert agricultural land to wetlands | FEMA’s Building Resilient Infrastructure and Communities Grant; NRCS’s Agricultural Conservation Easement Program |
The RRRI should be established as a multi-agency collaboration. Each involved agency (USDA, DOI, and FEMA) can provide unique expertise. USDA can leverage its research arm, NIFA, to produce up-to-date technology recommendations and scientific assessments. USDA’s NRCS can provide the underlying technical and financial support for realizing the RRRI tenets. DOI can rely on USGS’s existing groundwater database and the NIDIS’s affiliated expert community of data scientists to support the granular, up-to-date groundwater measurements needed to assess water-conservation progress. DOI’s Bureau of Land Management (BLM) can ensure the RRRI tenets are enacted (in parallel with implementation on privately owned farmland) across public lands in the High Plains region. Finally, FEMA can collaborate with NIDIS and with USDA’s Risk Management Agency (RMA) to formally assess risks of drought and Ogallala depletion — assessments that can be used to make the case for the RRRI to farmers, funders, and policymakers.
Early actions needed to launch the RRRI include:
- Appoint a joint USDA/DOI task force to refine program goals and implementation strategy.
- Create teams of technical and financial experts to build the group-education curriculum.
- Identify people working at the interface of water conservation, land use, and drought preparedness who could serve as potential advisors.
- Recruit an initial cohort of farmers for a pilot version of the program. One pool to draw on for initial recruitment consists of the respondents to Lauer and Sanderson’s 2019 survey of producer attitudes in the Ogallala region.
- Socialize the proposal for RRRI with the House Agriculture Committee staff for authorization. The RRRI would fit well as part of the upcoming (in 2023) Farm Bill renewal.
Conclusion
Climate-change-induced droughts have increased farmer dependence on groundwater, resulting in a 30% depletion of the Ogallala Aquifer to date. Under current management practices, depletion of the Ogallala will reach 70% by 2060. We can solve the problem. The technology, technical expertise, programmatic and data infrastructure, and financial support for groundwater conservation exist. The key need is to directly connect farmers with — and motivate them to use — these resources. A joint USDA/DOI/FEMA program founded in the “Reduce, Repurpose, Recharge” tenets of water conservation can do just that for farmers across the High Plains region. By coupling financial incentives with tailored water-conservation targets, technical expertise, and group educational opportunities, the RRRI will meaningfully advance the long-term security of the critically important Ogallala—and the farmers whose livelihoods depend on it.
Based on the budget for the Ogallala Aquifer Initiative, the RRRI would require $25 million per year for 10-20 years to support the program’s staff and cover travel costs. This funding can be drawn from water-sustainability discretionary funds already allocated at USDA and DOI as well as FEMA’s Building Resilient Infrastructure and Communities grant program.
Publications from the Ogallala Water Coordinated Agriculture Project cite numerous examples of existing technologies that can promote sustainable groundwater management, including irrigating with recycled water (i.e., direct non-potable reuse) and shifting to dryland irrigation.
The sandy soils of the High Plains are ideal for managed aquifer recharge as they allow for fast infiltration.
With no existing federal regulation on groundwater use, the country needs a pilot program to demonstrate the effectiveness of an interstate groundwater use policy to create precedent for future policymaking and begin to optimize water use policies at such a large scale. The Ogallala Aquifer is the largest and most productive aquifer in the world and conserving the agriculture it supports is required for a sustainable future.
While the federal government has regulations in place dictating water quality through the Environmental Protection Agency’s Clean Water Act and Safe Drinking Water Act, water-allocation policy is left up to the states. Between the eight states above the Ogallala Aquifer, there are four distinct doctrines that define groundwater law, some in direct conflict with one another. State authority over water resources makes it difficult for the federal government to implement mandatory groundwater conservation measures. Voluntary programs like RRRI are an effective mechanism to reach groundwater conservation goals without infringing on states’ water rights.
Establishing the AYA Research Institute: Increasing Data Capacity and Community Engagement for Environmental-Justice Tools
Summary
Environmental justice (EJ) is a priority issue for the Biden Administration, yet the federal government lacks capacity to collect and maintain data needed to adequately identify and respond to environmental-justice (EJ) issues. EJ tools meant to resolve EJ issues — especially the Environmental Protection Agency (EPA)’s EJSCREEN tool — are gaining national recognition. But knowledge gaps and a dearth of EJ-trained scientists are preventing EJSCREEN from reaching its full potential. To address these issues, the Administration should allocate a portion of the EPA’s Justice40 funding to create the “AYA Research Institute”, a think tank under EPA’s jurisdiction. Derived from the Adinkra symbol, AYA means “resourcefulness and defiance against oppression.” The AYA Research Institute will functionally address EJSCREEN’s limitations as well as increase federal capacity to identify and effectively resolve existing and future EJ issues.
Challenge and Opportunity
Approximately 200,000 people in the United States die every year of pollution-related causes. These deaths are concentrated in underresourced, vulnerable, and/or minority communities. The EPA created the Office of Environmental Justice (OEJ) in 1992 to address systematic disparities in environmental outcomes among different communities. The primary tool that OEJ relies on to consider and address EJ concerns is EJSCREEN. EJSCREEN integrates a variety of environmental and demographic data into a layered map that identifies communities disproportionately impacted by environmental harms. This tool is available for public use and is the primary screening mechanism for many initiatives at state and local levels. Unfortunately, EJSCREEN has three major limitations:
- Missing indicators. EJSCREEN omits crucial environmental indicators such as drinking-water quality and indoor air quality. OEJ states that these crucial indicators are not included due to a lack of resources available to collect underlying data at the appropriate quality, spatial range, and resolution.
- Small areas are less accurate. There is considerable uncertainty in EJSCREEN environmental and demographic estimates at the census block group (CBG) level. This is because (i) EJSCREEN’s assessments of environmental indicators can rely on data collected at scales less granular than CBG, and (ii) some of EJSCREEN’s demographic estimates are derived from surveys (as opposed to census data) and are therefore less consistent.
- Deficiencies in a single dataset can propagate across EJSCREEN analyses. Environmental indicators and health outcomes are inherently interconnected. This means that subpar data on certain indicators — such as emissions levels, ambient pollutant levels in air, individual exposure, and pollutant toxicity — can compromise the reliability of EJSCREEN results on multiple fronts.
These limitations must be addressed to unlock the full potential of EJSCREEN as a tool for informing research and policy. More robust, accurate, and comprehensive environmental and demographic data are needed to power EJSCREEN. Community-driven initiatives are a powerful but underutilized way to source such data. Yet limited time, funding, rapport, and knowledge tend to discourage scientists from engaging in community-based research collaborations. In addition, effectively operationalizing data-based EJ initiatives at a national scale requires the involvement of specialists trained at the intersection of EJ and science, technology, engineering, and math (STEM). Unfortunately, relatively poor compensation discourages scientists from pursuing EJ work — and scientists who work on other topics but have interest in EJ can rarely commit the time needed to sustain long-term collaborations with EJ organizations. It is time to augment the federal government’s past and existing EJ work with redoubled investment in community-based data and training.
Plan of Action
EPA should dedicate $20 million of its Justice40 funding to establish the AYA Research Institute: an in-house think tank designed to functionally address EJSCREEN’s limitations as well as increase federal capacity to identify and effectively resolve existing and future EJ issues. The word AYA is the formal name for the Adinkra symbol meaning “resourcefulness and defiance against oppression” — concepts that define the fight for environmental justice.
The Research Institute will comprise three arms. The first arm will increase federal EJ data capacity through an expert advisory group tasked with providing and updating recommendations to inform federal collection and use of EJ data. The advisory group will focus specifically on (i) reviewing and recommending updates to environmental and demographic indicators included in EJSCREEN, and (ii) identifying opportunities for community-based initiatives that could help close key gaps in the data upon which EJSCREEN relies.
The second arm will help grow the pipeline of EJ-focused scientists through a three-year fellowship program supporting doctoral students in applied research projects that exclusively address EJ issues in U.S. municipalities and counties identified as frontline communities. The program will be three years long so that participants are able to conduct much-needed longitudinal studies that are rare in the EJ space. To be eligible, doctoral students will need to (i) demonstrate how their projects will help strengthen EJSCREEN and/or leverage EJSCREEN insights, and (ii) present a clear plan for interacting with and considering recommendations from local EJ grassroots organization(s). Selected students will be matched with grassroots EJ organizations distributed across five U.S. geographic regions (Northeast, Southeast, Midwest, Southwest, and West) for mentorship and implementation support. The fellowship will support participants in achieving their academic goals while also providing them with experience working with community-based data, building community-engagement and science-communication skills, and learning how to scale science policymaking from local to federal systems. As such, the fellowship will help grow the pipeline of STEM talent knowledgeable about and committed to working on EJ issues in the United States.
The third arm will embed EJ expertise into federal decision making by sponsoring a permanent suite of very dominant resident staff, supported by “visitors” (i.e., the doctoral fellows), to produce policy recommendations, studies, surveys, qualitative analyses, and quantitative analyses centered around EJ. This model will rely on the resident staff to maintain strong relationships with federal government and extragovernmental partners and to ensure continuity across projects, while the fellows provide ancillary support as appropriate based on their skills/interest and Institute needs. The fellowship will act as a screening tool for hiring future members of the resident staff.
Taken together, these arms of the AYA Research Institute will help advance Justice40’s goal of improving training and workforce development, as well as the Biden Administration’s goal of better preparing the United States to adapt and respond to the impacts of climate change. The AYA Research Institute can be launched with $10 million: $4 million to establish the fellowship program with an initial cohort of 10 doctoral students (receiving stipends commensurate with typical doctoral stipends at U.S. universities), and $6 million to cover administrative expenses and staff expert salaries. Additional funding will be needed to maintain the Institute if it proves successful after launch. Funding for the Institute could come from Justice40 funds allocated to EPA. Alternatively, EPA’s fiscal year (FY) 2022 budget for science and technology clearly states a goal of prioritizing EJ — funds from this budget could hence be allocated towards the Institute using existing authority. Finally, EPA’s FY 2022 budget for environmental programs and management dedicates approximately $6 million to EJSCREEN — a portion of these funds could be reallocated to the Institute as well.
Conclusion
The Biden-Harris Administration is making unprecedented investments in environmental justice. The AYA Research Institute is designed to be a force multiplier for those investments. Federally sponsored EJ efforts involve multiple programs and management tools that directly rely on the usability and accuracy of EJSCREEN. The AYA Research Institute will increase federal data capacity and help resolve the largest gaps in the data upon which EJSCREEN depends in order to increase the tool’s effectiveness. The Institute will also advance data-driven environmental-justice efforts more broadly by (i) growing the pipeline of EJ-focused researchers experienced in working with data, and (ii) embedding EJ expertise into federal decision making. In sum, the AYA Research Institute will strengthen the federal government’s capacity to strategically and meaningfully advance EJ nationwide.
Many grassroots EJ efforts are focused on working with scientists to better collect and use data to understand the scope of environmental injustices. The AYA Research Institute would allocate in-kind support to advance such efforts and would help ensure that data collected through community-based initiatives is used as appropriate to strengthen federal decision-making tools like EJSCREEN.
EJSCREEN and CEJST are meant to be used in tandem. As the White House explains, “EJSCREEN and CEJST complement each other — the former provides a tool to screen for potential disproportionate environmental burdens and harms at the community level, while the latter defines and maps disadvantaged communities for the purpose of informing how Federal agencies guide the benefits of certain programs, including through the Justice40 Initiative.” As such, improvements to EJSCREEN will inevitably strengthen deployment of CEJST.
Yes. Examples include the U.S. Army War College Strategic Studies Institute and the Asian-Pacific Center for Security Studies. Both entities have been successful and serve as primary research facilities.
To be eligible for the fellowship program, applicants must have completed one year of their doctoral program and be current students in a STEM department. Fellows must propose a research project that would help strengthen EJSCREEN and/or leverage EJSCREEN insights to address a particular EJ issue. Fellows must also clearly demonstrate how they would work with community-based organizations on their proposed projects. Priority would be given to candidates proposing the types of longitudinal studies that are rare but badly needed in the EJ space. To ensure that fellows are well equipped to perform deep community engagement, additional selection criteria for the AYA Research Institute fellowship program could draw from the criteria presented in the rubric for the Harvard Climate Advocacy Fellowship.
A key step will be grounding the Institute in the expertise of salaried, career staff. This will offset potential politicization of research outputs.
EJSCREEN 2.0 is largely using data from the 2020 U.S. Census Bureau’s American Community Survey, as well as many other sources (e.g., the Department of Transportation (DOT) National Transportation Atlas Database, the Community Multiscale Air Quality (CMAQ) modeling system, etc.) The EJSCREEN Technical Document explicates the existing data sources that EJSCREEN relies on.
The demographic indicators are: people of color, low income, unemployment rate, linguistic isolation, less than high school education, under age 5 and over age 64. The environmental indicators are: particulate matter 2.5, ozone, diesel particulate matter, air toxics cancer risk, air toxics respiratory hazard index, traffic proximity and volume, lead paint, Superfund proximity, risk management plan facility proximity, hazardous waste proximity, underground storage tanks and leaking UST, and wastewater discharge.
Creating the Make it in America Regional Challenge
Summary
In response to growing supply chain challenges and rising inflation, the Biden Administration should create a national competition — The Make it in America Regional Challenge (MIARC) — that activates demand in underinvested regions with cluster-based techno-economic development efforts. MIARC would be a $10 billion two phase competition that would award 30-50 regions planning grants and then 10-15 ultimate winners up to $1 billion to strengthen regional capacity in economic clusters that align with critical U.S. supply chain priorities.
Challenge and Opportunity
Roughly one in five Americans mention the high costs of living or fuel prices as the most important problem facing the United States. Meanwhile, the COVID-19 pandemic, global competition with China, and the Russian invasion of Ukraine has exposed significant, long-standing weaknesses in U.S. supply chains. For example, more than 40 percent of active pharmacological ingredients, 50 percent of global personal protective equipment supplies, and 90 percent of chemical ingredients for generic drugs are sourced or made in China.
This is just one small cross-section of a range of critical sectors with diffuse but at-risk supply chains globally. Offshored production in critical sectors not only induces economic loss — like the recent chip shortage which resulted in over $210 billion of foregone revenue — but places a drag on America’s ability to innovate. Indeed, America’s innovation ecosystem has lost the art of “learning-by-building”, the substantial, value-add interactions that happen when manufacturers are seated at the table with designers. The past is full of examples, including solar panels in which China-based firms have captured nearly 80 percent of market share by betting early on manufacturing innovations that precipitated a nearly 100 percent drop in PV cells’ module costs over the last 30 years.
One reason for the breakdown in supply chains is the geographic gap between where innovation and production takes place in America. Currently, there are only a handful of cities with the “industries and a solid base of human capital [to] keep attracting good employers and offering high wages … ecosystems form in these hot cities, complete with innovation companies, funding sources, highly educated workers and a strong service economy.” Increasing the capability for non-“superstar” regions to have comprehensive supply chain solutions that couple research, manufacturing, and distribution would improve these regions’ global competitiveness and drastically reduce the nation’s reliance on unstable, global supply chains. Doing so would create new jobs in distressed communities and strengthen U.S. economic independence.
The $1 billion Build Back Better Regional Challenge (BBBRC) launched in 2021 by the Economic Development Administration offers a recent example of how national competitions can spur both local and national economic competitiveness. The competition received 529 applications from all 50 states and will ultimately award between 20 and 30 regions up to $100 million. Representing tribal, coal, and next-generation hubs of global competitiveness, the 60 finalists each brought unique regional resources to bear including leveraging a total of $30+ billion in federal R&D investments at universities and national labs.
Final awards aside, new and extraordinary local collaborations and clusters have sprouted across these regions due to the convening power of the BBBRC. Congress and the Department of Commerce should take advantage of this nascent, in-real-time progress by creating a new national competition — The Make it in America Regional Challenge (MIARC).
If modeled after BBBRC, MIARC would restore America’s full potential to innovate, with supply chains secured by onshoring innovation and production capacities in both the heartland and coastal regions. But it would also spread bring demand to underinvested “stone cold” markets. In turn, total demand and multi-factor economic growth would skyrocket, while prices would stabilize, from the bottom up and middle out.
This approach should not be attempted in every sector. Given the serious supply chain needs, MIARC should focus on critical innovation industries where manufacturing can play a complementary role: semiconductors, high-capacity batteries, rare earth minerals, and pharmaceuticals. As described in the BBBRC Finalist Proposal Narratives, each region is uniquely positioned to support the growth of different sectors. However, public R&D funding into certain industries often generates spillover patent and citation creation in entirely different fields as well. For example, every patent generated from R&D grant funding for energy technologies yields three more patents in other sectors, suggesting a more holistic economic development strategy from targeted cluster investments.
In fact, extant academic research has described an unparalleled multiplier effect by investing in innovation sectors: “for each new high-tech job in a city, five additional jobs are ultimately created outside of the high-tech sector in that city, both in skilled occupations (lawyers, teachers, nurses) and in unskilled ones (waiters, hairdressers, carpenters).” Exemplifying this effect are America’s top 25 “most dynamic” metros, which over-index on “technology hub” cities that are beginning to spread away from Silicon Valley to previously underutilized regions as “other metros are now more capable than ever of producing the next tech company with a trillion-dollar market value.”
But successful regional innovation is a complex process, dependent on interregional spillovers of private and university knowledge, frequent face-to-face contact and knowledge-sharing between capable workforces, and sufficient resources for startups to commercialize research from labs to the marketplace. To accomplish these effects, MIARC should target investments that support a dual R&D and commercialization effort, similar to BBBRC’s cluster-building approach.
This research-commercialization funding approach would yield dividends, as the Department of Energy, National Science Foundation, and additional Department of Commerce programs are deploying a range of regional economic growth strategies. Stitching together ongoing federal resources — either through research assets such as FFRDCs and national labs, or federal research funding at universities — would multiply the effects of these collective upfront investments. For example, empirical research found that research funding investments generated two times as many startups in the proximity of a national laboratory and three times the amount of successful startups (i.e., $10+ million IPO).
In addition to BBBRC, both the Senate and House have passed different versions of legislation that calls for up to $10 billion for regional “tech hubs”, which programmatically align with the concept of the Make it in America Regional Challenge.
Plan of Action
The Make it in America Regional Challenge would be a $10 billion two phase competition that would award 30-50 regions planning grants and then 10-15 ultimate winners up to $1 billion to strengthen regional capacity in economic clusters that align with critical U.S. supply chain priorities (e.g. semiconductors, lithium batteries, etc.). Drawing from lessons from the BBB Regional Challenge, these investments would be:
- Split across multiple projects within an economic region and focused on a targeted industry or technology cluster that is critical to both regional competitiveness and U.S. economic independence.
- Based on regional supply chain needs, including investments in tailored workforce strategies, innovation, and entrepreneurship.
- Include some percentage of rural counties within the chosen geography, due to the rural-urban nature of supply chains.
In addition, any application design should allow for throughput from BBBRC applications components into MIARC Phase I applications. The existing Phase I BBBRC applicants, regardless of final award, have embarked on a herculean undertaking assembling unique regional coalitions.
In selecting additional regions, the Department of Commerce should identify the industry, the region’s related extent of intersectoral knowledge, its source (e.g., local, neighboring, or external regions), and effect on patenting. For example, recent research describes a serious difference in interregional spillover as “innovation in the chemical and electrical and electronic industries is not affected by long-distance private R&D spillovers while it is in other industries.”
Establishing Village Corps: A National Early Childhood Education (ECE) Program at AmeriCorps
Summary
While becoming a parent can bring great joy, having children can also impose an economic burden on families, reduce familial productivity in society, or cause one or more adults in a family — often mothers — to step back from their careers. In addition, many parents lack access to reliable information and resources related to childhood wellness, nutrition, and development.
As the saying goes, “It takes a village to raise a child.” But what if the metaphorical “village” was our entire nation? The momentum of the American Rescue Plan, as well as the spotlight that the COVID-19 pandemic focused on the demands of caretaking, provides the federal government an opportunity to create a new branch of its existing service corps — AmeriCorps — focused on early childhood education (ECE). This new “Village Corps” branch would train AmeriCorps members in ECE and deploy them to ECE centers across the country, thereby helping fill gaps in childcare availability and quality for working families. The main goals of Village Corps would be to:
- Alleviate the economic burden on parents by making affordable, consistent, and reliable care and education available for all children ages zero to four.
- Address the high turnover rate in ECE by leveraging AmeriCorps as a stable pipeline of ECE workers, and by coupling corps placements in ECE centers with a training program designed to grow and retain the overall ECE workforce.
- Boost the American economy by making it easier for parents with young children — particularly mothers — to stay in the workforce.
- Increase childhood health and education outcomes through high-quality early care.
Challenge and Opportunity
The COVID-19 pandemic has highlighted the vast disparity in childcare services available for families in the United States. Our nation spends only 0.3% of GDP on childcare, lagging most other countries in the Organization for Economic Cooperation and Development (OECD). Put another way, average public spending on childcare for toddlers in the United States is about $500, while the OECD average is more than $14,000 (Figure 1). The problem is compounded by the lack of mandated paid family or medical leave in most states.

The Child Care and Development Block Grant (CCBG)’s Child Care and Development Fund (CCDF) is the primary source of federal funding for childcare. CCDF support is intended to assist eligible families by providing subsidy vouchers for childcare. However, only one out of every nine eligible children actually receives this support, and many families who need support do not meet eligibility requirements. Furthermore, according to the National Center for Children in Poverty, the federal Early Head Start program (which includes infants and toddlers before pre-K age) serves only 3% of those eligible, leaving a major gap for families of children under the age of three.
Limited federal support for families that need childcare creates a vicious cycle. Unlike public school from kindergarten onwards, ECE and childcare facilities rely mostly on parent fees to stay open and operational. When not enough parents can afford to pay, ECE and childcare facilities will lack sufficient revenue to provide high-quality care. Indeed, the Center for American Progress found that “the true cost of licensed child care for an infant is 43 percent more than what providers can be reimbursed through the [CCDF] child care subsidy program and 42 percent more than the price programs currently charge families.” This revenue gap has resulted in a worrying hollowing of our nation’s ECE infrastructure. 51% of Americans live in an area that has few or no licensed1 childcare options. Only in high-income communities does the predominant model of parent-funded childcare provide enough high-quality ECE to meet the demand.
Underfunding has left ECE workers barely making a living wage with little to no benefits; although there has been a heavy public focus on low K–12 teacher salaries, the situation for ECE workers is worse. The average annual salary for childcare workers falls in the lowest second percentile of occupations in the United States, versus the 61st percentile for kindergarten teachers (Figure 2). Poor working conditions and compensation create high turnover in ECE, making it even harder for ECE facilities to meet demand.
Moreover, scholarship and policy initiatives designed to strengthen the training and satisfaction of the ECE workforce tend to focus on lead teachers. Such initiatives largely overlook the needs of assistant teachers/teacher’s aides, even though (i) these support personnel contribute meaningfully to classroom quality, and (ii) professional development at the aide level has been found to increase retention (Figure 3) and improve longer-term career outcomes.


These challenges merit federal intervention. Even though ECE is largely a private endeavor, high-quality and widely available early childcare and education contributes to the public good. Research shows that public investment in childcare pays for itself several times over by making it easier for parents to participate in the labor force. Additionally, spending $1 on early care and education programs has been shown to generate $8.60 in economic activity.
But it is not only the cost of childcare that is inhibitory. In 2016, two million parents made career sacrifices due to problems encountered with obtaining childcare. Mothers and single parents are especially likely to be adversely impacted by limited access to childcare. In 2020, mothers of older children remained more likely to participate in the labor force than mothers with younger children. Families are finding it increasingly difficult within the current system to find and gain access to quality childcare, leading to employment issues and an attrition of women from the workforce. Deploying a federally funded corps to fill the ECE personnel gap would stabilize ECE and childcare centers, creating a strong foundation for families and communities that will yield increased economic growth and equity. Americans have never fully benefited from a federally funded and run childcare system. It is time for the federal government and Congress to treat childcare as a public responsibility rather than a personal one
Plan of Action
Building on momentum for familial support established by the American Rescue Plan, the federal government should launch Village Corps, a new ECE-focused branch of AmeriCorps. AmeriCorps is “one of the only federal agencies tasked with elevating service and volunteerism in America.” AmeriCorps also has a long history of implementing programs in classrooms throughout the United States to “support students’ social, emotional, and academic development”, but has never had a program dedicated exclusively to training and placing Corps members in ECE. Village Corps would do just that. Participants in Village Corps would receive federally administered and/or sponsored training in fundamental aspects of high-quality ECE, including but not limited to CPR and first aid, child-abuse prevention, appropriate child and language development, classroom management, and child psychology. Village Corps members would then be placed in ECE centers across the country, providing an affordable, reliable source of infant and early childhood care for working families in the United States. Village Corps members would also have access to ongoing professional-development opportunities, enabling them to ultimately receive a Child Development Associate® (CDA) or similar tangible credential, and preparing them to pursue longer-term career opportunities in ECE.
Village Corps can be developed and deployed via the following steps:
Step 1. Establish Village Corps as a new programmatic branch of AmeriCorps.
AmeriCorps already comprises several distinct branches, including State and National, VISTA, and RSVP. Village Corps would be a new programmatic branch focused on training corps members in ECE and placing them in ECE centers nationwide. The program could start by placing corps members in Early Head Start and Head Start locations, since these are directly funded by the federal government. Piloting the program for a year at 10 sites, with five corps members per site, would require about $2 million: $1.25 million to cover salary costs, plus an additional $750,000 to subsidize living and healthcare expenses, provide an optional education credit, and account for administrative costs.
Program reach could ultimately be expanded to additional childcare centers. The federal government could even consider creating and operating a new network of ECE centers staffed predominantly or exclusively by corps members. As Village Corps develops and grows, it should prioritize placements in states, regions, and cities where a disproportionate share of the population lives in a childcare desert.
Step 2. Develop the core components of the Village Corps volunteer experience.
Recruitment and placement of Village Corps participants should follow the same general mechanisms used for other AmeriCorps divisions; however, the program should strive to place Village Corps participants in positions within their own communities. Village Corps service should be for a minimum of one year, with the option to extend to two. In addition to a modest salary, access to healthcare benefits, and a possible living stipend, Village Corps participants should receive the following benefits:
- Student loan forgiveness. There is precedent for AmeriCorps offering participants assistance with student loan debt: AmeriCorps service counts towards Public Service Loan Forgiveness and may make participants eligible for temporary loan forbearance; the Segal AmeriCorps Education Award can also be used to repay qualified student loans and/or to pay current educational expenses at eligible institutions. Expanding this precedent — at least temporarily — to provide complete student-loan forgiveness for Village Corps participants would be a compelling way to attract initial cohorts and help get the program off the ground.
- Non-Competitive Eligibility status to give Village Corps alumni a step up in the federal hiring process.
- A pathway to Child Development Associate® (CDA) credentialing. The CDA® credentialing program “is a professional development opportunity for early educators working in a variety of settings with children ages birth to 5 years old”. Earning a CDA credential yields multiple benefitsfor people interested in pursuing careers in ECE. CDA® credentials can currently be earned through a variety of pathways. AmeriCorps should work with the Council for Professional Recognition on establishing a designated pathway for Village Corps members.
- Connections to future career opportunities. Leveraging models like Grow Your Own Teachers, Village Corps should provide participants with structured avenues to translate skills and experienced acquired during their service into long-term career opportunities in their home communities. Additionally, Village Corps and its training could be utilized as a talent pipeline and pathway for upward mobility in Head Start and Early Head Start centers.
Step 3. Build a path for program funding and growth.
To start, the Biden-Harris Administration should work with the House Committee on Education and Labor and the Senate HELP Committee to see if Village Corps can be integrated into legislation like the Universal Child Care and Early Learning Act. The Administration could also consider launching Village Corps as part of the American Families Plan, and/or capitalizing on the budget reconciliation package for Build Back Better. This package is awarding $9.5 billion in grants to Head Start agencies in states that have not received payments under universal preschool programs and $2.5 billion annually for FY2022–2027 to improve compensation for Head Start staff. An additional way to make the program even more attractive would be to propose cost-matching of federal funds for Village Corps by states (if program participants are deployed in state-aided childcare centers), and/or through partnerships with key stakeholders and philanthropic organizations (e.g., Child Care Aware of America, the Child Care Network, the National Association for the Education of Young Children (NAEYC), and the First Five Year Fund) that have a history of supporting expansion and access to ECE. Given the downstream effects of ECE disparity in the workforce, capitalizing on the Defense Production Act could also be an avenue of support for Village Corps (see FAQ). For the longer term, the federal government could consider complementing Village Corps with a Federal Childcare and Education Savings Account (CESA) that would further subsidize childcare for families nationwide.
Conclusion
The COVID-19 pandemic has highlighted gaping holes in our national early childhood care and education (ECE) fabric and has significantly exacerbated a failing system. The effects of this failure are widespread, compromising familial stability and economic security, the health, and future outcomes of American children, ECE worker retention, national productivity, and workforce participation. Establishing a new ECE-focused branch of AmeriCorps is an innovative solution to a pressing issue: a solution that builds on existing programmatic infrastructure to use talent and funds efficiently and equitably. Village Corps would create a talent pipeline for future ECE educators, boost the American workforce, and make high-quality infant and childcare easily accessible to all working families.
Current federal assistance for ECE is provided in the forms of subsidies and grants. This avenue is limited in its impact, reaching only 1 in 9 eligible families. Moreover, licensed childcare in many instances costs 43% more than what providers are eligible to be reimbursed for through federal childcare subsidies, and 42% more than what providers can sustainably charge families. This disparity between subsidized and actual costs has created a system that underpays ECE providers, resulting in lower-quality childcare and scarce availability of childcare slots for subsidy-eligible families. Additionally, because even federally subsidized ECE centers rely heavily on fees collected by families, they are at higher risk of closure during difficult times (such as the COVID-19 pandemic) than educational facilities (e.g., K–12 schools) that are fully federally funded.
The federal government could try to remedy these issues through a massive infusion of cash into childcare subsidy programs. But a national-service-oriented approach — i.e., working through AmeriCorps to direct additional human capital to ECE — is a creative and potentially more cost-efficient strategy that is worth trying.
The first suite of Village Corps participants will be placed at existing Early Head Start Centers, which must adhere to a strict set of performance standards. In later years, Village Corps could partner with state agencies or NGOs and philanthropic organizations that support ECE centers in areas characterized by childcare deserts.
Not directly, but it has been shown that teachers and caregivers who work in publicly funded settings earn higher wages than those in non-publicly funded settings. Hence it is reasonable to expect that public funding for ECE will translate into higher salaries for ECE workers.
AmeriCorps currently has seven sub-programs through which it disseminates volunteers; Village Corps would become the eighth. As a sub-program of AmeriCorps, Village Corps participants would have to undergo the general AmeriCorps application process to be selected to serve. In addition, Village Corps should look for the following traits in its applicants:
- Coachable
- Accountable
- Problem solver and critical thinker
- Takes initiative and possess leadership qualities
- Resilient
- Adaptive
- Excels in a fast paced/challenging environment
- Team player
5. What is an alternative support mechanism for Village Corps?
A lack of quality ECE options has a dramatic effect on workforce participation. The market failure of undersupplied ECE options decreases economic productivity. Village Corps would address some of these market failures by stabilizing the ECE workforce and fulfilling the labor requirements for high-quality ECE centers, thereby enabling families to increase workforce participation and economic productivity. Increased workforce participation is especially important for helping the United States remain globally competitive in science, technology, engineering, and math (STEM) fields. 40% of women and 23% of men in full-time STEM jobs leave or switch to part-time work after their first child. Taken together, these facts make a compelling case for using the Defense Production Act to support Village Corps.
There is precedent for the government utilizing funds in this manner. During World War II, large-scale entry of women into the workforce created sudden and pressing demands for childcare. Congress responded by passing the Defense Housing and Community Facilities and Services Act of 1940, also known as the Lanham Act. The law funded public works — including childcare facilities — in communities that had defense industries. About 3,000 federally subsidized and run Lanham centers ultimately provided childcare for up to six days a week and certain holidays. Parents only paid the equivalent today of $10/day for care.
Establishing a National Endemic Disease Surveillance Initiative (NEDSI)
Summary
Global pandemics cause major human and financial losses. Our nation has suffered nearly a million deaths associated with COVID-19 to date. The Congressional Budget Office estimates that COVID-19 will cost the United States $7.6 trillion in lost economic output over the next decade. While much has rightly been written on preventing the next pandemic, far less attention has been paid to mitigating the compounding effects of endemic diseases. Endemic diseases are consistently present over time and typically restricted to a defined geographic region. Such diseases can exacerbate pandemic-associated financial losses, complicate patient care, and delay patient recovery. In a clinical context, endemic diseases can worsen existing infections and compromise patient outcomes. For example, co-infections with endemic diseases increase the likelihood of patient mortality from pandemic diseases like COVID-19 and H1N1 influenza.
Accurate and timely data on the prevalence of endemic diseases enables public-health officials to minimize the above-cited burdens through proactive response. Yet the U.S. government does not mandate reporting and/or monitoring of many endemic diseases. The Biden-Harris administration should use American Rescue Plan funds to establish a National Endemic Disease Surveillance Initiative (NEDSI), within the National Notifiable Disease Surveillance System (NNDSS), to remove barriers to monitoring endemic, infectious diseases and to incentivize reporting. The NEDSI will support the goals of the Centers for Disease Control and Prevention (CDC)’s Data Modernization Initiative by providing robust infection data on a typically overlooked suite of diseases in the United States. Specifically, the NEDSI will:
- Provide healthcare practitioners with resources to implement/upgrade digital disease reporting.
- Support effective allocation of funding to hospitals, clinics, and healthcare providers in regions with severe endemic disease.
- Prepare quarterly memos updating healthcare providers about endemic disease prevalence and spread.
- Alert citizens and health-care practitioners in real time of notable infections and disease outbreaks.
- Track and predict endemic-disease burden, enabling strategic-intervention planning within the CDC and with partner entities.
Challenge and Opportunity
The COVID-19 pandemic highlighted the need for a multilevel approach to addressing endemic diseases. Endemic diseases are defined as those that persist at relatively stable case numbers within a defined geographic region. Though endemic diseases are typically geographically restricted, changes in population movement, population behaviors, and environmental conditions are increasing the incidence of endemic diseases. For example, Valley fever, a fungal respiratory disease endemic to the California Central Valley and the American Southwest, is predicted to spread to the American Midwest by 2060 due to climate change.
Better preparing the United States for future pandemics depends partly on better countering endemic disease. Effective patient care during a pandemic requires clinicians to treat not only the primary infection, but also potential secondary infections arising from endemic pathogens taking advantage of a weakened, preoccupied host immune system. Though typically not dangerous on their own, secondary infections from even common fungi such as Aspergillus or Candida can become deadly if the host is pre-infected with a respiratory virus. On the individual level, secondary infections with endemic diseases adversely impact patient recovery and survival rates. On the state level, secondary infections impose major healthcare costs by prolonging patient recovery and increasing medical intervention needs. And on the national level, poor endemic-disease management in one state can cause disease persistence and spread to other states.
Robust surveillance is integral to endemic-disease management. The case of endemic schistosomiasis in the Sichuan province of China illustrates the point. Though the province successfully controlled the disease initially, decreased funding for disease tracking and management—and hence lack of awareness and apathy among stakeholders—caused the disease to re-emerge and case numbers to grow. During active endemic-disease outbreaks, comprehensive data improves decision-making by reflecting the real-time state of infections. In between outbreaks, high-quality surveillance data enables more accurate prediction and thus timely, life-saving intervention. Yet the U.S. government mandates reporting and/or monitoring of relatively few endemic diseases.
Part of the problem is that improvements are needed in our national infrastructure for tracking and reporting diseases of concern. Approximately 95% of all hospitals within the United States use some form of electronic health record (EHR) keeping, but not all hospitals have the same resources to maintain or use EHR systems. For example, rural hospitals generally have poorer capacity to send, receive, find, and integrate patient-care reports. This results in drastic variation in case-reporting quality across the United States: and hence drastic variation in availability of the standardized, accurate data that policy and decision makers need to maximize public health.
With these issues in mind, the Biden-Harris administration should use American Rescue Plan (ARP) funds to establish a National Endemic Disease Surveillance Initiative (NEDSI) within the CDC’s National Notifiable Disease Surveillance System (NNDSS). Fighting an individual pandemic disease is difficult enough. We need better systems to stop endemic diseases from making the battle worse. Implementing NEDSI will equip decision makers with the data they need to respond to real-time needs— thereby protecting our nation’s economy and, more importantly, our people’s lives.
Plan of Action
To build NEDSI, the CDC should use a portion of the $500 million allocated in the ARP to strengthen surveillance and analytic infrastructure and build infectious-disease forecasting systems. NEDSI will support the goals of the CDC’s Data Modernization Initiative by allocating resources to implement and/or upgrade digital-disease reporting capabilities needed to obtain robust infection data on endemic diseases. Specifically, NEDSI would strive to minimize healthcare burdens of endemic diseases through the following four actions:
- Disease monitoring. NEDSI will identify and track notable endemic infectious diseases for each state, including but not exclusive to (i) existing infectious diseases with historical presence and/or relevance, and (ii) infectious diseases that disproportionately impact particular workers. For example, Valley fever disproportionately impacts those employed in outdoor occupations related to ground/soil work (such as agricultural workers, solar farmers, construction workers, etc.). Endemic-disease reporting under NEDSI will follow reporting templates and frameworks that have already been developed by the NNDSS, but will also include information on co-infections (i.e., whether a reported endemic-disease case was a primary, secondary, or higher-order infection).
- Disease notification. As part of monitoring, case-report numbers that rise above historical norms will be automatically flagged for alerts to community members, health-care providers, public-health officials, and other stakeholders.
- Alerts to community members will be geotargeted (for example, by city, county, or region), enabling residents and travelers in endemic zones to take precautions. Alerts will be text-message-based and include resource links vetted by public-health experts.
- Alerts to health-care providers will contain links to resources providing the latest information on accurate diagnosis and appropriate treatment of the disease in question. This will allow providers to quickly identify emerging cases of the disease, as well as to prepare for above-average use/need of particular treatments and equipment.
- Alerts to public-health officials will help shape recommendations for travel restrictions, emergency-funding requests and allocations, and rapid-response resources.
- Disease prediction. NEDSI will work with the CDC and the National Institutes of Health (NIH) to build an endemic-disease prediction model that ranks the severity of current and anticipated endemic-disease burden by geographic region in the United States, enabling proactive intervention against emerging threats.
- Model insights will be shared with the Federal Emergency Management Agency (FEMA) and state health departments to inform allocation of funds (e.g., from the federal-to-state and state-to-county levels) to support public health.
- Key model insights could also be posted on the CDC’s website and transmitted in notices to regional public-health officials and healthcare practitioners, especially when predicted risks and infection trends are high.
- Data underlying the model should be made publicly available and accessible to support external disease-modeling and -prediction efforts.
- In alignment with priorities of the Data Modernization Initiative and the American Pandemic Preparedness Plan, the CDC could also consider offering financial assistance (e.g., through grants or cooperative agreements) to external research efforts conducted in partnership with NEDSI and/or using NEDSI data. NEDSI and NNDSS should work to identify key research targets and promote them appropriately in Notices of Funding Opportunities.
- Health education. The NNDSS, utilizing data and model outputs from NEDSI, should prepare quarterly memos synthesizing key information related to endemic diseases in the United States, including (i) summary statistics of endemic-disease case numbers and co-infections by state and county; (ii) an up-to-date list of available treatments, medications, and therapies for different endemic diseases, and (iii) predicted disease trends for coming months and years. Memos should be published digitally and archived on the CDC website. Publication of each memo should be accompanied by a digital campaign to help spread the resource to healthcare practitioners, public-health authorities, and other stakeholders. NEDSI representatives should also prioritize participation in disease-specific research/clinical conferences to ensure that the latest scientific findings and developments are reflected in the memos.
Conclusion
Despite the clear burdens that endemic diseases impose, such diseases are still largely understudied and poorly understood. Until we have better knowledge of immunology related to endemic-disease co-infections, our best “treatment” is robust surveillance of opportunistic co-infections—surveillance that will enable proactive steps to minimize endemic-disease impacts on already vulnerable populations. Establishing a National Endemic Disease Surveillance Initiative within the National Notifiable Disease Surveillance System will close a critical gap in our nation’s disease-monitoring and -reporting infrastructure, helping reduce healthcare burdens while strengthening pandemic preparedness.
NEDSI, like other systems standardizing and streamlining disease reporting, will allow healthcare practitioners to efficiently—and in some cases, automatically—share data on endemic diseases. Such real-time, consistent data are invaluable for informing public-health responses as well as future emergency planning.
An ounce of endemic-disease prevention is worth far more than a pound of cure—and effective prevention depends on effective monitoring. Research shows that endemic diseases account for an alarming number of co-infections with COVID-19. These co-infections have detrimental impacts on patient outcomes. Further, population growth and migration trends are increasing transmission of and exposure to endemic diseases. Mitigating the severity of future epidemics and pandemics hence requires near-term investment in endemic-disease monitoring.
Yes: even in non-pandemic times, co-infections represent a major risk for the immunocompromised and elderly. AIDS patients succumb to secondary infections as a direct result of becoming immunocompromised by their primary HIV infection. Annual flu seasons are worsened by opportunistic co-infections. Monitoring and tracking endemic diseases and their co-infection rates will help mitigate existing healthcare burdens even outside the scope of a pandemic.
Due to a combination of funding challenges and lack of research progress/understanding, endemic-disease monitoring was only recently identified as a crucial gap in overall infectious disease preparedness. But now, with allocated funds from the American Rescue Plan to strengthen surveillance and infectious-disease forecasting systems, there is a historic opportunity to invest in this important area
Taking Out the Space Trash: Creating an Advanced Market Commitment for Recycling and Removing Large-Scale Space Debris
Summary
In the coming decades, the United States’ space industry stands to grow into one of the country’s most significant civil, defense, and commercial infrastructure providers. However, this nearly $500 billion market is threatened by a growing problem: space trash. Nonoperational satellites and other large-scale debris items have accumulated in space for decades as a kind of celestial junkyard, posing a serious security risk to future business endeavors. When companies launch new satellites needed for GPS, internet services, and military operations into Earth’s lower orbit, they risk colliding with dead equipment in the ever-crowding atmosphere. While the last major satellite collision was over a decade ago, it is only a matter of time until the next occurs. As space traffic density increases, scientists project that collisions (and loss of satellite-based services as a result) will become progressively problematic and frequent.
Due to the speed of innovation within the space industry, the rate of space commercialization is outpacing the federal government’s regulatory paradigms. Therefore, the U.S. government should give businesses the means to resolve the space debris problem directly. To do so, the Federal Communications Commission (FCC), National Aeronautics and Space Administration (NASA), the U.S. Space Force, and the Department of Commerce (DOC) should create an advanced market commitment for recycling and de-orbiting satellites and large-sized debris. By incentivizing businesses with financial stimulus, novel regulation, and sustained market ecosystems, the federal government can mitigate the space debris problem in a way that also bolsters national economic growth.
Challenge and Opportunity
The sustainability and security of Earth’s outer orbit and the future success of launch missions depend on the removal of sixty years’ worth of accumulated space debris. The space debris population in the lower-Earth orbit (LEO) region has reached the point where the environment is considered unstable. Over 8,000 metric tons of dead, human-deposited objects orbit the planet, including over 13,000 defunct satellites. While this accumulated trash is the product of numerous countries’ space activities, the United States is an undeniably large contributor to the problem. Approximately 30% of orbiting, functional satellites belong to the United States. As such, we as a nation have a responsibility to tackle the space debris challenge head-on.

Space is becoming littered with dead satellites, and the United States is a major contributor. Over 19,000 satellites have been launched between 1950 and 2020 and currently orbit the Earth (Tile A). The red dots in Tile B above represent the satellites, both dead and active, owned and launched by the United States. Nearly 70% of all satellites in orbit are classified as “junk” (Tile C). The United States is one of the largest contributors of satellite refuse, second only to Russia (4,138 satellites vs. 4,714; Tile D). (Source: Generated using ESRI satellite data)
Our nation’s responsibility is especially acute since rapid growth in the American commercial space sector is likely to further exacerbate the space debris problem. New technology advancements mean that it is cheaper than ever to manufacture and launch new satellites. Additionally, recent improvements in rocket engineering and design provide more economical options for getting payloads into space. This changing cost environment means that the space industry is no longer monopolized by a select number of large, multinational companies. Instead, smaller businesses now face fewer barriers-to-entry for satellite deployment and have an equal opportunity to compete in the market. However, since space debris management is not yet fully regulated, this increased commercial activity means that more industries may be littering LEO in the near future.
America’s mounting demand for satellite-based services will congest LEO’s already crowded environment even further. The U.S. defense sector in particular requires further space resources due to their reliance on sophisticated communication and image-capturing capabilities. As a result, the Department of Defense (DOD) has started recruiting space industries to provide these services through increased satellite deployment in LEO. Additionally, the COVID-19 pandemic has boosted consumer demand for satellite-based internet. In response, space industries are racing to extend broadband access to rural areas and remote populations, an effort which the Biden Administration hopes to support through the Bipartisan Infrastructure Deal. Overall, this combined demand for commercial satellite services from the American public and federal government means that more launches will occur in the years ahead and add to the ongoing debris issue.
The worsening congestion in outer space is a severe nuisance for America’s space industry. Floating trash in LEO creates an immediate physical barrier to commercial space activity. Rocket launches and payload delivery must first chart a safe flight that avoids collision with pre-orbiting objects, which, given the growing congestion in LEO, will only become more difficult in the future.
The space debris issue is also a serious security risk that may one day end in disaster. If space traffic becomes too dense, a single collision between two large objects could produce a cloud of thousands of small-scale debris. These fragments could, in turn, act as lethal missiles that hit other objects in orbit, thereby causing even more collisional debris. This cascade of destruction, known as the Kessler Syndrome, ultimately results in a scenario where LEO is saturated with uncontrollable projectiles that render further space launch, exploration, and development impossible. The financial, industrial, and societal consequences of this situation would be devastating.

Space debris, especially debris resulting from collisions, is projected to grow significantly in the years ahead. Lines in this figure represent the number of trackable low-Earth orbit (LEO) objects (based on a NASA-based mathematical simulation). The blue line represents rocket bodies, spacecrafts, and other launch-related refuse that have not experienced breakups. The brown line represents debris resulting from explosions, which are caused by internal malfunctions of a given piece of equipment. The pink line represents debris resulting from two or more objects colliding with one another in orbit. (Source: Science Magazine)
If outer space is to remain a viable environment for development and industry, the space debris problem must be solved. NASA and other space agencies have shown that at least five to ten of the most massive debris objects must be removed each year to prevent space debris accumulation from getting out of hand. Orbital decay from atmospheric drag, the only natural space clean-up process, is insufficient for removing large-sized debris. In fact, orbital decay could compound problems posed by massive debris objects as surface erosion may cause wakes of smaller debris cast-offs. Therefore, cleanup and removal of massive debris objects must be done manually.
According to the National Space Policy, the U.S. government can “develop governmental space systems only when it is in the national interest and there is no suitable, cost-effective U.S. commercial or, as appropriate, foreign commercial service or system that is or will be available.” As such, any future U.S. space cleanup program must actively involve the space industry sector to be successful. Such a program must create an environment where space debris removal is a competitive economic opportunity rather than an obligation.
Presently, an industrial sector focused on space debris removal and recycling—including on-site satellite servicing, in-orbit equipment repair and satellite life extensions, satellite end-of-life services, and active debris removal—remains nascent at best. However, the potential and importance of this sector is becoming increasingly evident. The U.S. Defense Advanced Research Projects Agency’s Robotic Servicing of Geosynchronous Satellites program seeks to cheaply recycle still-functioning pieces of defunct satellites and incorporate them into new space systems. Northrop Grumman, an American multinational aerospace and defense-technology company, as well as a number of other small and medium-sized U.S. businesses, have ongoing projects to build in-orbit recycling systems to reduce the costs and risks of new satellite launches. However, federal intervention is needed to rapidly stimulate further growth in this sector and to address the following challenges:
- The cost of active space debris removal, satellite decommissioning and recycling, and other cleanup activities is largely unknown, which dissuades novel business ventures.
- Space law can be convoluted and the right to access satellites and own or reuse recycled material is contentious. To generate a successful large-scale debris mitigation economy, business norms and regulations need to be further defined with safety nets in place.
- The large debris objects that pose the greatest collision risks need to be prioritized for decommission. These objects have not yet been identified, nor has their cleanup been prioritized.
Plan of Action
To address the aforementioned challenges, multiple offices within the federal government will need to coordinate and support the American space industry. Specifically, they will need to create an advanced market commitment for space debris removal and recycling, using financial incentives and new regulatory mechanisms to support this emerging market. To achieve this goal, we recommend the following five policy steps:
Recommendation 1. The Federal Communications Commission (FCC), Federal Aviation Administration (FAA), and National Oceanic and Atmospheric Administration (NOAA) should collaborate to provide U.S. space industries with a standard means of identifying which satellites are viable for recycling once they have reached the end of their life cycle.
One reason why the satellite and large debris object recycling and removal industry remains small is because the market is small. The market can be grown by creating a verified system for satellite providers and operators to indicate that their equipment can be recycled or decommissioned by secondary service providers once a mission is completed. To encourage widespread use of this elective registration system, it will need to be incentivized and incorporated into ongoing satellite and rocket regulatory schemes.
Because federal authority over space activity has evolved over time, multiple federal agencies currently regulate the commercial space industry. The FCC licenses commercial satellite communications, the FAA licenses commercial launch and reentry vehicles (i.e., rockets and spaceplanes) as well as commercial spaceports, and NOAA licenses commercial Earth remote-sensing satellites. These agencies must collaborate to develop a standard and centralized registration system that promotes satellite recycling.
Industries will need incentives for opting into this registration system and for marking their equipment as recyclable and decommission-viable. With respect to the former, the recycling registration mechanism should be incorporated into federal pre-launch or pre-licensing protocols. With respect to the latter, the FCC, the FAA, and NOAA could:
- Coordinate with satellite and space insurance industries to offer reduced premiums to those who elect into the registration system.
- Coordinate with satellite and space insurance industries to offer a subsidy for in-orbit satellites that retroactively enroll.
- Offer prioritized licensing or expedited payload launch to registered satellites and rockets.
Recommendation 2. NASA’s Orbital Debris Program Office (ODPO), in coordination with the DOD’s Space Surveillance Network, should create a prioritized list of massive space debris items in LEO for expedited cleanup.
Rocket bodies, nonfunctioning satellites, and other large debris represent the highest percentage of overall orbital debris mass in LEO. Since these objects pose the highest risks of additional debris generation through collisions and decay, reducing their stay in LEO is a priority. However, given the continuous generation of space debris and sometimes uncertain or tenuous ownership of older debris items, the federal government needs to create a public and regularly updated “large-debris criticality” index. This index would give large debris items a risk-assessment score based on (i) their ability to generate additional debris through erosion or collision, (ii) the feasibility of their removal, (iii) their ownership status, and (iv) other risk factors. Objects that were put into orbit before NASA ODPO issued its standard debris mitigation guidelines need to be assessed retroactively.
By creating and regularly updating this public index, the federal government would make it easier for public and private actors alike to identify which debris items need to be prioritized for cleanup, what risks are involved, and what technology may be required for successful removal.
Recommendation 3. The Space Force, in collaboration with the Department of Commerce (DOC), should fund removal and/or recycling of a set number of large debris objects each year, thereby creating a reliable market for space debris removal.
By committing to fully or partially fund the NASA-recommended removal of five to ten large debris items each year, the Space Force and the DOC would lower the risk of business entry into the orbital debris removal market and create a sustained market economy for space debris mitigation. The specific monetary reward offered by these agencies for debris removal could be commensurate with the nature and size of the debris item, the speed of removal, and the manner of removal. An additional payout could be offered for the removal of a high-priority large debris item (e.g., an item identified in Recommendation 2 above), or for debris removal that is done sustainably (e.g., in ways that recycle or reuse parts and do not generate secondary, smaller debris).
Recommendation 4. The Space Force – Space Systems Command should coordinate with NASA’s Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) program to issue a satellite design-based grand challenge aimed at facilitating future satellite recycling efforts.
Grand challenges are popular and often effective tools for stimulating public interest in a given issue and advancing technologies. However, they can fall short of creating a sustainable, long-lasting commercial industry. The Space Force and NASA can overcome this difficulty by designing a grand challenge wherein: (i) research and development costs are shared among private and public participants; (ii) multiple winners are selected at the end of the challenge; (iii) winners are chosen based on whether they meet government capability thresholds in addition to being commercially viable; and (iv) challenge winners are guaranteed a long-term government service contract.
For this grand challenge, Space Force and NASA should encourage the creation and, afterwards, widespread commercial use of satellite design strategies that facilitate satellite recycling, mission extension, or deconstruction. Specifically, the design challenge should focus on:
- Providing enhanced protection against mission-ending impacts by small orbital debris.
- Generating standardized features (e.g., docking mechanisms) that allow future servicing equipment to latch in orbit for repair, deconstruction, and recycling.
- Crafting modular and scalable components that can be easily swapped out, removed, and replaced and thereby lead to downstream recycling and repair.
Recommendation 5. NOAA’s Office of Space Commerce, in conjunction with the Space Force and NASA’s ODPO, should jointly issue an annual research report outlining risk, cost-benefit analyses, and the economics of orbital debris removal and recycling.
For the growing number of debris recycling and satellite maintenance industries, large orbital debris represent a potential source of valuable materials and resources. While it is theorized that repurposing or salvaging these large debris objects may be more cost effective than de-orbiting them, exact costs and benefits are often unspecified. Additionally, the financial repercussions of accumulating space debris and collisions are largely unknown.
If industries know the upfront expenses and potential profit of space debris removal, the debris removal market will be far less risky and more lucrative. NASA, NOAA, and the Space Force can fill that information gap by collaboratively creating better tools to assess both the risk and costs posed by orbital debris to future uses of space, including commercial development and investment.
Conclusion
For America’s space industry to grow to its full potential, end-of-life satellites and other orbiting dead equipment need to be cleared from Earth’s lower orbit. Without removing these items, the increasing possibility of a severe in-orbit collision poses a major security risk to civilian, military, and commercial infrastructure providers. By creating an advanced market commitment for recycling and de-orbiting large-sized debris items, the federal government does more than just address the growing space debris problem. It also creates a new market for the U.S. space industry and stimulates further economic growth for the country. Additionally, it encourages greater public-private collaboration as well as consistent communication between crucial offices within the U.S. government.
Global space governance is very complicated since no single country has a right to this territory. As such, space activity is broadly guided by UN treaties such as the Outer Space Treaty of 1967 and the Moon Agreement of 1979. While these treaties establish important guidelines for the peaceful use of space, they fail to address important present-day concerns, such as governing space debris and private industry activity. Thus, these treaties are not fully able to guide modern challenges in space commercialization. It is also important to note that it took nearly ten years for diplomats to reach an agreement and ratify these treaties. Therefore, the timeline needed to either revisit outer space treaties or craft new ones is too slow to fully match the breakneck speed at which space activity is developing today. Given the U.S. space industry’s influential role in shaping behaviors and norms in outer space, addressing the space debris problem effectively will require the U.S. space industry sector’s involvement.
In 2018, the FAA estimated the value of the U.S. space industry at approximately $158 billion. Since then, the space economy has continued to grow, largely due to a record period of private investment and new investor opportunities in spaceflight, satellite, and other space-related companies. As a result, the space industry was valued at $424 billion in 2019. By 2030, it is believed that the space industry will be one of the most valuable sectors of the U.S. economy, with a projected value of between $1.5 and $3 trillion.
It all has to do with cost. Mounting competition among private space companies means it is cheaper than ever to launch equipment into space, which creates numerous opportunities for businesses to meet the ever-increasing need for alternative supply chain routes and satellite-based internet connectivity.
From 1970–2000, the cost of launching a kilogram of material into space remained fairly steady and was determined primarily by NASA. When NASA’s space shuttle fleet was in operation, it could launch a payload of 27,500 kilograms for $1.5 billion($54,500 per kilogram). Today, SpaceX’s Falcon 9 rocket advertises a cost of just $62 million to launch 22,800 kilograms ($2,720 per kilogram). In other words, commercial launch has reduced the cost of getting a satellite into LEO by a factor of 20. Additional developments in reusable rocket technology may decrease that cost to just $5 million in the future. Improvements in satellite technology and mass production will further cut costs and make more launches possible. It is projected that satellite mass production techniques could decrease launch cost from $500 million per satellite to $500,000.
Decreasing costs lead to increasing rocket and satellite launch rates and, hence, to increasing accumulation of space debris.
If the satellites in question are active, fully functioning, and capable of maneuvering, then to an extent—yes. Satellites can be remotely programmed to change course and avoid a collision. Even under these circumstances, though, these objects adhere to the laws of physics; it can take a lot of energy to alter their orbit to avoid a crash. As such, most satellite operators require hours or days to plan and execute a collision avoidance maneuver.
Not all active equipment is capable of maneuvering, though; there is no way to control objects that are inactive or dead. So, orbiting debris are uncontrollable.
To date, there is no official or internationally recognized “Space Traffic Control” agency. Within the U.S., responsibility for space traffic surveillance is shared among numerous government agencies and even some companies.
Satellites and rockets are not designed for disposal; they’re designed to withstand the tremendous aerodynamic forces, heat, drag, etc. experienced when exiting the Earth’s atmosphere. Furthermore, many satellites are built with reinforcements to maintain orbit and withstand minor collisions with space debris. Hence, breaking down, recycling, and fixing satellites in space is currently very challenging.
LEO is defined as the area close to Earth’s surface (between 160 and 1,000 km). This territory is especially viable for satellites for several reasons. First, the close distance to Earth means that it takes less fuel to station satellites in orbit, making LEO one of the cheapest options for space industries. Second, LEO satellites do not always have to follow a strict path around Earth’s equator; they can instead follow tilted and angled orbital paths. This means there are more available flight routes for satellites in LEO, making it an attractive territory for space industries. As a result, most satellites and, by consequence, the majority of satellite junk is located in LEO. (See first image in Challenge and Opportunity of littered satellites).
Smaller debris do outnumber larger debris in outer space. According to NASA, there are approximately 23,000 pieces of debris larger than a softball orbiting the Earth. There are 500,000 pieces of debris the size of a marble (up to 0.4 inches, or 1 centimeter), and approximately 100 million pieces of debris that are about .04 inches (or 1 millimeter) and larger. Micrometer-sized (0.000039 of an inch in diameter) debris are even more abundant. These small-sized space debris may be traveling upwards of 17,500 mph, meaning they can do massive amounts of damage during collisions.
Clearly (see image below), small debris are also a significant security risk and should be included in space debris cleanup considerations. However, an inability to track small-scale debris orbits, the specific challenges in “catching” these small, high velocity objects, and a significant lack of reliable information on small-sized space debris means that this aspect of space debris mitigation will likely require its own unique policy actions.
We presently have more data on large-sized debris, and these items pose the greatest threat to ongoing space efforts, should they collide. Therefore, this memo focuses on policy actions targeting these debris items first.
Regulating Probiotic Use and Improving Veterinary Care to Bolster Honeybee Health
This memo is part of the Day One Project Early Career Science Policy Accelerator, a joint initiative between the Federation of American Scientists & the National Science Policy Network.
Summary
One-third of the food Americans eat comes from honeybee-pollinated crops. Honeybees used for commercial pollination operations are routinely treated with antibiotics as a preventative measure against bacterial infections. Pre- and probiotics are marketed to beekeepers to help restore honeybee gut health and improve overall immune function. However, there is little to no federal oversight of these supplements. Apiculture supplements currently on the market are expensive but often ineffective. This leaves unaware farmers wasting money on “snake oil” products while honeybee colonies remain weakened — threatening not just the U.S. agricultural economy, but also the livelihoods of beekeepers and farmers. At the same time, widespread use of antibiotics in apiculture puts honeybees at high risk of spreading antibiotic resistance.
To address these issues, the Food and Drug Administration (FDA)’s Office of Human and Animal Food Operations and the U.S. Department of Agriculture (USDA)’s National Institute for Food and Agriculture (NIFA) should work together to (1) create an FDA review and approval process for pre- and probiotic apiculture products, (2) design educational programs designed to educate veterinarians on best practices for beekeeping health and husbandry, and (3) offer grants to help farmers and apiculturists access high-quality veterinary care for honeybee colonies.
Challenge and Opportunity
Honeybee pollination services are pivotal to the U.S. agricultural economy. It is estimated that about one-third of the food Americans eat comes from crops pollinated by honeybees. Throughout the past decade, beekeepers have suffered colony losses that make commercial apiculture challenging. These colony losses are caused by complex and interconnected issues including the rise of honeybee diseases such as bacterial infections like American Foulbrood or viral infections linked to pests like the Varroa mite, a general increase in hive pests, habitat fragmentation and nutrition loss, and increased use of pesticides and/or pesticide exposure.
The substantial threats posed by bacterial and viral diseases to honeybee colonies have driven commercial beekeeping operations to routinely treat their hives with antibiotics (mainly oxytetracycline). Unfortunately, antibiotic treatment can also (i) compromise honeybee health by wiping out beneficial bacteria in the honeybee microbiome, and (ii) promote antibiotic resistance. Routine use of antibiotics in apiculture hence compounds the challenges mentioned above and further compromises the livelihoods of U.S. farmers and the security of U.S. food systems.
In 2017, the FDA responded to antibiotic overuse in apiculture by amending the Veterinary Feed Directive (VFD) section of the Animal Drug Availability Act of 1996 (ADAA). The 2017 amendment required beekeepers to obtain veterinary approval to treat their colonies with antibiotics against certain diseases. While attractive on paper, the implementation of this policy has encountered challenges in practice. Finding a vet who understands the highly complex dynamics of apiculture has been a substantial challenge for commercial beekeepers, especially in rural areas. Improvements to the implementation of the VFD are needed to contain the spread of antibiotic resistance in apiculture.
Relatedly, researchers, beekeepers, and companies alike have all been on the hunt for a solution to restore honeybee health after antibiotic treatment. Pre- and probiotic therapy has recently been proposed as a promising and cost-effective strategy to enhance human and animal health, particularly to restore beneficial gut bacteria following antibiotic treatment. Several companies have developed pre- and probiotic supplements targeted at commercial apiculturists. Two popular supplements are HiveAliveTM and SuperDFM®-HoneyBeeTM. HiveAliveTM is marketed as a prebiotic and is composed of seaweed, thymol, and lemongrass extracts. Although there is some evidence that HiveAliveTM decreases infectious fungal-spore counts and reduces winter honeybee mortality, the value of this supplement as a honeybee prebiotic (i.e., to boost growth or activity of beneficial gut bacteria prior to antibiotic treatment) has not been tested. SuperDMF®-HoneyBeeTM is marketed as a probiotic that can restore the honeybee gut microbiome. But SuperDMF®-HoneyBeeTM is exclusively composed of microbes — isolated from mammals or the environment — that have never been found in honeybees and therefore are probably incapable of colonizing the bee gut. To date, neither HiveAliveTM nor SuperDFM®-HoneyBeeTM has been scientifically shown to protect or restore the honeybee gut microbiome from adverse effects of antibiotic treatment.
A big part of the reason why pre- and probiotic supplements for honeybees (as well as for other agricultural uses) have not been externally validated is that such products are not subject to FDA or USDA regulation. This lack of federal oversight means that beekeepers interested in using such products have only the manufacturer’s word that the products will work as promised. Federal intervention is needed to protect commercial farmers and beekeepers from predatory companies selling expensive “snake oil” products.
Plan of Action
To ensure the long-term sustainability of U.S. apiculture and agriculture, the FDA and USDA should work together on the following three-part strategy to improve the administration of antibiotics in apiculture and to strengthen the regulation of pre- and probiotic supplements marketed to commercial beekeepers.
Part 1. Educate veterinarians in beekeeping to limit misuse and overuse of antibiotics.
For instance, the USDA’s Office of Pest Management Policy (OPMP) and National Institute for Food and Agriculture (NIFA) could collaborate with the U.S. Honeybee Veterinary Consortium on an annual training program, hosted at the USDA’s Bee Research Laboratory, to educate vets working in agricultural areas on the basics of honeybee disease, prevention, treatment, and post-treatment options. The training could also discuss the latest evidence on the efficacy of pre- and probiotic supplements, ensuring that vets can help beekeepers navigate this emerging marketplace of products. Additionally, for veterinarians who are unable to travel to in-person training, these resources could be made available in an online portal.
Part 2. Strengthen regulation of pre- and probiotics marketed to beekeepers.
Currently, the market for pre- and probiotics targeted at beekeepers is a veritable “wild west”: one that allows the marketing and sale of essentially any product as long as the ingredients included are deemed safe per the Official Publication of the Association of American Feed Control Officials and are either (i) approved for addition to animal feed (per part 573 in Title 21 of the Code of Federal Regulations (21 CFR 573)), and/or (ii) generally recognized as safe (GRAS) for the intended use (including those listed in 21 CFR 582 and 584). Notably, the efficacy of marketed pre- and probiotics does not have to be demonstrated. Therefore, in alignment with an FDA guidance document recommending stronger oversight of pre- and probiotics targeted at beekeepers, FDA’s Office of New Animal Drug Evaluation (ONADE) should extend its normal animal drug approval process to include pre- and probiotic supplements marketed to beekeepers.
Part 3: Provide apiculturists with better access to high-quality veterinary care.
USDA could create a new Honeybee Veterinary Services Grant Program (HVSGP) that offers rural farmers and beekeepers funding to obtain vet care for their colonies. This program would be modeled after the American Veterinary Medical Association (AVMA)’s Veterinary Services Grant Program, which provides funding to help rural farmers access high-quality vet care for farm animals. The USDA could also consider launching a parallel Honeybee Veterinary Medicine Loan Repayment Program (HVMLRP; again modeled on an AVMA program), which would help place vets trained in beekeeping husbandry “in high-need rural areas by providing strategic loan repayment help in exchange for service”. Vets participating in this program would agree to provide the following services:
- Quarterly visits to commercial apiaries in need of vet support.
- Prescriptions of antibiotics as appropriate after colony inspection.
- Collection and reporting of data on health and treatment outcomes of serviced hives
Conclusion
Widespread use of antibiotics in commercial beekeeping is a problem for bees, beekeepers, and the larger ecosystem due to the spread of antibiotic resistance and the negative effects of antibiotic treatment on honeybee health. The federal government can mitigate these adverse effects by improving the knowledge and reach of vets trained in best practices for antibiotic treatment in apiculture, as well as by improving regulation of pre- and probiotic supplements purported to restore honeybee gut microbiomes following antibiotic treatment. These actions will collectively secure the health of honeybees — and the livelihoods of farmers who depend on them — for the long term.
Pre- and probiotics should be regulated in both humans and animals. Pre- and probiotic supplements marketed for human use, like those marketed for apicultural use, are poorly regulated and rife with misleading, untested, or simply false claims. While this memo focuses on the apicultural sector, there is certainly a broader need for increased federal intervention with respect to the safety and efficacy of pre- and probiotics.
The FDA’s 2017 amendments to the VFD mean that if a beekeeper needs to administer antibiotics to their honeybees, they must obtain a prescription or feed directive from a licensed veterinarian. Therefore, vets have a new professional incentive to better understand the dynamics of beekeeping husbandry.
In an ideal world, commercial beekeeping would rely on antibiotics only as a last resort. But the reality is that commercial beehives today — due to factors such as a history of intensive antibiotic use in apiculture and the practice of transporting colonies en masse from place to place — are so susceptible to deadly bacteria that imposing major restrictions on antibiotic use in apiculture would seriously compromise U.S. agricultural productivity and the livelihoods of American farmers. Farmers, researchers, and policymakers should continue to collaborate on strategies for phasing out apicultural antibiotic use in the long term. But in the near term, actions should still be taken to promote best practices for apicultural antibiotic treatment and to better regulate supplements that could help minimize adverse impacts of antibiotic treatment on honeybee health.
Yes, these regulations should apply to existing products as well as products developed in the future.
The AVMA’s Veterinary Services Grant Program (VSGP) receives funding annually through Congressional appropriations. This funding was $3.5 million for Fiscal Year 2022 (FY22). The HBVSGP could be launched with a similar amount. HBVSGP funding could come from new Congressional appropriations, and/or from existing USDA programs. For instance, the 2008e Farm Bill designated pollinators and their habitat a priority for the USDA and authorized money for projects that promoted pollinator habitat and health under the Environmental Quality Incentives Program (EQIP). Money could also be earmarked from the USDA National Institute of Food and Agriculture (NIFA), Agriculture and Food Research Initiative – Education and Workforce Development grant program to encourage the research and development of better pre- and probiotic supplements and continuing education programs in honeybee veterinary care.