Defining Disaster: Incorporating Heat Waves and Smoke Waves into Disaster Policy

Extreme heat – and similar people-centered disasters like heavy wildfire smoke – kills thousands of Americans annually, more than any other weather disaster. However, U.S. disaster policy is more equipped for events that damage infrastructure than those that mainly cause deaths. Policy actions can save lives and money by better integrating people-centered disasters.

Challenge and Opportunity

At the federal level, emergency management is coordinated through the Federal Emergency Management Agency (FEMA), with many other agencies as partners, including Centers for Disease Control (CDC), Department of Housing and Urban Development (HUD), and Small Business Administration (SBA). Central to the FEMA process is the requirement under the Stafford Act that the President declare a major disaster, which has never happened for extreme heat. This seems to be caused by a lack of tools to determine when a heat wave event escalates into a heat wave disaster, as well as a lack of a clear vision of federal responsibilities around a heat wave disaster.

Gap 1. When is a heat event a heat disaster?

A core tenet of emergency management is that events escalate into disasters when the impacts exceed available resources. Impact measurement is increasingly quantitative across FEMA programs, including quantitative metrics used in awarding Fire Management Assistance Grant (FMAG), Public Assistance (PA), and Individual Assistance (IA) and in the Benefit Cost Analysis (BCA) for hazard mitigation grants.

However, existing calculations are unable to incorporate the health impacts that are a main impact of heat waves. When health impacts are included in a calculation, it is only in limited cases; for example, the BCA allows mental healthcare savings, but only for residential mitigation projects that reduce post-disaster displacement.

Gap 2. What is the federal government’s role in a heat disaster?

Separate from the declaration of a major disaster is the federal government’s role during that disaster. Existing programs within FEMA and its partner agencies are designed for historic disasters rather than those of the modern and future eras. For example, the National Risk Index (NRI), used to understand the national distribution of risks and vulnerability, bases its risk assessment on events between 1996 and 2019. As part of considering future disasters, disaster policy should consider intensified extreme events and compound hazards (e.g., wildfire during a heat wave) that are more likely in the future. 

A key part of including extreme heat and other people-centered disasters will be to shift toward future-oriented resilience and adaptation. FEMA has already been making this shift, including a reorganization to highlight resilience. The below plan of action will further help FEMA with its mission to help people before, during, and after disasters.

Plan of Action

To address these gaps and better incorporate extreme heat and people-centered disasters into U.S. emergency management, Congress and federal agencies should take several interrelated actions.

Recommendation 1. Defining disaster

To clarify that extreme heat and other people-centered disasters can be disasters, Congress should:

(1) Add heat, wildfire smoke, and compound events (e.g., wildfire during a heat wave) to the list of disasters in Section 102(2) of the Stafford Act. Though the list is intended to be illustrative rather than exhaustive, as demonstrated by the declaration of COVID-19 as a disaster despite not being on the list, explicit inclusion of these other disasters on the list clarifies that intent. This action is widely supported and example legislation includes the Extreme Heat Emergency Act of 2023

(2) FEMA should standardize procedures for determining when disparate events are actually a single compound event. For example, many individual tornadoes in Kentucky in 2021 were determined to be the results of a single weather pattern, so the event was declared as a disaster, but wildfires that started due to a single heat dome in 2022 were determined to be individual events and therefore unable to receive a disaster declaration. Compound hazards are expected to be more common in the future, so it is critical to work toward standardized definitions.

(3) Add a new definition of “damage” to Section 102 of the Stafford Act that includes human impacts such as death, illness, economic impacts, and loss of critical function (i.e., delivery of healthcare, school operations, etc.). Including this definition in the statute facilitates the inclusion of these categories of impact.

To quantify the impacts of heat waves, thereby facilitating disaster decisions, FEMA should adopt strategies already used by the federal government. In particular, FEMA should:

(4) Work with HHS to expand the capabilities of the National Syndromic Surveillance Program (NSSP) to evaluate in real time various societal impacts like the medical-care usage and work or school days lost. Recent studies indicate that lost work productivity is a major impact of extreme heat that is currently unaccounted—a gap of potentially billions of dollars. The NSSP Community of Practice can help expand tools across multiple jurisdictions too. Expanding syndromic surveillance expands our ability to measure the impacts of heat, building on the tools available through the CDC Heat and Health Tracker.

(5) Work with CDC to expand their use of excess-death and flu-burden methods, which can provide official estimates of the health impacts of extreme heat. These methods are already in use for heat, but should be regularly applied at the federal level, and would complement the data available from health records via NSSP because it calculates missing data.

(6) Work with EPA to expand BenMAP software to include official estimates of health impacts attributable to extreme heat. The current software provides official estimates of health impacts attributable to air pollution and is used widely in policy. Research is needed to develop health-impact functions for extreme heat, which could be solicited in a research call such as through NIH’s Climate and Health initiative, conducted by CDC epidemiologists, added to the Learning Agenda for FEMA or a partner agency, or tasked to a national lab. Additional software development is also needed to cover real-time and forecast impacts in addition to the historic impacts it currently covers. The proposed tool complements Recommendations #4-5 because it includes forecast data.

(7) Quantify heat illness and death impacts. Real-time data is available in the CDC Heat and Health Tracker. These impacts can be converted to dollars for comparison to property damage using the Value of a Statistical Life (VSL), which FEMA already does in the NRI ($11.6 million per death and $1.16 million per injury in 2022). VSL should be expanded across FEMA programs, in particular the decision for major disaster declarations. VSL could be immediately applied to current data from NSSP, to expanded NSSP and excess-death data (Recommendations #4-5), and is already incorporated into BenMAP so would be available in the expanded BenMAP (Recommendation #6).

(8) Quantify the impact of extreme heat on critical infrastructure, including agriculture. Improved quantification methods could be achieved by expanding the valuation methods for infrastructure damage already in the NRI and could be integrated with the National Integrated Heat Health Information System (NIHHIS). The damage and degradation of infrastructure is often underestimated and should be accurately quantified. For example,

Together, these proposed data tools would provide FEMA with a comprehensive understanding of the impacts of extreme heat on human health in the past, present, and near future, putting heat on the same playing field as other disasters. 

Real-time impacts are particularly important for FEMA to investigate requests for a major disaster declaration. Forecast impacts are important for the ability to preposition resources, as currently done for hurricanes. The goal for forecasting should be 72 hours. To achieve this goal from current models (e.g., air quality forecasts are generally just one day in advance):

(9) Congress should fund additional sensors for extreme weather disasters, to be installed by the appropriate agencies. More detailed ideas can be found in other FAS memos for extreme heat and wildfire smoke and in recommendation 44 of the recent Wildland Fire Commission report.

(10) Congress should invest in research on integrated wildfire-meteorological models through research centers of excellence funded by national agencies or national labs. Federal agencies can also post specific questions as part of their learning agendas. Models should specifically record the contribution of wildfire smoke from each landscape parcel to overall air pollution in order to document the contribution of impacts. This recommendation aligns with the Fire Environment Center proposed in the Wildland Fire Commission report.

Table 1. Division of proposed improvements by time period addressed and implementation readiness
HistoricReal timeForecast
Integrate existing capabilities with FEMAExcess death methods (#5)Use VSL (#7)
Expand program abilitiesExpand infrastructure calculations, NSSP, BenMAP, and sensors (#4–9)Expand BenMAP (#6) and improve smoke forecasts (#10)
Cross-cutting definitionsStafford Act amendments (#1, 3) and compound events (#2)

Recommendation 2. Determining federal response to heat disasters

To incorporate extreme heat and people-centered disasters across emergency management, FEMA and its peer agencies can expand existing programs into new versions that incorporate such disasters. We split these programs here by the phase of emergency management.

Preparedness

(11) Using Flood Maps as a model, FEMA should create maps for extreme heat and other people-centered disasters. Like flood maps, these new maps should highlight the infrastructure at risk of failure or the loss of access to critical infrastructure (e.g., FEMA Community Lifelines) during a disaster. Failure here is defined as the inability of infrastructure to provide its critical function(s); infrastructure that ceases to be usable for its purpose when an extreme weather event occurs (i.e., bitumen softening on airport tarmacs, train line buckling, or schools canceled because classrooms were too hot or too smokey). This includes impacts to evacuation routes and critical infrastructure that would severely impact the functioning of society. Creating such a map requires a major interagency effort integrating detailed information on buildings, heat forecasts, energy grid capacity, and local heat island maps, which likely requires major interagency collaboration. NIHHIS has most of the interagency collaborators needed for such effort, but should also include the Department of Education. Such an effort likely will need direct funding from Congress in order to have the level of effort needed.

(12) FEMA and its partners should publish catastrophic location-specific scenarios to align preparedness planning. Examples include the ARkStorm for atmospheric rivers, HayWired for earthquake, and Cascadia Rising for tsunami. Such scenarios are useful because they help raise public awareness and increase and align practitioner preparedness. A key part of a heat scenario should be infrastructure failure and its cascading impacts; for example, grid failure and the resulting impact on healthcare is expected to have devastating effects.

(13) FEMA should incorporate future projections of disasters into the NRI. The NRI currently only uses historic data on losses (typically 1996 to 2019). An example framework is the $100 million Prepare California program, which combined historic and projected risks in allocating preparedness funds. An example of the type of data needed for extreme heat includes the changes in extreme events that are part of the New York State Climate Impacts Assessment.

(14) FEMA should expand its Community Lifelines to incorporate extreme heat and cascading impacts for critical infrastructure as a result of extreme heat, which must remain operable during and after a disaster to avoid significant loss of human life and property. 

(15) The strategic national stockpile (SNS) should be expanded to focus on tools that are most useful in extreme weather disasters. A key consideration will be fluids, including intravenous (IV) fluids, which the current medical-focused SNS excludes due to weight. In fact, the SNS relies on the presence of IV fluids at the impacted location, so if there is a shortage due to extreme heat, additional medicines might not be deliverable. To include fluids, a new model will be necessary because of the logistics of great weight.

(16) OSHA should develop occupational safety guidelines to protect workers and students from hazardous exposures, expanding on its outdoor and indoor heat-related hazards directive. Establishing these thresholds, such as max indoor air temperatures similar to California’s Occupational Safety and Health Standards Board, can help define the threshold of when a weather event escalates into a disaster. No federal regulations exist for air quality, so California’s example could be used as a template. The need already exists: an average of 2,700 heat-related injuries and 38 heat-related fatalities were reported annually to OSHA between 2011 and 2019.

(17) FEMA and its partners should expand support for community-led multi-hazard resilience hubs, including learning from those focused on extreme heat. FEMA already has its Hubs for Equitable Resilience and Engagement, and EPA has major funding available to support resilience hubs. This equitable model of disaster resilience that centers on the needs of the specific community should be supported.

Response

(18) FEMA should introduce smaller disaster-assistance grants for extreme weather disasters: HMAG, CMAG, and SMAG (Heat, Cold, and Smoke Management Assistance Grants, respectively). They should be modeled on FMAG grants, which are rapidly awarded when firefighting costs exceed available resources but do not necessarily escalate to the level of a major disaster declaration. For extreme weather disasters, the model would be similar, but the eligible activities might focus on climate-controlled shelters, outreach teams to reach especially vulnerable populations, or a surge in medical personnel and equipment. Just like firefighting equipment and staff needed to fight wildfires, this equipment and staff are needed to reduce the impacts of the disaster. FMAG is supported by the Disaster Relief Fund, so if the H/C/SMAG programs also tap that, it will require additional appropriations. Shelters are already supported by the Public Assistance (PA) program, but PA requires a major disaster declaration, so the introduction of lower-threshold funds would increase access.

(19) HHS could activate Disaster Medical Assistance Teams to mitigate any surge in medical needs. These teams are intended to provide a surge in medical support during a disaster and are deployed in other disasters. See our other memos on this topic.

(20) FEMA could deploy Incident Management Assistance Teams and supporting gear for additional logistics. They can also deploy backup energy resources such as generators to prevent energy failure at critical infrastructure.

Recovery and Mitigation

(21) Programs addressing gray or green infrastructure should consider the impact upgrades will have on heat mitigation. For example, EPA and DOE programs funding upgrades to school gray infrastructure should explicitly consider whether proposed upgrades will meet the heat mitigation needs based on climate projections. Projects funding schoolyard redesign should explicitly consider heat when planning blacktop, playground, and greenspace placement to avoid accidentally creating hot spots where children play. CAL FIRE’s grant to provide $47 million for schools to convert asphalt to green space is a state-level example.

(22) Expand the eligible actions of FEMA’s Hazard Mitigation Assistance (HMA) to include installation/upgrade of heating, ventilation, and cooling (HVAC) systems and a more expansive program to support nature-based solutions (NBS) like green space installation. Existing guidance allows HVAC mitigation for other hazards and incentivizes NBS for other hazards.

(23) Increase alignment across federal programs, identifying programs where goals align. For example, FEMA just announced that solar panels would be eligible for the 75% federal cost share as part of mitigation programs; other climate and weatherization improvements should also be eligible under HMA funds.

(24) FEMA should modify its Benefit Cost Analysis (BCA) process to fairly evaluate mitigation of health and life-safety hazards, to better account for mitigation of multiple hazards, and to address equity considerations introduced in Office of Management and Budget’s recent BCA proposal. Some research is likely needed (e.g., the cost-effectiveness of various nature-based solutions like green space is not yet well-defined enough to use in a BCA); this research could be performed by national labs, put into FEMA’s Learning Agenda, or tasked to a partner agency like DOE.

(25) Expand the definition of medical devices to include items that protect against extreme weather. For example, the Center for Medicare and Medicaid Services could define air-conditioning units and innovative personal cooling devices as eligible for prescription under Medicare/Medicaid.

To support the above recommendations, Congress should:

(26) Ensure FEMA is sufficiently and consistently funded to conduct resilience and adaptation activities. Congress augments the Disaster Relief Fund in response to disasters, but they report that the fund will be billions of dollars in deficit by September 2024. It has furthermore been reported that FEMA has delayed payments due to uncertainty of funding through Congressional budget negotiations. In order to support the above programs, it is essential that Congress fund FEMA at a level needed to act. To support FEMA’s shift to a focus on resilience, the increase in funding should be through annual appropriations rather than the Disaster Relief Fund, which is augmented on an ad hoc basis.

(27) Convene a congressional commission like the recent Wildland Fire Commission to analyze the federal capabilities around extreme weather disasters and/or extreme heat. This commission would help source additional ideas and identify political pathways toward creating these solutions, and is merited by the magnitude of the disaster.

Conclusion

People across the U.S. are being increasingly exposed to extreme heat and other people-centered disasters. The suggested policies and programs are needed to upgrade national emergency management for the modern and future era, thereby saving lives and reducing disaster costs to the public.

Frequently Asked Questions
Are the impacts of extreme heat and other people-centered disasters significant enough to be considered disasters?

We estimate a minimum of 1,670 deaths and $157.8 billion of annual heat impacts. These deaths and dollar amounts exceed almost every recorded disaster in U.S. history. Only COVID-19, 9/11, and Hurricanes Maria and Katrina have more deaths, and only Hurricanes Katrina and Harvey have caused more dollar damage. It should be noted that most of the estimates reported are several years out of date and exclude major heat waves of 2021 and 2022. For example, individual heat waves produced sizable numbers of deaths, including 395 deaths in a 2022 California heat wave and 600 deaths in the 2021 Pacific Northwest heatwave.


How could the Stafford Act be amended to include heat waves?

It is insufficient to just add heat to the list of disasters enumerated in the Stafford Act because it omits (1) the important recognition of compound events that often are associated with extreme heat, (2) other people-centered disasters like smoke waves, and (3) the ability to measure these disasters. We, therefore, recommend some version of the following text:


Section 102(2) of the Robert T. Stafford Disaster Relief and Emergency Assistance Act (42 U.S.C. 5122(2)) is amended by striking “or drought” and inserting “drought, heat, smoke, or any other weather pattern causing a combination of the above”.


Section 102 of the Robert T. Stafford Disaster Relief and Emergency Assistance Act (42 U.S.C. 5122(2)) is amended by inserting


(13) DAMAGE—“Damage” means–



  • (A) Loss of life or health impacts requiring medical care

  • (B) Loss of property or impacts on property reducing its ability to function

  • (C) Diminished usable lifespan for infrastructure

  • (D) Economic damage, which includes the value of a statistical life, burden on the healthcare system due to injury, burden on the economy placed by lost days of work or school, agricultural losses, or any other economic damage that is directly measurable or calculated.

  • (E) Infrastructure failure of any duration, including temporary, that could lead to any of the above

Enhancing Public Health Preparedness for Climate Change-Related Health Impacts

The escalating frequency and intensity of extreme heat events, exacerbated by climate change, pose a significant and growing threat to public health. This problem is further compounded by the lack of standardized education and preparedness measures within the healthcare system, creating a critical gap in addressing the health impacts of extreme heat. The Department of Health and Human Services (HHS), especially the Centers for Medicare & Medicaid Services (CMS), the Health Resources and Services Administration (HRSA), and the Office of Climate Change and Health Equity (OCCHE) can enhance public health preparedness for the health impacts of climate change. By leveraging funding mechanisms, incentives, and requirements, HHS can strengthen health system preparedness, improve health provider knowledge, and optimize emergency response capabilities. 

By focusing on interagency collaboration and medical education enhancement, strategic measures within HHS, the healthcare system can strengthen its resilience against the health impacts of extreme heat events. This will not only improve coding accuracy, but also enhance healthcare provider knowledge, streamline emergency response efforts, and ultimately mitigate the health disparities arising from climate change-induced extreme heat events. Key recommendations include: establishing dedicated grant programs and incentivizing climate-competent healthcare providers; integrating climate-resilience metrics into quality measurement programs; leveraging the Health Information Technology for Economic and Clinical Health (HITECH) Act to enhance ICD-10 coding education; and collaborating with other federal agencies such as the Department of Veterans Affairs (VA), the Federal Emergency Management Agency (FEMA), and the Department of Defense (DoD) to ensure a coordinated response. The implementation of these recommendations will not only address the evolving health impacts of climate change but also promote a more resilient and prepared healthcare system for the future.

Challenge

The escalating frequency and intensity of extreme heat events, exacerbated by climate change, pose a significant and growing threat to public health. The scientific consensus, as documented by reports from the Intergovernmental Panel on Climate Change (IPCC) and the National Climate Assessment, reveals that vulnerable populations, such as children, pregnant people, the elderly, and marginalized communities including people of color and Indigenous populations, experience disproportionately higher rates of heat-related illnesses and mortality. The Lancet Countdown’s 2023 U.S. Brief underscores the escalating threat of fossil fuel pollution and climate change to health, highlighting an 88% increase in heat-related mortality among older adults and calling for urgent, equitable climate action to mitigate this public health crisis.

Inadequacies in Current Healthcare System Response

Reports from healthcare institutions and public health agencies highlight how current coding practices contribute to the under-recognition of heat-related health impacts in vulnerable populations, exacerbating existing health disparities. The current inadequacies in ICD-10 coding for extreme heat-related health cases hinder effective healthcare delivery, compromise data accuracy, and impede the development of targeted response strategies. Challenges in coding accuracy are evident in existing studies and reports, emphasizing the difficulties healthcare providers face in accurately documenting extreme heat-related health cases. An analysis of emergency room visits during heat waves further indicates a gap in recognition and coding, pointing to the need for improved medical education and coding practices. Audits of healthcare coding practices reveal inconsistencies and inaccuracies that stem from a lack of standardized medical education and preparedness measures, ultimately leading to underreporting and misclassification of extreme heat cases. Comparative analyses of health data from regions with robust coding practices and those without highlight the disparities in data accuracy, emphasizing the urgent need for standardized coding protocols.

There is a crucial opportunity to enhance public health preparedness by addressing the challenges associated with accurate ICD-10 coding in extreme heat-related health cases. Reports from government agencies and economic research institutions underscore the economic toll of extreme heat events on healthcare systems, including increased healthcare costs, emergency room visits, and lost productivity due to heat-related illnesses. Data from social vulnerability indices and community-level assessments emphasize the disproportionate impact of extreme heat on socially vulnerable populations, highlighting the urgent need for targeted policies to address health disparities.

Opportunity

As Medicare is the largest federal source of Graduate Medical Education (GME) funding (Figure 1), the Department of Health and Human Services’ (HHS) Centers for Medicare & Medicaid Services (CMS) and the National Center for Health Statistics (NCHS) play a critical role in developing coding guidelines. Thus, it is essential for HHS, CMS, and other pertinent coordinating agencies to be involved in the process for developing climate change-informed graduate medical curricula.

By focusing on medical education enhancement, strategic measures within HHS, and fostering interagency collaboration, the healthcare system can strengthen its resilience against the health impacts of extreme heat events. Improving coding accuracy, enhancing healthcare provider knowledge, streamlining emergency response efforts, and mitigating health disparities related to extreme heat events will ultimately strengthen the healthcare system and foster more effective, inclusive, and equitable climate and health policies. Improving the knowledge and training of healthcare providers empowers them to respond more effectively to extreme heat-related health cases. This immediate response capability contributes to the overarching goal of reducing morbidity and mortality rates associated with extreme heat events and creates a public health system that is more resilient and prepared for emerging challenges. 

The inclusion of ICD-10 coding education into graduate medical education funded by CMS aligns with the precedent set by the Pandemic and All Hazards Preparedness Act (PAHPA), emphasizing the importance of preparedness and response to public health emergencies. Similarly, drawing inspiration from the Health Information Technology for Economic and Clinical Health Act (HITECH Act), which promotes the adoption of electronic health records (EHR) systems, presents an opportunity to modernize medical education and ensure the seamless integration of climate-related health considerations. This collaborative and forward-thinking approach recognizes the interconnectedness of health and climate, offering a model that can be applied to various health challenges. Integrating mandates from PAHPA and the HITECH Act serves as a policy precedent, guiding the healthcare system toward a more adaptive and proactive stance in addressing climate change impacts on health.

Conversely, the consequences of inaction on the health impacts of extreme heat extend beyond immediate health concerns. They permeate through the fabric of society, widening health disparities, compromising the accuracy of health data, and undermining emergency response preparedness. Addressing these challenges requires a proactive and comprehensive approach to ensure the well-being of communities, especially those most vulnerable to the effects of extreme heat.

Plan of Action

The following recommendations aim to facilitate public health preparedness for extreme heat events through enhancements in medical education, strategic measures within the Department of Health and Human Services (HHS), and fostering interagency collaboration.

Recommendation 1a. Integrate extreme heat training into the GME curriculum. 

Integrating modules on extreme heat-related health impacts and accurate ICD-10 coding into medical education curricula is essential for preparing future healthcare professionals to address the challenges posed by climate change. This initiative will ensure that medical students receive comprehensive training on identifying, treating, and documenting extreme heat-related health cases. Sec. 304. Core Education and Training of the PAHPA provides policy precedent to develop foundational health and medical response curricula and training materials by modifying relevant existing programs to enhance responses to public health emergencies. Given the prominence of Medicare in funding medical residency training, policies that alter Medicare GME can affect the future physician supply and can be used to address identified healthcare workforce priorities related to extreme heat (Figure 2).

Figure 2: A model for comprehensive climate and medical education (adapted from Jowell et al. 2023)

Recommendation 1b. Collaborate with Veterans Health Administration Training Programs. 

Partnering with the Department of Veterans Affairs (VA) to extend climate-related health coding education to Veterans Health Administration (VHA) training programs will enhance the preparedness of healthcare professionals within the VHA system to manage and document extreme heat-related health cases among veteran populations.

Implementation plan
Agency/Department InvolvementAction StepsEvaluation
HHS; CMS, NCHS, Health Resources and Services Administration (HRSA), Office of Climate Change and Health Equity (OCCHE): Coordinates efforts to integrate extreme heat training into medical education.Needs Assessment: OCCHE within HHS collaborates with VA to assess climate-related health coding education needs within VHA and GME training programs.Curriculum Integration: Assess the extent to which modules on extreme heat-related health impacts and ICD-10 coding are integrated into medical school curricula.
VA: Implements climate-related health coding education initiatives within VHA.Curriculum Development: OCCHE, CMS, NCHS, HRSA collaborate with medical accrediting bodies and subject matter experts to develop modules on extreme heat health impacts and ICD-10 coding for inclusion in medical education curricula.Student Performance: Evaluate medical students’ performance on assessments related to extreme heat-related health impacts and coding practices.
VHA: Participates in training programs and integrates education into its curriculum.Accreditation Standards Integration: Accrediting bodies revise accreditation standards to include requirements for teaching extreme heat-related health topics and coding practices. Work with CMS to update Conditions of Participation to include climate mitigation and resilience. Training Participation: Monitor the number of healthcare professionals, including those in the VHA, participating in climate-related health coding education and assess their level of engagement.
The Joint Commission (TJC); Healthcare Facilities Accreditation Program (HFAP): Accrediting bodies responsible for setting standards for climate competent healthcare facility accreditation.Faculty Training: HHS supports faculty training programs to ensure educators have the necessary knowledge and skills to teach extreme heat topics effectively. VHA incorporates climate-related health coding education into existing training programs for healthcare professionals, including physicians, nurses, and other staff.Faculty Feedback:
Solicit feedback on the effectiveness of training and support provided for delivering the new curriculum.
Environmental Protection Agency (EPA), National Oceanic and Atmospheric Administration (NOAA), Department of Homeland Security (FEMA), Assistant Secretary for Preparedness and Response (ASPR): Provide subject matter expertise on extreme heat and support curriculum development.Funding: Titles VII and VIII of the Public Health Service Act (PHSA) provide funding for programs to improve the healthcare workforce and support public health initiatives.Impact on Patient Care: Assess the impact of enhanced climate-related health coding education on patient care outcomes within participating hospitals and within the VHA system.
Title VII: Health Professions Education Programs can be used to support medical education programs focused on climate-related health impacts, including curriculum development, faculty training, and student scholarships or stipends.
Title VIII: Nursing Workforce Development Programs can support the integration of climate-related health content into nursing education programs, including undergraduate, graduate, and continuing education initiatives.
Evaluation and Feedback: Continuous evaluation of curriculum integration and feedback mechanisms are established to assess the effectiveness of training and make improvements as needed. Research funding provided through PHSA Titles VII and VIII can support studies evaluating the effectiveness of educational interventions on climate-related health knowledge and practice behaviors among healthcare providers.

Recommendation 2. Collaborate with the Agency for Healthcare Research and Quality (AHRQ) 

Establishing a collaborative research initiative with the Agency for Healthcare Research and Quality (AHRQ) will facilitate the in-depth exploration of accurate ICD-10 coding for extreme heat-related health cases. This should be accomplished through the following measures:

Establish joint task forces. CMS, NCHS, and AHRQ should establish joint research initiatives focused on improving ICD-10 coding accuracy for extreme heat-related health cases. This collaboration will involve identifying key research areas, allocating resources, and coordinating research activities. Personnel from each agency, including subject matter experts and researchers from the EPA, NOAA, and FEMA, will work together to conduct studies, analyze data, and publish findings. By conducting systematic reviews, developing standardized coding algorithms, and disseminating findings through AHRQ’s established communication channels, this initiative will improve coding practices and enhance healthcare system preparedness for extreme heat events.

Develop standardized coding algorithms. AHRQ, in collaboration with CMS and NCHS, will lead efforts to develop standardized coding algorithms for extreme heat-related health outcomes. This involves reviewing existing coding practices, identifying gaps and inconsistencies, and developing standardized algorithms to ensure consistent and accurate coding across healthcare settings. AHRQ researchers and coding experts will work closely with personnel from CMS and NCHS to draft, validate, and disseminate these algorithms.

Integrate into Continuous Quality Improvement (CQI) programs. Establish collaborative partnerships between the VA and other federal healthcare agencies, including CMS, HRSA, and DoD, to integrate education on ICD-10 coding for extreme heat-related health outcomes into CQI programs. Regularly assess the effectiveness of training initiatives and adjust based on feedback from healthcare providers. For example, CMS currently requires physicians to screen for the social determinants of health and could include level of climate and/or heat risk within that screening assessment.

Allocate resources. Each agency will allocate financial resources, staff time, and technical expertise to support collaborative activities. Budget allocations will be based on the scope and scale of specific initiatives, with funds earmarked for research, training, data sharing, and evaluation efforts. Additionally, research funding provided through PHSA Titles VII and VIII can support studies evaluating the effectiveness of educational interventions on climate-related health knowledge and practice behaviors among healthcare providers.

Recommendation 3. Leverage the HITECH Act and EHR.

Agency/Department InvolvementAction StepsEvaluation
HHS: Coordinates efforts to integrate climate-related health coding education into HITECH Act programs.Integrate ICD-10 Coding Training in EHR Adoption Programs: HHS, NCHS and CMS coordinate with ONC to include specific modules or training components related to ICD-10 coding for extreme heat-related health outcomes within the educational programs facilitated under HITECH Act incentives. This ensures that healthcare professionals adopting EHR systems receive comprehensive training on coding practices relevant to climate-related health challenges.Integration Success: HHS regularly evaluates the extent to which ICD-10 coding education and climate-related health data collection are integrated into CMS-funded GME programs and EHR systems.
CMS: Implements incentives and requirements for EHR integration and coding education.Customize EHR Templates: ONC provides guidance to EHR vendors and developers to create customized templates or modules within EHR systems that facilitate accurate documentation of extreme heat-related health cases.Coding Accuracy: Assess the accuracy of ICD-10 coding for extreme heat-related health outcomes in electronic health records and reporting systems.
Office of the National Coordinator for Health Information Technology (ONC): Provides technical assistance and guidance on EHR integration.Incorporation into Meaningful Use Criteria: CMS and ONS to oversee the integration of the accurate coding of climate-related health outcomes into the Meaningful Use/Promoting Interoperability Programs criteria outlined by the HITECH Act.Provider Feedback: Solicit feedback from healthcare providers on the effectiveness of training modules and EHR integration efforts.
Establish Reporting Requirements: Use the HITECH Act to establish reporting requirements for climate-related health data, encouraging the inclusion of ICD-10 codes for extreme heat-related health outcomes in electronic reporting systems supported by EHRs.
Incentives for Climate-Ready EHR Implementation:
Expanding incentives within the HITECH Act to healthcare providers integrating climate-related health coding into HER systems could enhance healthcare management. The 2009 program allocated $27 billion to promote EHR adoption. Aligning incentives with climate-related coding fosters a more comprehensive approach. This incentivizes EHR and climate-related ICD-10 coding practices, advancing the capacity to address climate-related health challenges.

Recommendation 4. Establish climate-resilient health system grants to incentivize state-level climate preparedness initiatives

HHS and OCCHE should create competitive grants for states that demonstrate proactive climate change adaptation efforts in healthcare. These agencies can encourage states to integrate climate considerations into their health plans by providing additional funding to states that prioritize climate resilience.

Within CMS, the Center for Medicare and Medicaid Innovation (CMMI) could help create and administer these grants related to climate preparedness initiatives. Given its focus on innovation and testing new approaches, CMMI could design grant programs aimed at incentivizing state-level climate resilience efforts in healthcare. Given its focus on addressing health disparities and promoting preventive care, the Bureau of Primary Health Care (BPHC) within HRSA could oversee grants aimed at integrating climate considerations into primary care settings and enhancing resilience among vulnerable populations.

Conclusion

These recommendations provide a comprehensive framework for HHS — particularly CMS, HRSA, and OCCHE— to bolster public health preparedness for the health impacts of extreme heat events. By leveraging funding mechanisms, incentives, and requirements, HHS can enhance health system preparedness, improve health provider knowledge, and optimize emergency response capabilities. These strategic measures encompass a range of actions, including establishing dedicated grant programs, incentivizing climate-competent healthcare providers, integrating climate-resilience metrics into quality measurement programs, and leveraging the HITECH Act to enhance ICD-10 coding education. Collaboration with other federal agencies further strengthens the coordinated response to the growing challenges posed by climate change-induced extreme heat events. By implementing these policy recommendations, HHS can effectively address the evolving landscape of climate change impacts on health and promote a more resilient and prepared healthcare system for the future.

This idea of merit originated from our Extreme Heat Ideas Challenge. Scientific and technical experts across disciplines worked with FAS to develop potential solutions in various realms: infrastructure and the built environment, workforce safety and development, public health, food security and resilience, emergency planning and response, and data indices. Review ideas to combat extreme heat here.

Frequently Asked Questions
What are the expected outcomes of these recommended policy actions?

  1. Improved Accuracy in ICD-10 Coding: Healthcare providers consistently apply accurate ICD-10 coding for extreme heat-related health cases.

  2. Enhanced Healthcare Provider Knowledge: Healthcare professionals possess comprehensive knowledge on extreme heat-related health impacts, improving patient care and response strategies.

  3. Strengthened Public Health Response: A coordinated effort results in a more effective and equitable public health response to extreme heat events, reducing health disparities.

  4. Improved Public Health Resilience:

    1. Short-Term Outcome: Healthcare providers, armed with enhanced knowledge and training, respond more effectively to extreme heat-related health cases.

    2. Long-Term Outcome: Reduced morbidity and mortality rates associated with extreme heat events lead to a more resilient and prepared public health system.



  5. Enhanced Data Accuracy and Surveillance:

    1. Short-Term Outcome: Improved accuracy in ICD-10 coding facilitates more precise tracking and surveillance of extreme heat-related health outcomes.

    2. Long-Term Outcome: Comprehensive and accurate data contribute to better-informed public health policies, targeted interventions, and long-term trend analysis.



  6. Reduced Health Disparities:

    1. Short-Term Outcome: Incentives and education programs ensure that healthcare providers prioritize accurate coding, reducing disparities in the diagnosis and treatment of extreme heat-related illnesses.

    2. Long-Term Outcome: Health outcomes become more equitable across diverse populations, mitigating the disproportionate impact of extreme heat on vulnerable communities.



  7. Increased Public Awareness and Education:

    1. Short-Term Outcome: Public health campaigns and educational initiatives raise awareness about the health risks associated with extreme heat events.

    2. Long-Term Outcome: Informed communities adopt preventive measures, reducing the overall burden on healthcare systems and fostering a culture of proactive health management.



  8. Streamlined Emergency Response and Preparedness:

    1. Short-Term Outcome: Integrating extreme heat preparedness into emergency response plans results in more efficient and coordinated efforts during heatwaves.

    2. Long-Term Outcome: Improved community resilience, reduced strain on emergency services, and better protection for vulnerable populations during extreme heat events.



  9. Increased Collaboration Across Agencies:

    1. Short-Term Outcome: Collaborative efforts between OCCHE, CMS, HRSA, AHRQ, FEMA, DoD, and the Department of the Interior result in streamlined information sharing and joint initiatives.

    2. Long-Term Outcome: Enhanced cross-agency collaboration establishes a model for addressing complex public health challenges, fostering a more integrated and responsive government approach.



  10. Empowered Healthcare Workforce:

    1. Short-Term Outcome: Incentives for accurate coding and targeted education empower healthcare professionals to address the unique challenges posed by extreme heat.

    2. Long-Term Outcome: A more resilient and adaptive healthcare workforce is equipped to handle emerging health threats, contributing to overall workforce well-being and satisfaction.



  11. Informed Policy Decision-Making:

    1. Short-Term Outcome: Policymakers utilize accurate data and insights to make informed decisions related to extreme heat adaptation and mitigation strategies.

    2. Long-Term Outcome: The integration of health data into broader climate and policy discussions leads to more effective, evidence-based policies at local, regional, and national levels.



A Comprehensive Strategy to Address Extreme Heat in Schools

Requiring children to attend school when classroom temperatures are high is unsafe and reduces learning; yet closing schools for extreme heat has wide-ranging consequences for learning, safety, food access, and social determinants of health. Children are vulnerable to heat, and schooling is compulsory in the U.S. Families rely on schools for food, childcare, and safety. In order to protect the health and well-being of the nation’s children, the federal government must facilitate efforts to collect the data required to drive extreme heat mitigation and adaptive capacity, invest in more resilient infrastructure, provide guidance on preparedness and response, and establish enforceable temperature thresholds. To do this, federal agencies can take action through three paths of mitigation: data collection and collaboration, set policy, and investments. 

Challenge and Opportunity

Schools are on the forefront of heat-related disasters, and the impact extends beyond the hot days. Extreme heat threatens students’ health and academic achievement and causes rippling effects across the social determinants of health in terms of food access, caregiver employment, and future employment/income for students. Coordinated preparation is necessary to protect the health and well-being of children during extreme heat events.

School Infrastructure Failure

Many schools do not have adequate infrastructure to remain cool during extreme heat events. At the start of the 2023–2024 academic year, schools in multiple locations were already experiencing failure due to extreme heat and were closing or struggling to hold classes in sweltering classrooms. The Center for Climate Integrity identified a 39% increase from 1970 to 2025 in the number of school districts that will have more than 32 school days over 80°F (their temperature cutoff for needing air-conditioning to function). The Government Accountability Office found in 2020 that 41% of public school districts urgently need upgrades to HVAC systems in at least half of their buildings, totaling 36,000 buildings nationally. The National Center for Education Statistics’ (NCES) most recent survey of the Condition of America’s Public School Facilities (2012–2013 school year) found 30% of school buildings did not have adequate air-conditioning. The numbers correlate with the population of disadvantaged students: 34% of schools where at least 75% of students are eligible for free or reduced lunch, and only 25% of schools where less than 35% of students are eligible for free/reduced lunch. NCES’s School Pulse Panel, implemented to document schools’ response to COVID-19, is expanding to include other topics relevant to federal, state, and local decision-makers. The survey includes heat-adjacent questions on indoor air quality, air filtration, and HVAC upgrades, but does not currently document schools’ ability to respond to extreme heat. Schools that are not able to maintain cool temperatures during extreme heat events directly affect child health and safety, and have an upstream impact on health.

Impact on Child Health and Safety

When temperatures rise on school days, local districts must decide whether to remain open or close. Both decisions can affect children’s health and safety. If schools remain open, students may be exposed to uncomfortable and unsustainable high temperatures in rooms with inadequate ventilation. Teachers in New York State reported extreme temperatures up to 94℉ inside the classroom and children passing out during September 2023 heatwaves. Spending time in the schoolyard may only compound the problem. Unshaded playgrounds and asphalt quickly heat up and may be hotter than surrounding areas, with surface temperatures that can cause burns. Similar to neighborhood tree cover, shade on school playgrounds is correlated with income (more income, more shade), leading to a higher risk of heat exposure for low-income and historically marginalized students. Children are vulnerable to heat and may have trouble cooling down when their body temperatures rise. Returning to hot classrooms will not provide them with an opportunity to cool down.

If schools close, children who are unable to access school food may go hungry. Procedures exist to ensure the continuation of school food service during unanticipated school closures, but it is not clear how food service would function if the building is overheated during extreme heat events. In New York City, an assessment of public cooling centers identified that nearly half were in senior centers and not open to children. If schools do not have sufficient heat mitigation and are closed for heat, children from low-income households, who are at higher risk for food insecurity and less likely to have air conditioning at home, may be left hot and hungry.

While some state and local education departments have developed plans for responding to extreme heat on school days, the guidance, topics, and level of detail varies across states. Further, while the National Integrated Heat Health Information System (NIHHIS) and the Centers for Disease Control and Prevention (CDC) have identified children as an at-risk group during heat events, they do not offer specific information on how schools can prepare and respond. A comprehensive playbook that provides guidance on the many challenges schools may encounter during extreme heat, and how to keep children safe, would enhance schools’ ability to function. 

Impact on Learning and Social Determinants of Health

The cumulative impact on learning, income, and equity is large. When schools remain open, heat reduces student learning (a 1% reduction in learning for each 1℉ increase across the year). When schools close, children lose learning time. The nation experienced the rippling effects of school closures during the COVID-19 pandemic, when extended closures impacted the achievement gap, projected future earnings, and caregiver employment, particularly for women. Even five days of closure for snow days in a school year has been seen to reduce learning. The projected increase in the number of districts that experience more than 32 school days a year over 80 suggests the impact of heat on learning could be substantial, whether it is from school closure or from learning in overheated classrooms. 

The impact on learning disproportionately affects students in low-income districts, often correlated with race due to historic redlining, as these districts have fewer funds available for school improvement projects and are more likely to have school buildings that lack sufficient cooling mechanisms. These disproportionate impacts foster increasing academic and economic inequity between students in low- and high-income school districts.

Existing Response: Infrastructure

The federal government is aware of the infrastructure challenges and is funding green and gray infrastructure improvements through several programs. The Renew America’s Schools grants focus on funding infrastructure upgrades for K-12 schools. In the initial round of applications, need far exceeded available funds, with 236 Local Education Authorities submitting eligible requests totaling $1.62 billion. In response to the overwhelming need, the Department of Energy (DOE) more than doubled planned funding and awarded $178 million in grants. Through the American Rescue Plan, the Environmental Protection Agency (EPA) is providing technical assistance to help communities develop plans to develop cooling centers in schools. Through the Inflation Reduction Act, EPA is helping schools develop and implement Indoor Air Quality management plans, which include maintenance of acceptable temperatures, with an anticipated $32 million in grant funding over five years. Multiple public and private programs have supported projects to increase green space and tree cover on school grounds, including grants from the U.S. Department of Agriculture (USDA) Forest Service and California Department of Forestry and Fire Protection (CAL FIRE).

These programs are substantial, but also substantially less than the demonstrated need. Embedding heat considerations into future school infrastructure projects and integrating explicit consideration of heat into existing projects would enable all of the activities supported through these grants to mitigate the impact of extreme heat concurrently. A coordinated effort could increase the impact of these funds. 

Existing Response: Temperature Standards

Though many states, school districts, or health departments maintain and enforce standards for minimum required temperatures in occupied buildings, relatively few have similar standards for maximum acceptable temperatures. The Occupational Safety and Health Administration (OSHA) recommends indoor temperatures stay between 68℉ and 76℉ and is currently developing a national standard for protecting workers during extreme heat. Occupational standards for maximum indoor temperature exist in Oregon (80), Minnesota (77 to 86), and California (80 outdoors; indoors pending). As public schools are institutions where adults work and children, an at-risk group, are required to be present, a national standard on acceptable indoor temperatures should be developed to protect children’s health and learning. 

Plan of Action

Managing extreme heat in American public school systems requires urgent action. While education is primarily under the authority of the state governments, the mission of the federal government is to ensure educational excellence and equal access. Federal agencies can facilitate data collection and collaboration, set standards to maintain safety, provide guidelines for local education authorities to follow, and coordinate different actions at state level and act as a source of expertise for capacity building for state and local actors. Similar to the actions outlined in a recent memo on developing heat-resilient schools in California, the federal government should take preemptive action across the nation.

Collect Data and Collaborate. Federal agencies need to collaborate and collect data to better understand and drive mitigation efforts to prepare for extreme heat for schools. 

  1. The U.S. Department of Education (ED) should join NIHHIS as a partnering agency to collaborate on heat preparation and mitigation strategies specifically for schools. 
  2. The NCES should update a national inventory of school infrastructure to identify schools that will need upgrades or investments in infrastructure to mitigate heat based on climate prediction. 
  3. ED should collaborate with EPA and/or National Oceanic and Atmospheric Administration (NOAA) to collect data about heat at indoor and outdoor school facilities so as to provide better guidance to schools and direct heat mitigation efforts (e.g., increasing shade or tree cover on playgrounds). Mechanisms for this could be through creating an optional reporting function of EPA’s School IAQ Assessment tool (see recommendation below), adding heat-related questions to NCES’s School Pulse Panel, or through NOAA heat-island mapping campaigns.
    • EPA should update its School IAQ Assessment and App to include heat-related information. This could include a checklist or questions related to extreme heat, including both before heat events (HVAC status, shade cover on school building and playground, plans for hot days, options for water/cooling for overheated students, and indicators of heat stress), and heat assessments on days at high temperatures (indoor temperature in classrooms, hallways, cafeteria, gym, and outdoor temperatures on playgrounds [air and surfaces], blacktop, and shaded areas). 
    • NCES should add heat-related questions to the School Pulse Panel survey to aid heat-mitigation efforts in the same way the survey was used for COVID-19 mitigation. There are existing questions related to indoor air quality, ventilation, and the state of HVAC systems. Similar questions should be added to collect data on indoor and outdoor temperatures in locations where students spend school time (classrooms, lunch room, playground) during hot months, use of building-wide or local air conditioning or fans to maintain temperature, and availability of cooling spaces if the whole building does not have air-conditioning.
  4. ED should collaborate with state and local education authorities to collect data on school closures and absences during heat events to identify places where heat affects students’ ability to participate due to extreme heat and the reasons that students are absent during extreme heat events. Data on absences should be used to proactively target places where heat is having a larger impact on access to education. 

Set Policy. In order to prepare for future extreme heat events, federal agencies can take the following actions to set policy to expand the adaptive capacity of schools to protect U.S. educational employees and students:

  1. Similar to required minimum indoor temperatures, OSHA should establish a standard that sets the maximum classroom indoor temperatures at which cooling action must be taken or classrooms must be closed. OSHA is already considering a heat standard for outdoor workers; OSHA can set standards for school employees that would also protect students learning in those conditions. 
  2. The Federal Emergency Management Agency (FEMA) should define school infrastructure as failing on school days above 80℉ outdoor temperature in schools without air conditioning or indoor temperature above 80℉ in classrooms. FEMA can then apply mitigation measures if the school is determined to have infrastructure failure, including providing funding for infrastructure upgrades.
  3. FEMA and other agencies that assess and predict hazard risk should explicitly consider schools’ capability to remain open and keep children safe during extreme heat events as part of their assessments. 
  4. ED and the Department of Health and Human Services (HHS) should develop guidelines to protect students’ health, well-being, and learning during extreme heat events and include them in the Emergency Planning section of schoolsafety.gov guidance. This could include an updated and easily accessed, searchable, and centralized library of federal and state resources specifically tailored to heat stress in schools such as California’s EnvironScreen and US Climate Resilience Toolkit. This can expand the capacity of local and state actors and provide ongoing access to updates support. This also sets the stage for state governments to share resources and collaborate.
  5. NIHHIS should add resources for schools in a “For Schools” drop-down section of the Planning and Preparing page on HEAT.gov.
  6. USDA should develop a federal process to serve food in alternative locations when school buildings are overheated during extreme heat events, similar to New York State’s summer waiver allowing food service in alternate locations during heat events.

Invest in Schools. In order to prepare for and plan for future extreme heat events, EPA, the Consumer Product Safety Commission (CPSC), USDA, and the Department of Energy (DOE) can take the following actions to launch mitigation measures to improve the resilience of schools and alleviate the impact of heat on student and employee health:

  1. Existing projects focused on school upgrades should integrate consideration of heat mitigation into their programs.
    • The Renew America’s Schools Grants and EPA’s Indoor Air Quality project should ensure that infrastructure upgrades they support for K-12 schools will also meet the needs of increasing temperatures. These projects already contribute substantial funding to projects that could affect heat mitigation. Explicitly planning for and investing in heat mitigation as part of those upgrades could reduce the need for additional upgrades to address heat.
    • The CPSC should update their Public Playground Safety Handbook to include a more comprehensive overview of designing thermally comfortable playgrounds. The National Program for Playground Safety developed a good example of this for the Standards Council of Canada with specific details about designing thermally safe playgrounds. Programs supporting schoolyard redesign projects should follow these guidelines.
  2. Substantial funding needs to be allocated to invest in infrastructure, cooling technologies, retrofits, landscape, and other adaptive strategies to prepare for extreme heat. There needs to be investments in researching how much funding is needed and how to allocate that funding equitably. Data collection proposed above will help determine the scale of the need.

Conclusion

Extreme heat is an urgent problem for schools. Opportunities exist across the federal government to protect our nation’s future by protecting our children. Federal agencies can best support state and local schools through three paths of mitigation: collect data and collaborate, set policy, and invest in schools. 

This idea of merit originated from our Extreme Heat Ideas Challenge. Scientific and technical experts across disciplines worked with FAS to develop potential solutions in various realms: infrastructure and the built environment, workforce safety and development, public health, food security and resilience, emergency planning and response, and data indices. Review ideas to combat extreme heat here.

Frequently Asked Questions
Are there any state-level temperature standards in the works for schools?

Several examples of potential legislation exist at the state level in Mississippi (classrooms must be air-conditioned for schools to be accredited), Connecticut (schools with air conditioners must maintain temperatures below 78ºF), Washington (schools must be “reasonably free of… excessive heat”), and Hawaii (classrooms must be a “temperature acceptable for student learning”) and a bill is being considered in New York (cooling action must be taken at 82ºF; classrooms can’t be occupied above 88ºF).

Enhanced Household Air Conditioning Access Data for More Targeted Federal Support Against Extreme Heat

While access to cooling is the most protective factor against extreme heat events, the U.S. Census lacks granular, residential data to determine who has access to air conditioning (AC). The addition of a question about household access to working AC to the Census American Community Survey, a nationally representative survey on the social, economic, housing, and demographic characteristics of the population, would have life-saving impacts.

This is especially essential as the U.S. is experiencing more frequent and intense extreme heat events, and extreme heat now kills more people than all other weather-related hazards. Many vulnerable demographics — including people who are elderly, low-income, African-American, socially isolated, as well as those with preexisting health conditions— are exposed to high temperatures within their homes

Better data on working AC infrastructure in American homes would improve how the federal government and its state and local partners target local social services and interventions, such as emergency responder deployment during high-heat events, as well as distribute federal assistance funds, such as the Weatherization Assistance Program (WAP), Low Income Home Energy Assistance Program (LIHEAP), and funding from the Inflation Reduction Act (IRA) along with the Bipartisan Infrastructure Law (BIL).

Challenge and Opportunity 

In 2019, the U.S. Census Bureau acknowledged the danger of heat by issuing the Community Resilience Estimates (CRE) for Heat. The CRE for Heat is a measure that combines 10 questions from the existing American Community Survey questions. The questions ask about:

  1. Financial hardship 
  2. Older residents living alone 
  3. Crowding 
  4. Whether the home is a mobile home, boat, or recreational vehicle
  5. Employment status for those under 65 years old
  6. Whether a resident has a disability
  7. Whether a resident has health insurance 
  8. Access to a vehicle
  9. Connection via broadband internet access
  10. Communication barriers

However, the CRE for Heat lacks a question about air conditioning, the most important protective factor. Indoor temperature regulation is essential for mitigating heat illness and death on extremely hot days – temperatures above 86°F indoors can easily become dangerous and deadly.

Currently, the best information on residential AC is provided by the biennial American Housing Survey (AHS). In 2019, the AHS reported that 8.8% (11.6 million households) of all U.S. housing units have no form of AC. However, this information has three significant weaknesses. First, the American Housing Survey is based on 2,000 homes sampled across a metropolitan area. The sampling process generates an average across high-, medium-, and low-income residents; therefore, it overestimates the presence of AC in lower-income households. American households with higher incomes are more likely to have access to AC: 92.2% of households with incomes greater than $100,000 have some form of AC, compared with 88.9% of households with incomes less than $30,000. Second, lower-income households may have broken AC systems or units and lack money for repairs, skewing collected data. Third, the AHS fails to consider how poverty constrains electricity consumption. Many lower-income households reduce or abstain from using their AC in fear of costly electricity bills that trigger shutoffs. For instance, a 2022 report found that nearly 20% of households earning less than $25,000 reported keeping their indoor temperatures at levels that felt unsafe for several months of the year. These three weaknesses of the AHS data underscore the need for fine-grained information on who has access to working AC, especially in lower-income households.

The U.S. Census American Community Survey (ACS), on the other hand, samples 3.5 million addresses every year in a nationally representative annual survey. The ACS asks about housing characteristics, costs, and conditions (including heating) but not about AC nationwide. The equivalent survey administered in the four Island Areas of Guam, the Commonwealth of the Northern Mariana Islands, the U.S. Virgin Islands, and American Samoa — known as the “Island Areas Census” — included an AC question until 2010. This is an important precedent for adding a similar question to all Census surveys and should expedite the process. However, adding the term “working” (or a similar word) to the air-conditioning question would enhance its ability to capture low-income homes with broken systems as well as households that cannot use their existing AC due to energy insecurity.

Former question on air-conditioning in the American Community Survey for U.S. Island Areas

Better Information for Better Distribution of LIHEAP and WAP Funding

In addition to helping emergency responders, city planners, and public health departments, information collected on the presence of working AC could help ensure that the Department of Health and Human Services (HHS) Low Income Heat Energy Assistance Program (LIHEAP) and Department of Energy’s (DOE) Weatherization Assistance Program (WAP) serve the most vulnerable residents.

LIHEAP, administered by the Office of Community Services (OCS) within the Administration for Children and Families (ACF), is designed to “assist low-income households, particularly those in the lowest incomes, that pay a high proportion of household income for home energy, primarily in meeting their home energy needs.” LIHEAP is a targeted block grant program whereby states distribute their funds across three programs that subsidize home energy heating or cooling costs; fund payment in crises; and support home weatherization (limited to 15% of funds unless a state requests a waiver to increase their percentage to 25%). The largest proportion of the funds subsidizes lower-income, vulnerable residents’ energy spending. While LIHEAP is an important federal program that impacted 7.1 million American households in 2023, only approximately 20% of eligible households received LIHEAP assistance, and the program is currently facing budget shortfalls of $2 billion.

By expanding cooling assistance, LIHEAP is being asked to do more with less: 24 of 50 states now include cooling assistance, and 9.8% of funds subsidized cooling costs. As extreme heat events become more frequent and severe and households become more energy insecure in the face of rising energy prices, more states will need to expand cooling assistance programs. Data on where households are most vulnerable — that is, those households without working AC or the financial ability to operate their AC — would enable targeted distribution of federal funds. Therefore, adding a Census question on household access to working AC would provide critical information to ensure LIHEAP funds serve the most vulnerable households. 

Unlike LIHEAP, WAP’s sole focus is weatherization. Many weatherization improvements that help in cold weather also improve indoor thermal comfort during warm summer months. These improvements include fixing broken AC; adding insulation in walls, attics, and crawlspaces; and replacing leaky, inoperable windows. Compared to LIHEAP, WAP serves a much smaller number of homes — 35,000 homes annually versus LIHEAP’s 7.1 million (as of FY2023). Knowing the number of individual households in a census tract in need of investments in heat resilience adaptation and air-conditioning would enable much more targeted delivery of limited federal resources. Further, DOE can use this information to predict future grid demand and enhance necessary resilience measures for hotter summers.

Plan of Action 

To save lives in the face of growing extreme heat, the Census should add a question about working AC to the American Community Survey. This could be executed as follows:

Recommendation 1. The Office of Community Services in the Administration for Children and Families (OCS ACF) requests the addition of a question about access to working AC at the census tract level to the American Community Survey. This would directly aid the LIHEAP program’s mandate to identify and serve vulnerable individuals, and benefit other programs like DOE’s WAP as well as programs authorized by the IRA and BIL. 

Recommendation 2. Legal staff in the Office of Management and Budget (OMB) and the Census Bureau review the proposal to determine whether it meets legislative requirements. 

Recommendation 3. After a successful legal review, OMB and the Census Bureau, in consultation with the Interagency Council on Statistical Policy Subcommittee for the American Community Survey, determine whether the request merits consideration.

Recommendation 4. Subject matter experts across relevant federal government programs (i.e. LIHEAP and WAP) and external institutions (housing experts, extreme heat experts, social vulnerability experts) identify ways to ask the question. The Census Bureau conducts interviews to determine which wording produces the most accurate results. Because a similar question (but lacking the term “working”) is used on the American Community Survey for Island Areas, this process may be expedited. A potential example of the new question is below:

Do you have working air air-conditioning?

Recommendation 5. The Census Bureau solicits public comment on the question and request OMB’s approval for field testing. 

Recommendation 6. The Census Bureau and ACF OCS review the results and decide whether to recommend adding the new survey question. Through the Federal Register Notice, the Census Bureau solicits public comment. Public comments inform the final decision that is made in consultation with the OMB and the Interagency Council on Statistical Policy Subcommittee on the American Community Survey.

Recommendation 7. If approved by OMB, the Census Bureau adds the question to its materials, and implementation begins at the start of the following calendar year (October). 

Recommendation 8. The Community Resilience Estimates (CRE) for Heat is updated with information about AC as it becomes available. This tool can be shared, along with refined guidance, with state-level administrators of programs like LIHEAP and WAP to target investments to the households most vulnerable to overheating and resulting heat illness and death. The CDC could integrate AC coverage within its existing syndromic surveillance programs on extreme heat, as an additional layer of “risk” for targeted public health deployment during high-heat events.

Conclusion 

The U.S. lacks fine-scaled data to determine whether households can access working AC systems/units and operate them during extreme heat events. Adding a question to the American Community Survey will provide life-saving information for emergency responders, social service providers, and city staff as extreme heat events become more frequent and intense. This fine-scaled information will also aid in distributing LIHEAP and WAP funding and increase the federal government’s ability to protect the most vulnerable residents from life-threatening extreme heat events.

This idea of merit originated from our Extreme Heat Ideas Challenge. Scientific and technical experts across disciplines worked with FAS to develop potential solutions in various realms: infrastructure and the built environment, workforce safety and development, public health, food security and resilience, emergency planning and response, and data indices. Review ideas to combat extreme heat here.

Moving the Nation: The Role of Federal Policy in Promoting Physical Activity

Physical activity is one of the most powerful tools for promoting health and wellbeing. Movement is not only medicine—effective at treating a range of physical and mental health conditions—but it is also preventive medicine, because movement reduces the risk for many conditions ranging from cancer and heart disease to depression and Alzheimer’s disease. But rates of physical inactivity and sedentary behavior have remained high in the U.S. and worldwide for decades.

Engagement in physical activity is impacted by myriad factors that can be viewed from a social ecological perspective. This model views health and health behavior within the context of a complex interplay between different levels of influence, including individual, interpersonal, institutional, community, and policy levels. When it comes to healthy behavior such as physical activity, sustainable change is considered most likely when these levels of influence are aligned to support change. Every level of influence on physical activity within a social-ecological framework is directly or indirectly affected by federal policy, suggesting physical activity policy has the potential to bring about substantial changes in the physical activity habits of Americans. 

Every level of influence on physical activity within a social-ecological framework is directly or indirectly affected by federal policy, suggesting physical activity policy has the potential to bring about substantial changes in the physical activity habits of Americans.
FIGURE 1. Adapted from Heise, L., Elisberg, M., & Gottemoeller, M. (1999)

Why are federal physical activity policies needed?

Physical inactivity is recognized as a public health issue, having widespread impacts on health, longevity, and even the economy. Similar to other public health issues over past decades such as sanitation and tobacco use, federal policies may be the best way to coordinate large-scale changes involving cooperation between diverse sectors, including health care, transportation, environment, education, workplace, and urban planning. An active society requires the infrastructure, environment, and resources that promote physical activity. Federal policies can meet those needs by improving access, providing funding, establishing regulations, and developing programs to empower all Americans to move more. Policies also play an important role in removing barriers to physical activity, such as financial constraints and lack of safe spaces to move, that contribute to health disparities. With such a variety of factors impacting active lifestyles, physical activity policies must have inter-agency involvement to be effective.

What physical activity initiatives exist currently?

Analysis of publicly available information revealed that there are a variety of initiatives currently in place at the federal level, across several departments and agencies, aimed at increasing physical activity levels in the U.S. Information about each initiative was evaluated for their correspondence with levels of the social-ecological model, as summarized in the table. Note that it is possible the search that was conducted did not identify every relevant effort, thus there could be additional initiatives that are not included below.

Given the large number of groups with the shared goal of increasing physical activity in the nation, a memorandum of understanding (MOU) may help to promote coordination of goals and implementation strategies.

FIGURE 2. Agency roles
Department or AgencyExisting or Potential Role
Administration for Children and Families (ACF)ACF’s strategic goals include taking a “preventative and proactive approach to ensuring child, youth, family, and individual well-being.” Physical activity is a powerful preventative and proactive approach.
Administration for Community Living (ACL)ACL’s Health, Wellness, and Nutrition program addresses behavioral health, prevention of injuries and illness, and chronic disease self-management for aging and disability populations, all of which relate to physical activity, though physical activity is not directly addressed in the program’s goals.
Agency for Healthcare Research and Quality (AHRQ)AHRQ moves scientific evidence into practice to help healthcare systems and professionals deliver care that is high quality, safe, accessible, equitable, and affordable, and works to ensure that the scientific evidence is understood and used. AHRQ provides support to the U.S. Preventive Services Task Force (USPSTF), which makes recommendations about clinical preventive services including physical activity.
Centers for Disease Control and Prevention (CDC)The CDC conducts research and provides health information to tackle health problems causing death and disability for Americans, put science into action to prevent disease, and promote healthy and safe behaviors, communities and environment. The CDC has several programs focused on physical activity, partnering with other government agencies and departments as well as other organizations, including the Active People, Healthy Nation program and funding initiatives such as the State Physical Activity and Nutrition Program (SPAN 2023), which supports state-level programs to implement evidence-based strategies to address health disparities related to poor nutrition, physical inactivity, and/or obesity.
Centers for Medicare and Medicaid (CMS)CMS’ Behavioral Health Strategy is aimed at increasing access to equitable and high-quality behavioral health services and improving outcomes for people covered by Medicare, Medicaid and private health insurance. CMS could play an important role in providing access to gym memberships and exercise prescriptions for both intervention and prevention. Currently, gym memberships or fitness programs may be included in the extra coverage offered by Medicare Advantage Plans depending on the person’s location. Less commonly, coverage is provided by Medicare Supplement (Medigap) plans. For Medicaid, some states cover gym memberships as part of weight loss initiatives or partner with YMCAs or other community organizations to run health programs.
Council on Environmental Quality (CEQ) and Environmental Protection Agency (EPA)CEQ and EPA coordinate federal environmental activities and the development of environmental policy, which has a reciprocal beneficial relationship with physical activity. For example, to reduce emission and energy use, climate change policies have been introduced to encourage cycling, walking and other forms of sustainable, active transport. Parks and other green spaces that sequester carbon dioxide also provide space for people to be active. Policies that reduce air pollution help to reduce a barrier to exercising outside.
Department of Agriculture (USDA)The USDA’s strategic priorities include addressing climate change via climate smart agriculture, forestry, and clean energy. Climate, clean air, and spaces for outdoor recreation and camping such as forests are all related to physical activity. The USDA works with the Bureau of Land Management, National Park Service, and others to increase physical activity on federal land (hiking, rafting, biking, etc.), and also provides funding for urban forestry, which promotes physical activity in urban areas.
Department of Education (DE)The DE sets guidelines for physical education in schools and has provided funding for research on physical activity in schools, such as the Carol M. White Physical Education Program, which awarded grants from 2001-2015 to Local Education Agencies (LEAs) and community-based organizations (CBOs) to initiate, expand, or enhance physical education programs. The DE could also designate physical education as a core subject and ensure that physical activity is not assigned or withheld as punishment.
Department of Housing and Urban Development (HUD)HUD has an important role in community building and infrastructure. The built environment can support physical activity (e.g., by providing safe spaces for movement). For example, HUD’s Office of Community Planning and Development develops communities by promoting decent housing, suitable living environments, and expanded economic opportunities for low- and moderate-income people. Research shows that receiving HUD housing assistance is associated with higher physical activity levels in low-income Americans. HUD is also involved in the climate action plan.
Department of the Interior (DOI)The DOI manages public lands and minerals, national parks, and wildlife refuges. Within the DOI, the Bureau of Land Management and National Park Service maximize land use, including recreational activities that involve physical activity in outdoor spaces. The National Park Service promotes health and wellness through the Healthy Parks Healthy People initiative, which involves a collaboration with partners and interdisciplinary teams in the sectors of public health, medicine, conservation, and recreation to put a spotlight on the role of parks as social determinant of health.
Department of Transportation (DOT)The DOT promotes physical activity in the public sector through building and maintaining sidewalks or trails, as well as connecting them; reducing car dependency; provide increased opportunities for walking and bicycling; encouraging the creation and implementation of policies to support alternate modes of transportation; providing direct investments to supportive infrastructure such as bicycle lanes, greenways, multi use paths, sidewalks and trails; reducing distances between key destinations and providing and improving bicycle and pedestrian facilities; and installing streetlights. For example, the Safe Routes to School Programs, which promotes safe ways for youth to walk or bike to and from school through the funding of infrastructure (e.g., sidewalks) and educational programs, grew out of these federal funding programs. The DOT and its partner agencies also work to address air and noise pollution and reduce greenhouse gas emissions, to improve opportunities for safe, active, multimodal transportation and reduce dependence on vehicles, such as the Clean Air Act and the Congestion Mitigation and Air Quality Improvement (CMAQ) Program.
Department of Veterans Affairs (VA)The VA’s Veterans Health Administration is America’s largest integrated health care system. Their National Center for Health Promotion and Disease Prevention includes talking to one’s doctor about physical activity as one of their recommended preventive services. The integrated nature of medical care through the VA would promote the implementation of exercise prescriptions to a large and vulnerable population and could serve as a model for more widespread implementation.
Health Resources and Services Administration (HRSA)HRSA offers programs to improve access to health care for people who are uninsured, isolated, or medically vulnerable, and funds grants and cooperative agreements related to its mission. Funding related to physical activity is directly related to its strategic goal to “Take actionable steps to achieve health equity and improve public health.”
National Institutes of Health (NIH)As the federal government’s medical research agency, NIH supports physical activity related research in its intramural laboratories and through research funding to scientists at other organizations. Requests for applications (RFAs) and Notices of Special Interest (NOSIs) for exercise-focused research grants can promote continued research on the impacts of physical activity on health.
Office of Minority Health (OMH)The OMH promotes the health of racial and ethnic minority populations through the development of health policies and programs that will help eliminate health disparities. Prevention through physical activity and nutrition is one of OMH’s focus areas, as are clinical conditions including diabetes and hypertension that can be prevented or treated with physical activity.
Office of Personnel Management (OPM)One role of OPM, which oversees human resources for federal employees, is to help federal agencies integrate prevention strategies into their workplace through worksite health and wellness programs and organizational and employee benefits. Examples include encouraging employees to use flexible work schedules (non-duty time) to participate in health promotion activities, allowing employees to request annual leave, leave without pay, or sick leave (as appropriate) to participate in health promotion programs, and providing short periods of excused absence for health promotion programs and activities officially sponsored and administered by the agency.

The work of several agencies and departments within the federal government relates to physical activity promotion. Current initiatives are in place, but there are also opportunities for additional efforts that could further the goal of creating a more active nation.

FIGURE 3. Agency interactions
Department, Agency, or DivisionIndividualInterpersonalOrganizationalCommunityPolicy
Administration for Children and Families (ACF)XX
Administration for Community Living (ACL)XX
Agency for Healthcare Research and Quality (AHRQ)XXX
Centers for Disease Control and Prevention (CDC)XX
Centers for Medicare and Medicaid (CMS)XX
Council on Environmental Quality (CEQ)XX
Department of Agriculture (USDA)XX
Department of Education (DE)XX
Department of Housing and Urban Development (HUD)XX
Department of the Interior (DOI)XX
Department of Transportation (DOT)XX
Department of Veterans Affairs (VA)X
Environmental Protection Agency (EPA)XX
Health Resources and Services Administration (HRSA)XX
National Institutes of Health (NIH)XX
Office of Minority Health (OMH)XXX
Office of Personnel Management (OPM)XX

These and other federal departments and agencies can coordinate action with state and local partners, for example in healthcare, business and industry, education, mass media, and faith-based settings, to implement physical activity policies. 

The CDC’s Active People, Healthy Nation initiative provides an example of this approach. This campaign, launched in 2020, has the goal of helping 27 million Americans become more physically active by 2027. By taking action steps focused on program delivery, partnership engagement, communication, training, and continuous monitoring and evaluation, the campaign seeks to help communities implement evidence-based strategies across sectors and settings to provide equitable and inclusive access to safe spaces for physical activity. According to our analysis, the strategies of the Active People, Healthy Nation initiative are aligned with the social-ecological model. The Physical Activity Policy Research and Evaluation Network, a research partner of the Active People, Healthy Nation initiative, provides an example of coordinating with partners in other sectors to promote physical activity. Through collaboration across sectors, the network brings together diverse partners to put into practice research on environments that maximize physical activity. The network includes work groups focused on equity and inclusion, parks and green space, rural active living, school wellness, transportation policy and planning, and business/industry.

The Biden-Harris Administration National Strategy on Hunger, Nutrition, and Health, announced in September 2022, also includes strategies that are consistent with a social-ecological model. The strategy outlines steps toward the goal of ending hunger and increasing healthy eating and physical activity by 2030 so that fewer Americans will experience diet-related diseases. Pillar 4 of the strategy is to “make it easier for people to be more physically active—in part by ensuring that everyone has access to safe places to be active—increase awareness of the benefits of physical activity, and conduct research on and measure physical activity.” The strategy specifies goals such as building environments that promote physical activity (e.g., connecting people to parks; promoting active transportation and land use policies to support physical activity) and includes a call to action for a whole-of-society response involving the private sector, state, local, and territory governments, schools, and workplaces.

The Congressional Physical Activity Caucus has been active in introducing legislation that can help realize the goals of the current physical activity initiatives. For example, in February 2023, Sen. Sherrod Brown (D-OH), co-chair of the Caucus, introduced the Promoting Physical Activity for Americans Act, a bill that would require the Department of Health and Human Services to continue issuing evidence-based physical-activity guidelines and detailed reports at least every 10 years, including recommendations for population subgroups (e.g., children or individuals with disabilities). In addition, members of the Caucus, along with other members of congress, reintroduced the bipartisan, bicameral Personal Health Investment Today (PHIT) Act in March 2023. This legislation seeks to encourage physical activity by allowing Americans to use a portion of the money saved in their pre-tax health savings account (HSA) and flexible spending account (FSA) toward qualified sports and fitness purchases, such as gym memberships, fitness equipment, physical exercise or activity programs and youth sports league fees. The bill would also allow a medical care tax deduction for up to $1,000 ($2,000 for a joint return or a head of household) of qualified sports and fitness expenses per year.

What progress has been made?

There are signs that some of the national campaigns are leading to changes at other levels of society. For example, 46 cities, towns, and states have passed an Active People, Healthy Nation Proclamation as of September 2023. According to the State Routes Partnership, which develops “report cards” for states based on their policies supporting walking, bicycling, and active kids and communities, many states have shown movement in their policies between 2020 and 2022, such as implementing new policies to support walking and biking and increasing state funding for active transportation. However, more time is needed to determine the extent to which recent initiatives are helping to create a more active country, since most were initiated in the past two or three years. Predating the current initiatives, the overall physical activity level of Americans increased from 2008 to 2018, but there has been little change since that time, and only about one-quarter of adults meet the physical activity guidelines established by the CDC.

Clearly, there is a critical need for concerted effort to implement the strategies outlined in current physical activity initiatives so that national policies have the intended impacts on communities and on individuals. Leveraging provisions in existing legislation related to the social-ecological model of physical activity promotion will also help with implementation. For example, title III-D of the Older Americans Act supports healthy lifestyles and promotes healthy behaviors amongst older adults (age 60 and older), providing funding for evidence-based programs that have been proven to improve health and well-being and reduce disease and injury. Physical activity programs are prime candidates for such funding. In addition, programs under the 2021 Bipartisan Infrastructure Law and the 2022 Inflation Reduction Act are helping to change the current car-dependent transportation network, providing healthier and more sustainable transportation options, including walking, biking, and using public transportation, and are providing investments in environmental programs to improve public health and reduce pollution. For example, states can use funds from the Highway Safety Improvement Program for bicycle and pedestrian highway safety improvement projects, and funding is available through the Carbon Reduction Program for programs that help reduce dependence on single-occupancy vehicles, such as public transportation projects and the construction, planning, and design of facilities for pedestrians, bicyclists, and other non-motorized forms of transportation.

Partnering with non-governmental groups working towards common goals, such as the Physical Activity Alliance, can also help with implementation. The Alliance’s National Physical Activity Plan is based on the socio-ecological model and includes recommendations for evidence-based actions for 10 societal sectors at the national, state, local and institutional levels, with a focus on making change at the community level. The plan shares many priorities with those of the Active People, Healthy Nation initiative, while also introducing new goals, such as establishing a CDC Office of Physical Activity and Health. 

With coordinated action based on established public health models, such as the social-ecological framework, federal policies can be successfully implemented to make the systemic changes that are needed to create a more active nation.


The work for this blog was undertaken before Dr. Dotson joined the Agency for Healthcare Research and Quality (AHRQ). Dr. Dotson is solely responsible for this blog post’s contents, findings, and conclusions, which do not necessarily represent the views of AHRQ. Readers should not interpret any statement as an official position of AHRQ or of the U.S. Department of Health and Human Services.

FAS Unveils 23 Actionable Recommendations for Improving Wildland Fire Policy

WASHINGTON, D.C. – The Federation of American Scientists unveiled 23 actionable policy proposals developed by expert contributors. These recommendations were developed with the aim of contributing to a holistic, evidence-based approach to managing wildland fire in the United States and in response to the Wildland Fire Mitigation and Management Commission’s request for stakeholder input in its work to develop a report for Congress . 

In partnership with COMPASS, the California Council on Science and Technology (CCST), and Conservation X Labs, FAS hosted a Wildland Fire Policy Accelerator to collect, refine, and amplify actionable, evidence-based ideas to improve how we live with fire. 

The recommendations cover issues across the wildland fire policy spectrum, falling into four categories: Landscapes and Communities, Public Health and Infrastructure, Science, Data, and Technology, and Workforce. Contributors come from academia, the private sector, and nonprofits and have expertise in public health, fire intelligence, forestry, cultural burning, and more. 

“The ideas we are presenting showcase how the development of evidence-based policy can be inclusive of more diverse expert input and lead to better results. We are eager to see the final recommendations the Commission ultimately relays to Congress, and how they respond” says FAS Director of Science Policy Erica Goldman.

“These are urgent issues that can only be solved through cross-sectoral, multidisciplinary collaborations. We’re grateful to be at the table and excited to see how these bold ideas can evolve and inform public policy across local and state governments,” says CCST Senior Science Officer Teresa Feo.

The Federation of American Scientists (FAS) is a nonprofit policy research and advocacy organization founded in 1945 to meet national security challenges with evidence-based, scientifically-driven, and nonpartisan policy, analysis, and research. The organization works to advance progress on a broad suite of contemporary issues where science, technology, and innovation policy can deliver dramatic progress, and seeks to ensure that scientific and technical expertise have a seat at the policymaking table.

Building Momentum for Equity in Medical Devices

Just over a year ago, I found myself pausing during a research lab meeting. “Why were all the subjects in our studies of wearable devices white? And what were the consequences of exclusion?”

This question stuck with me long after the meeting. Digging into the evidence, I was alarmed to find paper after paper signaling embedded biases in key medical technologies

One device stuck out amongst the rest – the pulse oximeter. Because of its crucial role in diagnosing COVID-19, it had caught the attention of a diverse group of stakeholders: clinicians looking to understand the impacts on patient care, engineers working to build more equitable devices, social scientists tracing the history of device and examining colorism in pulse oximetrypolicymakers seeking solutions for their constituents, and the FDA, which was examining racial bias in medical technologies for the first time. But what I found as I scoped out this policy area is that these stakeholders weren’t talking to one another, at the expense of coordinated progress towards equity in pulse oximetry. 

With all eyes directed towards the FDA’s Advisory Committee meeting on November 1st, 2022, FAS convened a half-day session of stakeholders on November 2nd to chart a research and policy agenda for near-term mitigation of inequities in pulse oximetry and other medical technologies. Eight experts from medicine, engineering, sociology, and anthropology shared insights with an audience of 60 participants from academia, the private sector, and federal government. Collectively, we developed several key insights for future progress on this issue and outlined a path forward for achieving equity now. You can access the full readout here. We’ll dive into the key highlights below:

Key Insights

Through discussions with experts during the forum, three key themes rose to the surface:

Resolving the problem of bias in pulse oximeter devices will likely take several years. But in the meantime, this issue will continue negatively impacting patients. Our participants urged that we need to think about actions that can be initiated this next year that will advance more equitable care with existing pulse oximeters. 

In-person stakeholders convening a focused conversation on next steps

Motivating Action for Equity Now

While a daunting problem, a collaborative, multi-stakeholder effort can bring us closer to solutions. We can work together to advance equity in standards of care by:

Mapping out a plan of action towards equity

Looking Ahead

This won’t be easy, but it’s 30 years overdue. We believe correcting the bias will pioneer a model that can be readily applied to combatting biases across the medical device ecosystem, something already underway in the United Kingdom with their Equity in Medical Devices Independent Review. Through a systematic approach, stakeholders can work to close racial disparities in the near-term and advance health equity.

Empowering Healthy Eating in America

Poor diets present elevated health risks, and Americans need help finding the time and resources to eat nutritiously

Americans get bombarded with promotions for unsubstantiated diet fads on the internet, are exposed to dubious weight-loss branded foods in grocery stores, and often struggle to eat nutritiously. The Dietary Guidelines for Americans recommend a balanced diet of two and a half cups of vegetables, two cups of fruit, six ounces of grains, three cups of dairy, five and a half ounces of protein, and 27 grams of oil every day. This diet is well-balanced, but it is neither practiced by, nor accessible to, all Americans (Figure 1).

Increasing numbers of Americans do not eat healthful diets. In 2018, the National Health and Nutrition Examination Survey found that one in three Americans eats fast food on any given day. Moreover, both rural and urban Americans report that lack of time and access to nutritious foods prevents them from cooking healthy meals. Indeed, a 2017 study indicated that the higher prices of healthy foods – nearly double those of unhealthy foods – can play a role in the U.S. population’s failure to achieve a nutritious diet. When healthy food cost even 14 percent higher than unhealthy food, there was a 24 percent decrease in consuming a high-quality diet. Unfortunately, an unhealthy diet can lead to a variety of health issues, such as obesity, type-2 diabetes, heart disease, and an increased risk of some cancers. To reverse poor health metrics such as the 42.4% of American adults over 20 years of age who suffered from obesity in 2018, policymakers and health experts alike hope to make healthy diets more accessible to all Americans.

Figure 1.

On average, people in the U.S. score between 56 and 60 (out of 100) when evaluated for healthy eating. The maximum test score of 100 points indicates adherence to the American Dietary Guidelines. Figure reproduced from Dietary Guidelines for Americans, 2020-2025.

To empower people to develop more nutritious eating habits, some experts recommend:

For some, the transition to eating a well-balanced diet will require learning how to cook, carving out time to prepare meals, or gaining an understanding of the nutritional value of various foods. In the U.S., there is no justifiable reason people should not be supported by their local, state, and federal governments in efforts to eat healthy.

To improve American dietary habits, policymakers can learn about and implement public health initiatives for nutritional education, as well as break down systemic barriers to healthy eating lifestyles.

This CSPI Science and Technology Policy Snapshot expands upon a scientific exchange between Congressman Bill Foster (D, IL-11) and his new FAS-organized Science Council.

COVID-19, advanced pharmaceutical manufacturing, and the U.S. supply chain

Innovative manufacturing techniques can expand the production of drugs and medical supplies in the U.S.

The COVID-19 pandemic caused significant disruptions in global supply chains, and policymakers are now strategizing around how to ramp up U.S. supply chain resiliency. Everything from beef to toilet paper became more difficult to find in U.S. stores, and the pandemic also caused dire shortages of medical supplies and lifesaving treatments. The shortages were caused by the closure of many manufacturing plants in countries like China, and our domestic supply chain was not sufficient to meet the demand gap. In fact, it is estimated that China exports more respirators, surgical masks, and other personal protective equipment than the rest of the world combined. The limited capacity of domestic supply chains – particularly for pharmaceuticals and medical supplies – was a focus for Chair Tammy Baldwin (D, WI) during last week’s Senate Appropriations Subcommittee hearing featuring testimony from Dr. Janet Woodcock, acting commissioner of the Food and Drug Administration (FDA).

The distributed nature of modern manufacturing

The production of goods such as smartphones, medical therapeutics, or kitchen appliances is complex. Manufacturers rely on highly-trained specialists to make different components that are eventually combined into a single product. For example, the manufacture of LCD displays requires obtaining the raw materials, like glass sheets, films, semiconductor chips, and circuit connectors, from other manufacturers around the world, and assembling components inside multi-billion-dollar factories. Specialization in manufacturing allows businesses to develop new, lower-cost technologies, and more easily scale production and design processes. Unfortunately, specialization also results in a layered network of manufacturers relying on yet other manufacturers, and so on, and it becomes very difficult to determine where each component is coming from in the supply chain. The lack of visibility into this process then exacerbates disruptions in manufacturing during crises, such as the COVID-19 pandemic.

Federal partnerships to strengthen the domestic manufacturing base

To protect against future disruptions, implementing advanced manufacturing practices in domestic facilities, and encouraging businesses, particularly those that make critical drugs and medical supplies, to set up new advanced manufacturing plants in the U.S., can make a substantial impact. During last week’s hearing, Senate Appropriations Subcommittee on Agriculture, Rural Development, FDA, and Related Agencies Chair Baldwin began by asking (33:05 mark in video) FDA Acting Commissioner Woodcock about how the agency is helping to strengthen domestic pharmaceutical supply chains with advanced manufacturing.

The implementation of advanced manufacturing is a top priority for the Biden Administration, and earlier this year, the FDA partnered with the National Institute of Standards and Technology (NIST) to develop an advanced manufacturing regulatory framework. The partnership aims to “increase U.S. medical supply chain resilience and advanced domestic manufacturing of drugs, biological products, and medical devices through adoption of 21st century manufacturing technologies.” One emerging technology that will be explored by the partnership is the modularization of manufacturing processes. Modularization refers to structuring discrete parts of the manufacturing process in a way that they can be plugged into each other in different combinations and still function properly. With modular processes, reconfiguring the manufacturing floor to produce a different medicine or device could take just hours or days, instead of months. Another example is using artificial intelligence to track production, tweak settings to increase efficiency, and schedule maintenance to reduce the amount of downtime necessary.

In addition to FDA and NIST efforts to implement advanced manufacturing for medical supplies, two Manufacturing USA Institutes – the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) and the Bioindustrial Manufacturing and Design Ecosystem (BioMADE) – are pursuing new advanced biomanufacturing solutions. NIIMBL is a public-private partnership supported by industry and NIST to “accelerate biopharmaceutical innovation,” develop standards, and educate the biomanufacturing workforce. Advances in manufacturing processes developed by NIIMBL aid in the production of treatments for debilitating diseases like cancer, autoimmune disorders, microbial infections, and diabetes. BioMADE is one of the newest Manufacturing USA institutes, supported by the Department of Defense and industry partners. It will promote the commercialization of new biomanufacturing technologies by (i) developing predictive models to move products from the lab to production, (ii) de-risking new technologies, and (iii) manufacturing products at pilot and intermediate scales before they are produced at full scale. BioMADE would also help establish best practices for the biofabrication of novel chemicals, enzymes, and other useful biological products.

Advanced manufacturing for on-demand pharmaceuticals

There are already numerous advanced manufacturing technologies that could be leveraged to boost domestic capacity and improve U.S. self-sufficiency in the production of high-priority medicines, such as anesthetics. Building on work that is underway at the federal level, there are additional opportunities for the Executive Branch to form cross-cutting, productive partnerships. A proposal from Dr. Geoffrey Ling – former founding director of the Biological Technologies Office at the Defense Advanced Research Projects Agency, CEO of On Demand Pharmaceuticals, and Day One Project contributor – suggests that the U.S. Government could launch a national adaptive pharmaceutical manufacturing initiative. This initiative would aim to achieve self-sufficiency for the production of medicines in the U.S. by implementing new technologies to establish high-quality and automated systems readily deployed across the country. Action steps would include fostering:

By convening experts from the public and private sectors, as well as academia, to craft a national strategy for advanced manufacturing, and then supporting its execution, the federal government could help reduce U.S. dependence on foreign pharmaceutical and medical supply manufacturing.

Fundamental research setting the stage for advanced manufacturing

While much of the focus to implement advanced manufacturing technologies is on later-stage experimental development and commercialization, fundamental research is critical to launching these cutting-edge systems. For instance, the National Science Foundation (NSF) spent an estimated $318 million on basic manufacturing research in fiscal year 2021, and is requesting an additional $100 million in funding for its work in fiscal year 2022. In the coming fiscal year, NSF plans to sponsor research in scientific disciplines vital to advanced manufacturing, such as:

Today’s investments in fundamental research into manufacturing are expected to catalyze tomorrow’s breakthrough advanced manufacturing technologies.

Looking ahead

The full implementation of new developments in advanced manufacturing has the potential to ensure the resilience of U.S. medical supply chains in future crises. It can also provide other significant benefits, such as improvements in the quality of critical treatments and therapies, the creation of new jobs, and strengthening the economy. As the FDA, NIST, and other federal agencies work together, and Congress explores ways to continue supporting advanced manufacturing, we encourage the CSPI community to continue to serve as a resource to federal officials.

Establish a $100M National Lab of Neurotechnology for Brain Moonshots

A rigorous scientific understanding of how the brain works would transform human health and the economy by (i) enabling design of effective therapies for mental and neurodegenerative diseases (such as depression and Alzheimer’s), and (ii) fueling novel areas of enterprise for the biomedical, technology, and artificial intelligence industries. Launched in 2013, the U.S. BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative has made significant progress toward harnessing the ingenuity and creativity of individual laboratories in developing neurotechnological methods. This has provided a strong foundation for future work, producing advances like:

However, pursuing these ambitious goals will require new approaches to brain research, at greater scale and scope. Given the BRAIN Initiative’s momentum, this is the moment to expand the Initiative by investing in a National Laboratory of Neurotechnology (NLN) that would bring together a multidisciplinary team of researchers and engineers with combined expertise in physical and biomedical sciences. The NLN team would develop large-scale instruments, tools, and methods for recording and manipulating the activity of complex neural circuits in living animals or humans — studies that would enable us to understand how the brain works at a deeper, more detailed level than ever before. Specific high-impact initiatives that the NLN team could pursue include:

The BRAIN Initiative currently funds small teams at existing research institutes. The natural next step is to expand the Initiative by establishing a dedicated center — staffed by a large, collaborative, and interdisciplinary team — capable of developing the high-cost, large-scale equipment needed to address complex and persistent challenges in the field of neurotechnology. Such a center would multiply the return on investment in brain research that the federal government is making on behalf of American taxpayers. Successful operation of a National Laboratory of Neurotechnology would require about $100 million per year.

To read a detailed vision for a National Laboratory of Neurotechnology, click here.

Federally-supported initiatives aim to reduce maternal mortality and shed light on the effects of therapeutics on pregnant and lactating women

Each year about 700 women die from pregnancy or birth complications in the U.S., the worst maternal mortality rate out of all industrialized countries. The need to improve U.S. rates of maternal mortality, as well as bolster research on the safety of prescription drugs for the health of pregnant and lactating women, were both raised during last week’s House Appropriations Committee hearing about the National Institutes of Health (NIH) future research and funding priorities.

The maternal mortality crisis

The rate of maternal deaths has been rising in the U.S. since 2000, taking a serious toll on families from all different backgrounds. Maternal mortality is defined as any deaths during a pregnancy or within 42 days of the end of the pregnancy from “any cause related to or aggravated by the pregnancy or its management.” More than half of maternal deaths occur after the day of birth, and one third occur during the pregnancy. The most common causes of death are cardiomyopathy (weakened heart muscles), blood clots, hypertension (high blood pressure), stroke, infection, and hemorrhage (heavy bleeding). This crisis is also exacerbated by disparities experienced by people of color: Black women are 2.5 times more likely to die than White women and three times more likely to die than Hispanic women.

Reducing maternal deaths, particularly among communities of color, is a top priority for  Diana Bianchi, the director of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). Just last year, the NIH established the Implementing a Maternal health and PRegnancy Outcomes Vision for Everyone (IMPROVE) Initiative. It aims to “mitigate preventable maternal mortality… and promote health equity” by using “an integrated approach to understand biological, behavioral, sociocultural, and structural factors.” The IMPROVE initiative has already awarded over $7 million in grants to address disparities in maternal mortality.

The lack of knowledge about safe drugs for pregnant and lactating women

While there are several active efforts to address maternal mortality, one aspect of women’s health that has not received as much attention: there is a significant lack of knowledge as to which drugs are safe for pregnant and lactating women to use. While this problem has existed for a long time, it is brought into clear focus when examining the recent clinical trials for COVID-19 treatments. Out of 927 clinical trials worldwide, only 16, less than 2%, evaluated the effectiveness of a treatment on pregnant women and their fetuses. More than half of the clinical trials excluded pregnant women specifically. Both Representatives John Moolenaar (R-MI) and Lois Frankel (D-FL) raised the knowledge gap in safe treatments for pregnant and lactating women during the hearing. 

The exclusion of pregnant women from clinical trials largely stems from the thalidomide and diethylstilbestrol (DES) tragedies in the mid-1900s. DES entered the market in 1938 and was promoted as a way to prevent miscarriages and premature births, but almost 40 years later, researchers found the drug actually caused rare cancers in the daughters born to mothers who took it, as well as structural changes to the reproductive tract, and infertility. It also elevated risks of breast cancer in the mothers. Thalidomide was used during the late 1950s and early 1960s to treat morning sickness. Researchers found, however, that the drug caused devastating birth defects in babies. After these tragedies, the Food and Drug Administration (FDA) published guidelines in 1977 that prevented pregnant women from participating in phase I and phase II clinical trials.

Though it is now possible for pregnant women to enroll in clinical trials due to the passage of the NIH Revitalization Act of 1993, the researchers may only recruit them if the clinical trials adhere to strict regulations. Current regulations require conducting preclinical studies with pregnant animals and clinical studies with nonpregnant women prior to enrolling pregnant women. The clinical trials must also ensure the “least possible” risk to achieve objectives of the research, among other obligations. Because these requirements add time and cost to clinical trials, as well as necessitate the recruitment of sufficient numbers of pregnant women, many researchers opt not to include them. The Centers for Disease Control and Prevention estimate that 70% of pregnant women take at least one prescription drug. Nevertheless, the fact that researchers rarely include pregnant women in clinical trials results in these women not having clear information about what drugs are safe for them and their babies. One study found that 90% of drugs approved by the FDA between 1980 and 2000 had no data about the drugs’ potential effects on pregnant women and their fetuses. Drug manufacturers now choose to track possible side effects after a drug’s release via self-reported registries. However, the requirement for pregnant women to report their own symptoms can skew the data toward only severe reactions, and omit any milder, but still clinically important, symptoms.

As part of the 21st Century Cures Act, NIH established the Task Force on Research Specific to Pregnant Women and Lactating Women (PRGLAC) to provide recommendations and an implementation plan on how to integrate pregnant and lactating women into drug safety research. The task force has already had a positive effect on the work at NIH, and helped launch the Maternal and Pediatric Precision in Therapeutics (MPRINT) Hub. The goal of the hub is to establish a center of knowledge  that explains what drugs pregnant and lactating women can take safely, and the effects of medicines on babies.

More to be done

The initiatives NIH has launched so far are vital to reduce maternal mortality and support the health of pregnant and lactating women. These topics will likely continue to be priorities of the Biden Administration and Congress. If you have ideas on how the federal government can support further research in maternal health, we encourage you to serve as a resource for Members of Congress and their staff.

A health-oriented ARPA could help the U.S. address challenges like antimicrobial resistance

To help catalyze innovation in the health and biomedical sciences, research and development (R&D) paradigms with a track record of producing ‘moonshot’-scale breakthroughs – such as the Advanced Research Projects Agency (ARPA) model – stand at the ready. The Biden Administration has recognized this, proposing the establishment of an ARPA for health (ARPA-H) as part of its fiscal year 2022 budget request. Done right, ARPA-H would be created in the image of existing ARPAs – DARPA (defense), ARPA-E (energy), and IARPA (intelligence) – and be capable of mobilizing federal, state, local, private sector, academic, and nonprofit resources to directly address the country’s most urgent health challenges, such as the high cost of therapies for diseases like cancer, or antimicrobial resistance. During a recent House Energy and Commerce Committee hearing, Chairwoman Anna Eshoo (D-CA) raised the Administration’s proposal for ARPA-H with Department of Health and Human Services (HHS) Secretary Xavier Becerra, expressing her interest in exploring how to best position a potential ARPA-H for success.

Keys to the ARPA model

The success of the ARPA model is attributed in part to the high level of autonomy with which its program leaders select R&D projects (compared to those at traditional federal research agencies), a strong sense of agency mission, and a culture of risk-taking with a tolerance for failure, resulting in a great degree of flexibility to pursue bold agendas and adapt to urgent needs. Policymakers have debated situating a potential ARPA-H within the National Institutes of Health (NIH), or outside of NIH, elsewhere under the umbrella of HHS. Regardless, it is essential that ARPA-H retain an independent and innovative culture.

The first ARPA – DARPA – was established in 1958, the year after Sputnik was launched, and is credited with developing GPS, the stealth fighter, and computer networking. DARPA continues to serve its customer – the Department of Defense – by developing groundbreaking defense technologies and data analysis techniques. Nevertheless, DARPA operates separately from its parent organization. This is also true of ARPA-E, which was launched in 2007 based on a recommendation from a National Academies consensus study report which called for implementing the DARPA model to drive “transformational research that could lead to new ways of fueling the nation and its economy,” and IARPA, created in 2006, to foster advances in intelligence collection, research, and analysis.

If ARPA-H is organized within NIH, it is essential that it maintain the innovative spirit and independence characteristic of established ARPAs. NIH already has some experience overseeing a partially independent entity: the National Cancer Institute (NCI). Compared to other NIH institutes, NCI’s unique authorities include:

This level of independence has contributed to NCI achieving a number of significant milestones in cancer treatment, including developing a chemotherapy treatment to cure choriocarcinoma (a rare type of cancer that starts in the womb), publishing the now-widely-used Breast Cancer Risk Assessment Model, and creating an anticancer drug for ovarian cancer that was unresponsive to other treatments.

If the NCI model were to be used as the foundation for the launch of ARPA-H, insulation from political considerations, whether those of Congress or the Executive Branch, would be critical. With DARPA-like autonomy, a potential ARPA-H could help push the boundaries of enrichments to human health.

Antimicrobial resistance as a case study for an ARPA-H

An example of a grand challenge that an ARPA-H could take on is addressing antimicrobial resistance, a worsening situation that, without intervention, will lead to a significant public health crisis. Antimicrobial resistance occurs when “bacteria, viruses, fungi, and parasites change over time and no longer respond to medicines, making infections harder to treat and increasing the risk of disease spread, severe illness, and death.” Microbes have the potential to gain resistance to drugs when not all of the pathogens or parasites are killed by a treatment, either because the treatment was the not correct option for the illness (like using antibiotics for viruses), or refraining from completing a prescribed course of an antimicrobial drug. The organisms that are not killed, presumably because they harbor genetic factors that confer resistance, then reproduce and pass along those genes, which make it harder for the treatments to kill them.

The most immediate concerns regarding antimicrobial resistance come from bacteria and fungi. The CDC considers some of the biggest threats to be Acinetobacter, Candida auris, and C. difficile, which are often present in healthcare and hospital settings and mainly threaten the lives of those with already weakened immune systems. Every year in the U.S., almost 3 million people are infected with antimicrobial-resistant bacteria or fungi, and as a result, more than 35,000 people die. While the toll of antibiotic resistance in the U.S. is devastating, the global outlook is perhaps even more concerning: in 2019, the United Nations warned that if no action is taken, antimicrobial resistance could cause 10 million deaths per year worldwide by 2050.

Developing new and effective antibiotics can help counter antimicrobial resistance; however, progress has been extremely slow. The last completely new class of antibiotics was discovered in the late 1980s, and developing new antibiotics is often not profitable for pharmaceutical companies. It is estimated that it takes $1.5 billion to create a new antibiotic, while the average revenue is about $46 million per year. In addition, while pharmaceutical companies receive an exclusivity period during which competitors cannot manufacture a generic version of their drug, the period is only five to ten years, which is too short to recoup the cost of research and development. Furthermore, doctors are often hesitant to prescribe new antibiotics in hopes of delaying the development of newly drug-resistant microbes, which also contributes to driving down the amount pharmaceutical companies earn for antibiotics.

Early last year, the World Health Organization reported that out of 60 antibiotics in development, there would be very little additional benefit over existing treatments, and few targeted the most resistant bacteria. Moreover, the ones that appeared promising will take years to get to the market. This year, Pew Research conducted a study on the current antibiotic development landscape and found that out of 43 antibiotics under development, at least 19 have the potential to treat the most resistant bacteria. However, the likelihood of all, or even some of these products making it to patients is low: over 95 percent of the products in development are being studied by small companies, and more than 70 percent of these companies do not have any other products on the market.

There is both a dire need for new innovations in the space, such as using cocktails of different viruses that attack bacteria to treat infections, and a gap between the research into and commercialization of new antibiotics – a perfect opportunity for a potential ARPA-H to make an impact. With this new agency, experimental treatments could be supported through the technology transfer process and matured to the point that the private sector is able to take the baton and move a new antimicrobial to market. This would be revolutionary for public health, and, combined with improved messaging around best practices for the use of antibiotics, save many lives.

Moving forward

The need for, structure, and possible priorities of a potential ARPA-H will continue to be discussed over the course of the congressional appropriations process, with consultation between the Legislative and Executive Branches. We encourage the CSPI community to serve as a resource for Members of Congress and their staffs to ensure that the new agency will be properly positioned to contribute to significant advances in human health and biomedical technologies.