The “FASTER” Act for the Federal Laboratory System

The federal lab system is an enormous, $50 billion-plus enterprise of internal research and development (R&D) across the United States. As governments around the world, including China, pour billions of dollars into advanced technologies, it is imperative that we use our nation’s federal lab ecosystem as effectively as possible.

However, because federal labs have varying legal authorities, missions, and cultures, their records of local economic engagement and technology commercialization vary considerably. Universities, by contrast, have demonstrated a strong record of supporting regional innovation ecosystems through use of place (creating incubators, research parks, and adjacent innovation districts), talent (allowing university researchers to be involved with private-sector technology under approved and managed relationships), and innovation (using intermediary university foundations to take on business aspects of technology commercialization).

The Federal Authority for Science, Technology, Entrepreneurship, and Research (FASTER) Federal Labs Act will make it possible for all federal labs to use the tried-and-true tools that universities use for economic engagement and technology commercialization. The FASTER Federal Labs Act will do this by: (i) allowing surplus federal land to be used for public-private partnership facilities, (ii) creating clearer pathways for federal researchers to work with startup companies, and (iii) authorizing a federally charted tech-transfer organization based on models established at leading research universities. The FASTER Federal Labs Act will not require significant outlay of federal appropriations as many of its provisions simply give federal labs greater discretion over deployment of existing resources. The Act can be implemented relatively easily as an add-on to legislation expected to be considered by this Congress.

COVID-19, advanced pharmaceutical manufacturing, and the U.S. supply chain

Innovative manufacturing techniques can expand the production of drugs and medical supplies in the U.S.

The COVID-19 pandemic caused significant disruptions in global supply chains, and policymakers are now strategizing around how to ramp up U.S. supply chain resiliency. Everything from beef to toilet paper became more difficult to find in U.S. stores, and the pandemic also caused dire shortages of medical supplies and lifesaving treatments. The shortages were caused by the closure of many manufacturing plants in countries like China, and our domestic supply chain was not sufficient to meet the demand gap. In fact, it is estimated that China exports more respirators, surgical masks, and other personal protective equipment than the rest of the world combined. The limited capacity of domestic supply chains – particularly for pharmaceuticals and medical supplies – was a focus for Chair Tammy Baldwin (D, WI) during last week’s Senate Appropriations Subcommittee hearing featuring testimony from Dr. Janet Woodcock, acting commissioner of the Food and Drug Administration (FDA).

The distributed nature of modern manufacturing

The production of goods such as smartphones, medical therapeutics, or kitchen appliances is complex. Manufacturers rely on highly-trained specialists to make different components that are eventually combined into a single product. For example, the manufacture of LCD displays requires obtaining the raw materials, like glass sheets, films, semiconductor chips, and circuit connectors, from other manufacturers around the world, and assembling components inside multi-billion-dollar factories. Specialization in manufacturing allows businesses to develop new, lower-cost technologies, and more easily scale production and design processes. Unfortunately, specialization also results in a layered network of manufacturers relying on yet other manufacturers, and so on, and it becomes very difficult to determine where each component is coming from in the supply chain. The lack of visibility into this process then exacerbates disruptions in manufacturing during crises, such as the COVID-19 pandemic.

Federal partnerships to strengthen the domestic manufacturing base

To protect against future disruptions, implementing advanced manufacturing practices in domestic facilities, and encouraging businesses, particularly those that make critical drugs and medical supplies, to set up new advanced manufacturing plants in the U.S., can make a substantial impact. During last week’s hearing, Senate Appropriations Subcommittee on Agriculture, Rural Development, FDA, and Related Agencies Chair Baldwin began by asking (33:05 mark in video) FDA Acting Commissioner Woodcock about how the agency is helping to strengthen domestic pharmaceutical supply chains with advanced manufacturing.

The implementation of advanced manufacturing is a top priority for the Biden Administration, and earlier this year, the FDA partnered with the National Institute of Standards and Technology (NIST) to develop an advanced manufacturing regulatory framework. The partnership aims to “increase U.S. medical supply chain resilience and advanced domestic manufacturing of drugs, biological products, and medical devices through adoption of 21st century manufacturing technologies.” One emerging technology that will be explored by the partnership is the modularization of manufacturing processes. Modularization refers to structuring discrete parts of the manufacturing process in a way that they can be plugged into each other in different combinations and still function properly. With modular processes, reconfiguring the manufacturing floor to produce a different medicine or device could take just hours or days, instead of months. Another example is using artificial intelligence to track production, tweak settings to increase efficiency, and schedule maintenance to reduce the amount of downtime necessary.

In addition to FDA and NIST efforts to implement advanced manufacturing for medical supplies, two Manufacturing USA Institutes – the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL) and the Bioindustrial Manufacturing and Design Ecosystem (BioMADE) – are pursuing new advanced biomanufacturing solutions. NIIMBL is a public-private partnership supported by industry and NIST to “accelerate biopharmaceutical innovation,” develop standards, and educate the biomanufacturing workforce. Advances in manufacturing processes developed by NIIMBL aid in the production of treatments for debilitating diseases like cancer, autoimmune disorders, microbial infections, and diabetes. BioMADE is one of the newest Manufacturing USA institutes, supported by the Department of Defense and industry partners. It will promote the commercialization of new biomanufacturing technologies by (i) developing predictive models to move products from the lab to production, (ii) de-risking new technologies, and (iii) manufacturing products at pilot and intermediate scales before they are produced at full scale. BioMADE would also help establish best practices for the biofabrication of novel chemicals, enzymes, and other useful biological products.

Advanced manufacturing for on-demand pharmaceuticals

There are already numerous advanced manufacturing technologies that could be leveraged to boost domestic capacity and improve U.S. self-sufficiency in the production of high-priority medicines, such as anesthetics. Building on work that is underway at the federal level, there are additional opportunities for the Executive Branch to form cross-cutting, productive partnerships. A proposal from Dr. Geoffrey Ling – former founding director of the Biological Technologies Office at the Defense Advanced Research Projects Agency, CEO of On Demand Pharmaceuticals, and Day One Project contributor – suggests that the U.S. Government could launch a national adaptive pharmaceutical manufacturing initiative. This initiative would aim to achieve self-sufficiency for the production of medicines in the U.S. by implementing new technologies to establish high-quality and automated systems readily deployed across the country. Action steps would include fostering:

By convening experts from the public and private sectors, as well as academia, to craft a national strategy for advanced manufacturing, and then supporting its execution, the federal government could help reduce U.S. dependence on foreign pharmaceutical and medical supply manufacturing.

Fundamental research setting the stage for advanced manufacturing

While much of the focus to implement advanced manufacturing technologies is on later-stage experimental development and commercialization, fundamental research is critical to launching these cutting-edge systems. For instance, the National Science Foundation (NSF) spent an estimated $318 million on basic manufacturing research in fiscal year 2021, and is requesting an additional $100 million in funding for its work in fiscal year 2022. In the coming fiscal year, NSF plans to sponsor research in scientific disciplines vital to advanced manufacturing, such as:

Today’s investments in fundamental research into manufacturing are expected to catalyze tomorrow’s breakthrough advanced manufacturing technologies.

Looking ahead

The full implementation of new developments in advanced manufacturing has the potential to ensure the resilience of U.S. medical supply chains in future crises. It can also provide other significant benefits, such as improvements in the quality of critical treatments and therapies, the creation of new jobs, and strengthening the economy. As the FDA, NIST, and other federal agencies work together, and Congress explores ways to continue supporting advanced manufacturing, we encourage the CSPI community to continue to serve as a resource to federal officials.

Strengthening U.S. Engagement in International Standards Bodies

Summary

Technical standards underpin the functioning of digital devices central to everyday life. What might, at first glance, seem to be a wonky, technical process for figuring out things like how to ensure mobile devices can all connect to the same network, has emerged as an arena of geopolitical competition. Standards confers first-mover advantages on the companies that propose them and economic benefits on countries, and they implicate values like privacy. China has aggressively sought to promote its technical standards by encouraging Chinese representatives to assume leadership roles in standards bodies, financially rewarding companies that propose technical standards, coercing Chinese firms to vote as a bloc within standards bodies, and working to shape the standards landscape to its advantage.

In light of the growing recognition of the strategic importance of technical standards, the March 2020 report from the U.S. Cyberspace Solarium Commission (CSC) recommended that the United States “engage actively and effectively in forums setting international information and communications technology standards.” In a similar vein, the FY2021 National Defense Authorization Act (NDAA) included a provision tasking the Departments of State and Commerce and the Federal Communications Commission (FCC) with considering how to advance U.S. representation in international standards bodies. This paper expands on the CSC’s recommendation and proposes concrete actions to be taken in support of the aims outlined in the FY2021 NDAA. In brief, the U.S. federal government should:

  1. Direct and organize departments and agencies to better coordinate input to (and participation in) international standards bodies;
  2. Work with like-minded countries to advance technically sound standards proposals that preserve the free, open, and interoperable nature of the ICT ecosystem;
  3. Facilitate a public-private partnership to encourage and support greater participation of U.S. companies in international standards bodies; and
  4. Seek transparency reforms within international standards bodies and advocate for “cooling-off periods” that prevent former government officials (from any country) from taking on leadership roles in standards bodies for a specified period of time following government service.

How to Unlock the Potential of the Advanced Research Projects Agency Model

Summary

America faces a host of daunting problems that demand forward-looking solutions. Addressing these challenges will require us to unleash the full potential of our research and development community, leveraging new approaches to innovation that break through both technical and institutional barriers and initiate wholly new capabilities. The Advanced Research Projects Agency (ARPA) model has resulted in exactly this kind of high-impact innovation in defense, intelligence, and energy. This model can be applied to other critical societal challenges such as climate, labor, or health. But an ARPA must have the right core elements if it is to create the fresh solutions the country needs.

The ARPA model is distinctly different from other federal agencies in mission, operations, and culture. ARPA organizations are part of a much broader ecosystem that spans from research to implementation. Their role is to create breakthrough, paradigm-shifting solutions and capabilities. In order to position a new ARPA for success, Congress, the Administration, and the agency’s founding leaders must understand the unique properties of an ARPA and the process by which ARPAs approach and manage risk to develop game-changing advances.

To establish a strong foundation for a new ARPA to do this work, Congress and the Administration will need to address four factors:

Over the course of a few years, a new ARPA can grow into a powerfully effective organization with people, practices, and culture honed to create breakthroughs. If well implemented, new ARPAs can be extraordinary additions to our R&D ecosystem, providing unimagined new capabilities to help us meet our most essential societal challenges.

Challenge and Opportunity

America faces some daunting problems today. Many millions of Americans are unable to access our nation’s rich opportunities, leaving all of us poorer without their contributions. Dozens of other countries have longer life spans and lower infant mortality rates, although we spend more per capita on healthcare than any other country. We are not yet on track to contain the damages of a changing climate or to manage its impacts. Global competition has resulted in more and more U.S. research advances being used to create jobs elsewhere. R&D alone won’t solve any of these problems. But every one of these challenges demands creative new solutions.

However, America’s phenomenally productive R&D ecosystem—with its half a trillion dollars spent annually by the public and private sectors—is not aimed at these large, society-wide challenges. How do we create a generational shift in our innovation ecosystem so that it contributes as much to meeting this century’s challenges as it did for those of the last century? What can we learn from our successful R&D history, and what approaches can we adapt to address the problems that we now face?

One part of the answer lies in the Advanced Research Projects Agency (ARPA) model for innovation. This kind of innovation knocks down both technical and institutional barriers to create transformational new capabilities. ARPA organizations are part of a much broader ecosystem, spanning from research to implementation, in which their role is to create breakthrough solutions and capabilities that fundamentally change what we define as possible. In pursuit of revolutionary advances, they accept and manage a level of risk for which companies and other government agencies have no incentive.

The first ARPA, the Defense Advanced Research Projects Agency (DARPA), was launched in 1958 at the height of the Cold War. DARPA shifted military capabilities from mass bombing to precision strike with GPS, stealth technologies, and integrated combat systems. These innovations recast defense systems, changed military outcomes, and shaped geopolitics over decades. Meanwhile, DARPA’s programs in enabling technologies also seeded artificial intelligence, developed advanced microelectronics, and started the internet. In recent years, DARPA programs have built the first ship able to navigate from the pier and cross oceans without a single sailor on board,1 created a radical new approach to reconfigurable military capabilities to outpace global adversaries,2 developed the first systems—now in operation by the Port Authority of New York and New Jersey—for cities to continuously monitor for dangerous nuclear and radiological materials,3 and created a rapid-response mRNA vaccine platform4 that enabled the astonishingly fast development5 of today’s mRNA vaccines for COVID-19.

We are also starting to show that the ARPA model can be successfully adapted to other national purposes. In 2006, the Intelligence Advanced Research Projects Activity (IARPA) was formed to serve the intelligence community. One of IARPA’s programs has developed methods to overcome individual cognitive biases by weighting and synthesizing the judgments of many analysts. This approach provides important gains in prediction and is a new paradigm for forecasting events in a complex world. In 2009, the Advanced Research Projects Agency–Energy (ARPA-E) launched in the Department of Energy. Its programs have created new power semiconductors, new battery technologies, and new methods to improve appliance efficiency, making vital contributions to our clean energy future. Both ARPAs have invigorated R&D communities by connecting them to hard, important problems and giving them a pathway to drive impact.

Implementing the ARPA model to meet other critical challenges could have enormous impact. Indeed, President Biden has already proposed ARPAs for health and climate,6 and others have advanced visions for ARPAs for agriculture,7 labor8 and education. In addition, the Endless Frontier Act9 takes inspiration from the ARPA model in its vision for an expanded technology function at NSF to address economic competitiveness.

Behind each call for an “ARPA for X” is a yearning for R&D that throws open new doors to radically better solutions. But the ARPA model is very different from other federal agencies and unlocking its potential will require much more than affixing the name. The starting point is an understanding of how ARPAs generate their outsized advances.

Though specifics vary according to the mission of a new ARPA, the essential operating model is based on these elements:

ARPA Programs

An ARPA generates major advances through intelligently managed risk-taking. The fundamental unit of work for an ARPA is a solutions-oriented R&D program that aims at achieving a previously unimaginable goal. Each program has a fixed term, typically 3-5 years, and each is designed, executed, and transitioned by an ARPA program manager.

Design

The program manager designs the program to achieve a bold goal—one that may seem impossible but that, if demonstrated, could catalyze a major advance. They build a rigorous plan to achieve the goal. A set of questions known as the Heilmeier Catechism10 (from an iconic DARPA director in the 1970s) guides program development:

These questions are easy—even obvious—to ask, but surprisingly difficult to answer well. Program managers typically grapple with them over 6-12 months to design a strong program, and agency leaders use them to guide their judgement about the potential of a new program for approval. The questions also guide program execution.

Execution

Once a program is launched, the program manager contracts with whichever organizations are needed to achieve the program’s goal. That typically means companies, universities, nonprofits, other parts of government, and other organizations with the talent and capacity to conduct the necessary R&D. Contracting this work has the obvious benefit that the ARPA doesn’t have to hire staff and provide facilities for this R&D. But even more important is the fact that this approach mobilizes individuals and organizations. Over the course of the program, these participants become a community that not only delivers the program vision but can help drive it forward beyond the term of the ARPA program.

The work of the program is to weave the threads of research from multiple domains together with lessons from the reality of use and practice in order to develop and demonstrate prototype systems or capabilities. The program rigorously evaluates how well its innovation works, how it works in specific environments, and how it can be scaled. 

An ARPA program often draws on basic research and often generates fresh research, but research is an input rather than the objective. Unlike the management of basic research, these programs drive to a specific goal. They may sometimes resemble product development, but for a prototype product that serves a public purpose rather than a visible market opportunity. Often, they require a much higher degree of risk than product development because they reach for a barely feasible goal. 

An ARPA program aims to demonstrate that a powerful new approach can work despite the risk inherent in trying something radically different. This requires actively managing the multiple efforts within the ARPA program. An ARPA program manager accelerates lines of work that show great promise and redirects or stops work that is not yielding results. They nimbly reallocate resources to keep wringing out risk and driving to the program’s objective.  

Transition

In parallel, the program manager engages the decision makers who can advance, adopt, implement, and fully scale the results of the program. If the breakthrough will require commercialization, that could include additional companies, investors, and entrepreneurs. If full-scale implementation requires changes in policies and practices, that means engaging regulators, policy makers, and community organizations. Understanding the needs and realities of implementers is important from the early stages of program design. It is sometimes the case that these implementers are skeptical about the program’s bold goal at the start. As the program unfolds, they are invited to program reviews and demonstrations. The program strives to address their concerns and may even provide support for their internal analyses, evaluations, and trials. When these engagements work well, the ARPA program manager is able to bring implementers along on the journey from wild dream to demonstrated reality. Successful transition starts when they change their minds about what’s possible. And the ultimate societal impact of the ARPA program comes when these implementers have fully scaled the ARPA breakthrough. 

A fully successful program ends with a convincing demonstration of a new capability; a community that can carry it forward; and decision makers who are ready to support and fund implementation in products, services, policies, and practices.

ARPA program managers

None of this can happen without exceptionally capable program managers. An ARPA organization hires program managers on fixed terms to design, manage, and transition these high-impact programs. ARPA leadership coaches program managers, helps build partnerships and remove obstacles, and approves and oversees all programs. But it puts enormous responsibility and authority on the shoulders of program managers. 

ARPA program managers come from backgrounds in companies, universities, nonprofits, and other parts of government, and they serve at different times in their careers. They bring a “head in the stars, feet on the ground” blend of these key characteristics: 

ARPA portfolios

ARPA leadership approves a series of individual programs, constructing and managing a full portfolio that is diversified to maximize total impact despite the risk inherent in each program. Every program learns, not all succeed, and failure is accepted as integral to the mission.

Plan of Action 

Based on these core elements of a successful ARPA model, we offer four recommendations for policy makers as they establish new ARPA organizations. 

Purpose

Clearly and succinctly define the vital national purpose for the new ARPA. An ARPA exists to create breakthroughs for an important public need. For DARPA, this is national security. For ARPA-E, it is economic and energy security, and for IARPA, it is national intelligence. 

Operations

Set up the agency to function autonomously, with its own budget, staff and organization, and operating practices. An ARPA is a deliberate counterpoint to work already underway, originating from a recognition that something more and different is needed to achieve our national goals. An ARPA will not succeed if it is tightly integrated into its parent organization. Ironically, it may be more difficult to start a successful new ARPA in an area that already has robust federal research, because of the inclination to fit the square-peg ARPA into round-hole traditional research methods. The ARPA model is completely different than our well-honed approach to sponsoring fundamental research. The ARPA solutions-driven approach would not work well for greatly needed and highly valued basic research, and conversely, funding methods for fundamental research will not lead to ARPA-scale breakthroughs for our societal problems. This work is different, and it will require different people, different practices, and a different culture to succeed. 

Independent funding is also necessary. To develop a portfolio of programs with the potential for high impact, an ARPA requires funding that is sufficient to achieve its programs’ objectives. ARPA programs are sized not just to generate a new result, but to convincingly demonstrate a new approach, often across a variety of circumstances, in order to prove that the method can succeed and scale. 

The agency’s chain of command and Congressional authorizers and appropriators provide important oversight. However, the ARPA organization itself must bear the responsibility for designing, selecting, managing, and transitioning its programs. A new ARPA should report directly to the cabinet secretary to maintain independence and secure the support needed to achieve its mission. 

Authorities

Give the new ARPA flexible hiring and contracting authorities to draw new and extraordinary talent to the nation’s challenges. Flexible hiring mechanisms have proven to be very valuable in allowing ARPAs to attract the rare combination of expertise, vision, and execution required in great program managers. In addition, program managers must be able to contract with exceptional people and teams in companies, universities, nonprofits, and other government entities to achieve their aggressive program goals. ARPAs have used flexible contracting mechanisms to move fast and work effectively with all kinds of organizations, not just those already designed to work with government.

Flexible hiring and contracting authorities are extremely helpful tools for an ARPA organization. It’s worth noting, though, that flexible authorities by themselves do not an ARPA make. 

Leadership

Appoint an exceptional leadership team, hold them to a high standard for impact, and create room for them to deliver on the full potential of the ARPA model. A new ARPA’s director will be responsible for building an organization with people, practices, and culture honed for the mission of creating breakthroughs. This person must bring fresh and creative ways of looking at seemingly impossible problems, a rigorous approach to managing risk, a drive to achieve outsized impact, and an ability to lead people. A strong ethical orientation is also essential for a role that will grapple with the implications of powerful new capabilities for our society. 

The person to whom the ARPA director reports also plays an essential role. This individual must actively prevent others from trying to set the agenda for the ARPA. They enable the ARPA organization to hire program managers who don’t look like other department staff, undertake programs that conventional wisdom decries, manage programs actively, and develop a culture that celebrates bold risk-taking in pursuit of a great national purpose. They hold the ARPA organization accountable for the mission of creating breakthroughs and create room for the unconventional methods needed to realize that mission. 

Note that these four recommendations about purpose, independence, authorities, and leadership are interconnected. All are necessary to build the foundation for a successful new ARPA, and cherry-picking the easy ones will not work. 

Conclusion

A total of 87 years of experience across three different ARPA organizations have provided many lessons about how to build and run an organization that creates breakthroughs for an important national purpose. In establishing any new ARPA, both Congress and the Administration must create the space and allocate the resources that will allow it to flourish and realize its mission. 

Like its programs, a new ARPA will itself be a high-risk, high-reward experiment. If our challenges were modest, or if our current innovation methods were sufficient, there would be no need to try these kinds of experiments. But the problems we face today demand powerful new approaches. Adapting the ARPA model and aiming it at the most critical challenges ahead can create breakthroughs that redefine what is possible for our future. Let’s do everything possible to start new ARPAs on the right track/

Frequently Asked Questions
What is an Advanced Research Projects Agency (ARPA)?

ARPAs create radically better approaches to hard problems by conducting solutions-oriented R&D. The Department of Defense (DOD)’s Defense Advanced Research Projects Agency (DARPA), now in its seventh decade, conducted the pivotal R&D for new military capabilities such as stealth and precision strike and, more broadly, for new information technologies ranging from the internet to artificial intelligence. DARPA’s track record inspired the establishment of the Department of Energy’s ARPA-E and the Office of the Director of National Intelligence’s IARPA. Both of these new ARPAs are well underway, with robust portfolios of R&D programs and encouraging results. They show that it is possible to adapt DARPA’s model for different public purposes.

Who leads an ARPA? Who will this person report to?

For the independence, authority, and responsibility that a new ARPA requires, its Directorship should be a senior appointment reporting directly to the Secretary of the appropriate department. If this role is filled by a Senate-confirmed Presidential appointment, it will be important for stability to have a civil servant to serve as the Deputy Director.

How does an ARPA coordinate its work with other organizations?

ARPA leaders and program managers communicate with their entire ecosystem: other parts of government, the R&D community, and the entities that can implement and scale ARPA results. An ARPA holds the responsibility for selecting and executing its programs.

DARPA and ARPA-E create new technologies, but that’s not what we need for social problems. How does the ARPA model apply to these very different challenges?
For any new ARPA, the model needs to be adapted to its context. For example, a promising
solution for a social problem may come from implementing new insights from behavioral science.
It is helpful to think about the desired future state a program will aim to realize, and then work
backwards to the new approaches, methods, or tools that could enable it, as well as the
institutional changes that will be needed. These solutions may or may not involve technology.
How can a new ARPA be successful without a customer like the Department of Defense to procure what it creates?
For DARPA programs that create revolutionary prototypes of military systems, DOD is indeed
the customer. But the internet, miniaturized GPS receivers, microelectromechanical systems,
and new waves of artificial intelligence did not make their mark through Pentagon procurement. As part of the design of an ARPA program, the program manager needs to think
through how their advance could be adopted and fully scaled. That could involve a
government agency that procures a product or service, companies that commercialize the
results, policy makers or regulators who can design rules and laws that are more effective
because of the program’s results, and/or other avenues

Increasing equity and accessibility of research funds can help secure U.S. leadership in science

Just a small group of nationally-ranked universities are awarded the majority of federal research funding. In 2018, a study found that out of more than 600 colleges and universities that received federal funding for science and engineering research, about 22 percent received over 90 percent of the funds. The equity and accessibility of these funds was the focus of this week’s Senate Appropriations Committee hearing held to discuss the budget that could be allotted to the National Science Foundation (NSF) in fiscal year 2022. During the hearing, NSF director Sethuraman Panchanathan emphasized that addressing research disparities and establishing far-reaching partnerships were priorities for the agency.

Disparities in research funding

Disparities in research funding can greatly harm the ability of students to enter scientific careers, and diminish the potential of the country’s scientific workforce overall. The institutions that received over 90 percent of federal science funding in 2018 served only 43 percent of all students in the U.S., and only 34 percent of students from underrepresented groups. So two-thirds of underrepresented minorities and almost 70 percent of Pell grant recipients (who are undergraduates with “exceptional financial needs”) have more limited access to valuable opportunities to participate in scientific research. At the same time, researchers argue that incorporating diverse perspectives and talents leads to more innovative solutions, and that not including underrepresented minorities in science will only harm the U.S.’ competitiveness.

NSF’s most well-known program to address research funding disparities is the Established Program to Stimulate Competitive Research (EPSCoR). This program, which is now over 40 years old, partners with institutions of higher education to stimulate sustainable improvements in research and development capacity in specific states. States (as well as U.S. territories and DC) become eligible for EPSCoR funding if they receive 0.75 percent or less of total NSF research and related activities funding over the previous three years. Studies have shown that states with EPSCoR funding increase the quality of their universities’ publications, and that they become more competitive for future federal research funding competitions. However, more research needs to be done to fully assess the program’s impact.

Expanded access to research funding a priority for the Biden Administration

The Biden Administration has emphasized the importance of addressing research funding accessibility in the FY 2022 skinny budget request, which highlights the President’s top spending priorities for the next year in advance of the release of the full request for each agency. Specifically, President Biden is requesting $100 million for programs that “aim to increase participation in science and engineering of individuals from racial and ethnic groups, who are traditionally underrepresented in these fields.” This funding is intended to support increasing science and engineering research and education capacity at Historically Black Colleges and Universities (HBCUs) and other Minority-Serving Institutions (MSIs), as well as research on recruitment and retention methods, mentorship programs, and curriculum development. Studies by the National Academies of Science, Engineering, and Medicine (NASEM) have determined that this type of funding is critical to ensure the success of underrepresented minority students.

Director Panchanathan’s priorities for NSF

During the hearing, Director Panchanathan echoed (46:05) that more needs to be done to tap into the U.S.’ potential scientific talent. His two main priorities for NSF are to increase access to scientific research through regional innovation accelerators and to strengthen partnerships with other agencies, including the Department of Energy (DOE) and its national laboratories. The regional accelerators would rely on an expanded EPSCoR program, as well as support from other NSF directorates. NSF is also working to expand artificial intelligence (AI) research to every state to tap into as much talent as possible. Last year, NSF distributed grants to develop seven AI institutes which have operations in 20 different states. Director Panchanathan hopes (46:45) to expand this further in the coming years. This idea of widely-distributed hubs aligns with a new proposal from FAS’ Day One Project that suggests a path forward for the creation of innovation ecosystems that would launch new startup ideas and cultivate the next generation of research and development talent.

Regarding strengthening partnerships with DOE, NSF collaborates with the agency on a variety of programs, including the development of new algorithms to bolster the security and efficiency of modern power grids, the creation of collaborative robots to assist humans with a variety of tasks, and the advancement of basic plasma research and education. NSF historically focuses on basic research, while DOE, and its national labs in particular, drive the commercialization of new technologies. Director Panchanathan aims (1:22:06) to further develop relationships with the agency to more closely connect NSF’s basic research strengths with DOE’s expertise in technology transfer and ensuring cutting-edge research and technologies are commercialized in the U.S., instead of by other countries. By fostering closer cooperation between NSF and the other federal science agencies, the U.S. will be able to better compete with countries, such as China, that aim to supplant the U.S. as world leader in critical technology and science fields.

The future of research and development in the U.S.

Both the Biden Administration and Congress would like to accelerate science and engineering education and research to boost the U.S.’ domestic growth and global competitiveness. In the formulation of the FY 2022 federal budget for science funding, there will be more discussions on Capitol Hill about how to bolster the country’s expertise in high-priority fields such as AI, climate science, quantum computing, clean energy, and biotechnology, and harmonize the approaches of the executive and legislative branches. We encourage the CSPI community to get involved in future CSPI calls to action, and serve as a scientific resource for policymakers.

Rebooting the American Dream: Challenge Grants for Emerging Innovation Ecosystems

Summary

Rebooting the American Dream (RAD) is a proposed national challenge-grant program that funds “Regional Centers for Shared Prosperity” in emerging innovation ecosystems, with the intent of (1) accelerating startup creation, (2) developing the next-generation of talent, and (3) providing alternative capitalization models. It is expected that initially funding the program to award six regional challenge grants of $25 million each will yield at least a 3:1 return in private-dollar investments—for a total of $500 million—and create at least 21,000 jobs in underserved areas of the country. In light of the massive job losses induced by the COVID-19 pandemic, RAD grants will build momentum behind existing place-based initiatives and help surface the wealth of diverse human potential and innovation that exists across the United States. 

The RAD proposal aims to revive entrepreneurship across America by helping give every American, regardless of geography, race, gender, or socioeconomic status, the opportunity to build a competitive company. Advancements in internet capabilities, communication tools, and information technology have made entrepreneurship accessible to more people in more places than ever before. Yet massive job losses related to COVID-19 and ever-growing global competition require the United States to discover new ways to create sustainable jobs. Over the past decade, initiatives led by the federal government in partnership with academics and nonprofits have given policymakers a markedly better understanding of the issues facing entrepreneurs. RAD is directly informed by this body of knowledge. By supporting bottom-up, place-based investment and building a network of new ideas through RAD, the Biden-Harris Administration can simultaneously foster American dynamism and strengthen American economic competitiveness.

The Local Innovation Unit: Achieving National Goals Through Local Experimentation

Summary

The Biden-Harris Administration should create the Local Innovation Unit (LIU) to catalyze and coordinate decentralized, city and county-based experiments focused on the most urgent and complex challenges facing the United States. Traditional “top-down” methods of policy design and problem solving are no longer effective in addressing our nation’s most pressing issues, such as pandemics, climate change, and decreasing economic mobility. The nature of these problems, coupled with an absence of tested solutions or “best practices” and ongoing partisan gridlock, demands a more agile and experimental “bottom-up” approach. Such an approach focuses on empowering coalitions of social innovators at the local level—including local governments, private-sector businesses, community-based organizations, philanthropists, and universities—to design and test solutions that work for their communities. Promising solutions can then be scaled horizontally (e.g., to other cities and counties) and vertically (e.g., to inform federal policy and action).

The LIU will be a place-based policy initiative consisting of two primary components: (1) multi-city and county experimentation cohorts organized around common problems, via which local coalitions design and test solutions within their communities, and (2) a digital platform, housed in the Department of Housing and Urban Development (HUD), that will help LIU participants connect, exchange materials and resources, help participants collect and visualize data, evaluate solutions, and publish lessons learned.

COVID-19 Presents an Opportunity to Invest in Federal IT Modernization

Summary

COVID-19 has reshaped every facet of our social and professional experiences. What began for almost all of us as a short-term work-from-home event has turned into a prolonged crisis that will have lasting effects on how we interact with each other and do business. Even as vaccine rollouts continue and offices slowly start to reopen, much work will continue to be remote. Employees are likely to work staggered schedules or in predefined groups in order to maintain social distancing for an unknown period of time. Many meetings and tasks that went virtual during the pandemic will likely stay that way. And employers of all types, including governments, will continue to rely heavily on technology to keep employees and customers connected and engaged.

The pandemic accelerated an already rapid ongoing shift to a tech-driven world. As a nation, we must similarly accelerate investments in information technology (IT) to support this new normal. COVID-19 has already exposed critical weakness in existing U.S. IT systems at the federal, state and local levels. Technical problems delayed millions of Americans from receiving unemployment benefits, and are now delaying millions more from receiving timely vaccines. Remote work is raising equity issues and cybersecurity concerns, and periodic internet outages have caused major disruptions to school and work.

The upshot is clear: our investments in IT modernization and cloud computing over the last 10 years have not been sufficient. It’s time to start talking about the next steps the United States can and must take to lead at the federal level, ensuring that our nation’s IT infrastructure and tools can securely and adequately support all remote workers while providing secure, reliable, and state-of-the-art online services.

Revitalizing the DOE Loan Program Office to Support Clean Infrastructure Development

The Biden-Harris Administration should expand the focus of the Department of Energy’s (DOE) Loan Program Office (LPO) to meet the demands of a changing energy industry. The LPO was established to serve as a backstop to private-sector financing for large-scale energy projects with embedded technology risk. The program’s success in scaling large scale power plants and manufacturing plants for next generation energy technologies is well documented. However, the energy industry has changed since the program’s beginning, and the needs for support from the Federal Government have evolved. For example, technology areas that were deemed risky in 2009 are now mature, and in some circumstances, for example in electricity generation, the industry structure that was historically highly centralized has become much more distributed. Modernizing the LPO is a critical means for advancing the Biden-Harris Administration’s climate agenda because the Office supports the development of clean energy projects at commercial scale, leverages private sector capital, and creates middle-class jobs. 

This memo recommends three important changes to the DOE LPO:

  1. The aperture of the LPO must be expanded to include a much larger set of technology areas. In particular, energy storage, hydrogen production and carbon capture, utilization and storage, among other nascent fields, should be supported. Authorizing legislation should be changed to give the Program Office the opportunity to support a technological area at its discretion.
  2. The Loan Program must reduce the cost of application to incentivize more deployment of smaller projects. This will expand the potential set of projects to be supported and align the Office with overarching trends in the energy sector.
  3. The Loan Program should expand its purview to support projects impeded by other financing risks in the energy system. These could include grid modernization, system hardening or smart grid updates (which often do not pass traditional cost-benefit analyses), and electric vehicle infrastructure deployment.

Challenge and Opportunity

The proposed solution solves two impending challenges to the President’s climate agenda. First, while innovation is necessary to meet climate goals, the private sector is reluctant to fund first generation projects for novel clean energy technology. As the US embarks on a pivotal decade with respect to managing the national carbon budget, deploying new technology at scale will become even more critical. In particular, reaching 2050 carbon goals will require successfully innovating in hydrogen production, carbon capture, energy storage, and load-following electric power — most of which cannot be currently supported under the Loan Program’s authorization. Second, the nation’s overall infrastructure deficit has been estimated to require an additional $2 trillion of spending by the American Society of Civil Engineers in their most recent 2017 assessment. In the energy sector, ASCE estimated the requirement for additional electricity infrastructure alone to be $177 billion. Simultaneously, the economic returns to investing in our nation’s infrastructure are significant. Recent studies suggest that for every $1 million invested in energy infrastructure, the Recovery Act created 15 durable jobs. The multiplier effect from infrastructure spending varies based on economic conditions, but as the country emerges from the COVID-19-induced recession, enabling the LPO to fund a broad swath of energy infrastructure would be a viable asset for job creation in the coming years.

Currently, the LPO is restricted to financing only the first three deployments of new technologies, and new technologies that are highly capital intensive, such as concentrated solar power. The LPO exists to absorb financing risk for the private sector, risks which often stem from capital intensity or technology uncertainty. As we consider the energy transition in the coming decades, a new set of technologies needs support for initial commercial deployment. Additionally, however, a broad array of infrastructure investments continue to go unfunded by the private sector for other reasons as well, particularly in geographies where commercial markets for offtakers are not fully developed. Expanding the technology and stage aperture of the LPO to include a broader array of projects would attract private capital and accelerate the transition to a decarbonized future.

Plan of Action

The Biden-Harris Administration should expand the DOE’s Loan Program Office (LPO) to enable the Federal Government to quickly make investments in a broad range of infrastructure categories through the pre-existing contracting authorizations at the LPO. Accordingly, we propose three changes to the DOE’s LPO. First, the technology aperture of the Loan Program should be expanded to include a broader set of technologies, including but not limited to energy storage, hydrogen production, carbon capture, utilization and storage, and carbon dioxide removal. Program staff should be granted the flexibility to support a wide range of technology areas at their discretion, in a manner not dissimilar to ARPA-E in the breadth of technical fields within staff purview.

Second, the Loan Program must be adjusted to account for a more distributed energy industry by reducing the cost of application and the corresponding size of project to be supported. For example, the first deployment of a novel grid-scale energy storage technology could be financed at the $10+ million level rather than the $100+ million level. A company looking to deploy that technology would be currently discouraged from applying as a result of the upfront cost of application. The Loan Program should support projects across the capital scale, with flexible application requirements depending on the order of magnitude of public support being requested. 

Finally, the Loan Program should expand to support projects impeded by other financing risks in the energy system. These risks could include high-risk project cash flows from uncertain offtake agreements, as for example with public transportation infrastructure or grid modernization, system hardening, and electric vehicle infrastructure deployment. A comprehensive list of infrastructure to support should include:

Conclusion

At the Roosevelt Project, we are developing action plans for communities that experience significant industrial upheaval, particularly in the context of forthcoming energy transitions. Though these transitions will vary in their nature as a result of local socio-economic realities, access to or distance from natural resources, and exposure to various climate risks, the transitions will most acutely affect communities of working-class, low-income, under-educated Americans. Federal support for the deployment of shovel-ready energy infrastructure can support the creation of high-quality jobs. For infrastructure deployment to positively contribute to both decarbonization and job creation, projects must be targeted to regions that are likely to be affected by the transition. The adjustments to the DOE LPO proposed here offer one important tool for quickly deploying infrastructure in the next four years.

Open Interface & Interoperability Standards for an Open and Transparent Digital Platform Marketplace

Summary

The United States leads the world in the market share – and ‘mindshare’ – of massive digital platforms in domains such as advertising, search, social media, e-commerce, and financial technologies. Each of these digital domains features one or two dominant market players who have become big through the ‘network effect,’ wherein large volumes of customer activity provide data inputs to make these platforms work even better. However, the gains that big players enjoy from the network effect often come at the expense of the platform’s customers. The network effect is further amplified by platform lock-in, whereby new platforms are unable to interoperate with existing market players. A more serious risk manifests when the dominant platform provider provides the same services as that of businesses using the platform, thus becoming a competitor with a built-in information advantage. This prevents new entrants to the market from growing big, limiting the choices available to consumers and creating the conditions for harmful monopolies to emerge.

Therefore, the Biden-Harris Administration should advocate for legislation and enact policies designed to bring openness and transparency into the digital platforms marketplace. A key aspect of such policies would be to require a set of interoperability standards for large digital platforms. Another would be to require open Application Programming Interfaces (APIs) that allow customers (end-users as well as businesses) to seamlessly take their data with them to competitors. These actions will unleash greater competition in the digital marketplaces that are becoming the mainstay of the US economy and increase transparency, choice and opportunities that the US consumer and businesses can benefit from.

The Invention Ecosystem: A Pathway to Economic Resilience and Inclusive Prosperity

Summary

The United States is an invention and innovation powerhouse that has long produced remarkable achievements. Yet American invention is at a crossroads today. After more than a half-century of unrivaled global leadership in basic science, innovation, and manufacturing, the U.S. is losing ground throughout the innovation pipeline across a wide range of sectors. The COVID-19 pandemic has exposed this vulnerability, making brutally clear the need for innovation to address major challenges that arise and highlighting weaknesses such as our dependency on global supply chains. A strong Invention Ecosystem can power our path to economic recovery, sustained growth and societal resilience.

This report explains the functions of the Invention Ecosystem, presenting a framework that highlights the ecosystem’s main components and the inventor and innovation pathways that 1) inspire and prepare students and future inventors to address crucial challenges and thrive and support the innovation economy, and 2) build and sustain today’s inventors and entrepreneurs to enable value creation from their ideas in the form of products and businesses. These pathways together will yield a pipeline of people and businesses that create jobs, foster resilient economies, and produce solutions to our most pressing challenges.

The ecosystem is outlined in four sections, represented by its distinct pillars including K-12 education, higher education, entrepreneurship and industry. Each section describes the role of the pillar, features specific challenges related to the ecosystem, and offers a set of discrete policy recommendations for a policymaker audience to extract and optimize the full value of U.S. innovation.

This report was produced by the Day One Project with support from the Lemelson Foundation.

Opening Up Mortality Data for Health Research

Summary

Comprehensive and reliable mortality data is vital for public health research. Improving our infrastructure for managing these data will generate insights that promote longevity and healthy aging, as well as enable more effective response to rapidly evolving public health challenges like those posed by the COVID-19 pandemic. A modernized mortality data system will ultimately be self-sustaining through access fees, but will require federal investment to update state reporting infrastructure and data use agreements. The Biden-Harris administration should launch an effort to modernize our nation’s infrastructure for aggregating, managing, and providing research access to mortality data.