Science Policy

Six hot opportunity areas to beat the heat through federal policy

08.13.23 | 13 min read | Text by & Grace Wickerson

Extreme heat is the number one weather-related killer of Americans, yet receives minimal targeted federal support and dedicated funding for planning, mitigation, and recovery.

This summer, 130 million Americans were placed under some type of heat alert. National records for heat continue to be shattered each month, with July estimated to be the hottest month recorded on Earth. This relentless heat will continue to affect millions of Americans in August and for every summer to come. 

Extreme heat is the number one weather-related killer of Americans, yet receives minimal targeted federal support and dedicated funding for planning, mitigation, and recovery. Unlike other weather-related disasters, the consequences of extreme heat are hard to respond to and challenging to account for under current federal law. For starters, the Stafford Act does not consider extreme heat to be a Major Disaster (Sec. 102), barring sufficient coordinated federal action. Further, extreme heat is not only risky to infrastructure, like our power grids, roads, and homes, but also has devastating direct impacts on public health.

Prolonged exposure to extreme heat increases the risk of developing potentially fatal heat-related illnesses, such as heat stroke where the human body reaches dangerously high internal temperatures. If a person cannot cool down, especially when the nights bring no relief from the heat, this high core temperature can result in organ failure, cognitive damage, and death. These human health impacts are harder to account for in benefit-cost analyses that drive disaster preparedness funding allocations. Extreme heat is a crisis that impacts everyone. However, certain populations are more vulnerable to the increased health risks from heat, including older adults, outdoor workers, those with preexisting health conditions, low income communities, and people experiencing homelessness. 

Extreme heat also creates conditions that increase the likelihood and severity of other natural hazards, such as droughts and wildfires, further threatening public health. These compounding disasters put a major strain on national and global agricultural systems and threaten food security. This is particularly true for low-income communities as “heatflation” makes staple foods more unaffordable. 

We can better prevent, manage, and recover from extreme heat. With increased federal attention towards the effects of extreme heat and climate adaptation and resilience, there is an opportunity to take action. Federal policy can be a powerful lever of systems change, ensuring better coordination across federal agencies, state and local governments, and public and private sectors to beat the heat.

Starting now, the Federation of American Scientists is launching an Open Call for Extreme Heat Policy Ideas to source policy solutions to improve how the federal government coordinates a comprehensive response to heat. FAS is collecting ideas throughout Fall 2023 to prepare effectively for the next heat season. More information can be found by following this link.

FAS has completed a preliminary diagnosis of six opportunity areas for innovative extreme heat policy ideas that can make the most substantial impact on American heat resiliency: Infrastructure, Workforce, Public Health, Food Security, Planning and Management, and Data and Indices.

Infrastructure

Many Americans offset heat through increasing their use of air conditioning. Yet, this creates many issues, including the risk of overloading our electrical grids, equity concerns surrounding who has continuous access to air conditioning, and variance in the effectiveness of different air conditioning units. 1 in 4 Americans experience energy insecurity which puts them at risk of energy shut-offs, and Americans at large hold $19.3 billion in energy debt as of March 2023.

Further, AC units fail to address fundamental issues in infrastructure, such as the poor design of buildings or lack of building codes that specify maximum temperature inside buildings. A study done by CAPA Strategies and the Portland Bureau of Emergency Management on heat in public housing found that even units with AC saw observed temperatures consistently greater than 80℉, putting the health of residents at risk. Even more alarming, research has projected that in the event of a multi-day blackout during a heatwave, the heat-related mortality rate in Phoenix, Atlanta, and Detroit would increase dramatically. In Phoenix, more than 50% of the urban population would require medical attention. This calls into question an AC-only heat mitigation strategy. Rather, how we design and build our infrastructure can make our communities more heat resilient. 

Extreme heat presents multiple challenges to our current infrastructure, including concerns over grid and transportation resilience, lack of building codes for heat, lack of well-researched passive cooling technologies (i.e. non-air conditioning) to combat heat, and urban planning and design to beat the heat. Infrastructure investments, such as increasing grid resilience and creating more urban green space and nature-based solutions, can serve as preventive measures to keep communities cool as temperatures continue to rise. 

With the Bipartisan Infrastructure Law and the Inflation Reduction Act, several federal agencies have created programs that could address infrastructure concerns surrounding extreme heat. 

While these programs provide necessary support and funding to address infrastructure concerns, multiple gaps still persist. First, federal agencies may have capital but are not coordinated in their approach to addressing extreme heat and proactively building community resilience to heat. The Equitable Long-Term Recovery and Resilience Interagency Working Group has found difficulties in interagency coordination of notices of funding opportunities, place-based engagement for deployment of funds, direct technical assistance to communities, and maintenance of continuous sources of funding along a project’s timeline (i.e. ensure once infrastructure is built that there are people to upkeep passive infrastructure such as green spaces or people to staff active infrastructure like cooling centers). Without strategy and clarity for how communities should proceed and what they should invest in, there will be no sustainable change in infrastructure across the nation. 

Second, nuances in specific programs and the way grants are chosen through benefit-cost analysis (i.e. greater value to property damage over harder to quantify measures like impacts on human lives) may limit funding that goes to projects specifically focused on extreme heat. For example, while communities have been told that FEMA’s BRIC can fund extreme heat resilience, BRIC grant applications have been repeatedly rejected for extreme heat-related projects, a consequence of the “cost-effective” statute for BRIC. Even if a cooling center is approved, BRIC money cannot staff the center in the event of a disaster. 

Third, many jurisdictions around the country lack building codes that specify a maximum indoor temperature inside buildings as well as required strategies to mitigate extreme heat – contributing to heightened risk for individuals developing heat-related illnesses.  

Workforce

Rising temperatures place many members of the workforce, such as farmworkers and construction workers, at increased risk for heat-related illnesses. Extreme heat also leads to immense losses in workplace productivity, with research estimating a total annual loss of $100 billion to the U.S. economy. Without any measures to address the impacts of extreme heat in the future, this figure could double to $200 billion by 2030 and $500 billion by 2050. The Occupational Safety and Health Administration (OSHA) within the Department of Labor recently released a heat hazard alert which provides information to employers about how they should be protecting employees in extreme heat conditions as well as information on employees’ rights. With recent direction from the White House, OSHA will also increase its inspections and enforcement of violations in industries at higher risk for extreme heat, such as agriculture. Yet, OSHA is historically under-resourced in its ability to effectively carry out inspections and enforcement, with each inspector now responsible for securing the rights of 200,000 workers. 

This under-resourcing extends to OSHA’s ability to create a national standard for protection against extreme heat which is still years off from implementation. This leaves employee protection to state-level standards. Some states, including California and Oregon, have issued heat standards to protect workers. Yet, other states, such as Texas, have eliminated the requirement for employers to provide basic safety measures like water breaks. In this current system, employees are being put at significant risk. Providing employees consistent breaks for water and shade while working in extreme heat conditions is a simple way to mitigate these risks while lowering costs of workers’ compensation for employers in the event of a work-exposure related heat illness. 

Public Health

Each summer, extreme heat can cost the healthcare industry upwards of $1 billion dollars. Exposure to extreme heat, and often accompanying high humidity, can cause multiple heat-related illnesses, including heat cramps, heat exhaustion and heat stroke. The risks of developing severe symptoms are heightened by social and environmental factors, such as lack of access to air conditioning, shade, or transportation to medical centers. Individual factors, including types of medication being taken, can also increase sensitivity towards heat. Further, rising temperatures exacerbate negative mental health outcomes, such as fatigue and aggression

When patients with a heat-illness are admitted to the hospital, there are numerous limitations with coordination and response. Diagnostic codes, used for insurance claims, exist for heat-related illness. However, physicians may not recognize the symptoms of heat-related illnesses and instead diagnose and assign other related codes, such as dehydration. Therefore, patients may not be properly diagnosed and treated. This also leads to significant underreporting of the effects of extreme heat on health. 

Quick coordination and response by health care professionals is critical in preventing long-term damage. A nationwide survey by Americares found that less than 20% of staff in clinics feel that their clinics are “very resilient” to extreme weather. During the Northwest Heat Dome in 2021, a lack of coordinated public health preparation led to 229 deaths, more than any other disaster that year. In order to increase preparedness and timely response, it is essential for the public health workforce to be educated on best practices in responding to heat-illnesses. For example, after the Northwest Heat Dome, Seattle has begun to implement new plans for hospitals to meet to review best practices if extreme heat is forecasted, including checking whether centers have ice and body bags available. 

Extreme heat can also have unexpected consequences on public health. For instance, extreme heat creates favorable conditions for infectious disease carriers, such as ticks and fungal spores, to exist in areas of the country where they were historically unable to survive. Transmission of disease is also more likely as people congregate in community hubs, such as cooling centers or beaches. 

As heat waves become more frequent and intense across the nation, it’s critical to create standardized coordination efforts. The Office of Climate Change and Health Equity serves as a resource hub, producing a seasonal Climate and Health Outlook and the new Heat-Related Emergency Medical Services Activation Surveillance Dashboard. Yet, they are not federally funded and are therefore limited in their capacity to coordinate heat and health resilience. In terms of public health preparedness resources, the Center for Disease Control’s (CDC) Climate Ready States and Cities Initiative can only support nine states, one city, and one county, despite 40 jurisdictions having applied. The Trust for America’s Health (TFAH) found increasing funding from $10 million to $110 million is required to support all states, and improve climate surveillance. 

The threat of extreme heat speaks to a critical need for a funded agency or office to take a leadership role in the following three efforts: 1) strengthening holistic natural disaster resiliency and response efforts within the healthcare and public health sectors through interagency collaboration 2) orchestrating and supporting efforts to close information gaps, synthesize data, and identify practical applications of information on natural disasters and climate threats and 3) coordinate efforts to develop communication and education on climate-related health threats. 

Food Security

Extreme heat and its exacerbation of other natural hazards, including droughts, can have a significant impact on our agricultural productivity and food security. The COVID-19 pandemic has illustrated the impact of large-scale emergencies on our national and global food supply chains and distribution systems. 

Increases in temperature may directly cause a reduction in crop growth and agricultural yields by affecting plants’ growth cycle. Rising temperatures affect livestock, potentially leading to increased mortality and reduced production of certain products, such as milk and eggs. It also impacts the way food can be stored and transported. Changes in food supply can ultimately increase the costs of certain foods and thus may not be affordable for everyone, particularly low-income populations. 

Extreme heat also contributes to the creation of favorable conditions for droughts, increasing the risk for crop failure. For instance, in Texas and the Midwest, extended droughts are causing farmers to be concerned about their agricultural yields and placing too heavy of a reliance on irrigation systems. Over a thousand communities are currently under disaster designation by the USDA this summer because of extended drought exacerbated by extreme heat.

It is critical for resources to be devoted to the research and development of strategies to improve the heat resilience of crops and livestock given the economic unsustainability of evergreen emergency disaster assistance. A report by the Perry World House Center recommended specific strategies including restorative agriculture practices, diversifying crop production, and learning from indigenous agricultural practices. The US Department of Agriculture’s Climate Hubs provide information on climate resilience to inform decision-making by natural resource and agricultural managers – and would benefit from additional appropriations. Additionally, the USDA’s Partnerships for Climate Smart Commodities is investing $1 billion into financing pilot projects that use climate-smart practices, yet no projects focus explicitly on extreme heat resiliency. 

Planning and Management

Despite its immense impacts, extreme heat is not considered a hazard that can trigger a federal emergency declaration under the Stafford Act. Many agencies, such as the Department of Interior and Housing and Urban Development, are not able to unlock funds without an emergency declaration and supplemental appropriations from Congress, illustrating the need to create more active resilience measures for these agencies to strategically act on extreme heat. 

The lack of specific staff within agencies and overarching federal leadership for heat resilience, response, and recovery limits an effective and coordinated response. Communities need agencies to have the tools, guidance, and technical assistance needed for implementation of extreme heat resilience. Lastly, having no federal office with national responsibility for extreme heat presents a major risk as certain parts of the country reach the upper limits of human habitability despite all resilience efforts triggering potentially destabilizing internal climate migrations.

Within local and state governments, there is often no specific agency or officer responsible for heat. Currently, only a handful of local jurisdictions are beginning to experiment with different organizational structures to address heat, such as the appointment of a designated Chief Heat Officer in Miami-Dade, Florida. On the state and local level, there is a lack of research into which organizational structure is most effective and efficient at extreme heat mitigation and response. In addition, there’s no incentive from the federal government for local jurisdictions to create effective heat response personnel. 

Finally, many states and local jurisdictions fail to plan for heat as a part of their Hazard Mitigation Plans, often required by FEMA to unlock disaster preparedness and recovery investments. Yet, there are currently no best practices on how to plan and respond, beyond high-level, non-specific guidance documents from the CDC and Environmental Protection Agency, leaving each city to create their own plans of action.

Data and Indices

While heat blankets entire regions, its impacts are not felt equitably across the population. Urban heat island effects can make parts of cities far hotter – thus worsening the disaster for people residing in these zones. Further, there is a lack of consensus over how to name, categorize, and communicate the severity of extreme heat events. Heat is very context dependent. Temperature is not the only consideration in determining the severity of heat. Levels of humidity are an integral factor in determining the extent to which the human body can control internal temperature. 

Inadequate data collection can result in underestimating the severity of heat, particularly in urban neighborhoods. Localized factors, including neighborhood design and the infrastructure of individual buildings can exacerbate the severity and consequences of heat. Within one city or local jurisdiction, data for heat can vary by multiple degrees. When these temperatures are not accurately accounted for, it can contribute to lack of efficient planning and emergency management. The National Oceanic and Atmospheric Administration and the Center for Disease Control created the National Integrated Heat Health Information System (NIHHIS) to provide tools and information on extreme heat. While NIHHIS produces useful information, such as the vulnerability mapping tool and urban heat island mapping campaign with the EPA, there is still a gap in applying this information and connecting localities with useful data and information on which strategies are most effective at combating extreme heat. Since this issue is dependent on context and locality, it’s crucial to have a system that collects nuanced data that tracks all of the impacts of extreme heat. 

Issues in communicating extreme heat’s severity arise because different heat indices use different standards and ultimately communicate output at varying levels of severity. This contributes to confusion surrounding what temperatures should constitute extreme heat. For instance, heat index calculations are a common measurement that take humidity into account. However, the formula assumes that people are resting in the shade. On the other hand, Wet Bulb Globe temperature calculations use direct sunshine measurements and assume people are active. Both of these measurements assume people are healthy. Not only does this create confusion about which index to rely on, it also excludes and may underestimate the severity of heat in certain populations. Naming heat waves is one solution that’s been explored in Spain to make it easier to explain the severity of extreme heat to the public.

Extreme heat presents multiple challenges to our planning, response, and management systems. While the consequences of extreme heat can be deadly, they can be avoided with a coordinated and comprehensive federal response. If you’re feeling inspired to act, submit an idea to our Open Call for Extreme Heat Policy Ideas here.