Extreme Heat and Wildfire Smoke: Consequences for Communities

More Extreme Weather Leads to More Public Health Emergencies

Extreme heat and wildfire smoke both pose significant and worsening public health threats in the United States. Extreme heat causes the premature deaths of an estimated 10,000 people in the U.S. each year, while more frequent and widespread wildfire smoke exposure has set back decades of progress on air quality in many states. Importantly, these two hazards are related: extreme heat can worsen and prolong wildfire risk, which can increase smoke exposure. 

Extreme heat and wildfire smoke events are independently becoming more frequent and severe, but what is overlooked is that they are often occurring in the same place at the same time. Emerging research suggests that the combined impact of these hazards may be worse than the sum of their individual impacts. These combined impacts have the potential to put additional pressure on already overburdened healthcare systems, public budgets, and vulnerable communities. Failing to account for these combined impacts could leave communities unprepared for these extreme weather events in 2025 and beyond.

To ensure resilience and improve public health outcomes for all, policymakers should consider the intersection of wildfire smoke and extreme heat at all levels of government. Our understanding of how extreme heat and wildfire smoke compound is still nascent, which limits national and local capacity to plan ahead. Researchers and policymakers should invest in understanding how extreme heat and wildfire smoke compound and use this knowledge to design synergistic solutions that enhance infrastructure resilience and ultimately save lives. 

Intersecting Health Impacts of Extremely Hot, Smoky Days

Wildfire smoke and extreme heat can each be deadly. As mentioned, exposure to extreme heat causes the premature deaths of an estimated 10,000 people in the U.S. a year. Long-term exposure to extreme heat can also worsen chronic conditions like kidney disease, diabetes, hypertension, and asthma. Exposure to the primary component of wildfire smoke, known as fine particulate matter (PM2.5), contributes to an additional estimated 16,000 American deaths annually. Wildfire smoke exacerbates and causes various respiratory and cardiovascular effects along with other health issues, such as asthma attacks and heart failure, increasing risk of early death

New research suggests that the compounding health impacts of heat and smoke co-exposure could be even worse. For example, a recent analysis found that the co-occurrence of extreme heat and wildfire smoke in California leads to more hospitalizations for cardiopulmonary problems than on heat days or smoke days alone. 

Extreme heat also contributes to the formation of ground-level ozone. Like wildfire smoke, ground-level ozone can cause respiratory problems and exacerbate pre-existing conditions. This has already happened at scale: during the 2020 wildfire season, more than 68% of the western U.S. – about 43 million people – were affected in a single day by both ground-level ozone extremes and fine particulate matter from wildfire smoke.

Impacts on Populations Most Vulnerable to Combined Heat and Smoke

While extreme heat and wildfire smoke can pose health risks to everyone, there are some groups that are more vulnerable either because they are more likely to be exposed, they are more likely to suffer more severe health consequences when they are exposed, or both. Below, we highlight groups that are most vulnerable to extreme heat and smoke and therefore may be vulnerable to the compound impacts of these hazards. More research is needed to understand how the compound impacts will affect the health of these populations.

Housing-Vulnerable and Housing-Insecure People

Access to air conditioning at home and work, tree canopy cover, buildings with efficient wildfire smoke filtration and heat insulation and cooling capacities, and access to  smoke centers are all important protective factors against the effects of extreme heat and/or wildfire smoke. People lacking these types of infrastructure are at higher risk for the health effects of these two hazards as a result of increased exposure. In California, for example, communities with lower incomes and higher population density experience a greater likelihood of negative health impacts from hazards like wildfire smoke and extreme heat. 

Outdoor Workers

Representing about 33% of the national workforce, outdoor workers — farmworkers, firefighters, and construction workers — experience much higher rates of exposure to environmental hazards, including wildfire smoke and extreme heat, than other workers. Farmworkers are particularly vulnerable even among outdoor workers; in fact, they face a 35 times greater risk of heat exposure death than other outdoor workers. Additionally, outdoor workers are often lower-income, making it harder to afford protections and seek necessary medical care. Twenty percent of agricultural worker families live below the national poverty line.

Wildfire smoke exposure is estimated to have caused $125 billion in lost wages annually from 2007 to 2019 and extreme heat exposure is estimated to cause $100 billion in wage losses each year. Without any changes to policies and practice, these numbers are only expected to rise. These income losses may exacerbate inequities in poverty rates and economic mobility, which determine overall health outcomes.

Pregnant Mothers and Infants

Extreme heat and wildfire smoke also pose a significant threat to the health of pregnant mothers and their babies. For instance, preterm birth is more likely during periods of higher temperatures and during wildfire smoke events. This correlation is significantly stronger among people who were simultaneously exposed to extreme heat and wildfire smoke PM2.5.

Preterm birth comes with an array of risks for both the pregnant mothers and baby and is the leading cause of infant mortality. Babies born prematurely are more likely to have a range of serious health complications in addition to long-term developmental challenges. For the parent, having a preterm baby can have significant mental health impacts and financial challenges.

Children

Wildfire smoke and extreme heat both have significant impacts on children’s health, development, and learning. Children are uniquely vulnerable to heat because their bodies do not regulate temperatures as efficiently as adults, making it harder to cool down and putting their bodies under stress. Children are also more vulnerable to air pollution from wildfire smoke as they inhale more air relative to their weight than adults and because their bodies and brains are still developing.  PM2.5 exposure from wildfires has been attributed to neuropsychological effects, such as ADHD, autism, impaired school performance, and decreased memory

When schools remain open during extreme weather events like heat and smoke, student learning is impacted. Research has found that each 1℉ increase in temperature leads to 1% decrease in annual academic achievement. However, when schools close due to wildfire smoke or heat events, children lose crucial learning time and families must secure alternative childcare.

Low-income students are more likely to be in schools without adequate air conditioning because their districts have fewer funds available for school improvement projects. This barrier has only been partially remedied in recent years through federal investments.

Older Adults

Older adults are more likely to have multiple chronic conditions, many of which increase vulnerability to extreme heat, wildfire smoke, and their combined effects. Older adults are also more likely to take regular medication, such as beta blockers for heart conditions, which increase predisposition to heat-related illness.

The most medically vulnerable older adults are in long-term care facilities. There is currently a national standard for operating temperatures for long-term care facilities, requiring them to operate at or below 81℉. There is no correlatory standard for wildfire smoke. Preliminary studies have found that long-term care facilities are unprepared for smoke events; in some facilities the indoor air quality is no better than the outdoor air quality.

Challenges and Opportunities for the Healthcare Sector

The impacts of extreme heat and smoke have profound implications for public health and therefore for healthcare systems and costs. Extreme heat alone is expected to lead to $1 billion in U.S. healthcare costs every summer, while wildfire smoke is estimated to cost the healthcare system $16 billion every year from respiratory hospital visits and PM2.5 related deaths. 

Despite these high stakes, healthcare providers and systems are not adequately prepared to address wildfire smoke, extreme heat, and their combined effects. Healthcare preparedness and response is limited by a lack of real-time information about morbidity and mortality expected from individual extreme heat and smoke events. For example, wildfire smoke events are often reported on a one-month delay, making it difficult to anticipate smoke impacts in real time. Further, despite the risks posed by heat and smoke independently and when combined, healthcare providers are largely not receiving education about environmental health and climate change. As a result, physicians also do not routinely screen their patients for health risk and existing protective measures, such as the existence of air conditioning and air filtration in the home. 

Potential solutions to improve preparedness in the healthcare sector include developing more reliable real-time information about the potential impacts of smoke, heat, and both combined; training physicians in screening patients for risk of heat and smoke exposure; and training physicians in how to help patients manage extreme weather risks. 

Challenges and Opportunities for Federal, State, and Local Governments 

State and local governments have a role to play in building facilities that are resilient to extreme heat and wildfire smoke as well as educating people about how to protect themselves. However, funding for extreme heat and wildfire smoke is scarce and difficult for local jurisdictions in need to obtain. While some federal funding is available specifically to support smoke preparedness (e.g., EPA’s Wildfire Smoke Preparedness in Community Buildings Grant Program) and heat preparedness (e.g. NOAA NIHHIS’ Centers of Excellence), experts note that the funding landscape for both hazards is “limited and fragmented.” To date, communities have not been able to secure federal disaster funding for smoke or heat events through the Public Health Emergency Declaration or the Stafford Act. FEMA currently excludes the impacts on human health from economic valuations of losses from a disaster. As a result, many of these impacted communities never see investments from post-disaster hazard mitigation, which could potentially build community resilience to future events. Even if a declaration was made, it would likely be for one “event”, e.g. wildfire smoke or extreme heat, with recovery dollars targeted towards mitigating the impacts of that event. Without careful consideration, rebuilding and resilience investments might be maladaptive for addressing the combined impacts.

Next Steps

The Wildland Fire Mitigation and Management Commission report offers a number of recommendations to improve how the federal government can better support communities in preparing for the impacts of wildfire smoke and acknowledges the need for more research on how heat and wildfire smoke compound. FAS has also developed a whole-government strategy towards extreme heat response, resilience, and preparedness that includes nearly 200 recommendations and notes the need for more data inputs on compounding hazards like wildfire smoke. Policymakers at the federal level should support research at the intersection of these topics and explore opportunities for providing technical assistance and funding that builds resilience to both hazards.

Understanding and planning for the compound impacts of extreme heat and wildfire smoke will improve public health preparedness, mitigate public exposure to extreme heat and wildfire smoke, and minimize economic losses. As the overarching research at this intersection is still emerging, there is a need for more data to inform policy actions that effectively allocate resources and reduce harm to the most vulnerable populations. The federal government must prioritize protection from both extreme heat and wildfire smoke, along with their combined effects, to fulfill its obligation to keep the public safe.

2025 Heat Policy Agenda

It’s official: 2024 was the hottest year on record. But Americans don’t need official statements to tell them what they already know: our country is heating up, and we’re deeply unprepared.

Extreme heat has become a national economic crisis: lowering productivity, shrinking business revenue, destroying crops, and pushing power grids to the brink. The impacts of extreme heat cost our Nation an estimated $162 billion in 2024 – equivalent to nearly 1% of the U.S. GDP.

Extreme heat is also taking a human toll. Heat kills more Americans every year than hurricanes, floods, and tornadoes combined. The number of heat-related illnesses is even higher. And even when heat doesn’t kill, it severely compromises quality of life. This past summer saw days when more than 100 million Americans were under a heat advisory. That means that there were days when it was too hot for a third of our country to safely work or play.

We have to do better. And we can.

Attached is a comprehensive 2025 Heat Policy Agenda for the Trump Administration and 119th Congress to better prepare for, manage, and respond to extreme heat. The Agenda represents insights from hundreds of experts and community leaders. If implemented, it will build readiness for the 2025 heat season – while laying the foundation for a more heat-resilient nation.

Core recommendations in the Agenda include the following:

  1. Establish a clear, sustained federal governance structure for extreme heat. This will involve elevating, empowering, and dedicating funds to the National Interagency Heat Health Information System (NIHHIS), establishing a National Heat Executive Council, and designating a National Heat Coordinator in the White House.
  2. Amend the Stafford Act to explicitly define extreme heat as a “major disaster”, and expand the definition of damages to include non-infrastructure impacts.
  3. Direct the Secretary of Health and Human Services (HHS) to consider declaring a Public Health Emergency in the event of exceptional, life-threatening heat waves, and fully fund critical HHS emergency-response programs and resilient healthcare infrastructure.
  4. Direct the Federal Emergency Management Agency (FEMA) to include extreme heat as a core component of national preparedness capabilities and provide guidance on how extreme heat events or compounding hazards could qualify as major disasters.
  5. Finalize a strong rule to prevent heat injury and illness in the workplace, and establish Centers of Excellence to protect troops, transportation workers, farmworkers, and other essential personnel from extreme heat.
  6. Retain and expand home energy rebates, tax credits, LIHEAP, and the Weatherization Assistance Program, to enable deep retrofits that cut the costs of cooling for all Americans and prepare homes and other infrastructure against threats like power outages.
  7. Transform the built and landscaped environment through strategic investments in urban forestry and green infrastructure to cool communities, transportation systems to secure safe movement of people and goods, and power infrastructure to ready for greater load demand.

The way to prevent deaths and losses from extreme heat is to act before heat hits. Our 60+ organizations, representing labor, industry, health, housing, environmental, academic and community associations and organizations, urge President Trump and Congressional leaders to work quickly and decisively throughout the new Administration and 119th Congress to combat the growing heat threat. America is counting on you.


Executive Branch

Federal agencies can do a great deal to combat extreme heat under existing budgets and authorities. By quickly integrating the actions below into an Executive Order or similar directive, the President could meaningfully improve preparedness for the 2025 heat season while laying the foundation for a more heat-resilient nation in the long term. 

Streamline and improve extreme heat management.

More than thirty federal agencies and offices share responsibility for acting on extreme heat. A better structure is needed for the federal government to seamlessly manage and build resilience. To streamline and improve the federal extreme heat response, the President must:

Boost heat preparedness, response, and resilience in every corner of our nation.

Extreme heat has become a national concern, threatening every community in the United States. To boost heat preparedness, response, and resilience nationwide, the President must:

Usher in a new era of heat forecasting, research, and data.

Extreme heat’s impacts are not well-quantified, limiting a systematic national response. To usher in a new era of heat forecasting, research, and data, the President must:

Protect workers and businesses from heat.

Americans become ill and even die due to heat exposure in the workplace, a moral failure that also threatens business productivity. To protect workers and businesses, the President must:

Prepare healthcare systems for heat impacts.

Extreme heat is both a public health emergency and a chronic stress to healthcare systems. Addressing the chronic disease epidemic will be impossible without treating the symptom of extreme heat. To prepare healthcare systems for heat impacts, the President must:

Ensure affordably cooled and heat-resilient housing, schools, and other facilities.

Cool homes, schools, and other facilities are crucial to preventing heat illness and death. To prepare the build environment for rising temperatures, the President must:

Promote Housing and Cooling Access

Prepare Schools and Other Facilities


Legislative Branch

Congress can support the President in combating extreme heat by increasing funds for heat-critical federal programs and by providing new and explicit authorities for federal agencies.

Treat extreme heat like the emergency it is.

Extreme heat has devastating human and societal impacts that are on par with other federally recognized disasters. To treat extreme heat like the emergency it is, Congress must:

Build community heat resilience by readying critical infrastructure.

Investments in resilience pay dividends, with every federal dollar spent on resilience returning $6 in societal benefits. Our nation will benefit from building thriving communities that are prepared for extreme heat threats, adapted to rising temperatures, and capable of withstanding extreme heat disruptions. To build community heat resilience, Congress must:

Leveraging the Farm Bill to build national heat resilience.

Farm, food, forestry, and rural policy are all impacted by extreme heat. To ensure the next Farm Bill is ready for rising temperatures, Congress should:

Funding critical programs and agencies to build a heat-ready nation.

To protect Americans and mitigate the $160+ billion annual impacts of extreme heat, Congress will need to invest in national heat preparedness, response, and resilience. The tables on the following pages highlight heat-critical programs that should be extended, as well as agencies that need more funding to carry out heat-critical work, such as key actions identified in the Executive section of this Heat Policy Agenda.

Using Pull Finance for Market-driven Infrastructure and Asset Resilience

The incoming administration should establish a $500 million pull-financing facility to ensure infrastructure and asset resiliency with partner nations by catalyzing the private sector to develop cutting-edge technologies. The increasing frequency of extreme weather events, which caused over $200 billion in global economic losses in 2023, is disrupting global supply chains and exacerbating migration pressures, particularly for the U.S. Investing in climate resilience abroad offers a significant opportunity for U.S. businesses in technology, engineering, and infrastructure, while also supporting job creation at home. 

Pull-finance mechanisms can maximize the efficiency and impact of U.S. investments, fostering innovation and driving sustainable solutions to address global vulnerabilities. Unlike traditional funding which second-guesses the markets by supporting only selected innovators, pull financing drives results by relying on the market to efficiently allocate resources to achievement, fostering competition and rewarding the most impactful solutions. Managed and steered by the U.S. government, the pull-financing facility would fund infrastructure and asset resiliency results delivered by the world’s cutting-edge innovators, mitigating the effects of extreme weather events and ultimately supporting U.S. interests abroad. 

Challenge and Opportunity 

The increasing frequency and severity of extreme weather events pose significant risks to global economic stability, with direct implications for U.S. interests. In 2023 alone, natural disasters caused over $200 billion in global economic losses with much of the damage concentrated in regions critical to global supply chains. U.S. businesses that depend on these supply chains face rising costs and disruptions, which translate into higher costs for U.S. businesses and consumers, undermining economic competitiveness.

Beyond the economic dimension, these vulnerabilities exacerbate socio-political pressures. Climate-induced displacement is accelerating, with 32.6 million people internally displaced by disasters in 2022. Most displaced individuals that cross borders migrate to countries neighboring their own, which are ill-equipped to handle the influx, often further destabilizing fragile states. For the U.S., this translates into increased migration pressures at its southern border, where natural disasters are already a driving force behind migration from Central America. Addressing these root causes through proactive resiliency investments abroad would reduce long-term strain on the U.S. and bolster stability in strategically important regions.

In addition to economic and social risks, resilience is now a key front in global competition. The People’s Republic of China has rapidly expanded its influence in developing nations through initiatives like the Belt and Road, financing over $200 billion in energy and infrastructure projects since 2013. A significant portion of these projects focus on resiliency investments, enabling China to position itself as a partner of choice for nations with asset and infrastructure exposure. This growing influence comes at the expense of U.S. global leadership.

In the context of these challenges, it is especially concerning that much of the U.S.’s existing spending may not be achieving the results it could. A recent audit of USAID climate initiatives highlights concerns around limited transparency and effectiveness in its development funding. The inefficient use of this funding is leaving opportunities on the table for U.S. businesses and workers. Global investments in adaptation and resiliency are projected to reach $500 billion annually by 2050. Resilience projects abroad could open substantial markets for American engineering, technology, and infrastructure firms. For instance, U.S.-based companies specializing in resilient agriculture, flood defense systems, advanced irrigation technologies, and energy infrastructure stand to benefit from increased demand. Domestically, the manufacturing and export of these solutions could generate significant economic activity, supporting high-quality jobs and revitalizing industrial sectors.

Pull finance presents an opportunity to increase the cost effectiveness of resiliency funding—and ensure this funding achieves U.S. interests. Pull finance mechanisms like results-based financing and Advance Market Commitments (AMC) reward successful solutions that meet specific criteria, promoting private sector engagement and market-driven problem-solving. Unlike traditional “push” financing, which funds chosen teams or projects directly, pull financing sets a goal and allows any innovator who reaches it to claim the reward, fostering      competitive problem-solving without pre-selected winners. This approach includes various mechanisms – such as prize challenges, milestone payments, advance market commitments, and subscription models – each suited to different issues and industries.

Pull financing is particularly effective for addressing complex challenges with unclear or emerging solutions, or in areas with limited commercial incentives. It has proven successful in various contexts, such as the first Trump Administration’s rapid development of COVID-19 vaccines through Operation Warp Speed and GAVI’s introduction of the pneumococcal vaccine in low-income countries. These initiatives highlight how pull financing can stimulate breakthrough innovations that efficiently address immediate needs in collaboration with private actors through effective incentives.  

Pull finance can be used to efficiently advance infrastructure and asset resilience goals while also providing opportunities for U.S. innovators and industry. By stimulating demand for critically needed technologies for development like resilient seeds and energy storage solutions, as detailed in Box 1, well-designed pull finance would help link U.S. technology innovators to addressing needs of U.S. partners. As such, pull finance can play a critical role in positioning the U.S. as a partner of first choice for countries seeking to access U.S. innovation to meet resilience needs.


What would the design of a pull financing mechanism look like in practice?  

Resilient Seeds

Agriculture in Africa is highly susceptible to extreme weather events, with limited adoption of effective farming technologies. Developing new seed varieties capable of withstanding these events and optimizing resource use has the potential to yield significant societal benefits.

While push financing can support the development of resource-efficient and productive seeds, it often lacks the ability to ensure they meet essential quality standards, like flavor and appearance, and are user-friendly across farming, transport and marketing stages. In contrast, pull financing can effectively incentivize private sector innovation across all critical dimensions, including end-user take-up. 

A pull mechanism for resilient seeds, using a milestone payment mechanism, could cover a portion of R&D costs initially, with additional payments tied to successful lab trials. Depending on the obstacles to scaling – whether they arise from the innovator/distributor side or the farmer side – a small per-user payment to the innovator or per-user subsidy could help sustain market demand.

The design and scale of a pull financing mechanism to promote the rollout of new seeds and crop varieties will largely depend on the market readiness of the various seed types involved. Establishing effective pull mechanisms for seed development is estimated to cost between $50 million and $100 million, aiming for significant outreach to farmers. Along with supporting improved livelihoods for farmers, this small investment would open opportunities for U.S. technology innovators and companies. 

Pull Finance Initiative for Infrastructure and Asset Resiliency in the Caribbean

The Caribbean is one of the regions most vulnerable to extreme weather events, making it critical to engage the private sector in developing and adopting technologies suited to Small Island Developing States (SIDS). Challenges such as limited demand and high costs hinder innovation and investment in these small markets, leaving key areas like agriculture and access underserved. Overcoming these market failures requires innovative approaches to create sustainable incentives for private sector involvement.

Pull finances offers a promising solution to drive resiliency in SIDS. By tying payments to measurable outcomes, this approach will incentivize the development and deployment of technologies that might otherwise remain inaccessible. 

For example, pull finance could be used to stimulate the creation of energy storage solutions designed to withstand extreme weather conditions in remote areas. This could be help address the critical needs of SIDS’ such as Guyana which face energy security challenges linked to extreme weather conditions, especially in remote and dispersed areas. Energy storage technologies exist, but companies are not motivated to invest in tailored innovation for local needs because end-users cannot pay prices that compensate for innovation efforts. Pull finance could address this by committing to purchase an amount large enough that nudges companies to develop a tailored product, without raising market prices. Success would require partnerships with local SMEs, caps in installation costs, and specifications on storage capacity, along with relevant technology partners such as those in the U.S.. This approach would support immediate adaptation needs and lay the foundation for sustainable, market-driven solutions that ensure long-term resilience for SIDS.


Plan of Action 

The new administration should establish a dedicated pull-financing facility to accelerate the scale-up and deployment of development solutions with partner nations. In line with other major U.S. climate initiatives, this facility could be managed by USAID’s Bureau for Resilience, Environment and Food Security (REFS), with significant support from USAID’s Innovation, Technology, and Research (ITR) Hub, in partnership with the U.S. Department of State. By leveraging USAID’s deep expertise in development and SPEC’s strategic diplomacy, this collaboration would ensure the facility addresses LMIC-specific needs while aligning with broader U.S. objectives.

The recent audit of USAID climate initiatives referenced above highlights concerns on the limited transparency and effectiveness in its climate funding. Thus, we recommend that USAID assesses the impact of its climate spending under the 2020-2024 administration and reallocates a portion of funds from less effective or stalled initiatives to this new facility. We recognize that it may be challenging to quickly identify $500 million in underperforming projects to close and reassign. Therefore, in addition to reallocating existing resources, we strongly recommend appealing to new funding for this initiative. This approach will ensure the new facility has the financial backing it needs to drive meaningful outcomes. Additional resources could also be sourced from large multilateral organizations such as the World Bank.

To enhance the facility’s impact, we recommend the active participation of agencies such as the National Oceanic and Atmospheric Administration (NOOA), particularly through the Climate and Societal Interactions Division (CSI)   in the Steering Committee,

We propose that this facility draw on the example of the UK’s planned Climate Innovation Pull Facility (CIPF), a £185 million fund which aims to fund development-relevant pull finance projects in LMICs such as those proposed by the Center for Global Development and Instiglio. This can be achieved through the following steps:

Recommendation 1. Establish the pull-finance facility, governance and administration with an initial tranche of $500 million. 

The initiative proposes establishing a pull-finance facility with an initial fund of $500 million. This facility will be overseen by a steering board chaired by USAID and comprising senior representatives from USAID, the State Department, NOOA , which will set the strategic direction and make final project selections. 

A facility management team, led by USAID, will be responsible for ensuring the successful implementation of the facility, including the selection and delivery of 8 to 16 projects. The final number of projects will depend on the launch readiness of prioritized technologies and their potential impact, with the selection process guided by criteria that align with the facility’s strategic goals. The facility management team will also be responsible for contracting with project and evaluation partners, compliance with regulations, risk management, monitoring and evaluation, as well as payouts. Additionally, the facility management team will provide incubation support for selected initiatives, including technical consultations, financial modeling, contracting expertise, and feasibility assessments.

Designing pull financing mechanisms is complex and requires input from specialized experts, including scientists, economists, and legal advisors, to identify suitable market gaps and targets. An independent Technical Advisory Group (TAG) led by USAID and comprised of such experts should be established to provide technical guidance and quality assurance. The TAG will identify priority resilience topics, such as reducing crop-residue burning or developing resilient crops. It will also focus on sectors where the U.S. can enhance its global competitiveness, which faces high upfront costs and risks. Additionally, the TAG will be responsible for technical review and recommendations of the shortlisted project proposals to inform final selection, as well as provide general advice and challenge to the facility management team and steering board.

We suggest starting with $500 million as the minimum required to be credible and relevant as well as responsive to the scale of global need. Further, experience shows that pull mechanisms need to be of sufficient scale to sustainably shift markets. For instance, GAVI’s pneumococcal vaccine AMC entailed a $1.5 billion commitment and Frontier’s carbon capture AMC likewise entails over $1 billion in commitments.  

Recommendation 2. Set up a performance management system to measure, assess and ensure impact.

The U.S. pull financing facility will implement a robust monitoring, evaluation, and learning (MEL) framework to track and enhance its impact and drive ongoing improvement through feedback and learning. 

The facility manager will develop a logical framework (logframe) that includes key performance indicators (KPIs) and a progress and risk dashboard to track monthly performance. These tools will enable effective monitoring of progress, assessment of impact, and proactive risk management, allowing for quick responses to unexpected challenges or underperformance.

Monthly check-ins with an independent evaluation partner, along with oversight from a dedicated MEL committee, will ensure consistent and rigorous evaluation as well as continuous learning. Additionally, knowledge management and dissemination activities will facilitate the sharing of insights and best practices across the program.

Recommendation 3. Establish a knowledge management hub to facilitate the sharing of results and insights and ensure coordination across pull-financing projects. 

The hub will work closely with community partners and stakeholders – such as industry and tech leaders and manufacturers – in areas like resiliency-focused finance and innovation to build strong support and develop resources on essential topics, including the effectiveness of pull financing and optimal design strategies. Additionally, the hub will promote collaboration across projects focused on similar technological and production advancements, generating synergies that enhance their collective impact and benefits.

Once the proof of concept is established through clear evidence and learning, the facility will likely secure further stakeholder buy-in and attract additional funding for a scale up phase covering a larger portfolio of projects. 

Conclusion 

The federal government should establish a $500 million pull-financing facility to accelerate technologies for resilience in the face of growing development challenges. This initiative will unlock high-return investments and increase cost effectiveness of resiliency spending, driving economic and geopolitical goals. Managed and steered by USAID and the State Department, with support from NOOA, the facility would foster breakthroughs in critical areas like resilient infrastructure, energy, and technology, benefiting both U.S. businesses and our international partners. By investing strategically, the U.S. can ensure both national and global stability.

The authors thank FAS for the reviews and feedback, along with Ranil Dissanayake, Florence Oberholtzer, and Laura Mejia Villada for their valuable contribution to this piece.

This action-ready policy memo is part of Day One 2025 — our effort to bring forward bold policy ideas, grounded in science and evidence, that can tackle the country’s biggest challenges and bring us closer to the prosperous, equitable and safe future that we all hope for whoever takes office in 2025 and beyond.

Frequently Asked Questions
What are some of the main constraints to pull financing and how can they be overcome?

Pull financing mechanisms, such as prize competitions, milestone payments, and Advanced Market Commitments (AMCs) often face regulatory and legal challenges due to their dependency on successful outcomes for funding disbursement (CGD, 2021; CGD, 2023). First, it can make cashflow management challenging as federal law requires that legally binding financial commitments be made if the necessary appropriated funds are available, resulting in upfront scoring of costs, even if the actual expenditures occur years later. The uncertainty surrounding innovation and payouts can also create risk aversion, as most funding accounts are not “no-year” accounts, meaning committed funds can expire if competition goals are unmet within the designated timeframe.


To mitigate these constraints, agencies can use budgetary workarounds like no-year appropriations, allowing them to reallocate de-obligated funds from canceled competitions to new initiatives. Other options include employing credit-type scoring to discount costs based on the likelihood of non-payment and making non-legally binding commitments backed by third parties, such as international institutions, to avoid these challenges altogether.

What is the expected timeline for the establishment and cost breakdown for this fund?

The entire fund is expected to span a maximum of five () years. The initial 12 months will concentrate on identifying eight (8) to 16 projects through comprehensive due diligence and providing incubation support. In the subsequent four (4) years, the focus will shift to project delivery.

How is this initiative different from existing U.S. initiatives such as USAID’s Climate Finance for Development Accelerator (CFDA)?

In contrast to the traditional push-funding approach of the CFDA program, our proposed pull-finance initiative introduces a unique market-shaping component aimed at driving key infrastructure and resilience solutions to fruition. In contrast to CFDA, pull finance addresses demand-side risks by providing demand-side guarantees of a future market for the technology or solution. It also mitigates R&D risk by combining incentives for research and development, ensuring that a viable market exists once the technology is developed. This approach helps accelerate market creation and innovation in high-risk, high-innovation sectors where demand or technological maturity is uncertain.

Enhancing Local Capacity for Disaster Resilience

Across the United States, thousands of communities, particularly rural ones, don’t have the capacity to identify, apply for, and manage federal grants. And more than half of Americans don’t feel that the federal government adequately takes their interests into account. These factors make it difficult to build climate resilience in our most vulnerable populations. AmeriCorps can tackle this challenge by providing the human power needed to help communities overcome significant structural obstacles in accessing federal resources. Specifically, federal agencies that are part of the Thriving Communities Network can partner with the philanthropic sector to place AmeriCorps members in Community Disaster Resilience Zones (CDRZs) as part of a new Resilient Communities Corps. Through this initiative, AmeriCorps would provide technical assistance to vulnerable communities in accessing deeply needed resources. 

There is precedent for this type of effort. AmeriCorps programming, like AmeriCorps VISTA, has a long history of aiding communities and organizations by directly helping secure grant monies and by empowering communities and organizations to self-support in the future. The AmeriCorps Energy Communities is a public-private partnership that targets service investment to support low-capacity and highly vulnerable communities in capitalizing on emerging energy opportunities. And the Environmental Justice Climate Corps, a partnership between the Environmental Protection Agency (EPA) and AmeriCorps, will place AmeriCorps VISTA members in historically marginalized communities to work on environmental justice projects. 

A new initiative targeting service investment to build resilience in low-capacity communities, particularly rural communities, would help build capacity at the local level, train a new generation of service-oriented individuals in grant writing and resilience work, and ensure that federal funding gets to the communities that need it most.

Challenge and Opportunity  

A significant barrier to getting federal funding to those who need it the most is the capacity of those communities to search and apply for grants. Many such communities lack both sufficient staff bandwidth to apply and search for grants and the internal expertise to put forward a successful application. Indeed, the Midwest and Interior West have seen under 20% of their communities receive competitive federal grants since the year 2000. Low-capacity rural communities account for only 3% of grants from the Federal Emergency Management Agency (FEMA)’s flagship program for building community resilience. Even communities that receive grants often lack the capacity for strong grant management, which can mean losing monies that go unspent within the grant period.

This is problematic because low-capacity communities are particularly vulnerable to natural disasters from flooding to wildfires. Out of the nearly 8,000 most at-risk communities with limited capacity to advocate for resources, 46% are at risk for flooding, 36% are at risk for wildfires, and 19% are at risk for both.

Ensuring communities can access federal grants to help them become more climate resilient is crucial to achieving an equitable and efficient distribution of federal monies, and to building a stronger nation from the ground up. These objectives are especially salient given that there is still a lot of federal money available through the Inflation Reduction Act (IRA) and the Infrastructure Investment and Jobs Act (IIJA) that low-capacity communities can tap into for climate resilience work. As of April 2024, only $60 billion out of the $145 billion in the IRA for energy and climate programs had been spent. For the IIJA, only half of the nearly $650 billion in direct formula funding had been spent. 

The Biden-Harris Administration has tried to address the mismatch between federal resilience funding and community capacity in a variety of ways. The Administration has deployed resources for low-capacity communities, agencies tasked with allocating funds from the IRA and IIJA have held information sessions, and the IRA and IIJA contain over a hundred technical assistance programs. Yet there still is not enough support in the form of human capacity at the local level to access grants and other resources and assistance provided by federal agencies. AmeriCorps members can support communities in making informed decisions, applying for federal support, and managing federal financial assistance. Indeed, state programs like the Maine Climate Corps, include aiding communities with both resilience planning and emergency management assistance as part of their focus. Evening the playing field by expanding deployment of human capital will yield a more equitable distribution of federal monies to the communities that need it the most. 

AmeriCorps’ Energy Communities initiative serves as a model for a public-private partnership to support low-capacity communities in meeting their climate resilience goals. Over a three-year period, the program will invest over $7.8 million from federal agencies and philanthropic dollars to help communities designated by the Interagency Working Group on Coal & Power Plant Communities & Economic Revitalization on issues revolving around energy opportunity, environmental cleanup, and economic development to help communities capitalize on emerging energy opportunities. 

There is an opportunity to replicate this model towards resilience. Specifically, the next Administration can leverage the Federal Emergency Management Agency (FEMA’s) Community Disaster Resilience Zone (CDRZ) designations to target AmeriCorps support to the communities that need it most. Doing so will not only build community resilience, but will help restore trust in the federal government and its programs (see FAQ).

Plan of Action

The next administration can support vulnerable communities in building climate resilience by launching a new Resilient Communities Corps through AmeriCorps. The initiative can be launched through a three-part Plan of Action: (1) find a philanthropic partner to fund AmeriCorps placements in CDRZs, (2) engage federal agencies that are part of the Thriving Communities Network to provide resilience training and support to Corps members, and (3) use the CDRZ designations to help guide where AmeriCorps members should be placed.  

Recommendation 1. Secure philanthropic funding 

American service programs have a history of utilizing philanthropic monies to fund programming. The AmeriCorps Energy Communities is funded with philanthropic monies from Bloomberg Philanthropies. California Volunteers Fund (CVF), the Waverly Street Foundation, and individual philanthropists helped fund the state Climate Corps. CVF has also provided assistance and insights for state Climate Corps officials as they develop their programs. 

A new Resilient Communities Corps under the AmeriCorps umbrella could be funded through one or several major philanthropic donors, and/or through grassroots donations. Widespread public support for AmeriCorps’ ACC that transcends generational and party lines presents the opportunity for new grassroots donations to supplement federal monies allocated to the program along with tapping the existing network of foundations, individuals, companies, and organizations that have provided past donations. The Partnership for the Civilian Climate Corps (PCCC), which has had a history of collaborating with the ACC’s federal partners, would be well suited to help spearhead this grassroots effort. 

America’s Service Commissions (ASC), which represents state service commissions, can also help coordinate with state service commissions to find local philanthropic monies to fund AmeriCorps work in CDRZs. There is precedent for this type of fundraising. Maine’s state service commission was able to secure private monies for one Maine Service Fellow. The fellow has since worked with low-capacity communities in Maine on climate resilience. ASC can also work with state service commissions to identify current state, private, and federally funded service programming that could be tapped to work in CDRZs or are currently working in CDRZs. This will help tie in existing local service infrastructure.  

Recommendation 2. Engage federal agencies participating in the Thriving Communities Network and the American Climate Corps (ACC) interagency working group. 

Philanthropic funding will be helpful but not sufficient in launching the Resilient Communities Corps. The next administration should also engage federal agencies to provide AmeriCorps members participating in the initiative with training on climate resilience, orientations and points of contact for major federal resilience programs, and, where available, additional financial support for the program. The ACC’s interagency working group has centered AmeriCorps as a multiagency initiative that has directed resources and provides collaboration in implementing AmeriCorps programming. The Resilient Communities Corps will be able to tap into this cross-agency collaboration in ways that align with the resilience work already being done by partnership members. 

There are currently four ACC programs that are funded through cooperation with other federal agencies. These are the Working Lands Climate Corps with the U.S. Department of Agriculture (USDA)’s Natural Resources and Conservation Service, AmeriCorps NCCC Forest Corps with the USDA Forest Service, Energy Communities AmeriCorps with the Department of Interior and the Department of Commerce, and the Environmental Justice Corps, which was announced in September 2024 and will launch in 2025, with the EPA. The Resilient Communities Corps could be established as a formal partnership with one or more federal agencies as funding partners.

In addition, the Resilient Communities Corps can and should leverage existing work that federal agencies are doing to build community capacity and enhance community climate resilience. For instance, USDA’s Rural Partners Network helps rural communities access federal funding while the EPA’s Environmental Justice Thriving Communities Technical Assistance Centers Program provides training and assistance for communities to build the capacity to navigate, develop proposals, and manage federal grants. The Thriving Communities Network provides a forum for federal agencies to provide technical assistance to communities trying to access federal monies. Corps members, through the network, can help federal agencies provide communities they are working with building capacity to access this technical assistance. 

Recommendation 3. Use CDRZ designations and engage with state service commissions to guide Resilient Communities Corps placements

FEMA, through its National Risk Index, has identified communities across the country that are most vulnerable to the climate crisis and need targeted federal support for climate resilience projects. CDRZs provide an opportunity for AmeriCorps to identify low-capacity communities that need their assistance in accessing this federal support. With assistance from partner agencies and philanthropic dollars, the AmeriCorps can fund Corps members to work in these designated zones to help drive resources into them. As part of this effort, the ACC interagency working group should be broadened to include the Department of Homeland Security (which already sponsors FEMA Corps).

In 2024, the Biden-Harris Administration announced Federal-State partnerships between state service commissions and the ACC. This partnership with state service commissions will help AmeriCorps and partner agencies identify what is currently being done in CDRZs, what is needed from communities, and any existing service programming that could be built up with federal and philanthropic monies. State service commissions understand the communities they work with and what existing programming is currently in place. This knowledge and coordination will prove invaluable for the Resilient Communities Corps and AmeriCorps more broadly as they determine where to allocate members and what existing service programming could receive Resilient Communities Corps designation. This will be helpful in deciding where to focus initial/pilot Resilient Communities Corps placements.

Conclusion

A Resilient Communities Corps presents an incredible opportunity for the next administration to support low-capacity communities in accessing competitive grants in CDRZ-designated areas. It will improve the federal government’s impact and efficiency of dispersing grant monies by making grants more accessible and ensure that our most vulnerable communities are better prepared and more resilient in the face of the climate crisis, introduce a new generation of young people to grant writing and public service, and help restore trust in federal government programs from communities that often feel overlooked.

This action-ready policy memo is part of Day One 2025 — our effort to bring forward bold policy ideas, grounded in science and evidence, that can tackle the country’s biggest challenges and bring us closer to the prosperous, equitable and safe future that we all hope for whoever takes office in 2025 and beyond.

Frequently Asked Questions
How much would a Resilient Communities initiative cost?

Funding for one AmeriCorps member in each of FEMA’s 483 designated Community Disaster Resilience Zones would cost around $14,500,000 per year. This is with an estimate of $30,000 per member. However, this figure will be subject to change due to overhead and living adjustment costs.

Why focus on CDRZ communities? Aren’t there lots of other communities that could also benefit from support?

There are many communities that could benefit from additional support when it comes to building resilience. Headwater Economics, a research institute in Montana, has flagged that the CDRZ does not account for all low-capacity communities hampered in their efforts to become more climate resilient. But the CDRZ designation does provide a federal framework that can serve as a jumping-off point for AmeriCorps to begin to fill capacity gaps. These designations, identified through the National Risk Index, provide a clear picture for where federal, public and private monies are needed the most. These communities are some of the most vulnerable to climate change, lack the resources for resilience work, and need the human capacity to access them. Because of these reasons, the CDRZ communities provide the ideal and most appropriate area for the Resilient Communities Corps to first serve in.

How would the Resilient Communities initiative help restore local trust in federal government?

Funding for national service programming, particularly for the ACC, has bipartisan support. 53% of likely voters say that national service programming can help communities face climate-related issues.


On the other hand, 53% of Americans also feel that the federal government doesn’t take into account “the interests of people like them.” ACC programming, like what Maine’s Climate Corps is doing in rural areas, can help reach communities and build support among Americans for government programs that can be at times met with hostility.


For example, in Maine, the small and politically conservative town of Dover-Foxcroft applied for and was approved to host a Maine Service Fellow (part of the Maine Climate Corps network) to help the local climate action committee to obtain funding for and implement energy efficiency programs. The fellow, a recent graduate from a local college, helped Dover-Foxcroft’s new warming/cooling emergency shelter create policies, organized events on conversations about climate change, wrote a report about how the county will be affected by climate change, and recruited locals at the Black Fly Festival to participate in energy efficiency programs.


Like the Maine Service Fellows, Resilient Communities Corps members will be integral members of the communities in which they serve. They will gather essential information about their communities and provide feedback from the ground on what is working and what areas need improvement or are not being adequately addressed. This information can be passed up to the interagency working groups that can then be relayed to colleagues administering the grants, improving information flow, and creating feedback channels to better craft and implement policy. It also presents the opportunity for representatives of those agencies to directly reach out to those communities to let them know they have been heard and proactively alert residents to any changes they plan on making.

Polar Infrastructure and Science for National Security: A Federal Agenda to Promote Glacier Resilience and Strengthen American Competitiveness

Polar regions – both the Arctic and Antarctic – are an important venue for strategic competition and loom as emerging and future national security challenges. As recognized during the first Trump Administration, ceding U.S. leadership at the poles threatens our future and emboldens our adversaries. The recent actions that the People’s Republic of China (PRC) and Russia have taken in the Arctic undermine regional stability as both nations aim to take economic advantage of newly available resources, such as oil, invest in research with dual military-civil applications, and take on an increasingly dominant role in regional governance. 

The Antarctic is the next security frontier. U.S. leadership in the Antarctic is eroding as U.S. investments dwindle and nations, including the PRC, establish new outposts and operations there. Simultaneously, polar change threatens to upend U.S. coastal communities and global security as ice-melt and glacier collapse could lead to catastrophic sea level rise, fueling extreme property loss, conflict, and mass migration. Glacier resilience, defined as the capacity of glacier systems to withstand and adapt to climate-driven stressors while maintaining their critical functions, is essential to mitigating these risks. Despite a longstanding treaty, the United States and our strategic partners have woefully underinvested in the development of tools, technologies, models, and monitoring infrastructure to inform glacial management, enable solutions to mitigate risks, and to shape U.S. security and foreign policy. 

Building on the prior Trump Administration’s plans for additional polar security icebreakers to protect national interests in the Arctic and Antarctic regions, Congress and the incoming Trump Administration should work together to reinforce the U.S. position in the regions, recognizing the role Antarctica in particular may have in a changing global order and its significance for sea-level rise.

We propose a Polar/Antarctic strategy for the incoming Trump Administration to enhance U.S. national security, promote American leadership, deter our adversaries, and prevent disastrous ice sheet collapse. This strategy involves research and development of engineering methods to slow the loss of glaciers and rates of sea-level rise by reducing the forces that drive glacier change and sensitivity of glaciers to those forces. Consistent with and reinforcing of the Antarctic Treaty System, this plan would focus investment across four areas:

Challenge and Opportunity 

The threat of sea-level rise is often seen as manageable, with increases of centimeters or inches. However, projections indicate that the collapse of the Thwaites Glacier and West Antarctic Ice Sheet could result in“doomsday scenarios” characterized by sea-level rises of as much as 10 feet worldwide. The probabilities of these occurrences have increased recently. If these possibilities became reality, then sea level would inundate major U.S. coastal regions and cities that are home to 12 million people and trillions of dollars of property and infrastructure. Globally, hundreds of millions of people would be at risk, fueling mass migration, refugee crises, and security challenges that threaten U.S. interests. Protecting Thwaites and the Antarctic Ice Sheet from collapse is crucial for a manageable future, making glacial resilience essential in any domestic and international national security strategy.  

There are many ideas about how to slow glacial collapse and protect the ice to hold back sea level rise; however, this research and technology development receives almost no federal funding. We must take this threat seriously and dramatically ramp up our infrastructure at the poles to monitor glaciers and demonstrate new technologies to protect the West Antarctic Ice Sheet.

While the current Antarctic treaty prohibits military activity in the region, it allows scientific research and other activities that could have military applications. At the same time, U.S. polar research infrastructure and funding is woefully insufficient to support the necessary innovation and operations required to address the sea-level rise challenge and maintain American leadership. Federal science funding agencies including the National Science Foundation (NSF), National Oceanic and Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA) play a critical role in supporting research in the Antarctic and on glacial processes. While these efforts have yielded some tools and understanding of glacial dynamics, there is no comprehensive, sustained approach to learn about and monitor changes to the ice sheets over time or to develop and test new strategies for glacial resilience. As a result, U.S. scientific infrastructure in the Antarctic has been largely neglected. The data produced by prior funded Antarctic studies have been insufficient to build an authoritative projection model of sea-level rise, a necessity to inform Antarctic management and to inform adaptation measures required by decision makers, coastal communities, and other stakeholders. 

A glacial resilience initiative that leverages space-based commercial and governmental satellite systems, long-duration unmanned aerial radar capabilities, and other observational capabilities would revitalize American leadership in polar regions at a critical time, as the PRC and other adversaries increase their polar presence – particularly in the Antarctic.

Plan of Action 

To strengthen glacial resilience and U.S. polar security, the next Administration should launch a comprehensive initiative to build critical world-leading infrastructure, promote innovation in glacial resilience technologies, enhance research on glacial dynamics and monitoring, and pursue policies that preserve U.S. national security interests. The recommendations below address each of these areas.

Develop and maintain world-leading critical infrastructure for glacial monitoring and resilience research and innovation.

NSF and the Air Force currently maintain operations for the U.S. in the Antarctic, but these facilities are in such a deplorable state that NSF has recently canceled all new field research and indefinitely delayed high priority experiments slated to be built at the South Pole. As the primary physical presence for the U.S. government, this infrastructure must be upgraded so that NSF can support scaled research and monitoring efforts. 

Expand glacial monitoring capabilities, utilizing space, air, and on-ice methods through NASA, NOAA, DOD, and NSF.

This effort should maximally leverage existing commercial and governmental space-based assets and deploy other air-based, long-duration unmanned aerial capabilities. The next  administration should also create national glacier models to provide detailed and timely information about glacier dynamics and sea-level rise to inform coastal planning and glacial resilience field efforts.

Pilot development and demonstration of glacier resilience technologies.

There is currently extremely limited investment in technology development to enhance glacier resilience. Agencies such as NSF and the Defense Advanced Research Projects Agency (DARPA) should support innovation and grand challenges to spur development of new ideas and technologies. The PRC is already investing in this kind of research and the United States and our strategic partners are far behind in ensuring we are the ones to develop the technology and set the standards for its use. 

Support a robust research program to improve understanding of glacier dynamics.

To address critical gaps and develop a coordinated, sustained approach to glacier research, the U.S. must invest in basic science to better understand ice sheet dynamics and destabilization. Investments should include field research as well as artificial intelligence (AI), modeling, and forecasting capabilities through NSF, NASA, DOD, and NOAA. These efforts rely on the infrastructure discussed above and will be used to better develop future infrastructure, creating a cycle of innovation that supports the U.S. operational presence and leadership and giving us a comparative advantage over our adversaries.  

Protect national security interests and maintain American leadership by promoting glacial resilience in international contexts.

There is a major void in international polar discussions about the importance of glacial resilience and extremely limited attention to developing technologies that would prevent ice sheet collapse and catastrophic sea level rise. The next  administration should play a leadership role in advancing global investment, ensuring that our allies contribute to this effort and the U.S. alone does not bear its costs. International research collaboration with our strategic allies will prevent the PRC and other competitors from expanding their influence and from surpassing the United States as the leader in Antarctic and polar research and innovation.

Support a new legislative package focused on advancing critical Antarctic research.

The Arctic Research and Policy Act of 1982 provides “for a comprehensive national policy dealing with national research needs and objectives in the Arctic.” Modeled on the Arctic Research and Policy Act, a new legislative package could include:

This legislation would elevate Antarctic research as a crucial part of a national security strategy and ensure the United States is prepared to confront the risks and consequences of Antarctic ice sheet collapse.

Conclusion 

The U.S. faces an important moment to address polar challenges that threaten both national security and global stability. As adversaries like PRC and Russia expand their presence and influence in the Arctic and Antarctic, the U.S. must reclaim leadership. Glacial resilience is a strategic imperative, given the catastrophic risks of sea-level rise and its impacts on coastal communities, migration, and security. By prioritizing investment in polar infrastructure, advancing cutting-edge technologies to mitigate glacial collapse, and strengthening international collaboration, the U.S. can lead a global effort to safeguard polar regions. A robust, coordinated strategy will bolster American interests, deter adversaries, and build resilience against one of the most pressing challenges we face today.

This action-ready policy memo is part of Day One 2025 — our effort to bring forward bold policy ideas, grounded in science and evidence, that can tackle the country’s biggest challenges and bring us closer to the prosperous, equitable and safe future that we all hope for whoever takes office in 2025 and beyond.

Frequently Asked Questions
How much will this proposal cost? Why is it worth the investment?

We estimate a budget of $100 million annually for the full approach, including investments in observational technologies, modeling efforts, and infrastructure improvements. This number includes funding for critical satellite programs, field research campaigns, and enhanced data modeling. The investment supports national security by addressing one of the most pressing threats to U.S. stability – sea-level rise. Accelerating glacier melt and the resulting sea-level rise could displace millions of people, destabilize coastal economies, and threaten critical infrastructure, including military bases and ports. This work enhances our nation’s ability to forecast and prepare for these threats, as well as our ability to mitigate glacial melt in ways that safeguard lives, property, and national interests.

What justifies forecasting and mitigating the risk of catastrophic sea-level rise vs. other possible options?

This course of action prioritizes early investment in observational technology, predictive modeling, and infrastructure development because these elements form the foundation of any meaningful response to the threat of catastrophic sea-level rise. The policy aligns with national security priorities by focusing on capabilities that enable accurate forecasting and risk assessment. Waiting to implement risks missing critical warning signs of glacial destabilization and puts the nation’s preparedness at risk. The recommended approach emphasizes proactive investment, which is far less expensive than responding to catastrophic sea-level rise.

How does this proposal enhance U.S. national security?

This proposal addresses the risks posed by catastrophic sea-level rise, which threaten critical infrastructure, economic stability, and global geopolitical stability. Specifically:



  • Many U.S. military installations, including naval bases and strategic ports, are located in coastal areas or on low-lying islands vulnerable to sea-level rise. Improved forecasting will allow the DoD to proactively adapt to sea-level rise.

  • Sudden and severe sea-level rise could force millions of people to migrate, creating humanitarian crises and destabilizing regions critical to U.S. interests. Early warning and mitigation strategies could reduce the likelihood of mass displacement and conflict.

  • The Arctic and Antarctic are becoming areas of increased geopolitical competition. This proposal is an opportunity for the U.S. to strengthen global influence while maintaining strategic advantages in these regions.

Why focus on glaciers specifically, rather than other climate-related risks?

Glaciers, particularly the Thwaites Glacier in West Antarctica, represent one of the most immediate and uncontrollable contributors to sea-level rise. Destabilized marine ice sheets are capable of causing rapid sea-level rise, threatening millions of coastal residents and vital infrastructure. Unlike other areas of climate science, the dynamics of glacial flow and melt are poorly understood and underfunded. With targeted investments, we can significantly improve our ability to monitor, model, and mitigate glacial contributions to sea-level rise.

What lessons can we learn from past initiatives addressing climate threats?

  • Initiatives like hurricane forecasting and flood mitigation have demonstrated that early investments in forecasting technologies save billions in recovery costs and reduce loss of life.

  • Programs such as NASA’s Earth Observing system and NOAA’s disaster resilience initiatives show that partnerships between federal agencies, academia, and the private sector drive innovation and amplify impact.

  • Delays in addressing risks like wildfires and droughts have highlighted the high cost of inaction, underscoring the need to move quickly and decisively in tackling sea-level rise threats.

Building a Comprehensive NEPA Database to Facilitate Innovation

The Inflation Reduction Act and the Infrastructure Innovation and Jobs Act are set to drive $300 billion in energy infrastructure investment by 2030. Without permitting reform, lengthy review processes threaten to make these federal investments one-third less effective at reducing greenhouse gas emissions. That’s why Congress has been grappling with reforming the National Environmental Policy Act (NEPA) for almost two years. Yet, despite the urgency to reform the law, there is a striking lack of available data on how NEPA actually works. Under these conditions, evidence-based policy making is simply impossible. With access to the right data and with thoughtful teaming, the next administration has a golden opportunity to create a roadmap for permitting software that maximizes the impact of federal investments.

Challenge and Opportunity

NEPA is a cornerstone of U.S. environmental law, requiring nearly all federally funded projects—like bridges, wildfire risk-reduction treatments, and wind farms—to undergo an environmental review. Despite its widespread impact, NEPA’s costs and benefits remain poorly understood. Although academics and the Council on Environmental Quality (CEQ) have conducted piecemeal studies using limited data, even the most basic data points, like the average duration of a NEPA analysis, remain elusive. Even the Government Accountability Office (GAO), when tasked with evaluating NEPA’s effectiveness in 2014, was unable to determine how many NEPA reviews are conducted annually, resulting in a report aptly titled “National Environmental Policy Act: Little Information Exists on NEPA Analyses.”

The lack of comprehensive data is not due to a lack of effort or awareness. In 2021, researchers at the University of Arizona launched NEPAccess, an AI-driven program aimed at aggregating publicly available NEPA data. While successful at scraping what data was accessible, the program could not create a comprehensive database because many NEPA documents are either not publicly available or too hard to access, namely Environmental Assessments (EAs) and Categorical Exclusions (CEs). The Pacific Northwest National Laboratory (PNNL) also built a language model to analyze NEPA documents but contained their analysis to the least common but most complex category of environmental reviews, Environmental Impact Statements (EISs).

Fortunately, much of the data needed to populate a more comprehensive NEPA database does exist. Unfortunately, it’s stored in a complex network of incompatible software systems, limiting both public access and interagency collaboration. Each agency responsible for conducting NEPA reviews operates its own unique NEPA software. Even the most advanced NEPA software, SOPA used by the Forest Service and ePlanning used by the Bureau of Land Management, do not automatically publish performance data.

Analyzing NEPA outcomes isn’t just an academic exercise; it’s an essential foundation for reform. Efforts to improve NEPA software have garnered bipartisan support from Congress. CEQ recently published a roadmap outlining important next steps to this end. In the report, CEQ explains that organized data would not only help guide development of better software but also foster broad efficiency in the NEPA process. In fact, CEQ even outlines the project components that would be most helpful to track (including unique ID numbers, level of review, document type, and project type).

Put simply, meshing this complex web of existing softwares into a tracking database would be nearly impossible (not to mention expensive). Luckily, advances in large language models, like the ones used by NEPAccess and PNNL, offer a simpler and more effective solution. With properly formatted files of all NEPA documents in one place, a small team of software engineers could harness PolicyAI’s existing program to build a comprehensive analysis dashboard.

Plan of Action

The greatest obstacles to building an AI-powered tracking dashboard are accessing the NEPA documents themselves and organizing their contents to enable meaningful analysis. Although the administration could address the availability of these documents by compelling agencies to release them, inconsistencies in how they’re written and stored would still pose a challenge. That means building a tracking board will require open, ongoing collaboration between technologists and agencies.

Conclusion

The stakes are high. With billions of dollars in federal climate and infrastructure investments on the line, a sluggish and opaque permitting process threatens to undermine national efforts to cut emissions. By embracing cutting-edge technology and prioritizing transparency, the next administration can not only reshape our understanding of the NEPA process but bolster its efficiency too.

This action-ready policy memo is part of Day One 2025 — our effort to bring forward bold policy ideas, grounded in science and evidence, that can tackle the country’s biggest challenges and bring us closer to the prosperous, equitable and safe future that we all hope for whoever takes office in 2025 and beyond.

Frequently Asked Questions
Why is it important to have more data about Environmental Assessments and Categorical Exclusions?

It’s estimated that only 1% of NEPA analyses are Environmental Impact Statements (EISs), 5% are Environmental Assessments (EAs), and 94% are Categorical Exclusions (CEs). While EISs cover the most complex and contentious projects, using only analysis of EISs to understand the NEPA process paints an extremely narrow picture of the current system. In fact, focusing solely on EISs provides an incomplete and potentially misleading understanding of the true scope and effectiveness of NEPA reviews.


The vast majority of projects undergo either an EA or are afforded a CE, making these categories far more representative of the typical environmental review process under NEPA. EAs and CEs often address smaller projects, like routine infrastructure improvements, which are critical to the nation’s broader environmental and economic goals. Ignoring these reviews means disregarding a significant portion of federal environmental decision-making; as a result, policymakers, agency staff, and the public are left with an incomplete view of NEPA’s efficiency and impact.

Climate Change Challenges and Solutions in Forestry & Agriculture

Climate change is already impacting agriculture and forestry production in the U.S. However, these sectors also hold the key to adaptation and mitigation. The United States Department of Agriculture (USDA) is at the forefront of addressing these challenges and developing solutions. Understanding the implications of climate change in agriculture and forestry is crucial for our nation to forge ahead with effective strategies and outcomes, ensuring our food and shelter resources remain secure.

Currently, the atmosphere contains more key greenhouse gasses (nitrous oxides, carbon dioxide, methane) than ever in history thanks to human activities. Industrial, agricultural, and deforestation practices add to the abundance of these critical gasses that are warming our planet. This has become more noticeable through more frequent severe weather and natural disasters with record heat waves, droughts, tornadoes, and rainfall. In 2023, global climate records of temperatures were broken and hit the highest in the last 174 years. Ocean temperatures are reaching record levels, along with major melts in ice sheets. All these changes will affect forestry and agriculture in profound ways. Crop damaging insects and diseases, along with other stresses caused by extreme changes, will also have cascading effects.

Adjustments or adaptations in response to climate change have progressed globally, with planning and implementation across multiple sectors and regions. While much attention is being paid to reforestation and reducing deforestation, gaps still exist and will need continued attention and financial input to address current and future challenges. Agriculture and forestry are two sectors worth exploring as they can open up climate adaptation and mitigation solutions that have positive cascading benefits across regions.

Challenges in the Agriculture and Forestry Sector

Agriculture contributes to greenhouse gas emissions through several activities, such as burning crop residues, soil management and fertilization, animal manure management, and rice cultivation. In addition, agriculture requires significant amounts of energy for vehicles, tractors, harvest, and irrigation equipment. Agriculture involves complex systems that include inputs of fertilizers and chemicals, management decisions, social factors, and interactions between climate and soil.

Most agriculture operations need fertilizers to produce goods, but the management and specific use of fertilizers need further focus. According to the Inventory of Greenhouse Gas Emissions and Sinks, agriculture contributes 9.4% of total greenhouse gas emissions in the United States.

Agriculture is particularly vulnerable to climate change because many operations are exposed to climatic changes in the natural landscape. There has been widespread economic damage in agriculture due to climate change. Individuals and farms have been affected by flooding, tornadoes, extreme wildfires, droughts, and excessive rains. Loss of property and income, human health, and food security is real for agriculture producers. Adverse impacts will continue to be felt in agricultural systems, particularly in crop production, water availability, animal health, and pests and diseases.

Forestry is a major industry in the U.S. and plays a key role in regulating the climate by transferring carbon within ecosystems and the atmosphere.. Forests remove carbon dioxide (CO2) from the atmosphere and store it in trees and soils. Forestry has seen a decline in the last few decades due to development and cropland expansion. The decline in forestry acres affects essential services such as air purification, regulating water quantity and quality, wood products for shelter, outdoor recreation, medicines, and wildlife habitat. Many Indigenous people and Tribal Nations depend on forest ecosystems for food, timber, culture, and traditions. Effective forest management is crucial for human well-being and is influenced by social and economic factors.

Land cover types and distribution of the United States. Forest lands have decreased in the last two decades. (Source: Fifth National Climate Assessment)

Forests are affected by climate change on local or regional levels based on climate conditions such as rainfall and temperature. The West has been significantly affected, with higher temperatures and drought leading to more wildfires. Higher temperatures come with higher evaporation rates, leading to drier forests that are susceptible to fires. The greater amount of dry wood causes extensive fires that burn more intensely. Fire activity is projected to increase with further warming and less rain. Since 1990, these extensive fires have produced greater greenhouse gas emissions of carbon dioxide (CO2). Other regions of the country with forests that typically receive more rain, like the southeast and northeast, are challenging to predict fire hazards. Other climate change effects include insects, diseases, and invasive species, which change forest ecosystems’ growth, death, and regeneration. Various degrees of disruption can impact a forest’s dynamics.

Current Adaptation Approaches in Agriculture and Forestry

Since agriculture’s largest contribution to greenhouse gas emissions is agriculture soil management, emphasis is being placed on reducing emissions from this process. Farmers are tilling less and using cover crops to keep the ground covered, which helps soils perform the important function of carbon storage. These techniques can also help lower soil temperatures and conserve moisture. In addition, those working in the agriculture sector are taking measures to adapt to the changing climate by developing crops that can withstand higher temperatures and water stress. Ecosystem-based solutions such as wetland restoration to reduce flooding have also been effective. Another potential solution is agroforestry, in which trees are planted, and other agricultural products are grown between the trees or livestock is grazed within a forestry system. This system provides shade to the animals and enhances biodiversity. It protects water bodies by keeping the soil covered with vegetation throughout the year. The perennial vegetation also stores carbon in above-ground vegetation and below-ground roots.

In the forestry space, land managers and owners are developing plans to adapt to climate challenges by building adaptations in key areas such as relationships and connections of land stewardship, research teamwork, and education curriculum. Several guides, assessments, and frameworks have been designed to help private forest owners, Tribal lands, and federally managed forests. Tribal adaptation plans also include Tribal values and cultural considerations for forests. The coasts will be adapting to more frequent flooding, and relocation of recreation areas in vulnerable areas is being planned. In major forestry production areas in the West, forestry agencies are developing plans for prescribed burning to keep dead wood lower, eliminate invasive species, and enable fire-adapted ecosystems to thrive, all while reducing severe wildfires. Thinning forests and fuel removal also help with reducing wildfire risk.      

While both sectors have made progress in quickly adjusting their practices, much more needs to be done to ensure that land managers and affected communities are better prepared for both the short-term and long-term effects of climate change. The federal government, through USDA, can drive adaptation efforts to help these communities.

Current Policy

The USDA created the Climate Adaptation and Resilience Plan in response to Executive Order 14008, Tackling the Climate Crisis at Home and Abroad, which requires all federal agencies to develop climate adaptation plans in all public service aspects, including management, operations, missions, and programs. 

The adaptation plan focuses on key threats to agriculture and forestry, such as:

Many USDA agencies have developed actions to address the impacts of climate change in different mission areas of USDA. These adaptation plans provide information for farmers, ranchers, forest owners, rural communities, trade and foreign affairs on ways to address the impact of climate change that affects them the most. For example, farm and ranch managers can use COMET Farm, a user-friendly online tool co-developed by Colorado State University and USDA that helps compare land management practices and account for carbon and greenhouse gas emissions.

USDA has invested $3.1 billion in Partnerships for Climate-Smart Commodities, encompassing 141 projects that involve small and underserved producers. The diverse projects are matched financially with non-federal funds and include over 20 tribal projects, 100 universities, including 30 minority-serving institutions, and others. The goals of the federal and private sector funding include:

The USDA Forest Service has also developed its own Climate Adaptation Plan that comprehensively incorporates climate adaptation into its mission and operations. The Forest Service has cultivated partnerships with the Northwest Climate Hub, National Park Service, Bureau of Land Management, University of Washington, and the Climate Impacts Group to develop tools and data to help with decision-making, evaluations, and developing plans for implementation. One notable example is the Sustainability and Climate website, which provides information on adaptation, vulnerability assessments, carbon, and other aspects of land management. 

Conclusion

While sustained government incentives can help drive adaptation efforts, it is important for everyone to play a role in adapting to climate change, especially in the agriculture and forestry sectors. Purchasing products that are grown sustainably and in climate-smart ways will help protect natural resources and support these communities. Understanding the significance of resilience against climate changes and disruptions is crucial, both in the short and long term. These challenges require collaborators to work together to creatively solve problems in addressing greenhouse gas contributions. Climate models can help solve complex problems and test different scenarios and solutions. As the Fifth National Climate Assessment of the United States notes, greenhouse gas concentrations are increasing, global warming is on the rise, and climate change is currently happening. The choices we make now can have a significant impact on our future.

The Federation of American Scientists values diversity of thought and believes that a range of perspectives — informed by evidence — is essential for discourse on scientific and societal issues. Contributors allow us to foster a broader and more inclusive conversation. We encourage constructive discussion around the topics we care about.

Soil and Water: Why We Need Conservation Agriculture 

On May 1, 2023, a devastating dust storm  – the result of severe wind erosion –  propelled soil across highway I-55, causing numerous accidents, injuries, and loss of life. The factors that led to this erosion event were excessive tillage, exposed soils, and windy conditions. In response, the Journal of Soil and Water Conservation published an article proposing a “Soil Health Act,” to improve conservation agriculture policy.  

Most erosion is a direct result of human activities, such as leaving the soil bare for extended periods and excessive tillage in agricultural fields. Extreme weather events exacerbate soil erosion, with large wind erosion events damaging crops and causing air pollution in nearby communities. Water erosion can strip productive topsoil from cropland, reducing crop productivity and depositing sediment in water bodies. The Fifth National Climate Assessment further confirms that extreme weather is on the rise.

The United States boasts some of the most productive soils globally, particularly in the Midwest region, known as the corn belt. This vast expanse of farmland, which drains into the Mississippi River and eventually reaches the Gulf of Mexico, is a crucial part of our country’s agricultural landscape. However, this network of soil and water, while offering significant benefits, also poses significant challenges if not properly cared for.

Map of U.S. major agriculture cropland areas in dark green. These regions also have highly productive soils. The Midwest soils of Iowa, southern Minnesota, Illinois, Indiana, southern Wisconsin, and Ohio are globally significant breadbasket soils. (Source: National Agricultural Statistics Service, 2017).

Wind erosion in the left photo is active in many regions of the country, leading to poor soil conditions for agricultural production. Water erosion takes productive topsoil and applied fertilizers and chemical products used off cropland as it heads toward streams. (Source: Jodie McVane (left) and Rodale Institute (right))

Fertilizers, herbicides, pesticides, and other products can enter water sources through two primary pathways: soil and chemical losses. Chemical losses can contaminate groundwater by moving down through the soil profile. Contaminated groundwater flows into private and public water supply wells , with many wells having high nitrate levels from commercial fertilizers and animal applications of manure. Nitrates can pose health risks to infants, cause toxic anemia, and how red blood cells deliver oxygen to the cells and tissues. In adults, reproductive health issues and certain cancers are also possible. And it’s not just nitrates: Atrazine, a common chemical used to control weeds, is found in many drinking wells across the U.S.

When soil erodes it takes nitrates, atrazine, and other contaminants away from land surfaces and into surface waterways, leading to water quality problems and soil sediment pollution. Many land managers try to avoid creating runoff, but agricultural practices leaving soils exposed with no plant residues and erosive storms make this a common occurrence. Soil erosion impacts can also be experienced as sedimentation and murky waters in recreational water bodies, roads covered with mud, and dirty snow covered with wind-blown soils, all of which affect everyday life and are undesirable for fish and plants. The lack of soil protection during the non-crop growing season in the U.S. has caused soil erosion and degradation of precious resources, diminishing the ability to grow food, fiber, and wood and provide clean water. Thus, erosion affects long-term production and economic viability for farms.

Protecting Our Soils Through Conservation Agriculture

Fortunately, we can find solutions through conservation agriculture–a system of farming practices, which includes cover crops and reduced tillage, that protects soil and prevents both soil and chemical losses. Growing plants year-round can address soil loss by keeping the soil covered with plants known as cover crops like corn, soybean, and cotton. Others, like grasses, legumes, and forbs can be grown for seasonal cover. Reduced tillage from cover crops can be beneficial in several different ways:

They control erosion, build healthy soils, and improve water quality. Cover crops planted during these periods can scavenge unused fertilizers from the previous crop and prevent nutrients from reaching surface and groundwater systems. Reducing tillage or switching to no-till cropping systems can also increase soil structure and aid in water infiltration, helping water get into the soil instead of running off.

When soils have many soil organisms with a favorable habitat, they can break down chemical pollutants effectively before reaching groundwater. Cover crops can also play a vital role in absorbing nitrates or other contaminants. Studies have shown that cover crops can reduce nitrates by 48% before they reach subsurface waters. Reduced tillage can provide habitats for these organisms by reducing soil disturbance. 

Cover crops capture sunlight and use plants’ photosynthetic processes to capture carbon in plant shoots and root systems. Much carbon is stored in our soils through plant roots. When the plants die, their roots remain in the soil, keeping the carbon sequestered. Excessive tillage breaks soil structure and releases carbon. Reduced tillage and no-till cropping systems allow soils to better maintain their carbon content.

Diverse cover crop species can be mixed, which leads to the diversification of plant roots and above-ground biomass. Furthermore, diversity above ground also means diversity below ground for soil organisms. Grasses can also be utilized alone to effectively suppress weeds and protect against erosion. Cover crops can capture carbon and increase carbon storage in soils, so planting cover crops yearly is important. (Source: Jodie McVane)

Federal and State Government Incentives to Expand Conservation Agricultural Practices     

Overall, cover crop use is low in the United States and varies depending on established social norms, soils, climate, primary crops, outreach programs, and conservation technical assistance. According to the USDA Economic Research Service, cover crop use increased from 3.4% of U.S. cropland in 2012 to 5.1% in 2017. The increase is positive, but millions of cropland acres can still benefit from applying cover crops and reduced tillage. While the use of conservation agriculture is an individual land manager’s choice and overall cover crop remains low, the USDA report notes that there has been some progress and positive trends. Continued incentives from both federal and state governments will be crucial to encourage wide adoption of conservation agricultural practices. 

Many USDA programs provide cost-sharing incentives to farmers who voluntarily encourage using cover crops, reducing tillage, planting grasslands, and diversifying crop rotations. The Farm Bill provides funding to assist farmers through the USDA-Natural Resources Conservation Service (USDA-NRCS) programs, such as the Environmental Quality Incentive Program (EQIP) and the Conservation Stewardship Program (CSP). In addition to the Farm Bill, the Inflation Reduction Act provided additional funds to USDA-NRCS through these same programs to promote Climate Smart Agriculture and Forestry Mitigation activities. The Inflation Reduction Act makes nearly $20 billion additional dollars available over five years for these programs. Current federal policy allows these programs to fund conservation practices for 3-5 years on a typical farm. Some states are also leading in incentivizing land managers to apply cover crops. States providing monetary incentives include Maryland, Iowa, Missouri, Indiana, Ohio, and Virginia.

A mix of cover crops of grasses and broadleaves in the fall after a corn crop in the Midwest. (left photo) A cereal ryegrass cover crop holds the soil in place with fibrous root systems and protects the soil surface from water or wind erosion while suppressing weeds. (right photo) (Source: Jodie McVane)

Current Gaps and Proposed Policies

We will need lasting policies and sustainable funding  to ensure the long-term adoption of conservation agricultural practices. Current voluntary conservation programs only provide funding for a 5-year period, which does not guarantee that farmers will permanently transition to conservation agriculture practices.

The federal government should incentivize the adoption of soil health practices and conservation agriculture widely across the United States in three ways:     

Fund organizations that can provide educational events for farmers, consultants, policy groups, and consumers. These organizations are valuable and promote farmer-led education and peer-to-peer mentoring. Farmers enjoy learning from other farmers along with research experts.

Reward farmers who adopt conservation agriculture systems by providing long-term payments for continued use of conservation practices. Farmers who adopt these practices would benefit from their ecosystem services, such as building soil carbon, improving water quality, maintaining stable soil structure, and increasing water infiltration, which could significantly impact the health of our cropland acres.

Provide a reduction-based premium discount in the Federal Crop Insurance program for agricultural commodity producers that use risk-reduction farming practices, including cover crops. A discount on the insurance premium can have a lasting effect and provide a continued financial incentive to perform conservation on farms. 

Soil is the foundation of our national health, providing food, homes, fibers, and the structural foundations for everyday life. Soils filter water for clean drinking, safe fishing, and other recreational activities, enabling our farms, factories, homes, schools, universities, and state and federal governments to access clean water; the widespread adoption of conservation agricultural practices to protect soils is key to ensuring food security for current and future generations in the United States. Healthy soils can protect not only our national treasure but also our national security and ability to care for our citizens. 

As President Franklin D. Roosevelt said, “The nation that destroys its soil destroys itself.” Imagine driving around the country and seeing continuous vegetation growing, protecting soils, capturing carbon, and protecting our water resources. It would be a different landscape in our nation and, over the years, could improve the culture of agriculture.

The Federation of American Scientists values diversity of thought and believes that a range of perspectives — informed by evidence — is essential for discourse on scientific and societal issues. Contributors allow us to foster a broader and more inclusive conversation. We encourage constructive discussion around the topics we care about.

Climate-Smart Cattle: US Research and Development Will Improve Animal Productivity, Address Greenhouse Gases, and Hasten Additional Market Solutions

Summary

Cattle in the United States release the greenhouse gas methane (known as “enteric methane”) from their digestive systems, which is equivalent to the amount of methane that leaks from fossil fuel infrastructure. Addressing enteric methane in cattle represents an opportunity to reduce the U.S. greenhouse gas footprint by 3% and simultaneously improve cattle productivity by ~6%. However, current solutions only address, at most, 10% of these emissions, and the U.S. has spent under $5m per year on R&D over the past five years to address this critical climate area. 

Pie chart showing how much of the current focus of methane reduction in cattle is focused on cows on feed over grazing cows.

Therefore, to establish long-term U.S. leadership and export competitiveness, we recommend regulatory simplification and an $82m per year U.S. Department of Agriculture research and innovation program. These common-sense recommendations would create a win for producers and a win for the environment by advancing solutions that easily drop into existing farm practices and convert avoided methane into increased milk and meat production.

Challenge & Opportunity

Cattle and other ruminants digest their food via anaerobic (oxygen-free) fermentation. This unique system allows them to digest roughage such as grasses and other forage and transform it into meat and milk. But it also generates methane. Cattle release on average 6% of the calories they eat as methane, a substantial loss in their potential meat and milk productivity. This methane is in addition to the methane emitted by their manure. 

An invisible and odorless gas, methane is a powerful greenhouse gas that is responsible for 0.5°C of the 1°C of modern global warming (based on the 2010-2019 average). One-third of U.S. anthropogenic methane emissions come from cattle and other ruminants. Solutions may be able to be developed that both disrupt enteric methane production while also increasing cattle productivity. That would help reduce global temperatures and provide benefits for both producers and consumers. Currently, there are a few tested and marketable solutions that use chemicals to disrupt methane-creating microbes in the cattle’s first stomach (the rumen). These are important solutions that need to be evaluated for regulatory approval. However, additional research and development must also be done, to help address the majority of emissions that don’t yet have available solutions, particularly from cattle grazing in pastures. Additional work is also needed to continue developing solutions that consistently lead to a productivity benefit. Focused scientific research could deepen our understanding of cattle metabolism, and advance new solutions for reducing enteric methane further.

Progress on this front also requires improved research tools to measure how much methane cattle emit and relate these methane emissions to their productivity and intake of feed and forage. Access to such research tools enables researchers and innovators to develop and evaluate new solutions. Methane emissions rates vary widely between cattle on the same farm of the same breed, as well as across breeds. Currently these tools are expensive and not widely available. For example, the primary tool available measures twenty cattle per day, costs ~$100,000, and can be found at only a handful of research institutions. That presents a practical problem of access not only for producers but also for non-specialist scientific innovators. Making those tools more accessible, for example via fee-for-service centers at leading U.S. Land Grant institutes, would make them more affordable for producers and researchers. That would help unlock the creativity of U.S. innovators, and provide evidence that their solutions have a positive climate impact and are feasible for producers and acceptable to consumers.

Even when new solutions are found and proven, innovators still face a 10-year FDA approval process. This is uncompetitive and restrictive compared to other countries. Since much faster approval is possible in Australia, Brazil, and Europe, innovators have an incentive to launch their products and build their businesses there rather than in the USA. And as climate-aware export markets develop, slow FDA approval will cost U.S. producers market share and market opportunity. We therefore recommend that the FDA be given authority and direction to evaluate new methane-reducing products for safety on an accelerated timeline, while maintaining critical human and animal safety standards. This would help the U.S. position itself as a global leader in a potential multi-billion dollar market while upholding its climate commitments.

Minimizing peak temperatures requires livestock enteric methane research today.

Plan of Action

I. FUND BASIC & APPLIED LIVESTOCK ENTERIC METHANE RESEARCH

Total Funds Needed: $50,000,000 per year 

Developing science-based, effective livestock enteric methane solutions depend on a detailed understanding of cattle microbiology as well as practical understanding of what makes solutions easy to adopt. These solutions have the potential to not only decrease enteric methane emissions but could unlock a new frontier of efficiency for the U.S. livestock sector, helping build a more resilient and productive food system. Increasing funding for basic and applied research could accelerate development of new methods, and rapidly build a portfolio of scalable potential solutions. Capacity funding will increase the near- and long-term throughput for solution development and shorten the idea to market timeline for these products. Competitive funding will drive innovation in sectors and geographies that have significant implementation barriers, such as those applicable to pasture operations, and can accelerate adoption of proven solutions. The Committee on Appropriations, has recognized the innovation potential increased public funds can make possible, and has encouraged USDA-NIFA to prioritize advancement of enteric fermentation solutions.  

We recommend competitive and capacity funding within USDA-NIFA, including AFRI, Hatch, Animal Health and Disease, and other programs be appropriated to:

Basic research in livestock methane microbiology to create a knowledge base that will support development of new win-win solutions and accelerate our understanding of host-microbiome interactions.

Applied livestock methane solutions research based on livestock methane biology knowledge. This work should prioritize solutions that reduce methane in new ways; that simultaneously increase the production of milk or meat; and that have the potential to be in a long-duration (e.g. once per year) product formulation compatible with grazing cattle. Such technology already exists for cattle nutrition and disease prevention.

Perform surveys and other social science research to understand barriers and opportunities to low-cost and low-complexity implementation for American producers and ranchers. This research will help guide the development of new solutions and tailor the design and deployment of solutions among the diversity of U.S. operations. Together, this will maximize the global market potential of U.S. innovation.   

We recommend Congress request of USDA a full-accounting and report of its current spending on enteric methane R&D across all its programs.

Cattle Enteric Methane ChallengesFunding & Policy Opportunity
U.S. risks losing global leadership on emissions, export markets, & productivity.Create knowledge, expertise, & research infrastructure for sustained leadership.
Current solutions don’t reduce all emissions and don’t consistently improve production.Fund basic & applied livestock methane research to create wins for producers and the environment.
Access to methane measurement equipment limits solution discovery and development.Create public fee-for-service testing facilities for livestock methane R&D.
Tools don’t exist for producers to affordably measure methane reductions.Fund development of low-cost cow methane measurement technology.
FDA approval for new solutions takes ten years, which is internationally noncompetitive.Support efforts to modernize the FDA, Food Drug and Cosmetic Act to facilitate rapid approval of climate-positive livestock. products
2/3 of enteric methane is from grazing cattle, which lack effective anti-methane solutions.Focus research and public-private partnerships on solutions that fit all cattle management practices.
Practices have upfront costs and producers may be slow to adopt new solutions.Include Enteric methane emissions as part of the Environmental Quality Incentives Program (EQIP).

II. CREATE PUBLIC FEE-FOR-SERVICE TESTING FACILITIES FOR LIVESTOCK METHANE

Funds Needed: $15,000,000 per year

Access to methane test facilities, from the laboratory to the dairy barn, is a bottleneck. It limits how many innovative ideas for solutions can be tested. Only a small number of institutions worldwide have the tools needed to test methane, and outside access to those tools is limited. We recommend funding be authorized and appropriated for innovation-enabling research infrastructure to USDA-ARS through USDA Equipment Grants and USDA-AFRI. This funding would:

Authorize and establish a nationwide network of fee-for-access livestock methane research facilities. This equips the USDA-ARS laboratories with research measurement equipment and technical staff by partnering with U.S. land grant universities that already possess the necessary research cattle management expertise. Joint investment with them and partial support from research users will quickly make the U.S. an international leader in livestock methane research.

Develop a national center for pre-livestock testing and screening of potential products. This will serve as a user facility. Specialized cattle researchers shouldn’t be the only ones who can test new ideas for reducing livestock enteric methane. Accessible facilities can unlock innovation from the U.S.’ world-leading biology researchers. 

Livestock methane production is invisible: current livestock methane measurement equipment costs about $100,000 for a system that measures 20-30 cattle per day.

III. FUND DEVELOPMENT OF LOW-COST CATTLE METHANE MEASUREMENT TECHNOLOGY

Funds needed: $15,000,000 per year

What is measured guides innovation and management, and what we measure easily and consistently, we improve. Producers measure milk production on every cow, every day, leading to a 300% productivity increase since 1950. But for all producers and most researchers, livestock methane production is invisible: current livestock methane measurement equipment costs about $100,000 for a system that measures 20-30 cattle per day. We recommend authorizing and appropriating $15 million per year to USDA-NIFA, Division of Animal Systems in order to:

Develop lower-cost measurement systems so every research barn can measure livestock methane. U.S. land grant universities have over ten thousand research cattle. Equipped with measurement systems, they could all provide livestock methane research data.

Develop farm-integrable measurement systems that make methane emissions and costs  visible to U.S. producers, enabling them to experiment and innovate. Methane is a loss for livestock production. If producers can see it, they’ll work to decrease methane and improve their bottom line.

A $15 million annual budget for this technology development will lead to rapid improvements. Part of this would fund interdisciplinary projects that bring engineers from across industry and livestock experts together. We recommend another part be framed as a grand challenge to achieve cost and performance targets connected to a government procurement market-shaping program.

IV. MODERNIZE THE US FOOD, DRUG, AND COSMETIC ACT

Funds Needed: $2,000,000 per year

Current anti-methane feed additives are regulated as drugs, requiring a ten-year approval process. As European export markets increasingly regulate emissions, this may lead to a lack of competitiveness for U.S. products. To address this, Congress asked the FDA to review options to accelerate the approval of environmentally beneficial additives. One mechanism to shorten the regulatory timeframe of approval is to amend an existing approval pathway which exists for feed additives. Legislation has been introduced (Innovative Feed Enhancement and Economic Development Act of 2023) which would, in part, amend the Federal Food, Drug, and Cosmetic Act to include Zootechnical Animal Feed Substances as a category under the feed additive petition process. This could reduce the approval timeline for environmentally beneficial additives by 5-fold. 

We recommend Congress continue to support the modernization of the U.S. Food, Drug and Cosmetic Act, and authorize and appropriate an additional $2 million per year to the Food and Drug Administration, Center for Veterinary Medicine, for personnel resources and infrastructure to robustly evaluate new anti-methane solutions for safety and efficacy and make new solutions available to farmers.

V. SUPPORT ADOPTION OF ENTERIC METHANE MITIGATION STRATEGIES THROUGH EXISTING PROGRAMS

Funds Needed: No Additional Funding

In a recent survey, fewer than 30% of U.S. producers indicated they would be willing to adopt an enteric methane solution if they had to bear the cost. Government or other funding assistance was the second most important factor influencing the use of potential solutions behind increased productivity. The Environmental Quality Incentives Program (EQIP) is the flagship program administered by USDA- Natural Resources Conservation Service and can provide financial assistance for the implementation of conservation practices, including practices that reduce greenhouse gasses. In order to promote the adoption of enteric methane mitigation solutions, we recommend USDA-NRCS:

Review conservation practice standards to include new enteric methane mitigation solutions when applicable and include mechanisms to incentivize established methods to reduce enteric methane (i.e. lipid supplementation). Encourage regular updating of practice standards to rapidly incorporate new solutions as they are approved for use, and train technical assistance providers on the implementation of enteric methane mitigation strategies.

Frequently Asked Questions
What would the climate impact be of developing anti-methane enteric solutions? How much might we reasonably expect anti-methane solutions to reduce enteric emissions?

Enteric methane is responsible for ~15% or 0.16℃ of current warming. Protein production from animal agriculture is expected to increase in the coming decades to meet increased capita and per capita consumption. Early research on methane mitigating feed additives have demonstrated enteric methane reductions up to 90% in animal trials. Technology nearing regulatory approval has demonstrated 20-30% reductions. However, these solutions aren’t yet applicable to grazing cattle. With increased research and deployment efforts, enteric methane mitigation can help meet future protein demand with fewer animals and reduce overall warming by more than 10%.

Why is reducing enteric emissions a priority through anti-methane solutions rather than just focusing on replacing cattle with plant-based milk and meat?
While consumer behavior and product availability may change over time, current projections indicate that livestock product demand and production will be substantial throughout the coming decades. Therefore, enteric methane mitigation remains a necessary and impactful strategy toward minimizing peak temperatures.
What anti-methane solutions to enteric emissions exist today? What stage are they at?

Today, no products are approved by the FDA to reduce enteric methane emissions. However, some nutritional approaches are effective, including feeding higher amounts of lipids in an animal’s diet, since lipids increase the calories available for the animal, but do not promote methane production. However, lipids can be expensive for producers and to ensure animal health, no more than a few percent of an animal’s diet can come from lipids.


Other products currently being investigated include chemicals and natural products like 3-NOP, seaweed, and even probiotics. While dietary modification for lipids and supplementation with feed additives show promise in feedlot and confined operation settings, none of the emerging solutions are applicable to grazing systems. Research areas of interest include developing breeding strategies for low methane producing animals, anti-methane vaccines, and novel delivery mechanisms for grazing animals.

How does this relate to manure emissions?

Methane emissions from manure are largely dependent on whether the manure is exposed to air (methane producing microbes are not productive in oxygen rich environments). Grazing animals for instance generate very little manure methane, because manure is deposited over large areas and is exposed to open air. In confined operations like large dairies, manure is often flushed with water or scraped into a holding pond before it is applied to fields as fertilizer. These liquid manure lagoons quickly become anaerobic (without oxygen) and are an ideal environment for methane producing microbes.


Some enteric methane mitigation compounds could in theory reduce manure lagoon emissions, however the compounds would have to survive the digestive tract of the animal. It is also possible that some compounds could decrease enteric emissions but increase manure emissions. While this has not been demonstrated, prudent experimentalists include this in research studies. Growing efforts to reduce the methane from large manure lagoons include covering the lagoon and capturing the renewable biogas for use as transportation fuel, or electricity production, or processing the manure to separate the solids from the liquids and composting the solids to reduce emissions.

Increasing National Resilience through an Open Disaster Data Initiative

Summary

Federal, state, local, tribal, and territorial agencies collect and maintain a range of disaster resilience, vulnerability, and loss data. However, this valuable data lives on different platforms and in various formats across agency silos. Inconsistent data collection and lack of validation can result in gaps and inefficiencies and make it difficult to implement appropriate mitigation, preparedness, response, recovery, and adaptation measures for natural hazards, including wildfires, smoke, drought, extreme heat, flooding, and debris flow. Lack of complete data down to the granular level also makes it challenging to gauge the true cost of disasters.

The Biden-Harris Administration should launch an Open Disaster Data Initiative to mandate the development and implementation of national standards for disaster resilience, vulnerability, and loss data to enable federal, state, local, tribal, and territorial agencies to regularly collect, validate, share, and report on disaster data in consistent and interoperable formats.

Challenge and Opportunity

Disaster resilience, vulnerability, and loss data are used in many life-saving missions, including early detection and local response coordination, disaster risk assessments, local and state hazard mitigation plans, facilitating insurance and payouts, enabling rebuilding and recovery, and empowering diverse communities to adapt to climate impacts in inclusive, equitable, and just ways. 

While a plethora of tools are being developed to enable better analytics and visualizations of disaster and climate data, including wildfire data, the quality and completeness of the data itself remains problematic, including in the recently released National Risk Index

This is because there is a lack of agency mandates, funding, capacity, and infrastructure for data collection, validation, sharing, and reporting in consistent and interoperable formats. Currently, only a few federal agencies have the mandate and funds from Congress to collect disaster data relevant to their mission. Further, this data does not necessarily integrate state and local data for non-federally declared disasters. 

Due to this lack of national disaster and climate data standards, federal and state agencies, universities, nonprofits, and insurers currently maintain disaster-related data in silos, making it difficult to link in productive and efficient ways down to the granular level. 

Also, only a few local, state, and federal agencies regularly budget for or track spending on disaster resilience, vulnerability, and response activities. As a result, local agencies, nonprofits, and households, particularly in underserved communities, often lack access to critical lifesaving data. Further, disaster loss data is often private and proprietary, leading to inequality in data access and usability. This leaves already disadvantaged communities unprepared and with only a limited understanding of the financial burden of disaster costs carried by taxpayers. 

Since the 1990s, several bipartisan reviewsresearchdata, and policy documents, including the recent President’s Council of Advisors on Science and Technology (PCAST) report on modernizing wildland firefighting, have reiterated the need to develop national standards for the consistent collection and reporting of disaster vulnerability, damage, and loss data. Some efforts are under way to address the standardization and data gaps—such as the all-hazards dataset that created an open database by refining the Incident Command System data sets (ICS-209). 

However, significant work remains to integrate secondary and cascading disasters and monitor longitudinal climate impacts, especially on disadvantaged communities. For example, the National Interagency Fire Center consolidates major wildfire events but does not currently track secondary or cascading impacts, including smoke (see AirNow’s Fire and Smoke Map), nor does it monitor societal vulnerabilities and impacts such as on public health, displacement, poverty, and insurance. There are no standardized methods for accounting and tracking damaged or lost structures. For example, damage and loss data on structures, fatalities, community assets, and public infrastructure is not publicly available in a consolidated format

The Open Disaster Data Initiative will enable longitudinal monitoring of pre- and post-event data for multiple hazards, resulting in a better understanding of cascading climate impacts. Guided by the Open Government Initiative (2016), the Fifth National Action Plan (2022), and in the context of the Year of Open Science (2023), the Open Disaster Data Initiative will lead to greater accountability in how federal, state, and local governments prioritize funding, especially to underserved and marginalized communities. 

Finally, the Open Disaster Data Initiative will build on the Justice40 Initiative and be guided by the recommendations of the PCAST Report on Enhancing prediction and protecting communities. The Open Disaster Data Initiative should also reiterate the Government Accountability Office’s 2022 recommendation to Congress to designate a federal entity to develop and update climate information and to create a National Climate Information System

Precedents 

Recent disaster and wildfire research data platforms and standards provide some precedence and show how investing in data standards and interoperability can enable inclusive, equitable, and just disaster preparedness, response, and recovery outcomes.

The Open Disaster Data Initiative must build on lessons learned from past initiatives, including:

There are also important lessons to learn from international efforts  such as the United Nations’ ongoing work on monitoring implementation of the Sendai Framework for Disaster Risk Reduction (2015–2030) by creating the next generation of disaster loss and damage databases, and the Open Geospatial Consortium’s Disaster Pilot 2023 and Climate Resilience Pilot, which seek to use standards to enable open and interoperable sharing of critical geospatial data across missions and scales. 

Plan of Action

President Biden should launch an Open Disaster Data Initiative by implementing the following four actions.

Recommendation 1. Issue an Executive Order to direct the development and adoption of national standards for disaster resilience, vulnerability, and loss data collection, validation, sharing, and reporting, by all relevant federal, state, local, tribal, and territorial agencies to create the enabling conditions for adoption by universities, non-profits, and the private sector. The scope of this Executive Order should include data on local disasters that do not call for a Presidential Disaster Declaration and federal assistance.

Recommendation 2. Direct the Office of Management and Budget (OMB) to issue an Open Disaster Data Initiative Directive for all relevant federal agencies to collaboratively implement the following actions:

Recommendation 3. Designate a lead coordinator for the Open Disaster Data Initiative within the Office of Science Technology and Policy (OSTP), such as the Tech Team, to work with the OMB on developing a road map for implementing the Open Disaster Data Initiative, including developing the appropriate capacities across all of government.

Recommendation 4. Direct FEMA to direct appropriate funding and capacities for coordination with the National Weather Service (NWS), the U.S. Department of Agriculture’s Risk Management Agency, and the National Centers for Environmental Information (NCEI) to maintain a federated, open, integrated, and interoperable disaster data system that can seamlessly roll up local data, including research, nonprofit, and private, including insurance data. 

In addition, Congress should take the following three actions to ensure success of the Open Disaster Data Initiative:

Recommendation 5. Request the Government Accountability Office to undertake a Disaster Data Systems and Infrastructure Review to:

Recommendation 6. Appropriate dedicated funding for the implementation of the Open Disaster Data Initiative to allow federal agencies, states, nonprofits, and the private sector to access regular trainings and develop the necessary infrastructure and capacities to adopt national disaster data standards and collect, validate, and share relevant data. This access to training should facilitate seamless roll-up of disaster vulnerability and loss data to the federal level, thereby enabling accurate monitoring and accounting of community resilience in inclusive and equitable ways.

Recommendation 7. Use the congressional tool of technical corrections to support and enhance the Initiative:

Conclusion

The Open Disaster Data Initiative can help augment whole-of-nation disaster resilience in at least three ways: 

  1. Enable enhanced data sharing and information coordination among federal, state, local, tribal, and territorial agencies, as well as with universities, nonprofits, philanthropies, and the private sector.
  2. Allow for longitudinal monitoring of compounding and cascading disaster impacts on community well-being and ecosystem health, including a better understanding of how disasters impact poverty rates, housing trends, local economic development, and displacement and migration trends, particularly among disadvantaged communities.
  3. Inform the prioritization of policy and program investments for inclusive, equitable, and just disaster risk reduction outcomes, especially in socially and historically marginalized communities, including rural communities.
Frequently Asked Questions
What are some of the gaps and weaknesses of current national disaster databases in the United States?

Recent analysis by a federal interagency effort, Science for Disaster Reduction, shows that national-level databases significantly underreport disaster losses due to an overreliance on public sources and exclusion (or inaccessibility) of loss information from commercial as well as federal institutions that collect insured losses.


Also, past research has captured common weaknesses of national agency-led disaster loss databases, including:



  • over- or underreporting of certain hazard types (hazard bias)

  • gaps in historic records (temporal bias)

  • overreliance on direct and/or monetized losses (accounting bias)

  • focus on high impact and/or acute events while ignoring the extensive impacts of slow disasters or highly localized cascading disasters (threshold bias)

  • overrepresentation of densely populated and/or easily accessible areas (geography bias)

What lessons can be learned from past nationwide open data initiatives?

The National Weather Service’s Storm Events Database, the USDA’s Risk Management Agency’s Crop Data, and the CDC’s COVID-19 Data Modernization Initiative provide good templates for how to roll up data from the local to federal level. However, it is important to recognize that past initiatives, such as NOAA’s NIDIS initiative, have found it challenging to go beyond data collection on standard metrics of immediate loss and damage to also capture data on impacts and outcomes. Further, disaster loss and damage data are not currently integrated with other datasets that may capture secondary and cascading effects, such as, injuries, morbidities, and mortalities captured in CDC’s data.


Defining new standards that expand the range of attributes to be collected in consistent and interoperable formats would allow for moving beyond hazard and geographic silos, allowing data to be open, accessible, and usable. In turn, this will require new capacity and operational commitments, including an exploration of artificial intelligence, machine learning, and distributed ledger system (DLS) and blockchain technology, to undertake expanded data collection, sharing, and reporting across missions and scales.

How will the Open Disaster Data Initiative take account of data ethics and governance?

Aligning with guidance provided in the OSTP’s recent Blueprint for an AI Bill of Rights and several research collective initiatives in recent years, the Open Disaster Data Initiative should seek to make disaster resilience, vulnerability, loss, and damage data FAIR (findable, accessible, interoperable, reusable) and usable in CARE-full ways (collective benefit, with authority to control, for responsible, and, ethical use).

What is a technical corrections bill?

A technical corrections bill is a type of congressional legislation to correct or clarify errors, omissions, or inconsistencies in previously passed laws. Technical corrections bills are typically noncontroversial and receive bipartisan support, as their primary goal is to correct mistakes rather than to make substantive policy changes. Technical corrections bills can be introduced at any time during a congressional session and may be standalone bills or amendments to larger pieces of legislation. They are typically considered under expedited procedures, such as suspension of the rules in the House of Representatives, which allows for quick consideration and passage with a two-thirds majority vote. In the Senate, technical corrections bills may be considered under unanimous consent agreements or by unanimous consent request, which allows for passage without a formal vote if no senator objects. Sometimes more involved technical corrections or light policy adjustments happen during “vote-o-rama” in the Senate.


Technical corrections bills or reports play an important role in the legislative process, particularly during appropriations and budgeting, by helping to ensure the accuracy and consistency of proposed funding levels and programmatic changes. For example, during the appropriations process, technical corrections may be needed to correct funding levels or programmatic details that were inadvertently left out of the original bill. These technical changes can be made to ensure that funding is allocated to the intended programs or projects and that the language of the bill accurately reflects the intent of Congress.


Similarly, during the budgeting process, technical corrections may be needed to adjust estimates or projections based on new information or changes in circumstances that were not foreseen when the original budget was proposed. These technical changes can help to ensure that the budget accurately reflects the current economic and fiscal conditions and that funding priorities are aligned with the goals and priorities of Congress. For example, in 2021, Congress used a technical corrections bill to clarify budget allocations and program intent after Hurricane Ida to make recovery programs more efficient and help with overall disaster recovery program clarification. Similarly, in 2017, Congress relied on a technical corrections/suspension bill to clarify some confusing tax provisions related to previous legislation for relief from Hurricane Maria.

Building a National Network of Composite Pipes to Reduce Greenhouse Gas Emissions

Summary

65,000 miles of pipeline: that’s the distance that may be necessary to achieve economy-wide net-zero emissions by 2050, according to a Princeton University study. The United States is on the verge of constructing a vast network of pipelines to transport hydrogen and carbon dioxide, incentivized by the Infrastructure Investment and Jobs Act and the Inflation Reduction Act. Yet the lifecycle emissions generated by a typical steel pipeline is 27.35 kg carbon dioxide eq per ft1. Which means 65,000 miles would result in nearly 9.4 million megatons of carbon dioxide eq (equal to over 2 million passenger cars annually) produced just from steel pipeline infrastructure alone.

Pipelines made from composite materials offer one pathway to lowering emissions. Composite pipe is composed of multiple layers of different materials—typically a thermoplastic polymer as the primary structural layer with reinforcing materials such as fibers or particulate fillers to increase strength and stiffness. Some types have lifecycle emissions that are nearly one-third less than typical steel pipeline. Depending on the application, composite pipelines can be safer and less expensive. However, the process under Pipeline and Hazardous Materials and Safety Administration (PHMSA) to issue permits for composite pipe takes longer than steel, and for hydrogen and supercritical carbon dioxide, the industry lacks regulatory standards altogether. Reauthorization of the Protecting Our Infrastructure of Pipelines and Enhancing Safety (PIPES) Act offers an excellent opportunity to review the policies concerning new, less emissive pipeline technologies.

Challenge and Opportunity

Challenge

The United States is on the verge of a clean energy construction boom, expanding far beyond wind and solar energy to include infrastructure that utilizes hydrogen and carbon capture. The pump has been primed with $21 billion for demonstration projects or “hubs” in the Infrastructure Investment and Jobs Act and reinforced with another $7 billion for demonstration projects and at least $369 billion in tax credits in the Inflation Reduction Act. Congress recognized that pipelines are a critical component and provided $2.1 billion in loans and grants under the Carbon Dioxide Transportation Infrastructure Finance and Innovation Act (CIFIA).

The United States is crisscrossed by pipelines. Approximately 3.3 million miles of predominately steel pipelines convey trillions of cubic feet of natural gas and hundreds of billions of tons of liquid petroleum products each year. A far fewer 5,000 miles are used to transport carbon dioxide and only 1,600 miles are dedicated to hydrogen. Research suggests the existing pipeline network is nowhere near what is needed. According to Net Zero America, approximately 65,000 miles of pipeline will be needed to transport captured carbon dioxide to achieve economy-wide net zero emissions in the United States by 2050. The study also identifies a need for several thousand miles of pipelines to transport hydrogen within each region.

Making pipes out of steel is a carbon-intensive process, and steel manufacturing in general accounts for seven to nine percent of global greenhouse gas emissions. There are ongoing efforts to lower emissions generated from steel (i.e., “green steel”) by being more energy efficient, capturing and storing emitted carbon dioxide, recycling scrap steel combined with renewable energy, and using low-emissions hydrogen. However, cost is a significant challenge with many of these mitigation strategies. The estimated cost of transitioning global steel assets to net-zero compatible technologies by 2050 is $200 billion, in addition to a baseline average of $31 billion annually to simply meet growing demand.

Opportunity

Given the vast network of pipelines required to achieve a net-zero future, expanding use of composite pipe provides a significant opportunity for the United States to lower carbon emissions. Composite materials are highly resistant to corrosion, weigh less and are more flexible, and have improved flow capacity. This means that pipelines made from composite materials have a longer service life and require less maintenance than steel pipelines. Composite pipe can be four times faster to install, require one-third the labor to install, and have significantly lower operating costs.2 The use of composite pipe is expected to continue to grow as technological advancements make these materials more reliable and cost-effective. 

Use of composite pipe is also expanding as industry seeks to improve its sustainability. We performed a lifecycle analysis on thermoplastic pipe, which is made by a process called extrusion that involves melting a thermoplastic material, such as high-density polyethylene or polyvinyl chloride, and then forcing it through a die to create a continuous tube. The tube can then be cut to the desired length and fittings can be attached to the ends to create a complete pipeline. We found that the lifecycle emissions from thermoplastic pipe were 6.83 kg carbon dioxide eq/ft and approximately 75% lower than an equivalent length of steel pipe, which has lifecycle emissions of 27.35 kg carbon dioxide eq/ft. 

These estimates do not include potential differences in leaks. Specifically, composite pipe has a continuous structure that allows for the production of longer pipe sections, resulting in fewer joints and welds. In contrast, metallic pipes are often manufactured in shorter sections due to limitations in the manufacturing process. This means that more joints and welds are required to connect the sections together, which can increase the risk of leaks or other issues. Further, approximately half of the steel pipelines in the United States are over 50 years old, increasing the potential for leaks and maintenance cost.3 Another advantage of composite pipe is that it can be pulled through steel pipelines, thereby repurposing aging steel pipelines to transport different materials while also reducing the need for new rights of way and associated permits. 

Despite the advantages of using composite materials, the standards have not yet been developed to allow for safe permitting to transport supercritical carbon dioxide4 and hydrogen. At the federal level, pipeline safety is administered by the Department of Transportation’s Pipeline and Hazardous Materials Administration (PHMSA).5 To ensure safe transportation of energy and other hazardous materials, PHMSA establishes national policy, sets and enforces standards, educates, and conducts research to prevent incidents. There are regulatory standards to transport supercritical carbon dioxide in steel pipe.6 However, there are no standards for composite pipe to transport either hydrogen or carbon dioxide in either a supercritical liquid, gas, or subcritical liquid state.

Repurposing existing infrastructure is critical because the siting of pipelines, regardless of type, is often challenging. Whereas natural gas pipelines and some oil pipelines can invoke eminent domain provisions under federal law such as the Natural Gas Act or Interstate Commerce Act, no such federal authorities exist for hydrogen and carbon dioxide pipelines. In some states, specific statutes address eminent domain for carbon dioxide pipelines. These laws typically establish the procedures for initiating eminent domain proceedings, determining the amount of compensation to be paid to property owners, and resolving disputes related to eminent domain. However, current efforts are under way in states such as Iowa to restrict use of state authorities to grant eminent domain to pending carbon dioxide pipelines. The challenges with eminent domain underscore the opportunity provided by technologies that allow for the repurposing of existing pipeline to transport carbon dioxide and hydrogen.

Plan of Action

How can we build a vast network of carbon dioxide and hydrogen pipelines while also using lower emissive materials? 

Recommendation 1. Develop safety standards to transport hydrogen and supercritical carbon dioxide using composite pipe. 

PHMSA, industry, and interested stakeholders should work together to develop safety standards to transport hydrogen and supercritical carbon dioxide using composite pipe. Without standards, there is no pathway to permit use of composite pipe. This collaboration could occur within the context of PHMSA’s recent announcement to update its standards for transporting carbon dioxide, which is being done in response to an incident in 2020 in Sartartia, MS.

Ideally, the permits could be issued using PHMSA’s normal process rather than as special permits (e.g., 49 CFR § 195.8). It takes several years to develop standards, so it is critical to launch the standard-setting process so that composite pipe can be used in Department of Energy-funded hydrogen hubs and carbon capture demonstration projects.

Europe is ahead of the United States in this regard, as the classification company DNV is currently undertaking a joint industry project to review the cost and risk of using thermoplastic pipe to transport hydrogen. This work will inform regulators in the European Union, who are currently revising standards for hydrogen infrastructure. The European Clean Hydrogen Alliance recently adopted a “Roadmap on Hydrogen Standardization” that expressly recommends setting standards for non-metallic pipes. To the extent practicable, it would benefit export markets for U.S. products if the standards were similar.  

Recommendation 2. Streamline the permitting process to retrofit steel pipelines. 

Congress should streamline the retrofitting of steel pipes by enacting a legislative categorical exclusion under the National Environmental Policy Act (NEPA). NEPA requires federal agencies to evaluate actions that may have a significant effect on the environment. Categorical exclusions (CEs) are categories of actions that have been determined to have no significant environmental impact and therefore do not require an environmental assessment (EA) or an environmental impact statement (EIS) before they can proceed. CEs can be processed within a few days, thereby expediting the review of eligible actions.

The CE process allows federal agencies to avoid the time and expense of preparing an EA or EIS for actions that are unlikely to have significant environmental effects. CEs are often established through agency rulemaking but can also be created by Congress as a “legislative CE.” Examples include minor construction activities, routine maintenance and repair activities, land transfers, and research and data collection. However, even if an action falls within a CE category, the agency must still conduct a review to ensure that there are no extraordinary circumstances that would warrant further analysis.

Given the urgency to deploy clean technology infrastructure, Congress should authorize federal agencies to apply a categorical exclusion where steel pipe is retrofitted using composite pipe. In such situations, the project is using an existing pipeline right-of-way, and there should be few, if any, additional environmental impacts. Should there be any extraordinary circumstances, such as substantial changes in the risk of environmental effects, federal agencies would be able to evaluate the project under an EA or EIS. A CE does not obviate the review of safety standards and other applicable, substantive laws, but simply right-sizes the procedural analysis under NEPA.

Recommendation 3. Explore opportunities to improve the policy framework for composite pipe during reauthorization of the PIPES Act. 

Both of the aforementioned ideas should be considered as Congress initiates its reauthorization of the Protecting Our Infrastructure of Pipelines and Enhancing Safety (PIPES) Act of 2020. Among other improvements to pipeline safety, the PIPES Act reauthorized PHMSA through FY2023. As Congress begins work on its next reauthorization bill for PHMSA, it is the perfect time to review the state of the industry, including the potential for composite pipe to accelerate the energy transition.

Recommendation 4. Consider the embedded emissions of construction materials when funding demonstration projects. 

The Office of Clean Energy Demonstrations should consider the embedded emissions of construction materials when evaluating projects for funding. Applicants that have a plan to consider embedded emissions of construction materials could receive additional weight in the selection process. 

Recommendation 5. Support research and development of composite materials. 

Composite materials offer advantages in many other applications, not just pipelines. The Office of Energy Efficiency and Renewable Energy (EERE) should support research to further enhance the properties of composite pipe while improving lifecycle emissions. In addition to ongoing efforts to lower the emissions intensity of steel and concrete, EERE should support innovation in alternative, composite materials for pipelines and other applications.

Conclusion

Recent legislation will spark construction of the next generation in clean energy infrastructure, and the funding also creates an opportunity to deploy construction materials with lower lifecycle emissions of greenhouse gases. This is important, because constructing vast networks of pipelines using high-emissive processes undercuts the goals of the legislation. However, the regulatory code remains an impediment by failing to provide a pathway for using composite materials. PHMSA and industry should commence discussions to create the requisite safety standards, and Congress should work with both industry and regulators to streamline the NEPA process when retrofitting steel pipelines. As America commences construction of hydrogen and carbon capture, utilization, and storage networks, reauthorization of the PIPES Act provides an excellent opportunity to significantly lower the emissions.

Frequently Asked Questions
How did you calculate a lifecycle analysis (LCA) for composite pipe?

We compared two types of pipes: 4” API 5L X42 metallic pipe vs. 4” Baker Hughes non-metallic next generation thermoplastic flexible pipe. The analysis was conducted using FastLCA, a proprietary web application developed by Baker Hughes and certified by an independent reviewer to quantify carbon emissions from our products and services. The emission factors for the various materials and processes are based on the ecoinvent 3.5 database for global averages.


  • The data for flexible pipe production is from 2020 production year and represents transport, machine, and energy usage at the Baker Hughes’ manufacturing plant located in Houston, TX.
  • All raw material and energy inputs for flex pipes are taken directly from engineering and plant manufacturing data, as verified by engineering and manufacturing personnel, and represent actual usage to manufacture the flexible pipes.
  • All of the data for metallic pipe production is from API 5L X42 schedule 80 pipe specifications and represent transport from Alabama and energy usage for production from global averages.
  • All raw material and energy inputs for hot rolling steel are computed from ecoinvent 3.5 database emission factors. All relevant production steps and processes are modeled.
  • All secondary processes are from the ecoinvent 3 database (version 3.5 compiled as of November 2018) as applied in SimaPro 9.0.0.30.
  • Results are calculated using IPCC 2013 GWP 100a (IPCC AR5).
What are the safety risks of transporting hydrogen and carbon dioxide using composite pipe?

Similar to steel pipe, transporting hydrogen and carbon dioxide using composite pipe poses certain safety risks that must be carefully managed and mitigated:


  • Hydrogen gas can diffuse into the composite material and cause embrittlement, which can lead to cracking and failure of the pipe.
  • The composite material used in the pipe must be compatible with hydrogen and carbon dioxide. Incompatibility can cause degradation of the pipe due to permeation, leading to leaks or ruptures.
  • Both hydrogen and carbon dioxide are typically transported at high pressure, which can increase the risk of pipe failure due to stress or fatigue.
  • Carbon dioxide can be corrosive to certain metals, which can lead to corrosion of the pipe and eventual failure.
  • Hydrogen is highly flammable and can ignite in the presence of an ignition source, such as a spark or heat.

To mitigate these safety risks, appropriate testing, inspection, and maintenance procedures must be put in place. Additionally, proper handling and transportation protocols should be followed, including strict adherence to pressure and temperature limits and precautions to prevent ignition sources. Finally, emergency response plans should be developed and implemented to address any incidents that may occur during transportation.

What are the existing relevant standards that need to be updated?

API Specification 15S, Spoolable Reinforced Plastic Line Pipe, covers the use of flexible composite pipe in onshore applications. The standard does not address transport of carbon dioxide and has not been incorporated into PHMSA’s regulations.


API Specification 17J, Specification for Unbonded Flexible Pipe, covers the use of flexible composite pipe in offshore applications. Similar to 15S, it does not address transport of carbon dioxide and has not been incorporated into PHMSA’s regulations.

Do the same recommendations apply to high-density polyethylene (HDPE) pipe?

HDPE pipe, commonly used in applications such as water supply, drainage systems, gas pipelines, and industrial processes, has similar advantages to composite pipe in terms of flexibility, ease of installation, and low maintenance requirements. It can be assembled to create seamless joints, reducing the risk of leaks. It can also be used to retrofit steel pipes as a liner per API SPEC 15LE.


HDPE pipe has been approved by PHMSA to transport natural gas under 49 CFR Part 192. However, the typical operating pressures (e.g., 100 psi) are significantly lower than composite pipe. Similar to composite pipe, there are no standards for the transport of hydrogen and carbon dioxide, though HDPE pipe’s lower pressure limits make it less suited for use in carbon capture and storage.

Meeting Agricultural Sustainability Goals by Increasing Federal Funding for Research on Genetically Engineered Organisms

Summary

Ensuring the sustainability and resiliency of American food systems is an urgent priority, especially in the face of challenges presented by climate change and international geopolitical conflicts. To address these issues, increased federal investment in new, sustainability-oriented agricultural technology is necessary in order to bring greater resource conservation and stress tolerance to American farms and fields. Ongoing advances in bioengineering research and development (R&D) offer a diverse suite of genetically engineered organisms, including crops, animals, and microbes. Given the paramount importance of a secure food supply for national well-being, federal actors should promote the development of genetically engineered organisms for agricultural applications. 

Two crucial opportunities are imminent. First, directives in the Biden Administration’s bioeconomy executive order provide the U.S. Department of Agriculture (USDA) a channel through which to request funding for sustainability-oriented R&D in genetically engineered organisms. Second, renewal of the Farm Bill in 2023 provides a venue for congressional legislators to highlight genetic engineering as a funding focus area of existing research grant programs. Direct beneficiaries of the proposed federal funding will predominantly be nonprofit research organizations such as land grant universities; innovations resulting from the funded research will provide a public good that benefits producers and consumers alike. 

Challenge and Opportunity

The resiliency of American agriculture faces undeniable challenges in the coming decades. The first is resource availability, which includes scarcities of fertile land due to soil degradation and of water due to overuse and drought. Resource availability is also vulnerable to acute challenges, as revealed by the impact of the COVID-19 pandemic and the Russian-Ukraine war on the supply of vital inputs such as fertilizer and gas. The second set of challenges are environmental stressors, many of which are exacerbated by climate change. Flooding can wipe out an entire harvest, while the spread of pathogens poses existential risks not only to individual livelihoods but also to the global market of crops like citrus, chocolate, and banana. Such losses would be devastating for both consumers and producers, especially those in the global south. 

Ongoing advances in bioengineering R&D provide technological solutions in the form of a diverse suite of genetically engineered organisms. These have the potential to address many of the aforementioned challenges, including increasing yield and/or minimizing inputs and boosting resilience to drought, flood, and pathogens. Indeed, existing transgenic crops, such as virus-resistant papaya and flood-tolerant rice, demonstrate the ability of genetically engineered organisms to address agricultural challenges. They can also address other national priorities such as climate change and nutrition by enhancing carbon sequestration and improving the nutritional profile of food. 

Recent breakthroughs in modifying and sequencing DNA have greatly enhanced the speed of developing new, commercializable bioengineered varieties, as well as the spectrum of traits and plants that can be engineered. This process has been especially expedited by the use of CRISPR gene-editing technology; the European Sustainable Agriculture Through Genome Editing (EU-SAGE)’s database documents more than 500 instances of gene-edited crops developed in research laboratories to target traits for sustainable, climate-resilient agriculture. There is thus vast potential for genetically engineered organisms to contribute to sustainable agriculture. 

More broadly, this moment can be leveraged to bring about a turning point in the public perception of genetically engineered organisms. Past generations of genetically engineered organisms have been met with significant public backlash, despite the pervasiveness of inter-organism gene transfer throughout the history of life on earth (see FAQ). Reasons for negative public perception are complex but include the association of genetically engineered organisms with industry profit, as well as an embrace of the precautionary principle to a degree that far exceeds its application to other products, such as pharmaceuticals and artificial intelligence. Furthermore, persistent misinformation and antagonistic activism have engendered entrenched consumer distrust. The prior industry focus on herbicide resistance traits also contributed to the misconception that the technology is only used to increase the use of harmful chemicals in the environment. 

Now, however, a new generation of genetically engineered organisms feature traits beyond herbicide resistance that address sustainability issues such as reduced spoilage. Breakthroughs in DNA sequencing, as well as other analytical tools, have increased our understanding of the properties of newly developed organisms. There is pervasive buy-in for agricultural sustainability goals across many stakeholder sectors, including individual producers, companies, consumers, and legislators on both sides of the aisle. There is great potential for genetically engineered organisms to be accepted by the public as a solution to a widely recognized problem. Dedicated federal funding will be vital in seeing that this potential is realized.

Plan of Action

Recommendation 1: Fund genetically engineered organisms pursuant to the Executive Order on the bioeconomy.

Despite the importance of agriculture for the nation’s basic survival and the clear impact of agricultural innovation, USDA’s R&D spending pales in comparison to other agencies and other expenditures. In 2022, for example, USDA’s R&D budget was a mere 6% of the National Institutes of Health’s R&D budget, and R&D comprised only 9.6% of USDA’s overall discretionary budget. The Biden Administration’s September 2022 executive order provides an opportunity to amend this funding shortfall, especially for genetically engineered organisms.  

The Executive Order on Advancing Biotechnology and Biomanufacturing Innovation for a Sustainable, Safe, and Secure American Bioeconomy explicitly embraces an increased role for biotechnology in agriculture. Among the policy objectives outlined is the call to “boost sustainable biomass production and create climate-smart incentives for American agricultural producers and forest landowners.” 

Pursuant to this objective, the EO directs the USDA to submit a plan comprising programs and budget proposals to “support the resilience of the United States biomass supply chain [and] encourage climate-smart production” by September 2023. This plan provides the chance for the USDA to secure funding for agricultural R&D in a number of areas. Here, we recommend (1) USDA collaboration in Department of Energy (DoE) research programs amended under the CHIPS and Science Act and (2) funding for startup seed grants. 

CHIPS and Science Act

The 2022 CHIPS and Science Act aims to accelerate American innovation in a number of technology focus areas, including engineering biology. To support this goal, the Act established a new National Engineering Biology Research and Development Initiative (Section 10402). As part of this initiative, the USDA was tasked with supporting “research and development in engineering biology through the Agricultural Research Service, the National Institute of Food and Agriculture programs and grants, and the Office of the Chief Scientist.” Many of the initiative’s priorities are sustainability-oriented and could benefit from genetic engineering contributions. 

A highlight is the designation of an interagency committee to coordinate activities. To leverage and fulfill this mandate, we recommend that the USDA better coordinate with the DoE on bioengineering research. Specifically, the USDA should be involved in the decision-making process for awarding research grants relating to two DoE programs amended by the Act.

The first program is the Biological and Environmental Research Program, which includes carbon sequestration, gene editing, and bioenergy. (See the Appendix for a table summarizing examples of how genetic engineering can contribute sustainability-oriented technologies to these key focus areas.)

The second program is the Basic Energy Sciences Program, which has authorized funding for a Carbon Sequestration Research and Geologic Computational Science Initiative under the DoE. Carbon sequestration via agriculture is not explicitly mentioned in this section, but this initiative presents another opportunity for the USDA to collaborate with the DoE and secure funding for agricultural climate solutions. Congress should make appropriating funding for this program a priority.

Seed Grants

The USDA should pilot a seed grant program to accelerate technology transfer, a step that often poses a bottleneck. The inherent risk of R&D and entrepreneurship in a cutting-edge field may pose a barrier to entry for academic researchers as well as small agricultural biotech companies. Funding decreases the barrier of entry, thus increasing the diversity of players in the field. This can take the form of zero-equity seed grants. Similar to the National Science Foundation (NSF)’s seed grant program, which awards $200+ million R&D funding to about 400 startups, this would provide startups with funding without the risks attached to venture capital funding (such as being ousted from company leadership). The NSF’s funding is spread across numerous disciplines, so a separate agricultural initiative from the USDA dedicated to supporting small agricultural biotech companies would be beneficial. These seed grants would meet a need unmet by USDA’s existing small business grant programs, which are only awarded to established companies.

Together, the funding areas outlined above would greatly empower the USDA to execute the EO’s objective of promoting climate-smart American agriculture.

Recommendation 2: Allocate funding through the 2023 Farm Bill.

The Farm Bill, the primary tool by which the federal government sets agricultural policy, will be renewed in 2023. Several existing mandates for USDA research programs, administered through the National Institute of Food and Agriculture as competitive grants, have been allocated federal funding. Congressional legislators should introduce amendments in the mandates for these programs such that the language explicitly highlights R&D of genetically engineered organisms for sustainable agriculture applications. Such programs include the Agriculture and Food Research Initiative, a major competitive grant program, as well as the Specialty Crop Research Initiative and the Agricultural Genome to Phenome Initiative. Suggested legislative text for these amendments are provided in the Appendix. Promoting R&D of genetically engineered organisms via existing programs circumvents the difficulty of securing appropriations for new initiatives while also presenting genetically engineered organisms as a critically important category of agricultural innovation.

Additionally, Congress should appropriate funding for the Agriculture Advanced Research and Development Authority (AgARDA) at its full $50 million authorization. Similar to its counterparts in other agencies such as ARPA-E and DARPA, AgARDA would enable “moonshot” R&D projects that are high-reward but high-risk or have a long timeline—such as genetically engineered organisms with genetically complex traits. This can be especially valuable for promoting the development of sustainability-oriented crops traits: though they are a clear public good, they may be less profitable and/or marketable than crops with consumer-targeted traits such as sweetness or color, and as such profit-driven companies may be dissuaded from investing in their development. The USDA just published its implementation strategy for AgARDA. Congress must now fully fund AgARDA such that it can execute its strategy and fuel much-needed innovation in agricultural biotechnology. 

Conclusion

Current federal funding for genetically engineered organism R&D does not reflect their substantial impact in ensuring a sustainable, climate-smart future for American agriculture, with applications ranging from increasing resource-use efficiency in bioproduction to enhancing the resilience of food systems to environmental and manmade crises. Recent technology breakthroughs have opened many frontiers in engineering biology, but free market dynamics alone are not sufficient to guarantee that these breakthroughs are applied in the service of the public good in a timely manner. The USDA and Congress should therefore take advantage of upcoming opportunities to secure funding for genetic engineering research projects.

Appendix

Biological and Environmental Research Program Examples 

Research focus area added in CHIPS and Science ActExample of genetic engineering contribution
Bioenergy and biofuelOptimizing biomass composition of bioenergy crops
Non-food bioproductsLab-grown cotton; engineering plants and microbes to produce medicines
Carbon sequestrationImproving photosynthetic efficiency; enhancing carbon storage in plant roots
Plant and microbe interactionsEngineering microbes to counter plant pathogens; engineering microbes to make nutrients more accessible to plants
BioremediationEngineering plants and microbes to sequester and/or breakdown contaminants in soil and groundwater
Gene editing Engineering plants for increased nutrient content, disease-resistance, storage performance
New characterization toolsCreating molecular reporters of plant response to abiotic and biotic environmental dynamics 

Farm Bill Amendments 

Agriculture and Food Research Initiative

One of the Agriculture and Food Research Initiative (AFRI)’s focus areas is Sustainable Agricultural Systems, with topics including “advanced technology,” which supports “cutting-edge research to help farmers produce higher quantities of safer and better quality food, fiber, and fuel to meet the needs of a growing population.” Furthermore, AFRI’s Foundational and Applied Science Program supports grants in priority areas including plant health, bioenergy, natural resources, and environment. The 2023 Farm Bill could amend the Competitive, Special, and Facilities Research Grant Act (7 U.S.C. 3157) to highlight the potential of genetic engineering in the pursuit of AFRI’s goals. 

Example text: 

Subsection (b)(2) of the Competitive, Special, and Facilities Research Grant Act (7 U.S.C. 3157(b)(2)) is amended—

(1) in subparagraph (A)—

(A) in clause (ii), by striking the semicolon at the end and inserting “including genetic engineering methods to make modifications (deletions and/or insertions of DNA) to plant genomes for improved food quality, improved yield under diverse growth conditions, and improved conservation of resource inputs such as water, nitrogen, and carbon;”;

(B) in clause (vi), by striking the “and”;

(C) in clause (vii), by striking the period at the end and inserting “; and”; and

(D) by adding at the end the following: 

“(viii) plant-microbe interactions, including the identification and/or genetic engineering of microbes beneficial for plant health”

(2) in subparagraph (C), clause (iii), by inserting “production and” at the beginning;

(3) in subparagraph (D)– 

(A) in clause (vii), by striking “and”;

(B) in clause (vii), by striking the period at the end and inserting “; and”; and

(C) by adding at the end the following: 

“(ix) carbon sequestration”.

Agricultural Genome to Phenome Initiative

The goal of this initiative is to understand the function of plant genes, which is critical to crop genetic engineering for sustainability. The ability to efficiently insert and edit genes, as well as to precisely control gene expression (a core tenet of synthetic biology), would facilitate this goal.

Example text:

Section 1671(a) of the Food, Agriculture, Conservation, and Trade Act of 1990 (7 U.S.C. 5924(a)) is amended—

  1. In subparagraph (4), by inserting “and environmental” after “achieve advances in crops and animals that generate societal”; and
  2. In subparagraph (5), by inserting “genetic engineering, synthetic biology,” after “to combine fields such as genetics, genomics,”

Specialty Crop Research Initiative

Specialty crops can be a particularly fertile ground for research. There is a paucity of genetic engineering tools for specialty crops as compared to major crops (e.g. wheat, corn, etc.). At the same time, specialty crops such as fruit trees offer the opportunity to effect larger sustainability impacts: as perennials, they remain in the soil for many years, with particular implications for water conservation and carbon sequestration. Finally, economically important specialty crops such as oranges are under extreme disease threat, as identified by the Emergency Citrus Disease Research and Extension Program. Genetic engineering offers potential solutions that could be accelerated with funding. 

Example text:

Section 412(b) of the Agricultural Research, Extension, and Education Reform Act of 1998 (7 U.S.C. 7632(b)) is amended—

  1. In paragraph (1), by inserting “transgenics, gene editing, synthetic biology” after “research in plant breeding, genetics,” and—
    1. In subparagraph (B), by inserting “and enhanced carbon sequestration capacity” after “size-controlling rootstock systems”; and
    2. In subparagraph (C), by striking the semi-colon at the end and inserting “, including water-use efficiency;”
Frequently Asked Questions
What is the definition of a genetically engineered organism? What is the difference between genetically engineered, genetically modified, transgenic, gene-edited, and bioengineered?

Scientists usually use the term “genetic engineering” as a catch-all phrase for the myriad methods of changing an organism’s DNA outside of traditional breeding, but this is not necessarily reflected in usage by regulatory agencies. The USDA’s glossary, which is not regulatorily binding, defines “genetic engineering” as “​​manipulation of an organism’s genes by introducing, eliminating or rearranging specific genes using the methods of modern molecular biology, particularly those techniques referred to as recombinant DNA techniques.” Meanwhile, the USDA’s Animal and Plant Health Inspection Service (APHIS)’s 2020 SECURE rule defines “genetic engineering” as “techniques that use recombinant, synthesized, or amplified nucleic acids to modify or create a genome.” The USDA’s glossary defines “genetic modification” as “the production of heritable improvements in plants or animals for specific uses, via either genetic engineering or other more traditional methods”; however, the USDA National Organic Program has used “genetic engineering” and “genetic modification” interchangeably. 


“Transgenic” organisms can be considered a subset of genetically engineered organisms and result from the insertion of genetic material from another organism using recombinant DNA techniques. “Gene editing” or “genome editing” refers to biotechnology techniques like CRISPR that make changes in a specific location in an organism’s DNA. 


The term “bioengineered” does carry regulatory weight. The USDA-AMS’s National Bioengineered Food Disclosure Standard (NBFDS), published in 2018 and effective as of 2019, defines “bioengineered” as “contains genetic material that has been modified through in vitro recombinant deoxyribonucleic acid (DNA) techniques; and for which the modification could not otherwise be obtained through conventional breeding or found in nature.” Most gene-edited crops currently in development, such as those where the introduced gene is known to occur in the species naturally, are exempt from regulation under both the AMS’s NBFDS and APHIS’s SECURE acts.

What are some examples of genetic engineering methods?

Though “genetic engineering” has only entered the popular lexicon in the last several decades, humans have modified the genomes of plants for millennia, in many different ways. Through genetic changes introduced via traditional breeding, teosinte became maize 10,000 years ago in Mesoamerica, and hybrid rice was developed in 20th-century China. Irradiation has been used to generate random mutations in crops for decades, and the resulting varieties have never been subject to any special regulation.


In fact, transfer of genes between organisms occurs all the time in nature. Bacteria often transfer DNA to other bacteria, and some bacteria can insert genes into plants. Indeed, one of the most common “genetic engineering” approaches used today, Agrobacterium-mediated gene insertion, was inspired by that natural phenomenon. Other methods of DNA delivery including biolistics (“gene gun”) and viral vectors. Each method for gene transfer has many variations, and each method varies greatly in its mode of action and capabilities. This is key for the future of plant engineering: there is a spectrum—not a binary division—of methods, and evaluations of engineered plants should focus on the end product.

How are genetically engineered organisms regulated in the United States?

Genetically engineered organisms are chiefly regulated by USDA-APHIS, the EPA, and the FDA as established by the 1986 Coordinated Framework for the Regulation of Biotechnology. They oversee experimental testing, approval, and commercial release. The Framework’s regulatory approach is grounded in the judgment that the potential risks associated with genetically engineered organisms can be evaluated the same way as those associated with traditionally bred organisms. This is in line with its focus on “the characteristics of the product and the environment into which it is being introduced, not the process by which the product is created.”


USDA-APHIS regulates the distribution of regulated organisms that are products of biotechnology to ensure that they do not pose a plant pest risk. Developers can petition for individual organisms, including transgenics, to be deregulated via Regulatory Status Review.


The EPA regulates the distribution, sale, use, and testing of all pesticidal substances produced in plants and microbes, regardless of method of production or mode of action. Products must be registered before distribution. 


The FDA applies the same safety standards to foods derived from genetically engineered organisms as it does to all foods under the Federal Food, Drug, and Cosmetic Act. The agency provides a voluntary consultation process to help developers ensure that all safety and regulatory concerns, such as toxicity, allergenicity, and nutrient content, are resolved prior to marketing.

How do genetically engineered crops work?

Mechanisms of action vary depending on the specific trait. Here, we explain the science behind two types of transgenic crops that have been widespread in the U.S. market for decades. 


Bt crops: Three of the major crops grown in the United States have transgenic Bt varieties: cotton, corn, and soybean. Bt crops are genetically engineered such that their genome contains a gene from the bacteria Bacillus thuringiensis. This enables Bt crops to produce a protein, normally only produced by the Bt bacteria, that is toxic to a few specific plant pests but harmless for humans, other mammals, birds, and beneficial insects. In fact, the bacteria itself is approved for use as an organic insecticide. However, organic applications of Bt insecticides are limited in efficacy: since the bacteria must be topically applied to the crop, the protein it produces is ineffective against insects that have penetrated the plant or are attacking the roots; in addition, the bacteria can die or be washed away by rain. 


Engineering the crop itself to produce the insecticidal protein more reliably reduces crop loss due to pest damage, which also minimizes the need for other, often more broadly toxic systemic pesticides. Increased yield allows for more efficient use of existing agricultural land. In addition, decreased use of pesticides reduces the energy cost associated with their production and application while also preserving wildlife biodiversity. With regards to concerns surrounding insecticide resistance, the EPA requires farmers who employ Bt, both as a transgenic crop and as an organic spray, to also plant a refuge field of non-Bt crops, which prevents pests from developing resistance to the Bt protein.


The only substantive difference between Bt crops and non-Bt crops is that the former produces an insecticide already permitted by USDA organic regulations. 


Ringspot-resistant rainbow papaya: The transgenic rainbow papaya is another example of the benefits of genetic engineering in agriculture. Papaya plantations were ravaged by the papaya ringspot virus in the late 1900s, forcing many farmers to abandon their lands and careers. In response, scientists developed the rainbow papaya, which contains a gene from the virus itself that allows it to express a protein that counters viral infection. This transgenic papaya was determined to be equivalent in nutrition and all other aspects to the original papaya. The rainbow papaya, with its single gene insertion, is widely considered to have saved Hawaii’s papaya industry, which in 2013 accounted for nearly 25% of Hawaii’s food exports. Transgenic papaya now makes up about 80% of the Hawaiian papaya acreage. The remaining comprise non-GMO varieties, which would have gone locally extinct had it not been for transgenic papayas preventing the spread of the virus. The rainbow papaya’s success has clearly demonstrated that transgenic crops can preserve the genetic diversity of American crops and preserve yield without spraying synthetic pesticides, both of which are stated goals of the USDA Organic Program. However, the National Organic Program’s regulations currently forbid organic farmers from growing virus-resistant transgenic papaya.

How have recent biotechnology breakthroughs accelerated the development of new crops?

With the advent of CRISPR gene-editing technology, which allows scientists to make precise, targeted changes in an organism’s DNA, new genetically engineered crops are being developed at an unprecedented pace. These new varieties will encompass a wider variety of qualities than previously seen in the field of crop biotechnology. Many varieties are directly aimed at shoring up agricultural resilience in the face of climate change, with traits including tolerance to heat, cold, and drought. At the same time, the cost of sequencing an organism’s DNA continues to decrease. This makes it easier to confirm the insertion of multiple transgenes into a plant, as would be necessary to engineer crops to produce a natural herbicide. Such a crop, similar to Bt crops but targeting weeds instead of insects, would reduce reliance on synthetic herbicides while enabling no-till practices that promote soil health. Furthermore, cheap DNA sequencing facilitates access to information about the genomes of many wild relatives of modern crops. Scientists can then use genetic engineering to make wild relatives more productive or introduce wild traits like drought resilience into domesticated varieties. This would increase the genetic diversity of crops available to farmers and help avoid issues inherent to monocultures, most notably the uncontrollable spread of plant diseases. 


At present, most crops engineered with CRISPR technology do not contain genes from a different organism (i.e., not transgenic), and thus do not have to face the additional regulatory hurdles that transgenics like Bt crops did. However, crops developed via CRISPR are still excluded from organic farming.

What are examples of genetically engineered organisms currently on the market or in active development that address sustainability issues?

  • Improving sustainability and land conservation: potatoes that are slower to spoil, wheat with enhanced carbon sequestration capacity 

  • Increasing food quality and nutrition: vegetables with elevated micronutrient content 

  • Increasing and protecting agricultural yields: higher-yield fish, flood-tolerant rice

  • Protecting against plant and animal pests and diseases: blight-resistant chestnut, HLB-resistant citrus

  • Cultivating alternative food sources: bacteria for animal-free production of protein

Which agricultural stakeholders are engaged in genetic engineering R&D and will benefit from federal funding?

The pool of producers of genetically engineered crops is increasingly diverse. In fact, of the 37 new crops evaluated by APHIS’s Biotechnology Regulatory Service under the updated guidelines since 2021, only three were produced by large (>300 employees) for-profit corporations. Many were produced by startups and/or not-for-profit research institutions. USDA NIFA research grants predominantly fund land-grant universities; other awardees include private nonprofit organizations, private universities, and, in select cases (such as small business grants), private for-profit companies.

Why are GMOs so often vilified?

Historically, the concept of GMOs has been associated with giant multinational corporations, the so-called Big Ag. The most prevalent GMOs in the last several decades have indeed been produced by industry giants such as Dow, Bayer, and Monsanto. This association has fueled the negative public perception of GMOs in several ways, including: 



  • Some companies, such as Dow, were responsible for producing the notorious chemical Agent Orange, used to devastating effect in the Vietnam War. While this is an unfortunate shadow on the company, it is unrelated to the properties of genetically engineered crops.

  • Companies have been accused of financially disadvantaging farmers by upholding patents on GMO seeds, which prevents farmers from saving seeds from one year’s crop to plant the next season. Companies have indeed enforced seed patents (which generally last about 20 years), but it is important to note that (1) seed-saving has not been standard practice on many American farms for many decades, since the advent of (nonbioengineered) hybrid crops, from which saved seeds will produce an inferior crop, and (2) bioengineered seeds are not the only seeds that can be and are patented.