Climate Change Challenges and Solutions in Forestry & Agriculture

Climate change is already impacting agriculture and forestry production in the U.S. However, these sectors also hold the key to adaptation and mitigation. The United States Department of Agriculture (USDA) is at the forefront of addressing these challenges and developing solutions. Understanding the implications of climate change in agriculture and forestry is crucial for our nation to forge ahead with effective strategies and outcomes, ensuring our food and shelter resources remain secure.

Currently, the atmosphere contains more key greenhouse gasses (nitrous oxides, carbon dioxide, methane) than ever in history thanks to human activities. Industrial, agricultural, and deforestation practices add to the abundance of these critical gasses that are warming our planet. This has become more noticeable through more frequent severe weather and natural disasters with record heat waves, droughts, tornadoes, and rainfall. In 2023, global climate records of temperatures were broken and hit the highest in the last 174 years. Ocean temperatures are reaching record levels, along with major melts in ice sheets. All these changes will affect forestry and agriculture in profound ways. Crop damaging insects and diseases, along with other stresses caused by extreme changes, will also have cascading effects.

Adjustments or adaptations in response to climate change have progressed globally, with planning and implementation across multiple sectors and regions. While much attention is being paid to reforestation and reducing deforestation, gaps still exist and will need continued attention and financial input to address current and future challenges. Agriculture and forestry are two sectors worth exploring as they can open up climate adaptation and mitigation solutions that have positive cascading benefits across regions.

Challenges in the Agriculture and Forestry Sector

Agriculture contributes to greenhouse gas emissions through several activities, such as burning crop residues, soil management and fertilization, animal manure management, and rice cultivation. In addition, agriculture requires significant amounts of energy for vehicles, tractors, harvest, and irrigation equipment. Agriculture involves complex systems that include inputs of fertilizers and chemicals, management decisions, social factors, and interactions between climate and soil.

Most agriculture operations need fertilizers to produce goods, but the management and specific use of fertilizers need further focus. According to the Inventory of Greenhouse Gas Emissions and Sinks, agriculture contributes 9.4% of total greenhouse gas emissions in the United States.

Agriculture is particularly vulnerable to climate change because many operations are exposed to climatic changes in the natural landscape. There has been widespread economic damage in agriculture due to climate change. Individuals and farms have been affected by flooding, tornadoes, extreme wildfires, droughts, and excessive rains. Loss of property and income, human health, and food security is real for agriculture producers. Adverse impacts will continue to be felt in agricultural systems, particularly in crop production, water availability, animal health, and pests and diseases.

Forestry is a major industry in the U.S. and plays a key role in regulating the climate by transferring carbon within ecosystems and the atmosphere.. Forests remove carbon dioxide (CO2) from the atmosphere and store it in trees and soils. Forestry has seen a decline in the last few decades due to development and cropland expansion. The decline in forestry acres affects essential services such as air purification, regulating water quantity and quality, wood products for shelter, outdoor recreation, medicines, and wildlife habitat. Many Indigenous people and Tribal Nations depend on forest ecosystems for food, timber, culture, and traditions. Effective forest management is crucial for human well-being and is influenced by social and economic factors.

Land cover types and distribution of the United States. Forest lands have decreased in the last two decades. (Source: Fifth National Climate Assessment)

Forests are affected by climate change on local or regional levels based on climate conditions such as rainfall and temperature. The West has been significantly affected, with higher temperatures and drought leading to more wildfires. Higher temperatures come with higher evaporation rates, leading to drier forests that are susceptible to fires. The greater amount of dry wood causes extensive fires that burn more intensely. Fire activity is projected to increase with further warming and less rain. Since 1990, these extensive fires have produced greater greenhouse gas emissions of carbon dioxide (CO2). Other regions of the country with forests that typically receive more rain, like the southeast and northeast, are challenging to predict fire hazards. Other climate change effects include insects, diseases, and invasive species, which change forest ecosystems’ growth, death, and regeneration. Various degrees of disruption can impact a forest’s dynamics.

Current Adaptation Approaches in Agriculture and Forestry

Since agriculture’s largest contribution to greenhouse gas emissions is agriculture soil management, emphasis is being placed on reducing emissions from this process. Farmers are tilling less and using cover crops to keep the ground covered, which helps soils perform the important function of carbon storage. These techniques can also help lower soil temperatures and conserve moisture. In addition, those working in the agriculture sector are taking measures to adapt to the changing climate by developing crops that can withstand higher temperatures and water stress. Ecosystem-based solutions such as wetland restoration to reduce flooding have also been effective. Another potential solution is agroforestry, in which trees are planted, and other agricultural products are grown between the trees or livestock is grazed within a forestry system. This system provides shade to the animals and enhances biodiversity. It protects water bodies by keeping the soil covered with vegetation throughout the year. The perennial vegetation also stores carbon in above-ground vegetation and below-ground roots.

In the forestry space, land managers and owners are developing plans to adapt to climate challenges by building adaptations in key areas such as relationships and connections of land stewardship, research teamwork, and education curriculum. Several guides, assessments, and frameworks have been designed to help private forest owners, Tribal lands, and federally managed forests. Tribal adaptation plans also include Tribal values and cultural considerations for forests. The coasts will be adapting to more frequent flooding, and relocation of recreation areas in vulnerable areas is being planned. In major forestry production areas in the West, forestry agencies are developing plans for prescribed burning to keep dead wood lower, eliminate invasive species, and enable fire-adapted ecosystems to thrive, all while reducing severe wildfires. Thinning forests and fuel removal also help with reducing wildfire risk.      

While both sectors have made progress in quickly adjusting their practices, much more needs to be done to ensure that land managers and affected communities are better prepared for both the short-term and long-term effects of climate change. The federal government, through USDA, can drive adaptation efforts to help these communities.

Current Policy

The USDA created the Climate Adaptation and Resilience Plan in response to Executive Order 14008, Tackling the Climate Crisis at Home and Abroad, which requires all federal agencies to develop climate adaptation plans in all public service aspects, including management, operations, missions, and programs. 

The adaptation plan focuses on key threats to agriculture and forestry, such as:

Many USDA agencies have developed actions to address the impacts of climate change in different mission areas of USDA. These adaptation plans provide information for farmers, ranchers, forest owners, rural communities, trade and foreign affairs on ways to address the impact of climate change that affects them the most. For example, farm and ranch managers can use COMET Farm, a user-friendly online tool co-developed by Colorado State University and USDA that helps compare land management practices and account for carbon and greenhouse gas emissions.

USDA has invested $3.1 billion in Partnerships for Climate-Smart Commodities, encompassing 141 projects that involve small and underserved producers. The diverse projects are matched financially with non-federal funds and include over 20 tribal projects, 100 universities, including 30 minority-serving institutions, and others. The goals of the federal and private sector funding include:

The USDA Forest Service has also developed its own Climate Adaptation Plan that comprehensively incorporates climate adaptation into its mission and operations. The Forest Service has cultivated partnerships with the Northwest Climate Hub, National Park Service, Bureau of Land Management, University of Washington, and the Climate Impacts Group to develop tools and data to help with decision-making, evaluations, and developing plans for implementation. One notable example is the Sustainability and Climate website, which provides information on adaptation, vulnerability assessments, carbon, and other aspects of land management. 

Conclusion

While sustained government incentives can help drive adaptation efforts, it is important for everyone to play a role in adapting to climate change, especially in the agriculture and forestry sectors. Purchasing products that are grown sustainably and in climate-smart ways will help protect natural resources and support these communities. Understanding the significance of resilience against climate changes and disruptions is crucial, both in the short and long term. These challenges require collaborators to work together to creatively solve problems in addressing greenhouse gas contributions. Climate models can help solve complex problems and test different scenarios and solutions. As the Fifth National Climate Assessment of the United States notes, greenhouse gas concentrations are increasing, global warming is on the rise, and climate change is currently happening. The choices we make now can have a significant impact on our future.

The Federation of American Scientists values diversity of thought and believes that a range of perspectives — informed by evidence — is essential for discourse on scientific and societal issues. Contributors allow us to foster a broader and more inclusive conversation. We encourage constructive discussion around the topics we care about.

Soil and Water: Why We Need Conservation Agriculture 

On May 1, 2023, a devastating dust storm  – the result of severe wind erosion –  propelled soil across highway I-55, causing numerous accidents, injuries, and loss of life. The factors that led to this erosion event were excessive tillage, exposed soils, and windy conditions. In response, the Journal of Soil and Water Conservation published an article proposing a “Soil Health Act,” to improve conservation agriculture policy.  

Most erosion is a direct result of human activities, such as leaving the soil bare for extended periods and excessive tillage in agricultural fields. Extreme weather events exacerbate soil erosion, with large wind erosion events damaging crops and causing air pollution in nearby communities. Water erosion can strip productive topsoil from cropland, reducing crop productivity and depositing sediment in water bodies. The Fifth National Climate Assessment further confirms that extreme weather is on the rise.

The United States boasts some of the most productive soils globally, particularly in the Midwest region, known as the corn belt. This vast expanse of farmland, which drains into the Mississippi River and eventually reaches the Gulf of Mexico, is a crucial part of our country’s agricultural landscape. However, this network of soil and water, while offering significant benefits, also poses significant challenges if not properly cared for.

Map of U.S. major agriculture cropland areas in dark green. These regions also have highly productive soils. The Midwest soils of Iowa, southern Minnesota, Illinois, Indiana, southern Wisconsin, and Ohio are globally significant breadbasket soils. (Source: National Agricultural Statistics Service, 2017).

Wind erosion in the left photo is active in many regions of the country, leading to poor soil conditions for agricultural production. Water erosion takes productive topsoil and applied fertilizers and chemical products used off cropland as it heads toward streams. (Source: Jodie McVane (left) and Rodale Institute (right))

Fertilizers, herbicides, pesticides, and other products can enter water sources through two primary pathways: soil and chemical losses. Chemical losses can contaminate groundwater by moving down through the soil profile. Contaminated groundwater flows into private and public water supply wells , with many wells having high nitrate levels from commercial fertilizers and animal applications of manure. Nitrates can pose health risks to infants, cause toxic anemia, and how red blood cells deliver oxygen to the cells and tissues. In adults, reproductive health issues and certain cancers are also possible. And it’s not just nitrates: Atrazine, a common chemical used to control weeds, is found in many drinking wells across the U.S.

When soil erodes it takes nitrates, atrazine, and other contaminants away from land surfaces and into surface waterways, leading to water quality problems and soil sediment pollution. Many land managers try to avoid creating runoff, but agricultural practices leaving soils exposed with no plant residues and erosive storms make this a common occurrence. Soil erosion impacts can also be experienced as sedimentation and murky waters in recreational water bodies, roads covered with mud, and dirty snow covered with wind-blown soils, all of which affect everyday life and are undesirable for fish and plants. The lack of soil protection during the non-crop growing season in the U.S. has caused soil erosion and degradation of precious resources, diminishing the ability to grow food, fiber, and wood and provide clean water. Thus, erosion affects long-term production and economic viability for farms.

Protecting Our Soils Through Conservation Agriculture

Fortunately, we can find solutions through conservation agriculture–a system of farming practices, which includes cover crops and reduced tillage, that protects soil and prevents both soil and chemical losses. Growing plants year-round can address soil loss by keeping the soil covered with plants known as cover crops like corn, soybean, and cotton. Others, like grasses, legumes, and forbs can be grown for seasonal cover. Reduced tillage from cover crops can be beneficial in several different ways:

They control erosion, build healthy soils, and improve water quality. Cover crops planted during these periods can scavenge unused fertilizers from the previous crop and prevent nutrients from reaching surface and groundwater systems. Reducing tillage or switching to no-till cropping systems can also increase soil structure and aid in water infiltration, helping water get into the soil instead of running off.

When soils have many soil organisms with a favorable habitat, they can break down chemical pollutants effectively before reaching groundwater. Cover crops can also play a vital role in absorbing nitrates or other contaminants. Studies have shown that cover crops can reduce nitrates by 48% before they reach subsurface waters. Reduced tillage can provide habitats for these organisms by reducing soil disturbance. 

Cover crops capture sunlight and use plants’ photosynthetic processes to capture carbon in plant shoots and root systems. Much carbon is stored in our soils through plant roots. When the plants die, their roots remain in the soil, keeping the carbon sequestered. Excessive tillage breaks soil structure and releases carbon. Reduced tillage and no-till cropping systems allow soils to better maintain their carbon content.

Diverse cover crop species can be mixed, which leads to the diversification of plant roots and above-ground biomass. Furthermore, diversity above ground also means diversity below ground for soil organisms. Grasses can also be utilized alone to effectively suppress weeds and protect against erosion. Cover crops can capture carbon and increase carbon storage in soils, so planting cover crops yearly is important. (Source: Jodie McVane)

Federal and State Government Incentives to Expand Conservation Agricultural Practices     

Overall, cover crop use is low in the United States and varies depending on established social norms, soils, climate, primary crops, outreach programs, and conservation technical assistance. According to the USDA Economic Research Service, cover crop use increased from 3.4% of U.S. cropland in 2012 to 5.1% in 2017. The increase is positive, but millions of cropland acres can still benefit from applying cover crops and reduced tillage. While the use of conservation agriculture is an individual land manager’s choice and overall cover crop remains low, the USDA report notes that there has been some progress and positive trends. Continued incentives from both federal and state governments will be crucial to encourage wide adoption of conservation agricultural practices. 

Many USDA programs provide cost-sharing incentives to farmers who voluntarily encourage using cover crops, reducing tillage, planting grasslands, and diversifying crop rotations. The Farm Bill provides funding to assist farmers through the USDA-Natural Resources Conservation Service (USDA-NRCS) programs, such as the Environmental Quality Incentive Program (EQIP) and the Conservation Stewardship Program (CSP). In addition to the Farm Bill, the Inflation Reduction Act provided additional funds to USDA-NRCS through these same programs to promote Climate Smart Agriculture and Forestry Mitigation activities. The Inflation Reduction Act makes nearly $20 billion additional dollars available over five years for these programs. Current federal policy allows these programs to fund conservation practices for 3-5 years on a typical farm. Some states are also leading in incentivizing land managers to apply cover crops. States providing monetary incentives include Maryland, Iowa, Missouri, Indiana, Ohio, and Virginia.

A mix of cover crops of grasses and broadleaves in the fall after a corn crop in the Midwest. (left photo) A cereal ryegrass cover crop holds the soil in place with fibrous root systems and protects the soil surface from water or wind erosion while suppressing weeds. (right photo) (Source: Jodie McVane)

Current Gaps and Proposed Policies

We will need lasting policies and sustainable funding  to ensure the long-term adoption of conservation agricultural practices. Current voluntary conservation programs only provide funding for a 5-year period, which does not guarantee that farmers will permanently transition to conservation agriculture practices.

The federal government should incentivize the adoption of soil health practices and conservation agriculture widely across the United States in three ways:     

Fund organizations that can provide educational events for farmers, consultants, policy groups, and consumers. These organizations are valuable and promote farmer-led education and peer-to-peer mentoring. Farmers enjoy learning from other farmers along with research experts.

Reward farmers who adopt conservation agriculture systems by providing long-term payments for continued use of conservation practices. Farmers who adopt these practices would benefit from their ecosystem services, such as building soil carbon, improving water quality, maintaining stable soil structure, and increasing water infiltration, which could significantly impact the health of our cropland acres.

Provide a reduction-based premium discount in the Federal Crop Insurance program for agricultural commodity producers that use risk-reduction farming practices, including cover crops. A discount on the insurance premium can have a lasting effect and provide a continued financial incentive to perform conservation on farms. 

Soil is the foundation of our national health, providing food, homes, fibers, and the structural foundations for everyday life. Soils filter water for clean drinking, safe fishing, and other recreational activities, enabling our farms, factories, homes, schools, universities, and state and federal governments to access clean water; the widespread adoption of conservation agricultural practices to protect soils is key to ensuring food security for current and future generations in the United States. Healthy soils can protect not only our national treasure but also our national security and ability to care for our citizens. 

As President Franklin D. Roosevelt said, “The nation that destroys its soil destroys itself.” Imagine driving around the country and seeing continuous vegetation growing, protecting soils, capturing carbon, and protecting our water resources. It would be a different landscape in our nation and, over the years, could improve the culture of agriculture.

The Federation of American Scientists values diversity of thought and believes that a range of perspectives — informed by evidence — is essential for discourse on scientific and societal issues. Contributors allow us to foster a broader and more inclusive conversation. We encourage constructive discussion around the topics we care about.

Regulations, funding, and knowledge gaps: Challenges and opportunities in bringing agricultural biotechnology to market

Innovations in agriculture will play an increasingly important role in America’s quest to ensure resilient and sustainable production of food, medicine, and bioenergy products. Biotechnology, spurred by advances such as cheap sequencing, offers a realm of possibilities for novel agricultural inputs, such as more targeted pesticides that are less toxic and less likely to cause tolerance, less carbon-intensive alternatives to fertilizers, and more climate-resilient crop varieties. 

However, research and development of new agricultural biotech products can be expensive and time-consuming, due to the large physical scale and long timelines of field trials. At the same time, federal funding for agriculture research has historically paled in comparison to funding for defense, energy, and human health. For example, in 2022, the NIH’s R&D budget was more than 16 times that of the USDA’s. 

The Biden administration has demonstrated its recognition of the need to accelerate research and development in agricultural biotechnology, featuring it prominently in 2022’s Executive Order on Advancing Biotechnology and Biomanufacturing Innovation for a Sustainable, Safe, and Secure American Bioeconomy. Additionally, a bill to expand authorization of funding for a moonshot USDA research grant program, AgARDA (Agriculture Advanced Research and Development Authority), has broad bipartisan support. At the same time, there has been a commensurate increase in private funding

While this multi-front surge in enthusiasm and investment is welcome, many challenges remain in translating money, ideas, and laboratory results to the field and the market, including communication between the various stakeholders in agricultural biotechnology R&D. To better understand industry priorities and potential barriers to progress, we spoke to members of the executive team of Fall Line Capital (FLC), a venture capital (VC) and private equity firm that invests in food/agriculture startups. Fall Line’s investments include new biopesticides (Greenlight, Micropep), functional microbes (Pluton, Wild Microbes), and new equipment (Guardian Agriculture, Rantizo, LUMO), in addition to managing a farmland portfolio. As lifelong farmers as well as agriculture technology (agtech) investors, Clay Mitchell and Scott Day offer a multifaceted perspective on the current landscape.

We then outline actions for government actors that can address the challenges identified in our interview, in three key areas: regulatory oversight, federal R&D funding, and bioliteracy.

Q: What can the U.S. government do to provide a supportive landscape for new agricultural biotechnology?

Fall Line Capital: I think the biggest hurdles are regulatory. If the government wants to be truly supportive and innovative, it should be working to revamp the convoluted regulatory environment. The current system wasn’t designed to handle all the new technology being developed with novel mechanisms of action, so hurdles to creating and commercializing stifle innovation even more than they did in the past. 

Looking at new technology like RNA– and micropeptide-based pesticides, it’s been a difficult process to get those products registered, even though they should be embraced: compared to conventional pesticides, they have the potential to be highly specific to the target organism and minimally toxic to non-target organisms. During GreenLight’s discussions with the EPA to register their RNAi biopesticide for tackling invasive potato beetles, the EPA seemed to understand that this sort of technology is the future, but movement through the registration approval process was slow nevertheless; the application sat there for five 5 years. There were dozens of other biological pesticide product applications, and the EPA had to give every application the same level of scrutiny, even if many were obviously ineffective. There’s pressure to register more biological products as a prominent alternative to traditional chemical products, despite generally low efficacy. This clutters up the process, and the EPA was already short-staffed after extensive attrition during COVID. 

A substantial amount of the innovation is coming from small companies like Greenlight that don’t have the resources (which many of the large incumbent ag companies have) to navigate the current registration programs and protocols, which are spread across multiple agencies involved in regulating biotechnology: the USDA, EPA, and FDA. There needs to be a new concierge resource beyond what the Unified Website for Biotechnology Regulation currently provides, that could direct you to the right office, the right registration process, as well as appropriate funding opportunities and legal resources.

Q: What do you think are currently the most pressing challenges in agriculture?

FLC: Pest resistance continues to be a very serious concern in agriculture, so new and effective control measures need to be continually developed for all pests: weeds, insects, disease. There are two major pests of concern for my own farm in Western Canada. First, herbicide-resistant kochia weed, which has become a huge problem in the last five years all across the world. No one’s sure how exactly it spread so quickly. Second, flea beetles are decimating cruciferous crops. RNAi-based insecticides could be very effective here, if we can achieve sufficient persistence of the insecticide and avoid impacting non-target species.

In terms of challenges to agriculture-based businesses, there’s a lack of funding right now for getting tech to market. Funding for agtech from VC firms fell last year, as it did for most forms of tech. This was  following a very strong period of agtech funding for the previous two years, during which we saw over-investment in several sectors, such as alternative meat and indoor farming. At the same time, agtech companies typically have long timelines to product launch and need more funding than just one VC can provide. Right now, many companies who come to Fall Line for money are just looking for short-term “bridge funding” so they can make payroll and buy time until they can demonstrate enough progress to raise a successful “series” round with good valuation and favorable investment terms. And no one is going public right now.

Q: What are common knowledge gaps for agtech startups regarding farmers’ needs?

FLC: Agtech startups are often centered around a great idea or technology that’s looking for a problem to solve — but it’s hard for a specific technology to meet the needs of a variable problem. Farmers’ needs and priorities (e.g. pests, nutrients, etc.) are incredibly diverse, varying dramatically by crop and location, even from one field to the next on the same farm, or even within the same field. Today, it is very hard to get an accurate understanding of what is needed or desired at the farm level because there is no easy way to connect with growers on a broad scale. Farm papers have diminished in popularity just like mainstream papers, radio has diminished as well. Unless you have the email address or cell phone number of a farmer, it is hard to connect directly with them now, and most farmers don’t like doing surveys of any type anyway — and those that do aren’t that representative of the industry. I think this is why most types of polls are becoming less accurate as it is increasingly more difficult to get a representative sample of opinions. 

Farmers can be hesitant to adopt new technologies, since the risk can be high. And once they’ve been burned once by a product that failed to work as advertised, they’re unlikely to be willing to trust that company, or even that type of product, in the future. For example, last year, North Dakota State University scientists coordinated a large-scale field trial where it showed in a large field trial that most new biological products aimed at improving nitrogen-fixation in non-legume crops were ineffective at increasing yield. In general, the efficacy of biologicals can vary greatly depending on the exact field conditions, making it hard to reliably achieve the advertised result. There’s a huge jump from greenhouse results to field trials, another huge jump from field trials to commercial fields. But when a product’s value is obvious, farmers actually embrace new technology very quickly: both GMO crops and GPS achieved widespread adoption in a very short period of time.

Finally, technology developers should keep in mind that problems can be solved by old or simple technology. When people think about controlled-environment farming, their minds jump to fancy things like vertical farming — but with irrigation and mulch films, you’re 90% of the way there. Simply by adding a mulch film to heat the soil, farmers can greatly extend the growing season in northern climates by a month. This approach allowed us us to substantially increase the yield from our corn fields in Wisconsin.


This conversation illustrates a clear need for change in three key areas:

Federal funding for agricultural R&D

Given the unreliability of private market funding for agricultural biotechnology R&D, which often entails long turnaround times and low margins relative to traditional tech companies, substantial federal funding through research programs such as AgARDA is vital for accelerating R&D. AgARDA, based on the ARPA Advanced Research Projects Agency model, would allow the USDA to support the development of transformative technologies for focus areas of its choosing. However, despite its popularity, AgARDA, which was first authorized in the 2018 Farm Bill for $50 million annually for FY2019-2023, only received $2m in that timeframe. The USDA requested $5m for AgARDA in FY2022 and again in FY2023; it only received $1m each year. By contrast, ARPA-H, the human health equivalent, was authorized in FY2022 and immediately received its full $1 billion authorization, followed by $1.5b in FY2023. 

The USDA has published an implementation framework for AgARDA. Unfortunately, misalignment between USDA and Congress appears to be preventing AgARDA from being fully funded to its authorized levels. Members of the Congressional agriculture committees want the USDA to show that it has made progress with the $2m it has received before they allocate additional funding, namely the appointment of a dedicated director and initiation of a pilot program with calls for grant proposals. However, the USDA has deemed the $2m insufficient to support long-term staff or a formal grant program, especially since the appropriations require annual renewal. The current impasse means that no AgARDA projects have been rolled out, despite the pressing nature of the research priorities identified by the USDA.  

The following steps should be taken for AgARDA to achieve its full potential:

Regulatory oversight

The U.S. regulatory system for biotechnology needs to be a) expanded, with funding for a larger agency staff to process applications quickly; b) updated, to be flexible such that it can accommodate new-to-market technologies; and c) coordinated, to streamline approval processes. 

The National Security Commission on Emerging Biotechnology (NSCEB) addresses these unmet needs in its interim report. First, NSCEB is “considering options to facilitate higher staffing levels”; this should be made a priority. 

Second, concerning regulatory oversight, NSCEB identified three potential paths for improvement:

Of these, the hybrid approach would likely provide the greatest flexibility. In contrast, discrete changes to individual statutes will likely involve slow, piecemeal changes that can easily become outdated again. While a unified regulatory process may be more streamlined, the report’s phrasing creates a sharp binary delineation between biotech and conventional that does not reflect reality. Such a delineation could engender a lot of wasted time debating biotech versus conventional classification for a given product. 

Finally, to address intra- and interagency coordination, the NSCEB presented two Farm Bill amendments that deserve Congressional support: the Biotechnology Oversight Coordination Act and the Agriculture Biotechnology Coordination Act.

Bioliteracy and agricultural education

Market demand and regulations are informed by consumer perceptions, which then impact R&D decisions. For example, fear of consumer and regulatory backlash can dissuade companies from investing in new genetic engineering technology for developing new plant varieties, despite their potential to improve agricultural sustainability. Increased bioliteracy across the American public would help consumers, businesses, and policymakers alike better understand new biotechnologies and engage with the burgeoning bioeconomy. This is a need that the NSCEB has also highlighted. At the K-12 level, improvements could comprise updating science curriculums to include contemporary topics like gene editing, as well as amending civics curriculums to better explain the modern functions of regulatory agencies. In addition, agricultural education can be embedded into biology and earth science curriculums to reconnect the public at large with the realities faced by producers. Similar to computer science literacy improvements through standard setting and funding, bioliteracy can be improved through state-level education initiatives.

The Federation of American Scientists values diversity of thought and believes that a range of perspectives — informed by evidence — is essential for discourse on scientific and societal issues. Contributors allow us to foster a broader and more inclusive conversation. We encourage constructive discussion around the topics we care about.

Investing in Digital Agriculture Innovation to Secure Food, Yields, and Livelihoods

Summary 

Smallholder farmers and their households account for more than 2 billion people—almost one-third of humanity and more than two-thirds of the world’s poor. Smallholder farmers are the economic engine of local livelihoods and critical local sources of nutrition and food security. Their persistently low agricultural productivity is a major driver of global poverty and food insecurity. Many known agricultural practices and technologies could improve farmers’ yields and incomes, but systemic barriers and information gaps hamper their adoption. Today, with the rapid growth of mobile phone penetration throughout the developing world, we are in a unique moment to deploy new digital technologies and innovations to improve food security, yields, and livelihoods for 100 million smallholder farmers by 2030.

To spearhead USAID’s leadership in digital agriculture and create a global pipeline from tested innovation to scaled impact, USAID should launch a Digital Agriculture for Food Security Challenge, establish a Digital Agriculture Innovation Fund, and convene a Digital Agriculture Summit to jump-start the process. 

Challenge and Opportunity

Two-thirds of the world’s ultra-poor depend on agriculture for their livelihood. Low productivity growth in this sector is the biggest obstacle to poverty reduction and sustainable food security. The Food and Agriculture Organization’s 2022 report on The State of Food Security and Nutrition in the World estimates that around 2.3 billion people—nearly 30% of the global population—were moderately or food insecure in 2021 and as many as 828 million were affected by hunger. Improving smallholder farmer incomes and local food security is critical to achieving the United Nations Sustainable Development Goals by 2030, particularly ending poverty (SDG 1) and eliminating hunger (SDG 2). Yet smallholder farmers typically harvest only 30%–50% of what they could produce. Smallholder farmers are particularly at risk from climate-driven shocks, and fundamental changes to growing conditions make climate adaptation a key challenge to improving and securing their yields.

More than $540 billion is spent in the agricultural sector each year through public budgets, mostly subsidies on farm inputs and outputs. Of USAID’s over $1 billion annual budget for agricultural aid, much attention is given to direct nutrition and economic assistance as well as institution and market-shaping programs. By contrast, efforts in climate adaptation and food security innovation like the Feed the Future Innovation Labs and Agriculture Innovation Mission for Climate (AIM for Climate) rely on traditional, centralized models of R&D funding that limit the entry and growth of new stakeholders and innovators. Not enough investment or attention is paid to productivity-enhancing, climate-adaptation-focused innovations and to translating R&D investment into sustainable interventions and scaled products to better serve smallholder farmers. 

USAID recognizes both the challenge for global food security and the opportunity to advance economic security through evidence-driven, food-system level investments that are climate-driven and COVID-conscious. As directed by the Global Food Security Act of 2016, the U.S. Government Global Food Security Strategy (GFSS) 2022–2026 and its counterpart Global Food Security Research Strategy (GFSRS) highlight the potential for digital technologies to play a pivotal role in the U.S. government’s food system investments around the world. The GFSS describes “an ecosystem approach” that prioritizes the “financial viability of digital products and services, rather than one that is driven predominantly by individualized project needs without longer-term planning.” A core part of achieving this strategy is Feed the Future (FTF), the U.S. government’s multi-agency initiative focused on global hunger and food security. Administrator Samantha Powers has committed $5 billion over five years to expand FTF, creating an opportunity to catalyze and crowd in capital to build a thriving, sustainable global agriculture economy—including innovation in digital agriculture—that creates more resilient and efficient food systems.

However, USAID stakeholders are siloed and do not coordinate to deliver results and invest in proven solutions that can have scaled sustainable impact. The lack of coordination means potential digital-powered, impactful, and sustainable solutions are not fostered or grown to better serve USAID’s beneficiaries globally. USAID’s Bureau for Resilience and Food Security (RFS) works with partners to advance inclusive agriculture-led growth, resilience, nutrition, water security, sanitation, and hygiene in priority countries to help them accelerate and protect development progress. USAID’s FY 2023 budget request also highlights RFS’s continued focus on supporting “partner countries to scale up their adaptation capacity and enhance the overall climate resilience of development programming.” The FTF Innovation Labs focus on advanced agricultural R&D at U.S. universities but do not engage directly in scaling promising innovations or investing in non-academic innovators and entrepreneurs to test and refine user-centered solutions that fall within FTF’s mandate. USAID’s emerging Digital Strategy and Digital Development Team includes specific implementation initiatives, such as a Digital Ecosystem Fund and an upcoming Digital Vision for each sector, including agriculture. USAID is also planning to hire Digital Development Advisors, whose scope aligns closely with this initiative but will require intentional integration with existing efforts. Furthermore, USAID country missions, where many of these programs are funded, often do not have enough input in designing agriculture RFPs to incorporate the latest proven solutions and digital technologies, making it harder to implement and innovate within contract obligations.

This renewed strategic focus on food security through improved local agricultural yields and climate-resilient smallholder farmer livelihoods, along with an integration of digital best practices, presents an opportunity for USAID and Feed the Future. By using innovative approaches to digital agriculture, FTF can expand its impact and meet efficiency and resilience standards, currently proposed in the 2022 reauthorization of the Global Food Security Act. While many known agricultural practices, inputs, and technologies could improve smallholder farmers’ yields and incomes, adoption remains low due to structural barriers, farmers’ lack of information, and limitations from existing agriculture development aid practices that prioritize programs over sustainable agricultural productivity growth. Today, with the rapid pace of mobile phone penetration (ranging between 50% and 95% throughout the developing world), we are in a unique moment to deploy novel, emerging digital technologies, and innovations to improve food security, yields, and livelihoods for 100 million smallholder farmers by 2030.

There are many digital agriculture innovations – for example digital agricultural advisory services (DAAS, detailed below) – in various stages of development that require additional investment in R&D. These innovations could be implemented either together with DAAS or as stand-alone interventions. For example, smallholder farmers need access to accurate, reliable weather forecasts. Weather forecasts are available in low- and middle-income countries (LMICs), but additional work is needed to customize and localize them to farmers’ needs and to communicate probabilistic forecasts so farmers can easily understand, interpret, and incorporate them in their decision-making. 

Similarly, digital innovations are in development to improve farmers’ linkages to input markets, output markets, and financial services—for example, by facilitating e-subsidies and mobile ordering and payment for agricultural inputs, helping farmers aggregate into farmer producer organizations and negotiate prices from crop offtakers, and linking farmers with providers of loans and other financial services to increase their investment in productive assets.

Digital technologies can also be leveraged to mobilize smallholder farmers to contribute to climate mitigation by using remote sensing technology to monitor climate-related outcomes such as soil organic carbon sequestration and digitally enrolling farmers in carbon credit payment schemes to help them earn compensation for the climate impact of their sustainable farming practices.

Digital agricultural advisory services (DAAS) leverage the rapid proliferation of mobile phones, behavioral science, and human-centered design to build public extension system capacity to empower smallholder farmers with cutting-edge, productivity-enhancing agricultural knowledge that improves their food security and climate resilience through behavior change. It is a proven, cost-effective, and shovel-ready innovation that can improve the resilience of food systems and increase farmer yields and incomes by modernizing the agricultural extension system, at a fraction of the cost and an order of magnitude higher reach than traditional extension approaches.

DAAS gives smallholder farmers access to on-demand, customized, and evidence-based agricultural information via mobile phones, cheaply at $1–$2 per farmer per year. It can be rapidly scaled up to reach more than a hundred million users by 2030, leading to an estimated $1 billion increase in additional farmer income per year.

USAID currently spends over $1 billion on agricultural aid annually, and only a small fraction of this is directed to agricultural extension and training. Funding is often program-specific without a consistent strategy that can be replicated or scaled beyond the original geography and timeframe. Reallocating a share of this funding to DAAS would help the agency achieve strategic climate and equity global food security goals

Scaling up DAAS could improve productivity and transform the role of LMIC government agricultural extension agents by freeing up resources and providing rapid feedback and data collection. Agents could refocus on enrolling farmers, providing specialized advice, and improving the relevance of advice farmers receive. DAAS could also be integrated into broader agricultural development programs, such as FAO’s input e-subsidy programs in Zambia and Kenya.
DAAS: A highly scalable tool to achieve global food security and climate resilience

Plan of Action

To spearhead USAID’s leadership in digital agriculture and create a global pipeline from tested innovation to scaled impact, USAID, Feed the Future, and its U.S. government partners should launch a Digital Agriculture for Food Security Challenge. With an international call to action, USAID can galvanize R&D and investment for the next generation of digitally enabled technologies and solutions to secure yields and livelihoods for one hundred million smallholder farmers by 2030. This digital agriculture moonshot would consist of the following short- and long-term actions:

Recommendation 1: Allocate $150 million over five years to kickstart the Digital Agriculture Innovations Fund (DAI Fund) to fund, support, and scale novel solutions that use technology to equitably secure yields, food security, and livelihoods for smallholder farmers. 

The fund’s activities should target the following:

The fund’s investment priorities should align with stated GFSS and GFSRS objectives, including solutions focused on climate-smart agricultural innovation, enhanced nutrition, and food systems, genetic innovation, and poverty reduction. Program activities and funding should coordinate with FTF implementation in strategic priority countries with large agricultural sectors and mature, low-cost mobile networks such as Ethiopia, India, Kenya, Nigeria, and Pakistan. It should also collaborate with the FTF Innovation Lab and the AIM for Climate Initiative networks.

Recommendation 2: Convene the Digital Agriculture Summit to create an all-hands-on-deck approach to facilitate and accelerate integrated digital agriculture products and services that increase yields and resilience. 

USAID will announce the dedicated DAI Fund, convening its interagency partners—like the US Department of Agriculture (USDA), Development Finance Corporation (DFC), Millennium Challenge Corporation (MCC), US Africa Development Foundation (USADF) as well as philanthropy, private sector capital, and partner country officials and leaders to chart these pathways and create opportunities for collaboration between sectors. The Summit can foster a community of expertise and solidify commitments for funding, in-kind resources, and FTF country partnerships that will enable DAI Fund solutions to demonstrate impact and scale. The Summit could occur on the sidelines of the United Nations General Assembly to allow for greater participation and collaboration with FTF country representatives and innovators. Follow-up activities should include:

Conclusion

With the exponential adoption of mobile phones among smallholder farmers in the past decade, digital agriculture innovations are emerging as catalytic tools for impact at an unprecedented scale and social return on investment. Devoting a small percentage (~2%–5%) of USAID’s agricultural aid budget to DAAS and other digital agriculture innovations could catalyze $1 billion worth of increased yields among 100 million smallholder farmers every year, at a fraction of the cost and an order of magnitude higher reach than traditional extension approaches.

Achieving this progress requires a shift in strategy and an openness to experimentation. We recommend establishing a Digital Agriculture Innovation Fund to catalyze investment from USAID and other stakeholders and convening a global Digital Agriculture Summit to bring together subject matter experts, USAID, funders, and LMIC governments to secure commitments. From our experience at PxD, one of the world’s leading innovators in the digital agriculture sector, we see this as a prime opportunity for USAID to invest in sustainable agricultural production systems to feed the world and power local economic development for marginalized, food-insecure smallholder farmers around the world.

More from Jonathan Lehe, Gautam Bastian, and Nick Milne can be found at Precision Development.

Frequently Asked Questions
What might a commitment from the Digital Agriculture Summit look like?

Using the reach and power of the US government and its leaders as a platform to convene, multi-sector stakeholders can be brought together to outline a common agenda, align on specific targets, and seek commitments from the private sector and other anchor institutions to spur collective, transformational change on a wide range of issues aligned to the goals and interests of the federal agency and Administration’s priorities. External organizations respond to these calls-to-action, often leading to the development of partnerships (formal and informal), grand challenges, and the building of new coalitions to make financial and in-kind commitments that are aligned with achieving the federal government’s goals. A commitment could be modeled after how the State Department’s convened the Global Alliance for Clean Cookstoves:



  • a financial contribution (e.g.) the U.S. pledged nearly $51 million to ensure that the Global Alliance for Clean Cookstoves reaches its ‘100 by 20,’ which calls for 100 million homes to adopt clean and efficient stoves and fuels by 2020.

  • shared expertise: the organization mobilizes experts in a variety of issues: gender, health, security, economics, and climate change to address significant risk factors. The U.S. will also offer assistance to implement cookstoves.

  • research and development: the U.S. is committed to an applied research and development effort that will serve as the backbone of future efforts in the field that includes analyzing health and environmental benefits of using clean stoves, developing sustainable technologies, and conducting monitoring to ensure success of the Alliance’s goals. 

How should the Challenge be designed? What existing models could it mimic?

USAID is a leader in the US government in running open innovation challenges and prizes. Other U.S. government agencies, foreign government aid agencies, and philanthropies have also validated the potential of open innovation models, particularly for technology-enabled solutions. USAID’s Grand Challenges for Development (GCDs) are effective programmatic frameworks that focus global attention and resources on specific, well-defined international development problems and promote the innovative approaches, processes, and solutions to solving them.


Conceived, launched, and implemented in coordination with public and private sector partners, Grand Challenges for Development (see list below) emphasize the engagement of non-traditional solvers around critical development problems. The Grand Challenges for Development approach is a complement to USAID’s current programming methods, with each GCD is led by experts at the bureau level. These experts work directly with partners to implement the day-to-day activities of the program. The Grand Challenges for Development programs show how the power of the framework can be leveraged through a variety of modalities, including partnerships, prizes, challenge grant funding, crowdsourcing, hack-a-thons, ideation, and commitments. The Digital Agriculture for Food Security Challenge could mimic a GCD program like Saving Lives at Birth by providing consistent funding, resources, and energy toward new meaningful, cost-effective breakthroughs to improve lives where solutions are most needed.

Why should USAID and the U.S. Government lead on digital agriculture rather than national/local governments, the private sector, or other stakeholders?

Information provision, including DAAS, is a difficult product for private sector entities to deliver with a sustainable business model, particularly for smallholder farmers. The ability and willingness to pay for such services is often low among resource-poor smallholder farmers, and information is easily shareable, so it is hard to monetize. National or local governments, on the other hand, have an interest in implementing digital solutions to complement in-person agricultural extension programs and subsidies but tend to lack the technical capacity and experience to develop and deliver digital tools at scale. 


USAID has the technical and institutional capacity to provide digital agriculture services across its programs. It has invested hundreds of millions of dollars in agricultural extension services over the past 60 years and has gained a strong working knowledge of what works (and what doesn’t). Digital tools can also achieve economies of scale for cost relative to traditional in-person agriculture solutions. For instance, in-person extension requires many expenses that do not decrease with scale, including fuel, transportation, training, and most importantly the paid time of extension agents. 


One estimate is that extension agents cost $4,000 to $6,000 per year in low-income countries and can reach between 1,000 to 2,000 farmers each—well above the World Bank recommended threshold of 500 farmers per agent—bringing annual costs to $2–$6 per farmer per year. This estimate assumes a farmer-to-agent ratio well above the World Bank’s recommended threshold of 500:1. In other contexts, it has been estimated as high as $115. We estimate a cost-effectiveness of $10 in increased farmer income for every $1 invested in programs like DAAS, which is an effective return on American foreign development assistance.

What is the long-term sustainability and scaling model for digital agriculture solutions?

Digital solutions require not only the up-front cost of development and testing but also maintenance and upkeep to maintain effectiveness. Scaling these solutions and sustaining impact requires engaged public-private partnerships to reduce costs for smallholder famers while still providing positive impact. Scaling also requires private capital – particularly for new technologies to support diffusion and adaptation –  but is only unlocked by de-risking investments by leveraging development aid.


As an example, PxD engages directly with national governments to encourage adoption of DAAS, focusing on building capacity, training government staff, and turning over systems to governments to finance the operation and maintenance of systems into perpetuity (or with continued donor support if necessary). For instance, the State Government of Odisha in India built a DAAS platform with co-financing from the government and a private foundation, scaled the platform to 3 million farmers, and transitioned it to the government in early 2022. A similar approach could support scale across other geographies—especially given USAID’s long-standing relationships with governments and ministries of agriculture.

How does a digital-enabled technology like DAAS help smallholder farmers?

A growing body of evidence shows that DAAS can have a significant impact on farmers’ yields and incomes. Precision Development (PxD) currently reaches more than 7 million smallholder farming households with DAAS in nine countries in Africa, Asia, and Latin America, and there is a well-established market with many other service providers also providing similar services. This research, including several randomized control trials conducted by PxD researchers in multiple contexts as well as additional research conducted by other organizations, shows that DAAS can improve farmer yields by 4% on average in a single year, with benefit-cost ratios of 10:1, and the potential for these impacts to increase over time to create larger gains. 


There is also evidence of a larger impact in certain geographies and for certain crops and livestock value chains, as well as a larger impact for the subset of farmers who use DAAS the most and adopt its recommendations.

A National Initiative to Revitalize American Farming and Advance Regenerative Agriculture

Summary

A national regenerative agriculture initiative launched by the federal government could transform how American farmers provide food, fiber, and land stewardship. This initiative would commit to matching what farmers earn growing food and fiber with an equal investment in farmers’ work to rebuild the country’s natural capital.

Regenerative agriculture produces a safe and abundant food supply while building soil health and regenerating natural resources. This approach recognizes the key roles farmers and ranchers have in providing clean air, clean water, and ecosystem services that benefit all society.

A national regenerative agriculture initiative would provide needed investment in rural economies while simultaneously empowering current and future farmers to grow food in ways that improve soil health, ecosystem services, and natural resources. This strategic initiative would support the return of farming as a more widely valued job in America.

To achieve truly regenerative agricultural systems nationwide, the federal government should catalyze new markets and focus federal funding for regenerative agriculture programs, research, and development. Key steps towards this goal include creating a Regenerative Agriculture Advisory Task Force, mobilizing substantial investments to upgrade the agricultural sector, and prioritizing regenerative agriculture as a major theme in agricultural innovation.