Have Your Data and Use It Too: A Federal Initiative for Protecting Privacy while Advancing AI
Summary
The Biden-Harris Administration should aim to make the United States a world leader in privacy-preserving machine learning (PPML), a collection of new artificial intelligence (AI) techniques capable of providing the benefits of machine learning while minimizing data-privacy concerns. By some estimates, improvements to the speed, accuracy, and scale of AI could augment global GDP by 14%, or $15.7 trillion, by 2030. Yet Americans fear that expansion of AI will have moderate to severe negative consequences. They are particularly concerned about the privacy implications of how companies and agencies use personal data to generate new developments. To assuage these concerns, this proposal recommends targeted initiatives for the Biden-Harris Administration to bring PPML techniques to maturity, including
- Investing in PPML research and development.
- Identifying compelling opportunities to apply PPML techniques at the federal level.
- Creating frameworks and technical standards to facilitate wider deployment of PPML techniques.
The incoming administration should work towards encouraging state health departments to develop clear and well-communicated data storage standards for newborn screening samples.
Proposed bills advance research ecosystems, economic development, and education access and move now to the U.S. House of Representatives for a vote
NIST’s guidance on “Managing Misuse Risk for Dual-Use Foundation Models” represents a significant step forward in establishing robust practices for mitigating catastrophic risks associated with advanced AI systems.
Surveillance has been used on citizen activists for decades. What can civil society do to fight back against the growing trend of widespread digital surveillance?