

FEBRUARY 2026

Building Collaborations for Impact

Philanthropy Partnerships Summit Report

About FAS

The **Federation of American Scientists (FAS)** is an independent, nonpartisan think tank that brings together members of the science and policy communities to collaborate on mitigating global catastrophic threats. Founded in November 1945 as the Federation of Atomic Scientists by scientists who built the first atomic bombs during the Manhattan Project, FAS is devoted to the belief that scientists, engineers, and other technically trained people have the ethical obligation to ensure that the technological fruits of their intellect and labor are applied to the benefit of humankind. In 1946, FAS rebranded as the Federation of American Scientists to broaden its focus to prevent global catastrophes.

Since its founding, FAS has served as an influential source of information and rigorous, evidence-based analysis of issues related to national security. Specifically, FAS works to reduce the spread and number of nuclear weapons, prevent nuclear and radiological terrorism, promote high standards for the safety and security of nuclear energy, illuminate government secrecy practices, and prevent the use of biological and chemical weapons.

FAS can be reached at 1150 18th St. NW, Suite 1000, Washington, DC, 20036, fas@fas.org, or through fas.org.

COPYRIGHT © FEDERATION OF AMERICAN SCIENTISTS, 2026. ALL RIGHTS RESERVED.

THIS WORK WAS FUNDED BY THE NATIONAL SCIENCE FOUNDATION THROUGH AWARD #2447742.

Contents

EXECUTIVE SUMMARY.....	1
BACKGROUND.....	3
PHILANTHROPY PARTNERSHIPS SUMMIT OVERVIEW.....	4
EMERGING THEMES.....	6
AREAS FOR ONGOING CLARIFICATION RAISED BY PARTICIPANTS.....	8
COMMON BARRIERS TO PARTNERSHIP.....	9
MECHANISMS FOR PARTNERSHIP.....	10
ALIGNED AREAS OF INTEREST FOR ATTENDEES.....	11
SPECIFIC PARTNERSHIP IDEAS TO EXPLORE.....	13
CONCLUSION AND NEXT STEPS.....	15

Executive Summary

Federal agencies such as the U.S. National Science Foundation (NSF) and a set of entities from the philanthropic community share a commitment to advancing science for the public good. Yet these sectors have often operated separately, with one traditionally focused on fundamental research and the other on societal impact and field-building. The CHIPS and Science Act of 2022 created NSF's Directorate for Technology, Innovation and Partnerships (TIP) in part to strengthen public- and private-sector partnerships to support economic growth and national security, with a particular focus on use-inspired and translational research – which aligns with priorities shared by many philanthropic funders. The Philanthropy Partnerships Summit hosted by the Federation of American Scientists in September 2025 convened 32 senior leaders from 27 philanthropic organizations alongside NSF leaders and representatives from across all its directorates to identify ways to enhance meaningful partnership by identifying new opportunities for co-investment, shared infrastructure, and joint experimentation.

The goals of the Summit were to explore new and innovative models of partnership, including those that expand from 1:1 partnerships to partnerships with funder consortia, and to identify co-investment opportunities in areas of mutual interest.

Across breakout discussions, the conversation moved from abstract interest in partnership to concrete ideas for joint action. While the ideas spanned domains from artificial intelligence (AI) to biotechnology to STEM education and workforce development, they shared several characteristics that point to where a collaboration between federal agencies such as NSF and philanthropy is most likely to add value:

- **Platforms over projects.** Many ideas focused on building shared platforms (for trials, data, evaluation, or coordination) that enable multiple research efforts over time, rather than funding isolated projects.
- **Translation and use-inspired R&D infrastructure.** Participants repeatedly identified the space between discovery and real-world application as the highest-leverage opportunity for partnership, particularly where philanthropy can support coordination, experimentation, or early deployment alongside NSF programs.
- **Joint selection and signaling matter.** Several partnership ideas emphasized the value of shared review, joint solicitations, and co-signaling mechanisms to surface high-potential ideas and reduce fragmentation across funders.
- **Flexibility at scale.** The strongest partnership ideas paired NSF's scale and infrastructure with philanthropic flexibility, speed, and risk tolerance, especially for support of unconventional research, field-building, or time-limited experiments.

Participants continuously messaged that when philanthropy and NSF align around shared priorities and complementary assets, the combined impact exceeds what either could achieve alone. Federal agencies such as NSF traditionally bring scientific scale and reach, credibility, and infrastructure. Philanthropy brings their own unique expertise, flexibility, added risk tolerance, an openness to experimentation, and broad networks of partners. Together, they can create a complementary and robust partnership model that centers impact and accelerates how research informs and delivers real-world outcomes. At the same time, the discussion made clear that existing partnership processes and infrastructure are imperfect and will require continued work beyond the Summit.

The discussions and partnership exploration at the Summit point to several practical actions that would help translate shared interest into durable partnerships. These actions reflect both near-term steps and longer-term practices needed to move from exploration to implementation.

- **Invest in shared partnership infrastructure and orientation.** The Summit showed that clear, practical guidance on partnership mechanisms, processes, and boundaries would help philanthropic organizations move from interest to action.
- **Further explore low-risk mechanisms to enable early collaboration and learning.** Simple tools that already exist such as memoranda of understanding (MOUs), data-sharing agreements, and Dear Colleague

Letters (DCLs) can build trust, demonstrate feasibility, and create momentum without requiring immediate funding commitments.

- **Focus partnership efforts on connective infrastructure rather than isolated projects.** Many of the most compelling ideas centered on platforms, pathways, and coordination mechanisms that link research to impact across institutions, sectors, and time horizons, where joint NSF and philanthropy action is most additive.
- **Pair convenings with sustained follow-up engagement.** While the Summit successfully surfaced alignment and ideas, participants that have successfully partnered with NSF in the past emphasized that partnerships depend on continued direct engagement and iterative development, particularly given the variety of philanthropic models and readiness levels. Direct engagement will allow for relationship-building that can carve a path for partnerships to develop at scale in the future.

This report below provides additional detail for the recommendations above by distilling lessons and opportunities surfaced at the Summit. It highlights practical steps that both NSF and philanthropy can take to build trust, streamline processes, and co-create new partnership mechanisms across domains from AI to biotechnology, STEM education and workforce development, and more.

**WE’RE EAGER TO
COLLABORATE, TO
UNDERSTAND YOUR
CHALLENGES, AND TO
BUILD PARTNERSHIPS
THAT ADVANCE SCIENCE,
INNOVATION, AND
OPPORTUNITY FOR ALL**

ERWIN GIANCHANDANI,
ASSISTANT DIRECTOR FOR TIP AT NSF

Background

For three-quarters of a century, federal agencies such as the U.S. National Science Foundation (NSF) have served as the cornerstone of America's scientific enterprise. NSF has invested in fundamental research and education across nearly every field of science and engineering. NSF's enduring mission is "to promote the progress of science ... advance the national health, prosperity, and welfare ... and secure the national defense." Its investments have underpinned transformative discoveries, from the early development of the modern Internet to breakthroughs in AI and materials science and helped establish the U.S. as a global leader in scientific research excellence.

Recognizing that today's most urgent challenges require not only new knowledge but also new pathways to accelerate advances to impact, Congress passed the CHIPS and Science Act to create the TIP Directorate in 2022. TIP represents the most significant structural evolution at NSF in decades, designed to accelerate technology to the market and society, prepare a competition-ready workforce, harness the full geography of innovation across the nation, and strengthen U.S. competitiveness. Through programs such as the NSF Regional Innovation Engines, Translation to Practice (TTP), and NSF Tech Labs, TIP fosters collaboration across universities, industry, government, and philanthropy to turn ideas into impact.

The NSF Strategic Partnerships Hub (SPH) was created in 2024 to support and scale NSF's capacity for collaboration with external partners, including philanthropic organizations. While housed in TIP, SPH coordinates across NSF's research and education directorates to identify partnership opportunities and streamline engagement processes in an effort to make co-investment less complicated and more transparent.

Over the past several years, NSF in partnership with philanthropy has already demonstrated what's possible when their strengths align. The Fire Science Innovations through Research and Education (FIRE) program with the Gordon and Betty Moore Foundation expanded wildfire research capacity through a flexible co-funding and data-sharing arrangement that enabled rapid coordination across NSF and other federal partners including NASA and the U.S. Department of Defense. Similar philanthropic partnerships across NSF directorates have proven how joint investments can translate research into real-world solutions.

The Philanthropy Partnerships Summit was convened to build on the momentum of recent partnerships as well as the recently hosted Industry Partnerships Summit to explore new opportunity areas for shared investment.

Philanthropy Partnerships Summit Overview

The Philanthropy Partnerships Summit, held in Washington, D.C. in September 2025, convened 32 leaders from philanthropy and 16 NSF representatives across all directorates to explore new ways to collaborate on advancing research and innovation for public benefit. The event was designed to move beyond discussion and toward identifying concrete mechanisms for partnership, co-investment, and shared learning.

The morning began with opening remarks from Daniel Correa, CEO of the Federation of American Scientists (FAS), who welcomed participants and noted that growing industry and philanthropic investment creates significant opportunity for complementary partnerships that take advantage of what government and philanthropy each do best: to tackle problems that neither can solve alone.

Erwin Gianchandani, Assistant Director for TIP at NSF, outlined NSF's broad vision for partnership across its directorates. He described how the SPH (within the TIP Directorate) is working to make collaboration easier, faster, and more transparent, and framed the day as an opportunity to co-design new partnership models that align the missions of NSF and philanthropy.

The first session featured a panel discussion on the FIRE program including Genny Biggs from the Gordon and Betty Moore Foundation, Barbara Ransom from the NSF Directorate for Geosciences, and Doug Kowalewski from the NSF Directorate for Geosciences on detail to the SPH. The panel was moderated by Gracie Narcho, Directorate Head for the TIP Directorate. Together, the panel traced the development of the FIRE program, from initial concept to signed MOU, and described how a simple structure, shared review process, and strong communication enabled rapid collaboration. Panelists emphasized that the FIRE partnership evolved through repeated conversations, informal alignment, and early experimentation before formal agreements were finalized. Shared review processes, clarity on roles, and the ability to adapt over time were crucial, and trust was built through doing the work together rather than through contractual detail alone.

Following the panel, Kumar Garg, President of Renaissance Philanthropy, facilitated a room-wide discussion in which attendees shared their own experiences, priorities, questions, and concerns about partnering with NSF. Questions covered included:

- Who has an active or past partnership with NSF and what has that been like?
- Who is interested in partnering with NSF in the next 18-24 months but has not partnered with NSF before? What are you thinking about for ideas or what open questions do you have?
- What considerations may arise when philanthropic leaders talk about partnering with the government within their organizations in 2025?

The discussion highlighted strong philanthropic interest in partnering with NSF across a wide range of models, from co-funding and parallel funding to data-sharing, field-building, and non-financial collaborations that extend NSF's reach and impact. Participants emphasized NSF's scale, convening power, and access to an extensive portfolio of research and innovation communities. They contrasted this with philanthropy's flexibility, risk tolerance, and capacity to support implementation, coordination, and emerging needs. At the same time, the conversation surfaced recurring questions around clarity of partnership mechanisms, alignment of timelines and expectations for impact, and how success is defined and communicated across differing institutional incentives. There was broad agreement

**THE MOU IS OWNED BY
THE ORGANIZATIONS,
BUT THE RELATIONSHIP
IS OWNED BY US.**

FIRE PROGRAM PARTNER

on the need for clearer pathways and ongoing dialogue to help partnerships form, evolve, and remain mission-aligned over time.

In the afternoon, participants were divided into three breakout groups focused on AI research and development (R&D) and education, biotechnology, and science, technology, engineering, and mathematics (STEM) talent and workforce pipelines. Each group was tasked with identifying partnership opportunities, articulating shared priorities, and developing preliminary “wireframes” for collaborative models that could be refined after the Summit.

The day concluded with a synthesis discussion highlighting common themes:

- A shared eagerness for experimentation
- Recognition that simple structures can build trust
- A belief that strategic collaboration between NSF and philanthropy can multiply the impact of both sectors' investments

The room committed to continuing the conversations that took place throughout the day to explore meaningful partnerships, and NSF committed to addressing outstanding questions and working to build the infrastructure and information base necessary to maximize the knowledge, commitment, and relationships in the room.

FROM LEFT TO RIGHT: MODERATOR GRACIE NARCHO (NSF), BARBARA RANSOM (NSF), GENNY BIGGS (GORDON AND BETTY MOORE FOUNDATION), DOUG KOWALEWSKI (NSF)

Emerging Themes

Over the course of the Summit, participants reiterated themes that reflect shared priorities, questions, and points of emphasis. Some highlight opportunities, others signal needs or expectations, but all represent what consistently rose to the surface.

Shared infrastructure, data, and proposal review are high-value assets for philanthropy

Philanthropy values NSF's scientific infrastructure, including the peer review process, open data standards, and rigorous evaluation models. Collaborations such as the active public-private engagement on the National AI Research Resource (NAIRR) Pilot show how shared infrastructure can democratize access to innovation and ensure that researchers and educators can leverage large-scale systems for impact.

Aligning timelines, incentives, and metrics is essential

Differences in pacing and evaluation often stall collaboration. Philanthropy tends to measure results in cycles that can be two or three years, while NSF investments can unfold over a decade or more. This remains a topic warranting ongoing discussion.

Mechanisms, priorities, and boundaries

A pre-Summit survey of confirmed attendees indicated that the majority of participating organizations were new or relatively early in their experience partnering with federal agencies such as NSF. As a result, philanthropic leaders at the Summit reported limited visibility into NSF's partnership pathways and decision processes. Practical tools such as frequently asked questions (FAQs), sample agreements, and a "menu of mechanisms" would help clarify how funding can flow, what legal structures are possible, and where philanthropy can fill gaps. They also desire a clearer picture of NSF priorities as they evolve, as well as any boundaries around partnership formation that may exist. At the same time, NSF would benefit from understanding philanthropy's ongoing priorities, pointing to a need for increased two-way communication.

Alternative models are emerging

New or less commonly used modalities such as prize challenges, field trials platforms, metascience projects, and alternative science organizations like focused research organizations (FROs) were viewed as promising vehicles for experimentation. These models leverage philanthropy's flexibility to complement NSF's long-term funding and evaluation rigor.

MOUs and simplicity build trust while preserving speed and flexibility

MOUs can create the scaffolding for partnership while preserving flexibility. The experience of the Gordon and Betty Moore Foundation's FIRE Program partnership shared during the panel demonstrated how a simple MOU allowed rapid collaboration and trust-building.

SPH can serve as the entry point for NSF partnership exploration

NSF is open to collaboration through both monetary and non-monetary models, including shared infrastructure, aligned solicitations, collective action, and data partnerships. SPH is both a primary entry point for philanthropic organizations as well as a central node for navigating the flexibility of options available for partnership structures, processes, and timelines.

Public and private partnerships can build bridges across education and workforce efforts

Participants emphasized that education, research, and workforce development function as an interconnected ecosystem. Even though many funders and agencies support work across this development continuum, the stages often operate in silos, limiting the ability of learners and communities to move smoothly from early exposure to advanced training and career opportunities. NSF and philanthropy have an opportunity to work together on mechanisms that intentionally link these stages, strengthening coordination among K-12 systems, higher education, workforce programs, and regional innovation efforts. By building bridges across this full pipeline, partners can help ensure that education and talent development aligns with scientific and technological opportunities.

Public trust in science is foundational

Philanthropy and NSF both see public trust and legitimacy as essential to science's long-term health. Joint efforts can strengthen communication, visibility, and the societal relevance of research outcomes.

Areas for Ongoing Clarification Raised by Participants

The Summit surfaced a set of practical questions that, if addressed over time, could lower barriers to partnership and support more informed engagement on both sides. These include:

Shared understanding of partnership options and processes

- What are all the mechanisms for partnerships with NSF? In other words, what is the menu of options for ways to partner?
- What sample processes or illustrative pathways exist for partnerships depending on intended outcomes (e.g., research, workforce development, field-building)?
- What are some case studies of successful philanthropic partnerships with NSF?

Internal case-making

- What existing data or evidence can help organizations make an internal case for engaging in partnership?
- How can philanthropic organizations clearly communicate the value of partnering with NSF to their internal teams given differences in funding scale, mandates, and flexibility?

Expectations-setting to streamline the process

- What considerations around funding flows, governance, timelines, or capacity are helpful to surface early in partnership conversations?
- What kinds of questions are most helpful for new partners to ask early when exploring collaboration with NSF?

NSF partnership needs

- What priorities or objectives is NSF particularly focused on advancing through partnerships at this moment?
- Where does NSF experience constraints, and where might philanthropic flexibility or complementary investment be most additive?
- What does a successful partnership look like from NSF's perspective, and how does that align with philanthropic expectations?

Common Barriers to Partnership

Moving from Pitching to Co-Design

Both NSF and philanthropy are accustomed to being in the position of receiving proposals rather than submitting them. This dynamic can slow collaboration, since each side may wait for the other to initiate or define the opportunity. Effective partnership requires shedding those traditional roles and jointly identifying areas of mutual interest, shared objectives, and pathways for partnership.

Unpredictable federal funding and risk tolerance

Philanthropic boards can be hesitant to partner where federal funding cannot be guaranteed across budget cycles. Several participants noted that internal board approval processes require clarity on funding continuity and risk exposure, which can slow or prevent engagement even when strategic alignment exists.

Process opacity and communication gaps

Limited clarity on how to start, who to contact, and how decisions are made continues to slow collaboration, particularly for first-time partners.

Mission alignment and equity

Concerns remain about potential misalignment between philanthropic missions and NSF priorities, especially given the shifting landscape around diversity, equity, and inclusion and which areas of science are to be prioritized and pursued.

Timelines and incentives

Differing timelines on when outcomes are expected and how impact is measured, ranging anywhere from rapid response funding to multi-decade basic research, can cause challenges in partnership formation.

Mechanisms for Partnership

The Summit surfaced several partnership mechanisms that NSF and philanthropy have used or expressed interest in exploring beyond traditional grantmaking. This is not an exhaustive list of options, and these are not simple plug-and-play models as each comes with its own legal considerations, administrative requirements, and operational constraints. Instead, they represent starting points for dialogue and prototyping, illustrating the range of structures that could support more coordinated collaboration.

Memoranda of understanding (MOUs)

MOUs function as low-risk, non-binding frameworks that create space for information sharing, coordination, and experimentation without obligating either party to specific funding commitments. Participants noted that while MOUs can take time to develop and require alignment of priorities on both sides, they often serve as an important foundation for trust, enabling and creating a platform for downstream activities such as joint solicitations, co-sponsored convenings, or aligned funding strategies. In practice, participants described MOUs as taking months rather than weeks to finalize, but emphasized that once in place they enabled faster downstream coordination.

Fiscal sponsorships

Fiscal sponsorships emerged as a practical solution when philanthropic compliance requirements or gift-making practices do not align with federal funding rules. By routing funds through an intermediary, philanthropies can maintain outcome expectations and reporting structures while supporting NSF-aligned activities. Participants noted that while this adds an additional layer of coordination, it can significantly expand what is feasible and has, in some cases, exceeded fundraising or impact expectations.

Shared infrastructure and data agreements

Non-monetary partnerships, particularly around shared infrastructure or data access, can deliver significant value without requiring fund transfers. Examples included data-sharing agreements that expand research transparency or enable meta-science analysis. These arrangements were seen as attractive for donors seeking leverage and learning, while also raising the importance of clear consent, privacy protections, and shared expectations around data use.

Dear colleague letters (DCLs)

NSF's DCLs were discussed as a useful signaling mechanism to surface shared priorities, invite aligned philanthropic engagement, and catalyze collective action. While these letters do not guarantee partnership outcomes, they can reduce coordination costs, attract multi-partner interest, and create a common reference point, particularly when paired with prior relationship-building or enabling agreements like MOUs.

Pooled funds

Pooled or jointly governed funds were highlighted as a way to align multiple philanthropies around shared priorities while leveraging NSF's solicitation and merit review infrastructure. Such approaches can reduce duplication and individual risk, but require upfront alignment on governance, decision-making, and staff capacity, which can be a limiting factor for smaller or leanly staffed organizations.

Aligned Areas of Interest for Attendees

Discussions throughout the Summit, along with conversations and surveys prior to the Summit, revealed a wide range of shared interests across philanthropy and NSF, with strong alignment around several key domains where collaboration could accelerate progress and expand impact.

Artificial intelligence (AI)

AI emerged as a priority as both an enabler of discovery and a driver of educational and societal change. Priorities included advancing AI literacy and proficiency from K-12 through higher education, improving data access and representativeness, and creating benchmarks and evaluation tools to assess the quality and impact of AI systems. Participants also highlighted responsible AI development, governance, and assurance frameworks to manage societal effects. Many viewed AI as a research accelerator, capable of improving scientific discovery across disciplines and sectors, including health, quantum, and climate applications.

STEM education and talent

Expanding access to STEM education, training, and workforce development was a central theme. Priorities included high-quality computer science and STEM education nationwide, educator capacity-building, and strengthened school district infrastructure. Interest areas included K-12 education R&D, postdoctoral and workforce pipelines, and evaluation of educational strategies using AI and other emerging tools. Broadening participation across all stages of the STEM pipeline and creating opportunities for everyone everywhere were recurring priorities.

Biotechnology and the life sciences

Philanthropy expressed interest in biomedical and health research, physical and life sciences, and biotechnology applications that connect basic science to clinical or translational outcomes. Opportunities were identified in integrating biotechnology with adjacent fields such as AI, quantum, and education, and in supporting both discovery and the pathways that bring new technologies to market.

Regional innovation and entrepreneurship

Participants discussed the role of philanthropy and NSF in fostering regional innovation ecosystems that link invention, entrepreneurship, workforce development, and economic development. There was interest in coordinating regional philanthropic and federal investments to build commercialization pipelines and talent networks, especially in emerging technology fields.

Alternative science models and metascience

Several attendees emphasized the value of experimenting with new forms of scientific organization and funding. This included support for focused research organizations (FROs), metascience initiatives studying how science is conducted, and alternative selection and evaluation mechanisms that could complement NSF's existing processes.

Conservation and natural disaster mitigation

Attendees described opportunities for parallel funding between NSF and philanthropy to translate research into practice. Areas of shared interest included community-based resource management and wildfire resilience.

Scaling basic research through impact

Participants underscored the need to move fundamental discoveries toward societal application. Priorities included use-inspired research in the physical and life sciences, civic and engaged science, and approaches that bridge discovery with impact in materials, health, and environmental systems.

Partnerships as a practice

Finally, several participants identified the practice of partnership itself as an area of focus. They emphasized the value of funder collaboratives, shared learning networks, and coordination mechanisms that make philanthropy-government collaboration more effective. Attendees expressed interest in frameworks that enable collective problem solving, co-funding, and knowledge exchange across sectors and disciplines.

Specific Partnership Ideas to Explore

Breakout discussions yielded a range of concrete partnership concepts, from sketched out partnership “wireframes” to kernels of partnership ideas illustrating how NSF and philanthropy could jointly advance scientific research, education, and innovation. While exploratory, these ideas demonstrate practical ways to align resources, expertise, and priorities across sectors.

National K-12 AI learning trials platform

One breakout group created a partnership wireframe highlighting the potential impact of establishing a national platform to test and evaluate educational technologies and strategies that integrate AI. Such a system could coordinate trials through networks of charter or public schools, addressing challenges like parental consent and fragmented data collection. The platform would enable representative, ethical research on what technologies most effectively improve learning outcomes, supported by NSF’s academic networks and philanthropy’s flexibility to build and maintain the platform itself.

Research-to-impact pipeline

Participants developed a wireframe for a collaborative mechanism that could strengthen the movement of promising academic research toward application. Through joint review and funding, NSF and philanthropy could identify high-impact ideas suited for translation, leveraging existing programs such as the NSF Innovation Corps (NSF I-Corps™), Translation to Practice (TTP), and Small Business Innovation Research/Small Business Technology Transfer (SBIR/STTR) programs. The goal would be to create a more resilient pipeline that carries research outcomes into the marketplace or public use.

Regional STEM ecosystem pathways

Another wireframe described how co-investment at the regional level could align K-12, higher education, and workforce ecosystems more generally to improve student outcomes and strengthen local economies. Partners would support networks that link educators, universities, employers, and communities, ensuring that STEM learning translates into career opportunities and regional prosperity.

Revaluing higher education

One wireframe outlined an effort to reaffirm the societal value of higher education. Partnerships could highlight success stories, promote alternative pathways, and strengthen the public perception of postsecondary education as a vital source of innovation and civic well-being.

“Imagine-if” fund for unconventional research

Participants wireframed a fund to surface and support bold, unconventional research ideas that fall outside traditional funding mechanisms. By pooling philanthropic and NSF networks, the fund would identify investigators and labs pursuing high-risk, high-reward ideas and provide flexible, early-stage support.

Unconventional research support through aligned ecosystems

Pulling on a similar thread around unconventional research, another idea developed during the Summit describes aligning entire ecosystems around unconventional or underappreciated research. This could include multi-sector consortia, grand challenges focused on specific topics, and alternative metrics for success that extend beyond publications or patents. The objective is to create systems that reward long-term, high-impact breakthroughs.

Prize challenges and pull mechanisms

Prize challenges were identified as efficient tools for driving innovation and attracting new talent to scientific problems. NSF and philanthropy could jointly design prize competitions, challenge platforms, or pull mechanisms that reward progress toward measurable outcomes, fostering experimentation and accelerating solutions in priority areas.

Data collaboration and infrastructure

Participants proposed improving data accessibility and reproducibility through shared infrastructure. Ideas included opt-in exposure of research proposals for broader collaboration, standardized data stewardship systems, and distributed databases jointly managed across federal and private partners. These mechanisms could reduce duplication, increase transparency, and accelerate collective learning.

Targeted funds and joint solicitations

Expanding the use of co-funded programs and DCLs was another actionable concept. These tools could help align NSF and philanthropic investments around shared agendas in areas like AI, biotechnology, and STEM education/workforce development, creating clear pathways for coordinated funding and engagement.

Field-building and program design support

Participants noted opportunities for philanthropy to assist NSF and research communities in building new fields of study or standing up grant programs in emerging domains. This could include seed funding for capacity building, convenings, and early-stage infrastructure that enable future NSF or philanthropic investment.

Biotech grand challenges and applications

Several participants emphasized opportunities for joint challenge-driven initiatives in biotechnology. These included applying AI and big data to accelerate drug discovery or agricultural innovation, developing next-generation medical devices for continuous monitoring, creating safer and more efficient synthetic biological methods, and expanding fundamental biochemical understanding through new research infrastructure.

Conclusion and Next Steps

The Philanthropy Partnerships Summit demonstrated both the urgency and the opportunity of deeper collaboration between sectors that share a common goal of advancing discovery and ensuring that its benefits reach people and communities everywhere. Participants affirmed that NSF's scale and scientific infrastructure, combined with philanthropy's flexibility and willingness to take risks, create a uniquely powerful foundation for collective action.

The conversations demonstrated that partnership is not limited to shared funding and that the strongest collaborations emerge when partners bring their comparative strengths to a common purpose and build mechanisms that make collaboration replicable.

The Summit surfaced two near-term actions and two guiding practices that will be important for sustaining momentum.

Near-term actions

- Develop shared orientation and partnership guidance: Practical materials outlining NSF's partnership mechanisms, processes, timelines, and boundaries from SPH would meaningfully reduce friction and help philanthropic organizations move from interest to informed engagement.
- Sustain engagement through targeted follow-up: Participants with prior partnership experience underscored that progress depends on continued direct engagement and translation of ideas over time, particularly given the diversity of philanthropic models and readiness levels.

Guiding practices for partnership development

- Apply low-risk mechanisms to enable early collaboration and learning: Experiences shared during the Summit suggest that tools such as MOUs, data-sharing agreements, and DCLs are most effective when used deliberately as early enablers of trust, learning, and coordination.
- Prioritize partnerships that build connective infrastructure: Many of the most compelling partnership ideas explored focused on platforms, pipelines, and coordination mechanisms that link research to impact across institutions and sectors, indicating that joint NSF–philanthropy efforts are most additive when they strengthen connective tissue rather than fund isolated projects.

The Summit was designed not to conclude a conversation but to begin one. NSF and the philanthropic community have already demonstrated what is possible through efforts like FIRE and other such partnerships that accelerate research to impact. The challenge now is to turn promising ideas into lasting frameworks that create a more connected, responsive, and impactful national research ecosystem.

Partnership is no longer an experiment at the margins of science policy, or an unintended outcome of a program. It is central to how the U.S. can accelerate discovery, expand opportunity, and ensure that innovation serves the public good.

About the Federation of American Scientists

The Federation of American Scientists is dedicated to democratizing the policymaking process by working with new and expert voices across the science and technology community, helping to develop actionable policies that can improve the lives of all Americans. For more about the Federation of American Scientists, visit [FAS.org](https://fas.org).