THE AVERAGE FISSION CROSS SECTION OF \(^{233}U, ^{234}U, \) AND \(^{236}U \)

IN THE FAST REACTOR NEUTRON SPECTRUM.

Work done by:

E. Jurney

PHYSICS – FISSION

1
UNCLASSIFIED

PHYSICS-FISSION

JUN 21 1945

Los Alamos Document Room
J R. Oppenheimer

STANDARD DISTRIBUTION

Argonne National Laboratory 22 - 33
Armed Forces Special Weapons Project 34
Atomic Energy Commission, Washington 35 - 40
Brookhaven National Laboratory 41 - 44
Bureau of Ships 45
Carbide & Carbon Chemicals Company (K-25 Plant) 46 - 47
Carbide & Carbon Chemicals Company (Y-12 Area) 48 - 49
Chicago Patent Group 50
Chief of Naval Research 51
Columbia University (Havens) 52
dupont Company 53 - 56
General Electric Company, Richland 57 - 60
Hanford Operations Office 61
Idaho Operations Office 62 - 63
Iowa State College 64
Knolls Atomic Power Laboratory 65 - 68
Mound Laboratory 69 - 70
National Advisory Committee for Aeronautics 71
Naval Research Laboratory 72
New York Operations Office 73 - 74
North American Aviation, Inc. 75 - 77
Oak Ridge National Laboratory (X-10) 78 - 85
Patent Branch, Washington 86
Savannah River Operations Office 87
UCLA Medical Research Laboratory (Warren) 88
USAF - Headquarters 89
U. S. Naval Radiological Defense Laboratory 90
University of California Radiation Laboratory 91 - 93
Westinghouse Electric Corporation 94 - 97
Wright-Patterson Air Force Base 98 - 100
Technical Information Service, Oak Ridge 101 - 115

LA-1250

1 - 20
21
THE AVERAGE FISSION CROSS SECTION OF 233U, 234U, AND 236U

IN THE FAST REACTOR NEUTRON SPECTRUM.

The report to follow gives results of a series of fission cross section measurements in the high-energy neutron spectrum of the fast reactor. These measurements are a continuation of those reported in LA-1201, and the same equipment and counting techniques were employed for the present experiments.

I. Weighing of Foils.

The isotopic fractions of the foils used in the measurements are shown in the following table:

<table>
<thead>
<tr>
<th>U isotope</th>
<th>25 Std</th>
<th>23 Foil</th>
<th>24 Foil</th>
<th>26 Foil</th>
</tr>
</thead>
<tbody>
<tr>
<td>233U</td>
<td>-</td>
<td>0.982</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>234U</td>
<td>-</td>
<td>-</td>
<td>0.941</td>
<td>.0064</td>
</tr>
<tr>
<td>235U</td>
<td>.9985</td>
<td>-</td>
<td>0.0445</td>
<td>0.588</td>
</tr>
<tr>
<td>236U</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.375</td>
</tr>
<tr>
<td>238U</td>
<td>-</td>
<td>0.018</td>
<td>0.0151</td>
<td>0.03</td>
</tr>
</tbody>
</table>

The tabulated fractions are all results of Oak Ridge mass spectrographic analyses, except in the case of the 233U foil, for which the figure of 98.2% is an Oak Ridge figure, with the remaining 1.8% of the content assumed to be 238U.

Each of the three unknown foils was "weighed" by determining the amount of thermal fissionable material on them relative to the amount
of 25 on a foil made of 99.85% material. This procedure required the use of thermal fission cross sections for U\(^{233}\) and U\(^{234}\), but it is a much better one for the foils involved than that of alpha counting because of the low specific \(\alpha\)-activity of U\(^{235}\). The values of these cross sections which were used were

\[
\frac{\sigma_{\text{th}}(23)}{\sigma_{\text{th}}(25)} = 0.933 \pm 0.03 \quad (\text{CK2737}) \quad \text{and} \\
\frac{\sigma_{\text{th}}(24)}{\sigma_{\text{th}}(25)} = 0.0038 \quad (\text{LAlhOA}).
\]

The ratio \(R_{\text{th}}\) of the thermal fission rate of the foils containing \(\text{U}^{233}\), \(\text{U}^{234}\), and \(\text{U}^{236}\) to that of the \(\text{U}^{235}\) "standard" foil was determined and inserted into an appropriate equation of the following kind:

\[
R_{\text{th}} = \frac{N_x}{N_{25}} \left(f(23) \frac{\sigma_{\text{th}}(23)}{\sigma_{\text{th}}(25)} + f(24) \frac{\sigma_{\text{th}}(24)}{\sigma_{\text{th}}(25)} + f(25) \right)
\]

which yielded values of \(N_x/N_{25}\), the ratio of the number of fissionable atoms on each foil to the number of 25 atoms on the standard foil. Values of \(R_{\text{th}}\) and \(N_x/N_{25}\) are shown in the following table:

<table>
<thead>
<tr>
<th>Foil</th>
<th>(R_{\text{th}})</th>
<th>(N_x/N_{25})</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>0.2478 \pm 0.00053</td>
<td>0.2705 \pm 0.0085</td>
</tr>
<tr>
<td>24</td>
<td>0.0550 \pm 0.00022</td>
<td>1.239 \pm 0.005</td>
</tr>
<tr>
<td>25</td>
<td>0.7392 \pm 0.0036</td>
<td>1.257 \pm 0.0016</td>
</tr>
</tbody>
</table>

II. Fast Neutron Fission Cross Sections.

Fast neutron fission counting was carried out, as described in LA-1201, with the foils inserted in the fast reactor 5W port, approxi-
mately 1 3/4" from the edge of the reactor's active material. The determination of R_f, the ratio of the fast neutron fission rate of one of the unknown foils to that of the 25 foil, together with the values of N_x/N_{25} previously determined makes it possible to solve the following equation for $\sigma_f(x)/\sigma_f(25)$:

$$R_f(x) = \frac{N_x}{N_{25}} \left(f(23) \frac{\sigma_f(23)}{\sigma_f(25)} + \cdots + f(28) \frac{\sigma_f(28)}{\sigma_f(25)} \right)$$

The table following lists the measured values of $R_f(x)$ and the corresponding values of $\sigma_f(x)/\sigma_f(25)$ and $\sigma_f(x)$:

<table>
<thead>
<tr>
<th>Foil (x)</th>
<th>R_f</th>
<th>$\sigma_f(x)/\sigma_f(25)$</th>
<th>$\sigma_f(x)$ (b.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>0.4234 \pm 0.0095</td>
<td>1.59 \pm 0.057</td>
<td>2.53 \pm 0.09</td>
</tr>
<tr>
<td>24</td>
<td>0.4380 \pm 0.0016</td>
<td>0.327 \pm 0.0017</td>
<td>0.52 \pm 0.003</td>
</tr>
<tr>
<td>26</td>
<td>0.7923 \pm 0.0014</td>
<td>0.114 \pm 0.0085</td>
<td>0.181 \pm 0.0135</td>
</tr>
</tbody>
</table>

The average fission cross sections $\overline{\sigma_f}(x)$ in barns are obtained from $\overline{\sigma_f}(x) = 1.59 \frac{\sigma_f(x)}{\sigma_f(25)}$. This value of the average fission cross section of ^{235}U in the reactor spectrum was arrived at by averaging $\sigma(E)$ (LA-994) over the measured spectrum (LA-1234).

The indicated limits of error are based on the r.m.s. counting errors and, in the case of the ^{236}U measurement, on the estimated error in the mass analysis of the foil material. Because of the relatively small percentage of ^{236}U on this foil, the small error in its determination is responsible for most of the error in the value of the
cross section. The uncertainty of approximately three percent in
\(\sigma_{th}(23)/\sigma_{th}(25) \) as given in CK2737 is included in the error shown for
\(\overline{\sigma}_{f}(23)/\overline{\sigma}_{f}(25) \).