Imploding-Liner Reactor Nucleonic Studies:
The LINUS Blanket

Donald J. Dudziak
Scoping nucleonic studies have been performed for a small imploding-liner fusion reactor concept. Tritium breeding ratio and time-dependent energy deposition rates were the primary parameters of interest in the study. Alloys of Pb and LiPb were considered for the liquid liner (blanket), and tritium breeding was found to be more than adequate with blankets less than 1 m thick. However, neutron leakages into the solid cylinder block surrounding the liquid liner are generally quite high, so considerable effort was concentrated on minimizing these values. Time-dependent calculations reveal that 89% of the energy is deposited in the blanket within 2 μs. Thus, LINUS's blanket should remain intact for the requisite neutron and gamma-ray lifetimes.

I. INTRODUCTION

For some years there has been discussion of controlled thermonuclear fusion using imploding-liner flux compression to produce plasmas in magnetic fields of over 100 tesla. Recently, a conceptual design of a fusion reactor, based upon an imploding liquid metal liner, has been proposed at the Naval Research Laboratory. Technical motivation and details of the concept, dubbed the LINUS reactor, are given in Ref. 1; the discussion here is confined to those features impacting nucleonic aspects of the design.

As a calculational model, we can consider the reactor as an infinite cylinder with a plasma radius during maximum D-T burn of ~ 0.1 m. Outboard of the plasma are various liquid combinations of lithium and lead, which are parameterized in the nucleonic studies. The thickness of this liquid blanket is also a parameter, varying from 0.8 to 1.7 m. Outside the blanket are a cylinder block and pistons, which are used to impart rotational energy to overcome hydrodynamic (Rayleigh–Taylor) instabilities on the inner surface of the liquid blanket. In the model, this cylinder block/piston region (referred to below as generically the "cylinder block") is represented by a 0.15-m-thick stainless steel region.
During feasibility studies, several nucleonics questions needed to be addressed. These included:

(1) the requirements on blanket thickness and lithium concentration, in order to have a net tritium breeding ratio greater than unity,

(2) the need to minimize neutron and gamma-ray leakage into the cylinder block, in order to limit energy deposition and activation in this region, and

(3) the time dependence of the energy deposition in the blanket.

This report summarizes the interim results from studies of these problems.

II. TIME-INDEPENDENT CALCULATIONS

For consideration of integral responses such as tritium breeding, activation, and total energy deposited per pulse, time-independent calculations are adequate. Our first objective was to devise a LINUS blanket which would be as thin as possible, yet recover most of the thermonuclear energy inboard of the cylinder block.

Initial scoping studies have been performed to determine the breeding potential of LiPb + Pb alloys when used in an imploding liner. The technological interest in such alloys stems from the need to breed tritium from lithium, while at the same time having a high density and relatively incompressible liner. Lead is a desirable material from inertial and compressibility considerations, as well as for its low chemical reactivity. Alloys of lead and LiPb with less than 1.0 mole lithium per mole of lead have been found to be sufficiently unreactive for use as shields and collimators, for example. Thus, such alloys are considered to be satisfactory, from a reactiveness viewpoint, for imploding liners.

Nucleonics calculations first were performed to find an envelope of parameters in which acceptable tritium breeding could be achieved. At the same time, neutron leakages from the blanket were computed, along with energy deposition in both the blanket and cylinder block for one configuration. The leakages then provide an approximate measure of heating and radiation damage to the cylinder block and mechanical constraints outboard of the liquid imploding liner. All neutron and gamma-ray transport calculations were based upon the one-dimensional cylindrical model proposed by Turchi and Robson. Parameters studied for their effect on breeding ratio and neutron leakage were:

(1) blanket thickness,

(2) lithium concentration in LiPb, including some inner layers of pure lithium,

(3) 6Li concentration in lithium, and

(4) cadmium "poisoning" concentration in lead.

All one-dimensional transport calculations were performed with the discrete-ordinates transport code DTF-IV in an S_6-P_3 mode, using the LASL/CTR coupled cross-section library for 25 neutron and 21 gamma-ray groups. The cylindrical model has a 0.1-m-plasma region, representative of the stage of implosion at which the maximum thermonuclear burn occurs. Outboard of this is the imploding LiPb + Pb liquid liner of varying thickness and composition, followed by a 0.15-m structure of type 316 stainless steel (i.e., the cylinder block).

The first parametric set of one-dimensional discrete-ordinates transport calculations considered a homogeneous blanket using natural lithium and 50 w/o
LiPb in the alloy. This concentration was chosen, based upon several considerations, including a liquidus curve showing a rapid increase in the melting point (from ~ 470°C to ~ 720°C) as the atomic percent of lithium exceeds about 60. Also, it was expected intuitively, and later verified, that high lithium concentrations are not necessary for effective breeding. According to Ref. 2, the density of the LiPb + Pb alloy is given by

\[\rho_l = \frac{a}{11.9} + \frac{b}{7.86} \]

where a and b are the weight fractions of lead and LiPb, respectively. At 450°C, the assumed operating temperature for the blanket, the density is given by

\[\rho = 0.92 \rho_l \]

From these equations, it appeared that the best attenuation of the primary 2.25-pJ (14-MeV) neutrons, and the most neutron multiplication by (n,2n) reactions in lead, would occur at lower concentrations of LiPb. Although thinner neutron multipliers made of lead have been analyzed previously, this is the first time thick (~ 1-m) lead blankets have been studied. Early calculations quickly showed that tritium breeding ratios greater than unity could be achieved with blankets much less than 1 m thick, using natural lithium, but neutron leakages were intolerably high at these thicknesses. This effect is caused by the high neutron multiplication in lead (almost a factor of two, as can be seen for low values of \(f_w(LiPb) \) in Fig. 1), combined with a low-absorption cross section for lead at all neutron energies. A reference blanket thickness of 1 m was then chosen, and the breeding and leakage characteristics were investigated as a function of \(f_w(LiPb) \), the weight percent of LiPb in the LiPb + Pb alloy. Figure 1 shows the results of this study. Clearly, the tritium breeding ratio is more than adequate for all values of \(f_w(LiPb) \) in the range [0.05,1.0]. The curve labeled \(T7 \) shows the \(^7Li(n,n't)4He \) component of the total tritium breeding ratio. It is therefore clear that most of the breeding is in \(^6Li \), with considerable enhancement from the secondary (n,2n) neutrons from lead. The neutron right leakage from the blanket into the cylinder block, denoted \(L2 \) on Fig. 1, varies inversely with \(f_w(LiPb) \), but is still unacceptably high for reasonable values of \(f_w(LiPb) \); i.e., values less than about 0.5 weight fraction LiPb.

Using the results of the parametric study shown in Fig. 1, it was decided to choose \(f_w(LiPb) = 0.5 \), the maximum practical value from melting point considerations. Next, an alloying element for the LiPb was sought which would have the properties of (1) alloying with LiPb + lead without seriously altering mechanical and chemical properties, especially melting point, and (2) providing a neutron poison to control the extraordinarily high tritium breeding ratio, while decreasing the leakage. Unfortunately, the leakage spectrum for the reference case peaks at ~ 10fJ (6 x 10^4 eV), as can be seen in Fig. 2. This figure shows the spectrum, normalized to a unit D-T neutron source rate per cm along the cylindrical axis. The blanket thickness, \(R \), is 1.0 m, and the spectrum is taken at 0.005 m inward from the outer surface of the blanket; namely, at \(R = 1.095 \) m. Recall that the plasma region, and thus the neutron source region, is 0.1 m in radius. The spectrum at the inboard portion of the blanket has a similar peak at ~ 20 fJ, but with an additional large peak at 2.25 pJ (14 MeV), as shown in Fig. 3. Thus, no suitable

*Equation (1) from Ref. 2 has an apparent error, so exponents (-1) have been deleted from the right-hand side of that equation.
Fig. 1. Breeding and leakage characteristics vs LiPb content for 1-m-thick blanket.

Poison could be found which would absorb neutrons in the keV region and satisfy other criteria, so cadmium was selected as a trial material because of its otherwise desirable chemical/alloying properties. Figure 4 shows the relative ineffectiveness of cadmium in reducing leakage, as well as its effective competition with 6Li for absorption of low-energy neutrons. The abscissa in Fig. 4 is the isotopic fraction of cadmium, as a fraction of total lead atoms. Possible colloidal suspension of materials other than cadmium might prove more effective and should be explored in any further conceptual design studies.

A design breeding ratio which will allow for data uncertainties and multidimensional effects, is ~ 1.1. Very little provision for blanket structure or inhomogeneities need be made, because by its intrinsic nature, the imploding liquid blanket is homogeneous and without internal structure. From Fig. 4 it can be inferred that significant poisoning can be tolerated in a 1-m-thick blanket, so blanket leakages to the cylinder block of ~ 0.1 appear achievable if materials such as tantalum or tungsten can be introduced in the blanket. As noted above, the large excess of neutrons in the blanket is due almost exclusively to $(n,2n)$ reactions in lead, which almost double the initial neutron population. For example, from Fig. 4 at f_4(cadmium in lead) = 0.0 the breeding ratio is 1.81 and the leakage from the blanket (L_2) is 0.187. Even ignoring other absorptions in the blanket, one has 1.997 "neutrons" per D-T neutron. It can also be concluded from Fig. 4 that most neutrons which leak from the blanket into the cylinder block (L_2) continue on through the cylinder block and escape (L_3). The fraction of neutrons absorbed in the cylinder block (approximately L_2-L_3) is only about 0.03 at a Cd isotopic fraction in Pb of 0.1. This fraction absorbed in the
Fig. 2. Leakage neutron spectrum for reference blanket (normalized to 0.01 neutron per m).

Fig. 3. Neutron spectrum 0.015 m into the blanket (normalized to 0.01 neutron per m).
cylinder block is approximately 25% of the neutrons leaking from the blanket into
the cylinder block. Again, consideration of the blanket leakage spectrum in Fig.
2 explains the relative transparency of the cylinder block to the leakage neu-
trons. Neutron absorption in the cylinder block is primarily due to resonance
capture in iron at \(\sim 160 \) aJ (1 keV), and in fact, almost half of the absorptions
occur in neutron energy group 17, which encompasses 72.6 to 198 aJ.

Of considerable interest in any blanket design is the spatial distribution
of nuclear heating (neutron and gamma-ray) in the blanket and structure, as well
as the volume integral of the energy. Figure 5 presents the spatial distribution
of neutron plus gamma-ray energy deposition in the reference blanket and cylinder
block. There is a decrease of over two decades in the blanket, with a small gamma-
ray heating peak at the outer boundary. Values given in Fig. 5 are normalized to
a unit D-T neutron in the plasma region per cm length of the cylinder. For a wall
loading of \(\overline{I}_w \) MW/m\(^2\), where the neutron current is \(4.44 \times 10^{17} \overline{I}_w \) m\(^{-2}\)s\(^{-1}\), the re-
normalized source would be

\[
S_L \left(\text{cm}^{-1} \text{s}^{-1} \right) = 4.44 \times 10^{17} \overline{I}_w A/L
= (4.44 \times 10^{17})(2\pi \times 10^{-3})\overline{I}_w
= 2.79 \times 10^{15} \overline{I}_w.
\]

Here A/L is the wall area per unit length (m\(^2\)/cm). Assuming a wall loading of \(\overline{I}_w = 1.0 \) MW/m\(^2\), the maximum heating in the blanket and the cylinder block are 5.0
and 2.8 \times 10^{-2} MW/m\(^3\), respectively. Also, the integrated total heating in the
blanket is 2.807 pJ per D-T neutron; and similarly in the cylinder block, 0.073 6
pJ. Thus the energy multiplication of the 2.25-pJ D-T neutrons is 1.248 in the
blanket, and 1.280 in the combined blanket and cylinder block. The latter is the
equivalent of 18.0 MeV deposited energy per D-T neutron.

III. TIME-DEPENDENT CALCULATIONS

An important consideration in the thermal-mechanical stability of the im-
ploding liner is the time scale over which the nuclear energy is deposited in the
blanket. Rough estimates were first made by simple slowing-down calculations
and by comparison with time-dependent calculations for laser fusion reactors.

From the time-independent discrete-ordinates transport calculations it was deter-
mined that most of the absorption occurs in the 0.1- to 10-fJ (\~{} 10\(^3\)- to 10\(^5\)-eV)
energy region. Based upon results from Ref. 7 and a slowing-down time calculation*
in lithium, an upper limit of \~{}10 ps can be inferred for the energy deposition
time. From Ref. 8, the time is known to be \~{}0.1 \(\mu \)s. Time-dependent Monte Carlo
calculations, using the MCNG code, 9 indicate that 81.4% of the total energy is

*The slowing-down time in lithium from 2.25 pJ to 800 aJ is given by

\[
t = \frac{\sqrt{\Sigma_s}}{\xi_L} \left(\frac{1}{\sqrt{E_1}} - \frac{1}{\sqrt{E_0}} \right),
\]

where \(\xi_L \approx 0.263 \) is the average lethargy increase per
scattering collision,

\[
t \approx 3 \mu s,
\]

\(\Sigma_s \approx 2.4 \times 10^{-2} \text{ cm}^{-1} \) is the average macroscopic
scattering cross section, \(m \) is the mass of the neutron
(g), \(E_0 \) is the initial neutron energy (ergs), and \(E_1 \)
is the final neutron energy (ergs).
Fig. 4. Effect of Cd substitution for Pb on breeding and leakage characteristics.

Fig. 5. Spatial distribution of neutron plus gamma-ray energy deposition in reference blanket and cylinder block.
deposited in < 0.5 μs, 8% from 0.5 to 2.0 μs, 6% from 2.0 to 5.0 μs, and 3% from 5.0 to 10.0 μs. Analysis of these results shows that the energy is effectively absorbed before significant mechanical disruption of the blanket occurs. A rule-of-thumb criterion used for energy absorption is that essentially all the energy should be deposited within < 10 μs, so a secure margin for error in the time-dependent Monte Carlo calculations still exists. These calculations show that only ~ 4% of the energy is deposited after 5 μs. Thus, it appears LINUS's blanket is mechanically secure for the lifetime of almost all nonleaking neutrons and gamma rays.

REFERENCES

