Dependence of Laser-Driven Compression Efficiency on Wavelength

by

R. L. McCrory
R. L. Morse
This work supported by the US Energy Research and Development Administration's Division of Laser Fusion and Division of Military Application.
DEPENDENCE OF LASER-DRIVEN COMPRESSION

EFFICIENCY ON WAVELENGTH

by

R. L. McCrory and R. L. Morse

ABSTRACT

Numerical simulations of laser-driven implosions combined with previously derived scaling laws, both based on classical thermal conduction without any flux limiting, indicate that the absorbed energy required to cause a given implosion, and, therefore, the anticipated nuclear yield ratio should scale approximately inversely with wavelength in the visible and near infrared.

I. INTRODUCTION

Extensive numerical simulations indicate the possibility of achieving energy breakeven or better from laser-driven spherical implosion of pellets containing thermonuclear fusion fuel. Implosion is driven by ablation of material from the surface of a pellet by the absorbed laser energy. This energy is transported by electron thermal conduction from the surface of critical density, \(\rho_c \), where it is absorbed from the incident laser light, to the surface of the pellet core, or ablation surface. (Recall that the ablation surface essentially separates the blowoff from the dense pellet core which is being compressed.) For visible or infrared wavelengths, \(\lambda \), \(\rho_c \) is much less than the density of the pellet core and occurs in the low density blowoff. For the Nd laser from which \(\lambda \), the wavelength, is 1.06 \(\mu \)m, the critical electron density is \(\rho_c = 10^{21} \text{ cm}^{-3} \), and in the compressed core, which is at solid densities or higher, \(\rho_c \geq 10^{23} \text{ cm}^{-3} \). In Ref. 2 it is shown by a stationary flow model of the thermal conduction and ablation process that, among other things, the absorbed laser power, \(W \), required to provide a given ablation pressure and material ablation rate increases with decreasing \(\rho_c \). This result is a consequence of the relatively larger radius of the critical surface when \(\rho_c \) is made relatively smaller, which results in a longer region through which the absorbed power must be conducted before reaching the ablation surface. In particular, Ref. 2 finds that, to a good approximation, the required power scales as \(W \sim \rho_c^{-2} \), and, therefore, since \(\rho_c \sim \lambda^{-2} \), that \(W \sim \lambda \). The indicated scaling would be very important for laser fusion research and development because a factor of \(\lambda \) would multiply pellet yield ratios, and there are differences of an order of magnitude or more in the wavelengths of the different lasers being considered for this purpose.

We show here that this scaling is applicable to a range of values of \(\lambda \) of interest in laser fusion research. The short wavelength end of the range is simply determined by the requirement that \(\rho_c \) be less than the initial solid density of a pellet. Reasons can be given for keeping \(\rho_c \) at least a few times smaller than initial solid density. This requires that the critical electron density be less than about \(10^{23} \text{ cm}^{-3} \) or that \(\lambda \geq 10^1 \mu \)m. The large \(\lambda \) end of the range of applicability must then be somewhat larger than \(\lambda = 10^{-1} \mu \)m in order for the \(W \sim \lambda \) scaling to be important. This end of the range is determined by the validity of the stationary flow model and occurs, as discussed in Ref. 2, where \(\rho_c \) is so small that the time required for material to flow from the ablation surface to the critical surface is no longer small.
compared to the implosion time. The following time-
dependent numerical simulation parameter study of
laser-driven implosions indicates the existence of a
range of approximate validity of the $W - \lambda$ scaling,
and the approximate location of the large λ end of
the range.

II. NUMERICAL PARAMETER STUDY

The simulation parameter study was done with a
one-dimensional, spherical, Lagrangian hydrodynamics
and heat flow code. In order to allow direct com-
parison to the model of Ref. 2 and to permit scaling
the results to a wide range of physical cases, we
have used an ideal gas equation of state, in conjunc-
tion with a one-temperature model (for ions and
electrons) and, in the electron thermal conduction,
$\ln A = \text{const} = 5$. The target is a $10^2 \mu\text{m}$ radius
sphere of $Z = 1, A = 2.5$ material of initial density
1 gm/cm^3. The simple scaling laws of hydrodynamics
and one temperature heat flow readily transform this
case into one of higher or lower initial density and
higher Z without changing the calculated efficiencies
for a given pulse shape. Constant power step func-
tion pulses of a range of intensities are used. The
laser pulse is never shut off in these calculations,
but any additional energy supplied to the pellet
after peak compression need not be considered. Both
more elaborate target and pulse shapes could have
been used which would give much larger values pR
(see below). However, since the object of this
study is only to show the dependence of the energy
transfer to the imploded part of the pellet on p_c, a
different, more complex, choice of target and
pulse shape would, if anything, reduce the general-
ity of the results.

Figure 1a shows the peak value of $\int_0^\infty \rho \, \text{d}r$, called
pR, a common figure of merit for spherical compres-
sion (see Ref. 1), for a range of pulse powers and
for the critical densities $p_c = 10^{-1}, 10^{-2}, \text{ and } 10^{-3}$. Power is given in units of watts/cm2 at the initial
pellet radius. The slight rise of pR for irradi-
ances above 10^{16} W/cm2, followed by a drop to the
initial time value, occurs when the incident power
becomes so large that the inward-moving thermal wave
front begins to keep up with or outruns the con-
verging shock, viz., the so-called "burn through"
limit. Note that at lower power $pR \approx 0.04$ is what
one expects from a one-shock implosion, and the
effect of changing p_c and W is just to alter the
shock timing. Figure 1b shows the internal energy
at the time of peak pR in that part of the pellet mass
responsible for the innermost 80% of pR. The
use of this 80% prescription has been found to be a
generally reliable procedure for identifying para-
eters of the compressed core, at least for the kind
of simple target and pulse considered here. Exa-
mination of further details of the simulation re-
sults show, as would be expected, that in the lower
power range, where pR vs W is nearly flat, cases
with different p_c which have the same internal
energy in the core, are quite similar in all respects
inside of the ablation surface. Two sets of such
cases, three at 0.33 joules of internal energy and
different p_c, and three at 8.6 joules, are circled
on Fig. 1b, and the same cases are circled on Fig.
1c which is a plot of efficiency, η, of transfer of
absorbed energy, W, into internal energy. That is,
η is the ratio of the internal energy plotted in Fig.
1c to the total energy absorbed in the pellet up to
the time of peak pR. At 0.33 joules, the ratio of the
values of η at $p_c = 10^{-2}$ and 10^{-1} (recall that
the initial density is 1 gm/cm^3 so that these values
of p_c are numerically the ratio of p_c to the pellet
density) is about 2.5 or almost the ratio of wave-
lengths, $\sqrt{10}$, while the ratio of η's at 10^{-3} and
10^{-2}, approximately 1.7, is significantly lower.
At 8.6 joules, where the mass ablation rate is
larger and the stationary ablation model is not
expected to be as good, the efficiency is better
but the respective ratios; 2.2 and 1.2, are a bit
smaller. If the initial density of 1 gm/cm^3 is
scaled up to typical outside surface target material
densities of about 2 gm/cm^3, then the wavelength
(corresponding to our highest p_c, which becomes 0.2
gm/cm^3, is about 0.15 μm, and that corresponding to
the smallest is 1.5 μm. The simulations show that
the scaling is weakening considerably at the longer
wavelength, which appears to be approximately the
large λ end of the range of validity of the $W \sim \lambda$
scaling. Different pulse shapes and target con-
figurations could, by changing the time scales of
implosions and transients in the ablation flow,
change the large λ end of the range by perhaps a
factor of two, but would probably not extend the
range as far as 10 μm. We also expect that those
pulse shapes which extend the range will give a
scaling of \(W \) with \(\lambda \), which is closer to \(W - \lambda \) than was seen in our parameter study with step function pulses.

III. CONCLUSIONS

Our conclusion from these preliminary calculations is that the efficiency with which absorbed laser energy causes a given spherical implosion in medium to low Z materials should increase by a factor of between three and five if the laser wavelength is decreased from infrared wavelengths between 1 and 10 \(\mu \)m to the blue or near ultraviolet. A small additional improvement might be gained with some targets by going down into the vacuum ultraviolet, below about 0.2 \(\mu \)m, but at the expense of some increase in experimental difficulty. These calculations, which consider only classical thermal conductivity, indicate that the further loss in efficiency from going to wavelengths as long as 10 \(\mu \)m and longer should be small. This effect should not be confused with nonclassical thermal flux limiting, which may introduce some inefficiency at wavelengths as short as 1 \(\mu \)m.3

REFERENCES

Fig. 1. Results of a numerical simulation parameter study of laser-driven implosion of solid spherical pellets. As a function of power, watts/cm\(^2\) at the initial pellet surface, and critical density, \(\rho_c \), the figures show a) peak values of \(pR \), b) internal energy in the compressed pellet core at the time of peak \(pR \), and c) efficiency, \(\eta \), of transfer of absorbed laser energy into the core energy shown in b).