Production of Actinide Isotopes in Simulated PWR Fuel and Their Influence on Inherent Neutron Emission

Los Alamos
Los Alamos National Laboratory
Los Alamos, New Mexico 87545
This work was supported by the US Department of Energy, Office of Safeguards and Security, and the Savannah River Interim Spent-Fuel Storage Project Office.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Production of Actinide Isotopes in Simulated PWR Fuel and Their Influence on Inherent Neutron Emission

G. E. Bosler*
J. R. Phillips
W. B. Wilson
R. J. LaBauve
T. R. England

*International Atomic Energy Agency, Box 200, Vienna, AUSTRIA.
PRODUCTION OF ACTINIDE ISOTOPES IN SIMULATED PWR FUEL AND THEIR INFLUENCE ON INHERENT NEUTRON EMISSION

by

ABSTRACT

This report describes calculations that examine the sensitivity of actinide isotopes to various reactor parameters. The impact of actinide isotope build-up, depletion, and decay on the neutron source rate in a spent-fuel assembly is determined, and correlations between neutron source rates and spent-fuel characteristics such as exposure, fissile content, and plutonium content are established. The application of calculations for evaluating experimental results is discussed.

I. INTRODUCTION

Nondestructive assay (NDA) techniques are being developed to verify characteristics of irradiated fuel assemblies. Measurable, inherent attributes of irradiated fuel assemblies include gamma rays primarily from fission-product isotopes and neutrons associated almost entirely with the decay of actinide isotopes. Although these radiation signals are easily detected, interpreting the acquired data can be difficult.

Detection systems for monitoring irradiated fuel assemblies are simple and basic. Possible complexities in the equipment occur because the measurements must be made underwater and (for safeguards inspector use) the instruments must be portable. Ion chambers and high-resolution gamma spectrometry (HRGS) are
generally used for detecting gamma-ray signals. For neutron detection, fission chambers are used. Of these three types of detector systems, only HRGS has resolvable signals that can be related directly to spent-fuel characteristics (in this case, the concentrations of specific fission-product isotopes). The other detectors monitor gross signals, which must be correlated to various irradiated fuel attributes to obtain meaningful information.

In this report, we analyze neutron signals inherent to irradiated fuel assemblies. Passive neutron emission rates from irradiated fuel assemblies have been measured for limited exposures and cooling times.1-3 Although these measurements demonstrate feasibility, questions exist about the interpretation of the results. To investigate the applicability of such measurements, we need to understand the neutron emission characteristics of irradiated fuel. Because neutron characteristics depend on the heavy-element actinide inventories, calculations are used to predict the build-up, depletion, and decay of the neutron-producing isotopes and to determine the neutron source rates from these isotopes. The calculational models also are used to determine the sensitivity of the neutron emission rates to parameters of initial ^{235}U enrichment, fuel density, different exposure conditions, power levels, and irradiation histories.

These calculational techniques complement the limited experimental results. They are used to predict trends and parameter sensitivities that should be investigated experimentally to understand fully the effects of various irradiated fuel parameters on the measured neutron signals.

The production and depletion of actinide isotopes were calculated for a typical pressurized-water-reactor (PWR) fuel assembly using core characteristics from the H. B. Robinson-2 (HBR-2) facility (Westinghouse 700-MWe reactor). CINDER 2, an improved version of the single-point depletion code EPRI-CINDER4 and associated data library,5 performed these calculations. Flux and shielded cross-section data were obtained from the EPRI-CELL code.6

Neutron signals inherent to irradiated fuel depend on the fuel exposure: the neutron source rate increases with exposure. To correlate the experimentally obtained neutron count rates with operator-declared exposure values, a

†The term "exposure" has units of megawatt days (thermal) per metric ton of initial uranium, whereas the term "burnup" has units of atom per cent fission. Although these terms generally are used interchangeably, in this report they will be used in their proper context. These quantities are discussed in the Appendix.
power function relation typically has been used: \(\text{count rate} = \alpha \times (\text{exposure})^\beta \), where \(\alpha \) is a scaling factor and \(\beta \) ranges between 3 and 4, depending on the type of fuel assemblies measured. Once a relationship is established for a given fuel type, the neutron count rate can be used to predict the exposures of other fuel assemblies with similar irradiation histories. Results from predicting exposures vary. Generally, the established relationship is valid for a given set of fuel assembly measurements, and exposures of "unknown" assemblies are determined with accuracies of 5% or better. This technique's main problem is lack of a universal power function relationship that satisfies all fuel types and measurement conditions. Typically, the power function will vary, depending on generic fuel type and possibly on boron in the cooling water. Within a generic reactor fuel, variations also occur as a result of initial \(^{235}\text{U}\) enrichment, clad material, proximity of control material, and power level. To establish applicable ranges and sensitivities, we want to identify those parameters having a significant impact on the power function relationship.

In addition to power function correlations between neutron count rate and exposure, methods\(^2\) have been proposed that use neutron count rates to determine specific information, such as total plutonium and total fissile content in the fuel. These methods use correlations that provide quantitative information about the fuel assembly. Again, as with the power function relationship, these specific correlations have been evaluated calculationally to establish their validity and applicable ranges.

Although our analyses, which determine neutron source rates in irradiated fuel assemblies, predict source rate differences resulting from variations in basic fuel parameters, they do not predict actual detector response. The detector response may not be directly proportional to neutron source rate. Multiplication and self-shielding within the fuel materials and moderation in the water can affect the detector responses. To predict adequately the effects of such parameters on the detector response, transport calculations are required. With a specially adapted version\(^7\) of the neutron-photon Monte Carlo code (MCNP),\(^8\) the fuel assembly and detector geometry can be modeled exactly. Fuel material specifications and neutron source rates for the transport calculations can be determined from the data assembled for this report.
II. TEST CASES

The calculational model is based on a fuel assembly from the HBR-2 reactor (see the Appendix for details). The HBR-2 fuel is convenient to model for at least three reasons. First, the fuel is from a PWR, which is easier to analyze than other reactor types, such as a boiling-water reactor (BWR). In a PWR, flux gradients and spectral variations are minimal, resulting in uniform burnup in both the radial and axial directions. For BWRs, axial burnup can vary greatly because of control materials and differences in the void fraction from the boiling of water. Simple cell models can adequately analyze PWRs, whereas more complicated models are needed to describe BWRs.

Second, destructive analysis data for direct comparisons with calculationally predicted quantities are available. Such comparisons give confidence in the analytical techniques, the results obtained, and the overall ability to predict actual isotopic inventories in spent-fuel assemblies. For the HBR-2 fuel, uranium and plutonium isotopic concentrations were measured. Concentrations of the important neutron-producing curium isotopes were not measured destructively.

Finally, the 15 by 15 array of fuel pins in the HBR-2 assembly is typical of the PWR fuels widely used today. A detailed analysis of this fuel should be applicable to the fuel assemblies at many similar reactor facilities.

A. Calculational Data

The EPRI-CINDER data library, describing 46 actinide isotopes, contains all pertinent problem-independent data necessary in nuclide-inventory and aggregate-property calculations for many light-water-reactor (LWR) fuel irradiations. These data include four-energy-group absorption cross sections and branching fractions for multiple paths in radioactive decay and transmutation of fission products. Also included are similar basic nuclear data for actinide nuclides produced by the transmutation of the initially present heavy-metal nuclides and their absorption and decay products. Four-group unshielded actinide cross sections complete the nuclear data library. When using this library, a problem can be completely specified by defining the power history, temporal four-group neutron flux spectrum, and initial nuclide inventory.

Four-group unshielded cross sections in the basic EPRI-CINDER library have been produced from cross-section data in Evaluated Nuclear Data Files (ENDF)/
B-IV or preliminary ENDF/B-V10 by a representative weighting spectrum. More accurate four-group shielded cross-section data can be entered as problem-dependent data to override the basic library data. For calculations in this report, four-group cross sections for principal contributing actinides ($^{234-238}_{\text{U}}$, $^{239-242}_{\text{Pu}}$) were obtained from the EPRI-CELL code6 for each time step. In this manner, effects such as initial enrichment, exposure, poisons, water-to-metal ratio, rod pitch, and other heterogeneity considerations can be modeled accurately.

B. Detailed Power History vs Constant Power History

For the reference HBR-2 reactor fuel, Table I compares the destructively analyzed data and calculational results of the Appendix. Both calculational sets in Table I use a detailed power history to represent HBR-2 operating conditions. In the first set, the reported sample power listing is scaled so the calculated burnup (at.% fission) is identical to the value obtained destructively. This calculation represents the best attempt to match the destructive data. The second set of calculational data was selected from our constant power calculations, and no attempt was made to duplicate reported power variations. The first set has smaller errors than the second set when compared to the destructive data. For both sets, the largest disagreements occur for the single uranium ($^{234}_{\text{U}}$) isotope and two plutonium ($^{238}_{\text{Pu}}$ and $^{242}_{\text{Pu}}$) isotopes, which have the smallest concentrations. All other discrepancies are within 6.1%.

For our parametric studies, the exposure range of the detailed power history case in Table I extends only to 31.19 GWD/tU. Fuel similar to the HBR-2 fuel has been discharged from PWR facilities with exposures greater than 40 GWD/tU under the program to improve uranium utilization in power reactors. Therefore, calculational results are needed for exposures higher than those obtained from the detailed power history case. For our studies, irradiations for exposure levels slightly above 50 GWD/tU are simulated. Such high exposures may become common as utilities increase fuel burnup to maximize uranium utilization. The exposure range of 30 to 50 GWD/tU is extremely interesting with respect to the rapid increase in the production of the curium isotopes and their subsequent effects on the neutron source terms.

Because the detailed power history case cannot be used as a reference for high exposures, another case is needed. For convenience, a constant power
<table>
<thead>
<tr>
<th>Quantity</th>
<th>Destructively Measured<sup>a</sup> Value</th>
<th>Detailed Power History Calculated<sup>b</sup> Value</th>
<th>Difference (%)</th>
<th>Constant Power History Calculated<sup>c</sup> Value</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burnup at.% Fission</td>
<td>3.221</td>
<td>3.221</td>
<td>+0.00</td>
<td>3.234</td>
<td>+0.40</td>
</tr>
<tr>
<td>Exposure GWd/tU</td>
<td>30.92</td>
<td>31.19</td>
<td>+0.89</td>
<td>31.32</td>
<td>+1.29</td>
</tr>
<tr>
<td>234U/U</td>
<td>0.00014</td>
<td>0.00012</td>
<td>-12.81</td>
<td>0.00012</td>
<td>-12.81</td>
</tr>
<tr>
<td>235U/U</td>
<td>0.00612</td>
<td>0.00588</td>
<td>-3.84</td>
<td>0.00585</td>
<td>-4.41</td>
</tr>
<tr>
<td>236U/U</td>
<td>0.00352</td>
<td>0.00357</td>
<td>+1.52</td>
<td>0.00357</td>
<td>+1.52</td>
</tr>
<tr>
<td>238U/U</td>
<td>0.99022</td>
<td>0.99043</td>
<td>+0.02</td>
<td>0.99047</td>
<td>+0.03</td>
</tr>
<tr>
<td>238Pu/Pu</td>
<td>0.01676</td>
<td>0.01452</td>
<td>-13.35</td>
<td>0.01462</td>
<td>-12.77</td>
</tr>
<tr>
<td>239Pu/Pu</td>
<td>0.54261</td>
<td>0.53966</td>
<td>-0.54</td>
<td>0.53877</td>
<td>-0.71</td>
</tr>
<tr>
<td>240Pu/Pu</td>
<td>0.25101</td>
<td>0.24002</td>
<td>-4.38</td>
<td>0.24018</td>
<td>-4.31</td>
</tr>
<tr>
<td>241Pu/Pu</td>
<td>0.12998</td>
<td>0.13772</td>
<td>+5.95</td>
<td>0.13791</td>
<td>6.10</td>
</tr>
<tr>
<td>242Pu/Pu</td>
<td>0.05964</td>
<td>0.06807</td>
<td>+11.41</td>
<td>0.06852</td>
<td>14.89</td>
</tr>
<tr>
<td>239Pu/238U</td>
<td>0.00518</td>
<td>0.00496</td>
<td>-4.28</td>
<td>0.00496</td>
<td>-4.28</td>
</tr>
<tr>
<td>148Nd/238U</td>
<td>0.00057</td>
<td>0.00059</td>
<td>+3.96</td>
<td>0.00059</td>
<td>+3.96</td>
</tr>
</tbody>
</table>

^aData obtained from Ref. 11.
^bThis calculation was performed to duplicate the measured at.% fission value.
^cThese results are from the general constant power history calculations in this report.
history is more desirable than a detailed power history, provided that the constant power history adequately predicts isotopic build-up and depletion. Table II compares results from the detailed power history case and three constant power histories, each with a different linear power level (watts per unit rod length). Atom density ratios are shown for comparison with those in Table I, and mass ratios are shown because most data analyzed in this report are mass values instead of atom densities. Results are reported for approximately the same burnups. To accomplish this, the total fluence must be the same; that is, cases with lower power levels have longer irradiation periods than do cases with higher power levels.

Table II indicates that a constant power level is adequate for predicting isotopic build-up and depletion, particularly for long-lived isotopes. For short-lived isotopes such as \(^{242}\text{Cm}\) (162.9-day half-life), a detailed power history is needed for accurate results. Such detail, however, is unnecessary if the assembly's cooling time is long compared to the half-life of the short-lived isotope.

C. Sensitivity Studies

A particular actinide isotope \(i\) may, in general, be produced as a neutron transmutation reaction product of each \(j\) isotope or as a daughter in the radioactive decay of each \(k\) radioisotope. In turn, isotope \(i\) may be depleted by its own radioactive decay or neutron-induced fission and transmutation. Using some \(G\) neutron energy groups to describe the neutron absorption reactions, Eq. (1) gives the build-up and depletion of isotope \(i\).

\[
\frac{dN_i}{dt} = \sum_{j=1}^{J} N_j f_{ji} \sum_{g=1}^{G} (\sigma_{aj} - \sigma_{fj}) \phi_g + \sum_{k=1}^{K} N_k \lambda_{ki} - N_i \lambda_i - N_i \sum_{g=1}^{G} \sigma_{ai} \phi_g, \quad (1)
\]

where

\(N_i\) = number of isotope \(i\) atoms;

\(N_j\) = number of isotope \(j\) atoms, which, through neutron transmutation, may become nuclide \(i\);

\(N_k\) = number of isotope \(k\) atoms, which, through radioactive decay, may produce as a daughter the isotope \(i\);
Table II
CALCULATED RATIOS AT TIME OF DISCHARGE FROM THE REACTOR

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Detailed Power History</th>
<th>Constant Power History</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atom Density Ratio</td>
<td>Mass Ratio</td>
</tr>
<tr>
<td></td>
<td>(160 W/cm)</td>
<td>(200 W/cm)</td>
</tr>
<tr>
<td></td>
<td>Atom Density Ratio</td>
<td>Mass Ratio</td>
</tr>
<tr>
<td></td>
<td>(160 W/cm)</td>
<td>(200 W/cm)</td>
</tr>
<tr>
<td></td>
<td>(160 W/cm)</td>
<td>(200 W/cm)</td>
</tr>
<tr>
<td>Burnup at.% fission</td>
<td>3.324</td>
<td>3.234</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure GWh/tU</td>
<td>31.32</td>
<td>31.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>234U/U</td>
<td>0.00012</td>
<td>0.00012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235U/U</td>
<td>0.00585</td>
<td>0.00577</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>236U/U</td>
<td>0.00357</td>
<td>0.00354</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238U/U</td>
<td>0.99047</td>
<td>0.99056</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>238Pu/Pu</td>
<td>0.01318</td>
<td>0.01309</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239Pu/Pu</td>
<td>0.52981</td>
<td>0.52820</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>240Pu/Pu</td>
<td>0.24075</td>
<td>0.24102</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>241Pu/Pu</td>
<td>0.14756</td>
<td>0.14834</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242Pu/Pu</td>
<td>0.06868</td>
<td>0.06933</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>239Pu/238U</td>
<td>0.00487</td>
<td>0.00489</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>148Nd/238U</td>
<td>0.00059</td>
<td>0.00037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>242Cm/239Pu</td>
<td>0.00319</td>
<td>0.00323</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>244Cm/239Pu</td>
<td>0.00713</td>
<td>0.00728</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Values differ from those in Table I because Table I data were calculated for a 506.75-day cooling time.
\(\phi_g \) = neutron flux in neutron energy group \(g \);
\(\sigma_{ai}^g \) = neutron absorption \(([n, fission] + [n, \gamma] + [n, 2n] + \ldots) \) cross section of nuclide \(i \) in neutron energy group \(g \);
\(\sigma_{aj}^g \) = neutron absorption cross section of nuclide \(j \) in neutron energy group \(g \);
\(\sigma_{fj}^g \) = \([n, fission] \) cross section of nuclide \(j \) in neutron energy group \(g \);
\(\lambda_i \) = radioactive decay constant of isotope \(i \) for all decay modes (including alpha, beta, electron capture, position, isomeric transition, spontaneous fission, etc.);
\(\lambda_k \) = radioactive decay constant of isotope \(k \) for all decay modes;
\(f_{ji} \) = branching fraction for isotope \(j \) neutron transmutation (absorption less fission) reactions leading to reaction product nuclide \(i \);
\(f_{ki} \) = branching fraction for isotope \(k \) radioactive decay leading to daughter nuclide \(i \).

The solution of nuclide inventories defined by the set of coupled differential Eqs. (1) are obtained by CINDER 2 using a library of basic nuclear data and four-group (\(G = 4 \)) neutron reaction cross sections, as well as various parameters defining the fuel's physical and irradiation environment. We have selected four of the latter that can affect isotope inventories and, thus, the measurable signatures of spent-fuel assemblies. These are
- initial \(^{235}\text{U} \) enrichment,
- initial \(\text{UO}_2 \) fuel mass density,
- power level, and
- irradiation history.

For each of these sensitivity studies, one of the reference parameters in Table III was varied over an applicable range, while the remaining parameters were kept constant. Altering each parameter will affect the three terms in Eq. (1) in a unique manner that depends on the cross section of the specific actinide and its precursors as well as on the decay constants of the \(N_i \) and \(N_k \) isotopes. The study shows if a particular measurable signature is sensitive to various parameters.

This study serves two purposes. First, for best results in measuring signals from an irradiated assembly, measurable signals should be as insensitive as possible to reactor operating conditions. By performing the sensitivity
TABLE III
REFERENCE PWR PARAMETERS

<table>
<thead>
<tr>
<th>Linear power level</th>
<th>200 W/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>UO₂</td>
<td>90.814 %TD</td>
</tr>
<tr>
<td>Initial ²³⁵U enrichment</td>
<td>2.56 wt%</td>
</tr>
<tr>
<td>Irradiation history</td>
<td>Continuous linear power</td>
</tr>
</tbody>
</table>

study on the isotopics and indirectly on the inherent, associated neutron signals, we achieve an understanding of signal sensitivities that can be used to establish procedures best characterizing the measured signal.

Second, by performing sensitivity studies and then verifying them experimentally, calculated factors can be used to compensate for a particular parameter. For example, ²⁴²Cm, which has a relatively short half-life, contributes significantly to the passive neutron signal for cooling times of less than 2 yr, depending on the exposure of the fuel assembly. Generally, ²⁴⁴Cm dominates the remaining signal. Several correlations, which have been established between ²⁴⁴Cm and other parameters such as the total plutonium content in the fuel, are not valid for short cooling times unless the ²⁴⁴Cm concentration is known. This concentration can be deduced from the neutron signal if we correct for the ²⁴²Cm contribution with calculationally derived quantities.

1. Initial ²³⁵U Enrichment Variations. The initial ²³⁵U enrichments studied ranged from 2.2 to 4.5 wt%; PWRs typically have enrichments in the 2.0 to 3.5% range. To achieve burnups, future fuel may have higher initial ²³⁵U enrichments in the 4.0 to 4.5% range. In these enrichment sensitivity studies, the linear power is maintained at 200 W/cm. For a lower enriched fuel (2 to 3 wt%), compared to a higher enriched fuel (3 to 4 wt%), a higher flux level is needed to maintain this power level. Similarly, a higher fluence is needed for a lower enriched fuel to achieve the same exposure. In some cases, higher flux levels cause variations in the isotopics. However, for most actinides discussed here, the effects of different initial enrichments are due primarily to the total fluence differences and not to flux differences.

2. Initial UO₂ Mass Density Variations. Initial UO₂ mass density does not vary significantly in sintered reactor fuels. Usually, the density ranges from 90 to 95% of the theoretical density of UO₂ (10.96 g/cm³). We examined mass densities that were 90.814 and 94% of the theoretical density. Variations
in the mass density affect the fuel loading. The fissile loading will affect the flux and fluence levels needed to obtain power levels and exposures, although ^{238}U concentrations affect the build-up of higher transuranic isotopes. Because the range of possible densities is limited, effects of mass density differences are not very large.

3. Power Level Variations. We used linear power levels of 160, 200, and 240 W/cm. For isotopes produced and depleted principally by neutron capture, relative changes in the concentration depend on the capture cross sections of the isotope and its precursor; the concentration at a given exposure depends on the total fluence and not on the flux magnitude. If the isotope is produced or depleted primarily through radioactive decay, relative changes in the concentration depend on the flux level. If, for instance, the isotope is produced by radioactive decay and depletes through neutron capture, the production process depends on the precursor's half-life and the depletion depends on the flux level. The production rate will remain constant if the flux level is changed, but the depletion will not. At a given exposure level, the isotope concentration depends on the flux level (or power level) at which the fuel operated.

4. Irradiation History Variations. Actinide nuclide inventories seem most sensitive to irradiation history; this is particularly true for short-lived nuclides. An irradiation history accounts for periods of full power operation, for shutdown periods, and for periods after the fuel is removed from the core. Long-lived isotopes build up and deplete during continuous periods of full-power operations. During shutdowns these isotopes remain relatively constant, except for slight build-up when the isotope is the daughter of a short half-life radioactive precursor. When full-power operation resumes, the long-lived isotope generally continues the build-up and depletion process from the same stage as before shutdown.

For short-lived isotopes, the build-up and depletion process still occurs during reactor operations. During shutdown periods, short-lived isotopes decay appreciably. As a result, when the reactor is restarted the isotope has decayed and, depending on feed material, may not reach concentration levels normally obtained during continuous operation. Therefore, concentrations of these isotopes depend strongly on irradiation history.
Irradiation histories in this study assumed combinations of 1-yr full-power irradiation cycles and 1-yr shutdown cycles. The 1-yr shutdown cycle simulated a fuel assembly being removed for a full 1-yr cycle and then returned to the core. For all irradiation history cases considered, the fuel was removed from the core when a maximum of about 50 GWh/tU (five full-power irradiation cycles) was obtained.

III. ACTINIDE ISOTOPE PRODUCTION, DEPLETION, AND DECAY

A. Uranium Isotopes

Four uranium isotopes, 234U, 235U, 236U, and 238U, initially are present in uranium dioxide (UO_2) fuels, with only 235U and 238U occurring in large quantities. The combined 234U and 236U isotopes are less than 0.1 wt% of the initial heavy metal loading. In unirradiated fuel, actual amounts of the uranium isotopes depend on the initial 235U enrichment, which typically varies from 2.0 to 4.5 wt%. Concentrations of 234U, 235U, and 238U deplete with increasing exposures, but 236U is produced. The behavior of the uranium isotopes depends primarily on the uncomplicated neutron capture chains in Fig. 1.

Of the uranium isotopes in spent-fuel assemblies, 235U is of primary interest for safeguards purposes. From a measurement standpoint, 235U can significantly affect neutron signatures of spent-fuel assemblies. Neutron multiplication of either inherent neutrons or external interrogation-source neutrons depends on the amount of fissile material. Neutron measurement systems designed to determine various spent-fuel parameters must consider the multiplication effects.

1. Uranium-234 ($t_{1/2} = 2.45 \times 10^5$ yr). Uranium-234 (Fig. 2) depletes through neutron capture to form additional 235U. Uranium-234 is a long-lived isotope basically unaffected by reactor shutdown or fuel discharge from the reactor. Over long cooling periods, minute quantities of 234U are produced through alpha emissions in 238Pu.

2. Uranium-235 ($t_{1/2} = 7.04 \times 10^8$ yr). Uranium-235 (Fig. 3) depletes through neutron absorption. After absorbing a neutron, the 235U atom fissions or forms 236U. Like 234U, 235U is long lived and therefore unaffected by reactor shutdown.
Mass Number

<table>
<thead>
<tr>
<th></th>
<th>235</th>
<th>236</th>
<th>237</th>
<th>238</th>
<th>239</th>
<th>240</th>
<th>241</th>
<th>242</th>
<th>243</th>
<th>244</th>
<th>245</th>
<th>246</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td></td>
</tr>
</tbody>
</table>

- $^{242}\text{Cm} \rightarrow ^{243}\text{Cm} \rightarrow ^{244}\text{Cm} \rightarrow ^{245}\text{Cm} \rightarrow ^{246}\text{Cm}$
- $^{241}\text{Am} \rightarrow ^{242}\text{Am} \rightarrow ^{243}\text{Am} \rightarrow ^{244}\text{Am}$
- $^{239}\text{Pu} \rightarrow ^{240}\text{Pu} \rightarrow ^{241}\text{Pu} \rightarrow ^{242}\text{Pu} \rightarrow ^{243}\text{Pu}$
- $^{237}\text{Np} \rightarrow ^{238}\text{Np} \rightarrow ^{239}\text{Np} \rightarrow ^{240}\text{Np}$
- $^{235}\text{U} \rightarrow ^{236}\text{U} \rightarrow ^{237}\text{U} \rightarrow ^{238}\text{U} \rightarrow ^{239}\text{U}$

* Metastable states exist for ^{240}Np, ^{242}Am, and ^{244}Am

Fig. 1.
Principal actinide chains in LWR fuel.
Concentration of 234U as a function of exposure and irradiation/cooling time.
Concentration of 235U as a function of exposure and irradiation/cooling time.
3. Uranium-236 ($t_{1/2} = 2.34 \times 10^7$ yr). The ^{236}U thermal capture cross section is small compared to the same ^{235}U cross section. As a result, during reactor operation more ^{236}U is produced than is lost (Fig. 4). The ^{236}U concentration reaches a maximum at high exposures and is reduced by neutron capture, yielding ^{237}U. Because of its long half-life, the ^{236}U concentration remains nearly constant after a fuel assembly is discharged from a reactor.

4. Uranium-237 ($t_{1/2} = 6.75$ days). Uranium-237 (Fig. 5) is produced from neutron capture in ^{236}U. Although some neutron capture and subsequent formation of ^{238}U occurs in ^{237}U, this ^{237}U isotope depletes primarily through beta decay to form ^{237}Np. The very short half-life results in nearly total depletion of ^{237}U during reactor shutdown until its low concentration is in equilibrium with the alpha decay of the parent ^{241}Pu.

5. Uranium-238 ($t_{1/2} = 4.47 \times 10^9$ yr). Uranium-238 has the largest heavy metal mass in LWR fuel assemblies. As shown in Fig. 6, ^{238}U depletes during reactor operation. Whereas some high-energy neutrons will induce fissions in ^{238}U, most neutron absorption events in ^{238}U result in the formation of ^{239}U. For exposures greater than 50 GWD/tU, nearly 4% of the initial ^{238}U is depleted by neutron capture and fission. Uranium-238 remains constant during reactor shutdown.

6. Uranium-239 ($t_{1/2} = 23.5$ min). Uranium-239 concentrations (Fig. 7), formed from neutron capture in ^{238}U, decay rapidly because of the very short half-life. The beta decay of ^{239}U results in ^{239}Np, which also rapidly undergoes beta decay, to form the important fissile isotope ^{239}Pu.

7. Sensitivity of Fissile Uranium Isotope—^{235}U. Figure 8 shows sensitivity effects for ^{235}U. Although the obvious sensitivity to initial ^{235}U enrichment is shown, ^{235}U has little or no sensitivity to the other parameters. (In Fig. 8 and all similar plots, U indicates a 1-yr constant power period at 200 W/cm and D indicates a 1-yr shutdown period. A series of these letters, such as UDUU, indicates a 4-yr period with 1 yr in the core followed by 1 yr out of core or in a shutdown mode followed by 2 yr of full power.) The ^{235}U isotope's dependence on initial enrichment, also evident for most other transuranic isotopes, indicates that techniques for verifying fissile content in
Concentration of 236U as a function of exposure and irradiation/cooling time.

Fig. 4.

HALF-LIFE
U-236 - 2.343E+07 Years

Cooling Period
730,500 Days
Concentration of ^{237}U as a function of exposure and irradiation/cooling time.
Concentration of ^{238}U as a function of exposure and irradiation/cooling time.

HALF-LIFE
U-238 = 4.470E+09 Years

Cooling Period 730.500 Days

Fig. 6.
Concentration of 239U as a function of exposure and irradiation/cooling time.
Fig. 8.
Sensitivity of ^{235}U to various reactor parameters as a function of exposure.
spent-fuel assemblies probably require knowledge of the assembly's initial en-
richment.

B. Neptunium Isotopes

The neptunium isotopes in Fig. 1 are important because they are precursors
to the formation of the plutonium isotopes. Of the neptunium isotopes of in-
terest, 237Np, 238Np, 239Np, and 240Np, only 237Np has a long half-life. The
others beta decay quickly to form various plutonium isotopes.

1. Neptunium-237 ($t_{1/2} = 2.14 \times 10^6$ yr). Neptunium-237 concentrations
(Fig. 9) are formed from the beta decay of 237U. After removal from the reac-
tor, a short-term increase in 237Np concentration occurs as the remaining 237U
decays.

2. Neptunium-238 ($t_{1/2} = 50.8$ h). The 238Np (Fig. 10) is formed from
neutron capture in 237Np. This isotope depletes through beta decay to form
238Pu and through neutron capture to form 239Np. For exposures up to 50 GWd/
tU, 238Np does not reach such a maximum because the source material 237Np con-
tinues to increase. With such a short half-life, 238Np quickly decays after
fuel removal from the reactor.

3. Neptunium-239 ($t_{1/2} = 56.5$ h). Neptunium-239 concentrations shown in
Fig. 11 are formed from neutron capture in 238Np and from beta decay of 239U.
The similar curves of 239U (see Fig. 7) and 239Np show that most 239Np comes
from 239U. Neptunium-239 depletes by beta decay to form the important fissile
isotope 239Pu and by neutron capture to form 240Np. Because of its short half-
life, 239Np quickly decays after the fuel is discharged from the reactor.

4. Neptunium-240 ($t_{1/2} = 1.08$ h). Neptunium-240 (Fig. 12) forms from
neutron capture in 239Np. A metastable state of 240Np is also formed. Both
states deplete through beta decay to form 240Pu. As with 238Np and 239Np, this
isotope decays quickly during reactor shutdown and after fuel assembly dis-
charge from the reactor.

C. Plutonium Isotopes

Two plutonium isotopes, 239Pu and 241Pu, are fissile materials of safe-
guards interest. In low-exposure materials or in reprocessed fuels, the
Fig. 9.
Concentration of 237Np as a function of exposure and irradiation/cooling time.
Fig. 10.
Concentration of ^{238}Np as a function of exposure and irradiation/cooling time.
Fig. 11.
Concentration of 239Np as a function of exposure and irradiation/cooling time.
Fig. 12.
Concentration of ^{240}Np as a function of exposure and irradiation/cooling time.
plutonium isotopes are important neutron emitters. The even mass number plutonium isotopes, ^{238}Pu, ^{240}Pu, and ^{242}Pu, undergo spontaneous fission with subsequent emission of neutrons, as shown in Table IV. Three plutonium isotopes, ^{238}Pu, ^{239}Pu, and ^{240}Pu, emit significant numbers of alpha particles. When these alpha particles are in matrix materials with low atomic numbers, they can interact with the material, resulting in neutron release. For oxygen, the alpha particles interact with ^{17}O or ^{18}O to form ^{20}Ne or ^{21}Ne and release neutrons. Other low atomic number isotopes have similar alpha interactions. Figure 1 shows the plutonium production and decay chains.

1. **Plutonium 238** ($t_{1/2} = 87.8 \text{ yr}$). Figure 13 shows ^{238}Pu building up as a function of time and exposure. This isotope, which has a relatively short half-life (compared to other plutonium isotopes), is produced primarily by the beta decay of ^{238}Np. Additional ^{238}Pu comes from the alpha decay of ^{242}Cm. Because ^{238}Pu is not formed principally from neutron capture, it continues to be produced during nonirradiation periods.

2. **Plutonium-239** ($t_{1/2} = 2.41 \times 10^4 \text{ yr}$). Plutonium-239 as a function of exposure and time is shown in Fig. 14. This isotope is formed principally from beta decay of ^{239}Np; however, small amounts of ^{239}Pu are produced from neutron capture in ^{238}Pu. Because of the beta decay of ^{239}Np, small amounts of ^{239}Pu continue to be produced shortly after reactor shutdown. Plutonium-239 reaches a maximum in an exposure range of 25 to 30 GWD/tU. At high exposures, much of the ^{235}U initially present has been depleted. Therefore, to maintain the required power level in the fuel assembly, significant amounts of the ^{239}Pu fission, decreasing the ^{239}Pu concentration below its maximum value.

3. **Plutonium-240** ($t_{1/2} = 6.55 \times 10^3 \text{ yr}$). Plutonium-240 (Fig. 15) is formed primarily from neutron capture in ^{239}Pu; some ^{240}Pu is produced from beta decay in ^{240}Np. Plutonium-240 apparently reaches a maximum for exposures in the range of 50 GWD/tU. It depletes through neutron capture to form ^{241}Pu. With such a long half-life, ^{240}Pu is constant during reactor shutdown.

4. **Plutonium-241** ($t_{1/2} = 14.7 \text{ yr}$). Plutonium-241 (Fig. 16) is formed from neutron capture in ^{240}Pu. This isotope depletes mainly by three mechanisms: beta decay to form ^{241}Am, fissioning, and alpha decay to form ^{237}U.

27
<table>
<thead>
<tr>
<th>Isotope</th>
<th>Atomic Mass (amu)</th>
<th>Spontaneous Fission<sup>a</sup></th>
<th>(α,n) Reaction<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Neutrons per V(sf)</td>
<td>Neutrons per g-s</td>
</tr>
<tr>
<td>235U</td>
<td>235.0442</td>
<td>3.50 E+17</td>
<td>1.86</td>
</tr>
<tr>
<td>236U</td>
<td>236.0458</td>
<td>1.95 E+16</td>
<td>1.91</td>
</tr>
<tr>
<td>238U</td>
<td>238.0510</td>
<td>8.20 E+15</td>
<td>2.01</td>
</tr>
<tr>
<td>237Np</td>
<td>237.0482</td>
<td>1.00 E+18</td>
<td>2.05</td>
</tr>
<tr>
<td>236Pu</td>
<td>236.0457</td>
<td>3.52 E+19</td>
<td>2.13</td>
</tr>
<tr>
<td>237Pu</td>
<td>237.0484</td>
<td>(2.00 E+15)<sup>c</sup></td>
<td>(1.89)<sup>c</sup></td>
</tr>
<tr>
<td>238Pu</td>
<td>238.2134</td>
<td>4.77 E+10</td>
<td>2.22</td>
</tr>
<tr>
<td>239Pu</td>
<td>239.0526</td>
<td>5.48 E+15</td>
<td>2.16</td>
</tr>
<tr>
<td>240Pu</td>
<td>240.0542</td>
<td>1.31 E+11</td>
<td>2.16</td>
</tr>
<tr>
<td>241Pu</td>
<td>241.0487</td>
<td>(2.50 E+15)<sup>c</sup></td>
<td>(2.25)<sup>c</sup></td>
</tr>
<tr>
<td>242Pu</td>
<td>242.0584</td>
<td>6.84 E+10</td>
<td>2.15</td>
</tr>
<tr>
<td>244Pu</td>
<td>244.0646</td>
<td>6.56 E+10</td>
<td>2.30</td>
</tr>
<tr>
<td>240Am</td>
<td>240.0542</td>
<td>(1.00 E+15)<sup>c</sup></td>
<td>(2.29)<sup>c</sup></td>
</tr>
<tr>
<td>241Am</td>
<td>241.0568</td>
<td>1.05 E+14</td>
<td>2.27</td>
</tr>
<tr>
<td>242Am<sup>d</sup></td>
<td>242.0594</td>
<td>9.50 E+11</td>
<td>2.34</td>
</tr>
<tr>
<td>243Am<sup>d</sup></td>
<td>243.0620</td>
<td>3.35 E+13</td>
<td>2.42</td>
</tr>
<tr>
<td>240Cm</td>
<td>240.0542</td>
<td>1.90 E+06</td>
<td>2.39</td>
</tr>
<tr>
<td>241Cm</td>
<td>241.0578</td>
<td>(1.60 E+12)<sup>c</sup></td>
<td>(2.50)<sup>c</sup></td>
</tr>
<tr>
<td>242Cm</td>
<td>242.0584</td>
<td>6.56 E+06</td>
<td>2.52</td>
</tr>
<tr>
<td>243Cm</td>
<td>243.0620</td>
<td>(1.20 E+11)<sup>c</sup></td>
<td>(2.69)<sup>c</sup></td>
</tr>
<tr>
<td>244Cm</td>
<td>244.0626</td>
<td>1.35 E+07</td>
<td>2.69</td>
</tr>
<tr>
<td>245Cm</td>
<td>245.0652</td>
<td>(4.00 E+12)<sup>c</sup></td>
<td>(2.87)<sup>c</sup></td>
</tr>
<tr>
<td>246Cm</td>
<td>246.0668</td>
<td>1.81 E+07</td>
<td>3.18</td>
</tr>
</tbody>
</table>

^aBased on the neutron mass of 1.130866497 amu from ENDF/V data base.

^bRef. 11.

^cValues in parentheses were obtained from Ref. 12 and have estimated accuracies of 2 orders of magnitude.

^dMetastable state.
Fig. 13.
Concentration of 238Pu as a function of exposure and irradiation/cooling time.
Fig. 14. Concentration of 239Pu as a function of exposure and irradiation/cooling time.
Fig. 15.
Concentration of 240Pu as a function of exposure and irradiation/cooling time.

HALF-LIFE
Pu-240 - 6553022 Years

Cooling Period
730.500 Days
Concentration of 241Pu as a function of exposure and irradiation/cooling time.

Fig. 16.

HALF-LIFE
Pu-241 $-$ 14.707 Years

Cooling Period
730.500 Days
Small amounts of 241Pu are lost through neutron capture events, producing 242Pu. For high exposures the 241Pu fission rate can be significant, with from 10 to 20% of the generated power coming from this source. The relatively short half-life of 241Pu is evident in Fig. 16, which shows a decreasing concentration after fuel discharge from the reactor.

5. Plutonium-242 ($t_{1/2} = 3.76 \times 10^5$ yr). The 242Pu isotope (Fig. 17) is produced principally from neutron capture in 241Pu. Additional quantities of 242Pu are formed through electron capture in 242Am. With a long half-life, 242Pu is constant during nonirradiation periods.

6. Plutonium-243 ($t_{1/2} = 4.96$ h). Plutonium-243 shown in Fig. 18 is produced from neutron capture in 242Pu. This isotope depletes through beta decay to form 243Am. With such a short half-life, 243Pu rapidly depletes after reactor shutdown.

7. Sensitivity of Principal Plutonium Isotopes.

a. Plutonium-239. Plutonium-239 (Fig. 19) is sensitive to initial 235U enrichment and initial UO$_2$ mass density, but insensitive to power level and irradiation history. In the calculations for enrichment variations, the power level was held constant throughout the entire irradiation period. For lower exposures (less than 15 Gwd/tU) when little 239Pu and 241Pu are present, most of the power is obtained from 235U fissions. In this exposure domain, 239Pu is produced from the 238U \rightarrow 239U \rightarrow 239Np \rightarrow 239Pu chain that depends on the amount of 238U present. Because the 238U concentration complements the initial 235U enrichment, with these low exposures 239Pu production is higher in fuels with lower 235U enrichment.

For exposures above 15 Gwd/tU, the initial 235U enrichment in the fuel material affects 239Pu production, but the relationship is not linear. In this exposure range, as 235U is depleted, higher fission rates must occur in the 239Pu to maintain a constant power level. For fuels with lower 235U enrichments, more 239Pu fissioning occurs again to maintain a constant power level. Because of this higher fission rate in 239Pu, the maximum levels of the 239Pu concentrations are smaller for the lower initial 235U enrichments.
Concentration of \(^{242}\text{Pu}\) as a function of exposure and irradiation/cooling time.
Fig. 18.
Concentration of 243Pu as a function of exposure and irradiation/cooling time.
Fig. 19.
Sensitivity of 239Pu to various reactor parameters as a function of exposure.
The 239Pu dependence on initial UO_2 mass density shown in Fig. 19b is due to the amount of 239U. For higher mass densities, more 238U atoms/cm\(^3\) are present, and as a result more 239Pu is produced.

b. Plutonium-240. The isotope 240Pu (Fig. 20) depends on initial 235U enrichment. Such dependence results primarily from the flux levels required to maintain a constant power of 200 W/cm. High initial 235U enrichments have lower flux levels, resulting in lower 240Pu concentrations. Conversely, low 235U enrichments require higher fluxes, resulting in higher 240Pu concentrations. For exposures above 45 GWD/tU, the enrichment curves begin to converge as a result of 239Pu decreasing more rapidly for the lower initial 235U enrichments. Because 239Pu is the 240Pu precursor, proportionately less 240Pu is produced. Plutonium-240 is independent of the other variables shown in Fig. 20.

c. Plutonium-241. Plutonium-241 (Fig. 21), dependent on initial 235U enrichment and slightly dependent on initial UO_2 mass density, is independent of power level. Because of its relatively short half-life, some 241Pu will decay during long shutdown periods (see the bottom right graph of Fig. 21).

The precursor of 241Pu is 240Pu. Therefore, when comparing the initial 235U enrichments in Fig. 21, we see that the behavior of 241Pu is the same as that of 240Pu for exposures up to 35 GWD/tU. Above 35 GWD/tU, more 241Pu fissioning occurs to maintain a constant power level. In this exposure range, the lower initial 235U enrichment fuels require more 241Pu fissioning, resulting in a more rapid depletion of 241Pu.

The slight dependence of 241Pu on initial UO_2 mass density results from more 238U feed material present in the high-density fuel.

d. Plutonium-242. As shown in Fig. 22, 242Pu is sensitive only to initial 235U enrichment. Because its precursor is 241Pu, 242Pu has the same behavior as 241Pu does, except for high exposures. At these high exposures, 242Pu, with its long half-life and lack of fissioning, continues to build up when significant quantities of 241Pu are depleting through the fissioning process.
Fig. 20.
Sensitivity of 240Pu to various reactor parameters as a function of exposure.
Fig. 21.
Sensitivity of 241Pu to various reactor parameters as a function of exposure.
Fig. 22.
Sensitivity of 242Pu to various reactor parameters as a function of exposure.
D. Americium Isotopes

The americium isotopes are important for two reasons: (1) they are precursors of the important neutron-producing curium isotopes and (2) in some situations 241Am can be a significant neutron producer from (α,n) reactions. Americium-241 production and depletion chains are shown in Fig. 1.

1. Americium-241 ($t_{1/2} = 4.32 \times 10^2$ yr). Figure 23 shows 241Am as a function of exposure and time for a detailed power history. This isotope is formed primarily from beta decay of 241Pu. Because 241Pu has a relatively short half-life, 241Am continues to build up during shutdown and after fuel discharge from the reactor. Americium-241 depletes through neutron capture to form 242Am and by alpha decay.

2. Americium-242 ($t_{1/2} = 16.0$ h). Americium-242 (Fig. 24) is produced from neutron capture in 241Am. In addition to the ground state, a metastable state of 242Am with a half-life of approximately 152 yr is formed. This isotope depletes in two ways: through neutron capture to form 243Am and through electron capture to form 241Pu. As a result of its very short half-life, the ground state of 242Am decays rapidly during shutdown and after fuel discharge.

3. Americium-243 ($t_{1/2} = 7.38 \times 10^3$ yr). Figure 25 shows the build-up of 243Am. This isotope builds up principally from beta decay in 243Pu; some 243Am also is produced from neutron capture in 242Am. Americium-243 depletes principally through neutron capture to form 244Am. Because the half-life of 243Am is long, concentrations of this isotope are unaffected by shutdowns and cooling periods.

4. Americium-244 $t_{1/2} = 10.1$ h. The most important precursor of 244Cm is 244Am (Fig. 26). Its production results from neutron capture in 243Am and a metastable state of 244Am with a half-life of approximately 26 min is also produced. Both the ground state and metastable state beta decay to form 244Cm. As a result of its short half-life, concentrations of 244Am decay rapidly during shutdown and after fuel discharge.
Concentration of ^{241}Am as a function of exposure and irradiation/cooling time.

HALF-LIFE
$\text{Am-241} - 432.293 \text{ Years}$

Cooling Period
730,500 Days
Fig. 24.

Concentration of 242Am as a function of exposure and irradiation/cooling time.
Fig. 25.
Concentration of 243Am as a function of exposure and irradiation/cooling time.
Fig. 26. Concentration of 244Am as a function of exposure and irradiation/cooling time.
5. Sensitivity of Principal Americium Isotopes.

a. Americium-241. Results of the sensitivity studies of ^{241}Am are shown in Fig. 27. Because ^{241}Am builds up from beta decay in ^{241}Pu, its sensitivity to initial ^{235}U enrichment is similar to ^{241}Pu behavior. For high exposures, ^{241}Am is proportional to the initial ^{235}U enrichment, and for low exposures the ^{241}Am concentration is inversely dependent on initial ^{235}U enrichment. For changes in initial U_2O_3 density, ^{241}Am again behaves like ^{241}Pu. For higher densities, more ^{238}U atoms/cm3 are present and more ^{241}Am is produced through the appropriate chains.

Americium-241 sensitivity to power level is shown in the lower left curves of Fig. 27. With the same initial ^{235}U enrichment, higher power levels are accomplished only with higher flux levels. Because of these higher flux levels, more ^{241}Pu fissioning occurs and less ^{241}Pu is available for beta decay to ^{241}Am. For the detailed power history curve, a significant build-up of ^{241}Am occurred during a 69-day reactor shutdown.

In the bottom right set of curves of Fig. 27, ^{241}Am sensitivity to the shutdown again is observed. During the 1-yr shutdown periods, ^{241}Am continues to build up. Because some ^{241}Pu has decayed during the shutdown, immediately after the reactor is brought on-line more ^{241}Am is depleted than is produced. Eventually, when ^{241}Pu concentrations again are high enough, the ^{241}Am production rate exceeds the capture rate.

b. Americium 242. Sensitivity effects of ^{242}Am are shown in Fig. 28. Because ^{242}Am is produced from neutron capture in ^{241}Am, the ^{242}Am dependence on initial ^{235}U enrichment behaves like the ^{241}Am. Note that for high exposures the curves in the upper left graph of Fig. 28 are just beginning to change from being inversely proportional to initial ^{235}U enrichment to the opposite. As shown in the upper right graph of Fig. 28, ^{242}Am has the same dependence on initial U_2O_3 mass density as does its precursor ^{241}Am. Continuous power levels have little effect on ^{242}Am as shown by three of the curves in the lower left graph of Fig. 28. For the detailed power history, ^{242}Am rapidly depletes during shutdown. Note the same behavior in the lower right graph of Fig. 28. After the reactor is brought back to power, a rapid build-up of ^{242}Am occurs because the ^{241}Am source material has built up during the shutdown.
Fig. 27.

Sensitivity of 241Am to various reactor parameters as a function of exposure.
Fig. 28.
Sensitivity of ^{242}Am to various reactor parameters as a function of exposure.
c. Americium-243. Sensitivity plots of 243Am are shown in Fig. 29. The initial 235U enrichment sensitivity follows the behavior of the principal precursor 243Pu. Americium-243 has little sensitivity to the other three variables (initial UO_2 mass density, power level, and irradiation history).

d. Americium-244. Americium-244 sensitivities are shown in Fig. 30. This isotope has the same sensitivity to initial 235U enrichment as does its precursor 243Am. A slight sensitivity to initial UO_2 density occurs. In the lower left graph of Fig. 30, higher flux levels necessary to achieve higher power levels cause more 244Am. As shown in the lower right graph of Fig. 30, 244Am is insensitive to irradiation history. During shutdowns, 244Am decays rapidly; however, because its precursor 243Am has a long half-life, 244Am quickly builds up after the reactor is restarted.

E. Curium Isotopes

The importance of the curium isotopes in LWR spent-fuel assemblies is well known. As shown in Table IV, spontaneous fission and (α,n) neutron yields from 242Cm are much larger than corresponding yields of other actinide isotopes produced in spent fuel. For exposures above 10 GWd/tU, significant quantities of 242Cm and 244Cm are produced, making these isotopes the dominant neutron sources in a LWR assembly. Curium-240 and -246 are not produced in large enough quantities to be important neutron sources. Because of the curium dominance as neutron sources, any passive neutron measurement technique used to monitor spent-fuel assemblies must incorporate knowledge of the production and decay of the curium isotopes.

1. Curium-242 ($t_{1/2} = 162.9$ days). Figure 31 shows 242Cm build-up. This isotope is produced primarily through beta decay of 242Am; it depletes through alpha decay, spontaneous fission, and neutron capture. With its fairly short half-life, significant amounts of 242Cm deplete during reactor shutdown. This is an important point. Correlations between 244Cm concentrations and parameters such as plutonium content depend on measuring accurately count rates resulting only from 244Cm neutrons. Interference from 242Cm neutrons can be avoided by measuring fuel assemblies with cooling times long enough such that most of the 242Cm has decayed. Generally, spent-fuel assemblies with cooling times of 2 yr or more contribute little 242Cm to the neutron rate.
Fig. 29.
Sensitivity of ^{243}Am to various reactor parameters as a function of exposure.
Sensitivity of 244Am to various reactor parameters as a function of exposure.
Fig. 31.

Concentration of 242Cm as a function of exposure and irradiation/cooling time.
2. Curium-243 ($t_{1/2} = 28.5$ yr). Curium-243 (Fig. 32), produced from neutron capture in 242Cm, depletes by neutron capture and alpha decay. With a 28.5-yr half-life, 243Cm decays slowly after a fuel assembly is discharged from the reactor.

3. Curium-244 ($t_{1/2} = 18.1$ yr). Curium-244 (Fig. 33) forms principally from beta decay in 243Am, with some additional production from neutron capture in 243Cm. Note that 244Cm and 242Cm are formed through different plutonium and americium precursors. Curium-242 is produced primarily from the 241Pu $+ ^{241}$Am $\rightarrow ^{242}$Am $+ ^{242}$Cm chain, whereas most 244Cm comes from a 243Pu $+ ^{243}$Am $+ ^{244}$Am $\rightarrow ^{244}$Cm chain. Curium-244 depletes through neutron capture, spontaneous fission, and alpha decay. With an 18.1-yr half-life, it decays gradually after discharge from a reactor.

4. Curium-245 ($t_{1/2} = 8.48 \times 10^3$ yr). Curium-245 (Fig. 34) forms principally from neutron capture in 244Cm and depletes through alpha emission and neutron capture. The 245Cm concentrations are not affected by periods of reactor shutdown or after the fuel is permanently removed from the reactor.

5. Curium-246 ($t_{1/2} = 4.73 \times 10^3$ yr). Curium-246 (Fig. 35) is produced through neutron capture in 245Cm. The 246Cm production is small compared to that of 244Cm (see relative scales in Figs. 33 and 35). Because little 246Cm is produced, it is not a principal source of neutrons in a spent-fuel assembly, despite its large spontaneous fission yield. This isotope also depletes through alpha emission and neutron capture. Because of its long half-life, concentrations of 246Cm remain constant during reactor shutdown and after fuel discharge from the core.

6. Sensitivity of Principal Curium Isotopes

 a. Curium-242. Curium-242 (Fig. 36) has the same sensitivities to initial 235U enrichment and initial 235UO$_2$ mass density as does its principal precursor 242Am. Curium-242 is sensitive to power level, as shown in the lower left graph of Fig. 36. In this case, higher fluxes associated with higher power levels convert more 242Cm to 243Cm. As a result, lower power levels have higher 242Cm concentrations.
Concentration of 243Cm as a function of exposure and irradiation/cooling time.
Concentration of 244Cm as a function of exposure and irradiation/cooling time.

HALF-LIFE

Cm–244 – 18.118 Years

Cooling Period

730.500 Days
Fig. 34.
Concentration of 245Cm as a function of exposure and irradiation/cooling time.
Fig. 35. Concentration of 246Cm as a function of exposure and irradiation/cooling time.
Fig. 36.
Sensitivity of 242Cm to various reactor parameters as a function of exposure.
Irradiation history effects on ^{242}Cm are shown in the lower right graph of Fig. 36. For 1-yr shutdowns, significant quantities of ^{242}Cm decay. However, soon after restart, the ^{242}Cm quickly builds back in because of the increased ^{241}Am source material produced from the beta decay of ^{241}Pu.

b. Curium-244. Curium-244 sensitivities are shown in Fig. 37. Its sensitivity to initial ^{235}U enrichment and initial UO_2 mass density follows the behavior of its principal precursor ^{244}Am. Because of its sufficiently long half-life, ^{244}Cm is not affected by changes in power levels or irradiation histories.

IV. DATA ANALYSIS AND POTENTIAL APPLICATIONS

Sensitivity results for total plutonium and uranium are shown in Figs. 38 and 39. Although the isotopic composition varies, depending on initial conditions, the total plutonium and uranium concentrations are insensitive to initial ^{235}U enrichment, UO_2 mass density, power level, and irradiation history. Typical plutonium isotopic dependence on exposure is shown in Figs. 40 and 41. In Fig. 40, the isotopics are displayed as a function of the heavy metal content; in Fig. 41, the variations are relative to the total plutonium.

Generally, plutonium isotopic data, either operator declared or destructively measured, are reported as weight per cent of the total plutonium. Therefore, data resembling those in Fig. 41 can be used to verify operator-declared values, and available destructive data can be used to establish the accuracy of the calculated curves.

To verify operator-declared values, an inspector first determines through nondestructive measurement techniques (perhaps neutron measurements) the exposure level of the material sample. From curves like those in Fig. 41, which represent the type of material being analyzed, the inspector uses the measured data to estimate the sample's isotopic content. Although the absolute accuracy of the technique depends partly on how well the parameters used to generate the isotopic concentration curves match similar parameters for the sample being evaluated, this method should be sufficiently accurate in alerting the inspector to possible discrepancies needing further investigation.
Fig. 37.

Sensitivity of 244Cm to various reactor parameters as a function of exposure.
Fig. 38.
Sensitivity of total plutonium to various reactor parameters as a function of exposure.
Fig. 39.
Sensitivity of total uranium to various reactor parameters as a function of exposure.
Fig. 40.
Relative concentrations for the plutonium isotopes as a function of exposure and irradiation/cooling time. Displayed as wt% of the initial heavy metal concentration.
Fig. 41.
Relative concentrations of the plutonium isotopes as a function of exposure and irradiation/cooling time. Displayed as wt% of the total plutonium present.
For a reprocessing facility operator, the data in Fig. 41 can be used to determine isotope composition in the manner described for safeguards. The data would aid in resolving shipper/receiver differences and in providing information for process control and criticality control.

The principal uranium isotopic concentrations, excluding ^{238}U, are shown in Fig. 42. Note the ^{236}U concentration relative to that of ^{235}U, particularly for higher exposures. Because of the resonance capture cross sections in ^{236}U, this isotope can be a significant neutron absorber in irradiated fuel materials. Calculations investigating neutron transport effects in irradiated fuel materials should include ^{236}U. Curves like those in Fig. 42 help determine the proper mix of the uranium isotopes, which should be used in transport calculations.

In Fig. 43, the principal fissile isotope concentrations are shown as a function of exposure and irradiation/cooling time. Total fissile content decreases with exposure. For high exposure, the ^{235}U decreases whereas the ^{239}Pu and ^{241}Pu concentrations increase. The sensitivity of total fissile concentration to various parameters is shown in Fig. 44. As expected, the principal dependence is on initial ^{235}U enrichment. Other parametric variations exhibit little or no effect on the total fissile concentration, which is important in estimating multiplication effects in irradiated fuel. Curves in Fig. 44 show that neutron multiplication should be less for irradiated fuel than for fresh fuel assemblies.

Figure 45 shows sensitivities of the total macroscopic thermal cross section (Σ_t). Again, the main dependence is on initial enrichment, not on the other parameters. The slopes of the curves in Fig. 45 are less than the corresponding slopes in Fig. 44. The thermal fission cross section for ^{239}Pu and ^{241}Pu is larger than that for ^{235}U. Thus, in the high-exposure region where plutonium fissile concentrations begin to dominate, the relative macroscopic fission cross section increases.

Similarly, the average induced-fission neutron yield ($\bar{v} \cdot \Sigma_f$, where \bar{v} is the average number of neutrons released per fission) is shown in Fig. 46. Because the neutron yields in ^{239}Pu and ^{241}Pu are higher than those in ^{235}U, the neutron yield curves also have less slope than the corresponding curves in Fig. 44.

Figures 44, 45, and 46 clearly demonstrate the decreasing dependence of the fissile content, macroscopic fission cross section, and induced-fission
Fig. 42. Principal uranium isotopes, excluding ^{238}U, as a function of exposure and irradiation/cooling time.
Fig. 43.
Fissile isotopes as a function of exposure and irradiation/cooling time.
Fig. 44.
Sensitivity of total fissile concentration to various reactor parameters as a function of exposure.
Fig. 45.

Sensitivity of total macroscopic fissile cross section to various reactor parameters as a function of exposure.
Sensitivity of the average induced-fission neutron yield to various reactor parameters as a function of exposure.
neutron yield on increasing exposure. Multiplication of neutrons from various actinide isotopes depends on the fissile content of the fuel. As exposure increases, less multiplication occurs. As a result, the slope of a measured count rate vs exposure curve is less than the source rate vs exposure curve.

As shown in Table IV, the curium isotopes have the largest neutron yields of the principal neutron producers existing in irradiated fuel materials. Figure 47 compares the build-ups of 242Cm and 244Cm as a function of exposure and irradiation/cooling time. As explained in Sec. III, for exposures above 10 GWD/tU, the curium isotopes become the dominant neutron producers. From Fig. 47 we see that the relative concentrations of 242Cm and 244Cm are similar for exposures up to 25 GWD/tU, but above that level 244Cm builds up much more rapidly. By 40 GWD/tU, 244Cm is the dominant neutron producer. In all LWR-irradiated fuel materials with exposures above 15 GWD/tU, 244Cm will dominate when cooling time periods are long enough for 242Cm (162.9-day half-life) to decay. The neutron source rate dependence on 244Cm is important because of correlations between 244Cm and fuel parameters such as fissile content and plutonium. To use these correlations with experimental measurements, the 244Cm contribution to the count rate must be determined. If the neutrons being detected are principally from 244Cm, the 244Cm concentration is directly proportional to the count rate. Where other isotopes such as 242Cm are present and also contributing to the count rate, a correction must be applied to determine that portion of the count rate from 244Cm. Such corrections for 242Cm can be difficult because of its dependence on power level and operating history. To produce accurate corrections for 242Cm, some knowledge of reactor operating conditions is necessary. By examining fuel with long cooling times compared to the 242Cm half-life or fuel with very high exposures, no corrections would be needed.

For reprocessed plutonium materials, higher atomic number actinide isotopes, including the curiums, are removed. In these samples, which are typical of materials that International Atomic Energy Agency (IAEA) inspectors monitor, the principal neutron sources are the even-numbered plutonium isotopes 238Pu, 240Pu, and 242Pu. The relative yields of these isotopes are shown in Table IV. Typical dependence of the even-numbered isotopes is shown in Fig. 48 as weight per cent of initial heavy metal. As 241Pu beta decays to form 241Am, neutrons from 241Am (α,n) events are added to the neutron source rate. Relative amounts of 241Pu and 241Am are shown in Fig. 49, where the 241Am concentration
Concentrations of 242Cm and 244Cm as a function of exposure and irradiation/cooling time.

Fig. 47.
Fig. 48.
Concentrations of ^{238}Pu, ^{240}Pu, and ^{242}Pu as a function of exposure and irradiation/cooling time. Results expressed as wt% of the initial heavy metal.
Concentrations of 241Pu and 241Am as a function of exposure and irradiation/cooling time. Results expressed as wt% of the initial heavy metal.

Fig. 49.
is for a continuously operating reactor. In reality, ^{241}Am existing in the fuel before reprocessing is removed, and any ^{241}Am in the fuel after reprocessing builds up from the ^{241}Pu decay. These ^{241}Am concentrations are less than what would have existed if no ^{241}Am were removed during reprocessing.

In Fig. 50, the even-numbered plutonium isotopes are shown as weight percent of total plutonium. Although ^{238}Pu and ^{242}Pu have higher neutron yields than does ^{240}Pu, the ^{240}Pu concentration is higher for all exposures. Because all plutonium isotopes contribute some neutrons, coincidence counting or other neutron measurement techniques can only determine a response that is proportional to the abundance of all three plutonium isotopes. Because ^{240}Pu is the dominant isotope, an effective ^{240}Pu mass is defined. For coincidence counting, $^{240}\text{Pu}_{\text{eff}}$ is defined as

$$^{240}\text{Pu}_{\text{eff}} = 2.49(^{238}\text{Pu}) + (^{240}\text{Pu}) + 1.57(^{242}\text{Pu}) .$$

The factors included with ^{238}Pu and ^{242}Pu take into account differences in the coincidence response resulting from the higher neutron yields of these isotopes. Most samples measured to date using coincidence detectors have had exposures less than 30 GWd/tU, giving ^{240}Pu concentrations that are larger than the ^{238}Pu and ^{242}Pu concentrations. If samples with exposures as large as 50 GWd/tU are measured, then contributions from ^{240}Pu and ^{242}Pu will be similar.

V. CORRELATIONS

When gamma-ray signals from irradiated fuel materials are measured with high-resolution gamma spectroscopy systems, we can obtain qualitative information about the fission-product content of the material. The unique, discrete energies of emitted gamma rays are resolved by gamma-ray detectors and electronics. Neutrons do not have any similar unique signatures that are resolvable in detectors. Instead of unique, discrete energies, neutrons are emitted with a spectrum of energies. Even if discrete energies existed, most neutron detectors are incapable of resolving them. Typically, a detector such as a
Concentrations of ^{238}Pu, ^{240}Pu, and ^{242}Am as a function of exposure and irradiation/cooling time. Results expressed as wt% of total plutonium.
Fission chamber is based on a thermal neutron reaction that requires moderating the source neutrons before the reaction will occur. Such moderation further obliterates any possibility of energy resolution. As a result, neutron counting generally can be used to examine only gross effects such as total neutron count rate. Additional information about spontaneous or induced-fission activity is available from neutron coincidence counting. However, any quantitative information about the fuel material being examined can be obtained only from correlations between the count rates and knowledge of the initial fuel parameters.

A basic correlation relates the count rate to the exposure of the fuel assembly through a power function relationship of the form

\[
\text{neutron count rate} = \alpha \cdot (\text{exposure})^\beta,
\]

where \(\alpha\) is a normalization constant and \(\beta\) is the functional power. With such a relationship, an assembly exposure can be predicted once \(\alpha\) and \(\beta\) are known. Both experimental and calculational techniques can be developed for estimating \(\alpha\) and \(\beta\) values.

Another type of correlation originally proposed by Schulze et al.\(^2\) relates \(^{244}\text{Cm}\) to total plutonium and to \(\Delta\text{Pu} = \text{total plutonium} - \text{Pu}\). These correlations are shown in Figs. 51 and 52. As described in Secs. III and IV, neutron sources in fuel assemblies with long cooling times and exposures above 10 GWD/tU emanate principally from \(^{244}\text{Cm}\), and, as a result, the detected neutron count rate is directly proportional to the \(^{244}\text{Cm}\) concentration. With proper normalization, the neutron count rate can then be correlated to \(^{244}\text{Cm}\) concentration and then from relationships shown in Figs. 51 and 52 to the actual plutonium content. For materials in which \(^{244}\text{Cm}\) is not the dominant source, corrections must be made to determine that the precise proportion of the count rate is from \(^{244}\text{Cm}\) neutrons. The corrected count rate is used to determine plutonium content.

Another correlation in Fig. 53 relates \(^{244}\text{Cm}\) to the total fissile concentration of the assembly. Total fissile inventory is defined as the sum of \(^{235}\text{U}\), \(^{239}\text{Pu}\), and \(^{241}\text{Pu}\) atoms.
Fig. 51.
Correlation between ^{244}Cm and the total plutonium concentration.

Fig. 52.
Correlation between ^{244}Cm and the total plutonium minus ^{239}Pu concentration.
Sensitivity of the 244Cm correlations is shown in Figs. 54 to 56. The 244Cm to total plutonium correlation is independent of all parameters except initial 235U enrichment where there is a slight dependence (Fig. 54). The ΔPu correlation (Fig. 55) is very good because it exhibits little or no dependence on any sensitivity parameter. Thus, with only a correction for initial 235U enrichment in the 244Cm to total plutonium correlation, these two correlations may be used to obtain a value for 239Pu. The accuracy of such a 239Pu value depends partly on how well the neutron count rate was correlated to 244Cm concentration.

The total fissile correlation to 244Cm is sensitive to initial 235U enrichment but insensitive to other parameters (see Fig. 56). If such a correlation were used to determine total remaining fissile content, an accurate correction for initial 235U enrichment would be required.
Fig. 54.
Dependence of the correlation between ^{244}Cm and total plutonium content on various reactor parameters.
Fig. 55.
Dependence of the correlation between ^{244}Cm and total plutonium-239 (^{239}Pu) on various reactor parameters.
Fig. 56. Dependence of the correlation between ^{244}Cm and total fissile content on various reactor parameters.
VI. SOURCES OF NEUTRONS IN IRRADIATED FUEL MATERIAL

For each 6-month time step in the basic actinide data library, atomic densities for each isotope are given for cooling times from 0 to 120 months. These atomic densities then were used to calculate the total source of neutrons from the (α,n) reaction and spontaneous fission factors in Table IV. Figure 57 gives the relative per cent contributions of the five most important nuclides to the total neutron source strength at 10-, 20-, 30-, and 50-GWd/tU exposures. As stated previously, 242Cm contributes a significant portion of the source neutrons at time of discharge. Having a short half-life relative to the other neutron sources, the 242Cm contributes an insignificant proportion of the source neutrons after 2 to 3 yr of cooling time.

Curium-244, with an 18.1-yr half-life, is the major contributor to the source neutrons after 242Cm decay for fuel materials with exposures greater than 15 GWd/tU. For low exposures, less than 10 GWd/tU, 240Pu and 244Cm are equal contributors following the 242Cm decay. Relative neutron source strengths are given in Fig. 58 for the four exposure levels. In both the 10- and 20-GWd/tU exposure plots, the 241Am shows a build-up in its contribution, which results from the increase of 241Am from the beta decay of 241Pu produced during irradiation.

As shown in Table IV, neutrons can originate from both the (α,n) reactions and the spontaneous fission process. Figure 59 shows the relative contribution of both processes to the total neutron source strength as a function of exposure for four cooling times: 0, 12, 48, and 120 months. In all cases, the spontaneous fission process dominates for exposures above 10 GWd/tU. For certain exposure regions, the different responses from (α,n) and spontaneous fission neutrons may be used to separate the plutonium (in particular, 238Pu and 240Pu) neutrons from the 244Cm neutrons by coincidence measurement techniques. The ratio of spontaneous fission neutrons (α,n) to reaction neutrons as a function of exposure for cooling times of 0, 12, 48, and 120 months is presented in Fig. 60.

Figure 61 summarizes the calculated source neutron rates as a function of exposure for four cooling times. These results are similar to the experimental results in Fig. 62 for 38 PWR fuel assemblies. Both the calculational and experimental results exhibit a power function relationship between the neutron emission rate and exposure. The calculational results (Fig. 61) do not include
Fig. 57.

Per cent contribution of individual isotopes to the total neutron source strength as a function of cooling time.
Fig. 58.
Relative neutron source strengths for the five principal contributors. Curium-244 clearly is the dominant neutron source for exposures greater than 20 Gwd/tU and cooling times greater than 36 months.
(a,n) and spontaneous fission sources of neutrons as a function of exposure for various cooling times.
Fig. 60.
\(\frac{(sf)}{(\alpha,n)} \) neutron ratio as a function of declared exposure for cooling times up to 120 months.

Fig. 61.
Neutron source strength as a function of exposure up to 50 GWd/tU showing the power functional relationship:
\(\text{(Number of source neutrons)} = \alpha(\text{exposure})^\beta \) where \(\beta \approx 3 \).
any source multiplication or transport factors unique to each fuel assembly. The experimental results have not been corrected for differences in cooling times that ranged from 4 to 40 months. In Fig. 62, the influence of the ^{242}Cm on the 4-month data is clearly evident because these data lie significantly above the fitted line.

VII. PARAMETERS AFFECTING NEUTRON SOURCES

We investigated various initial fuel and irradiation history parameters on the neutron sources in irradiated fuel material:
- constant power level,
- different theoretical fuel densities,
- changes in the per cent initial ^{235}U enrichment, and
- irradiation histories.
Figure 63 compares the actual detailed power history of a specimen irradiated in the HBR-2 PWR and the constant power (200 W/cm) history approximations after cooling times of 0, 12, 36, and 120 months. For all cases, the two power histories are identical. Differences in specific power levels appear to have little effect on neutron sources after the first few months. If the enrichment and fuel density are constant, the neutron flux level must be adjusted to change the power level. Figure 64 shows the effect of irradiating fuel material of various power levels, 160, 200, and 240 W/cm. The three curves merge to the same form after a 12-month cooling time.

An increase in fuel density changes the neutron source rates only slightly as shown in Fig. 65, where the fuel density was changed from 90.8 to 94.0% TD. The difference between the two cases remains nearly constant for all the cooling times.

Per cent initial ^{235}U enrichment significantly affects the neutron source terms (Fig. 66). Initial fuel enrichments of 2.2 to 4.5% were selected for these comparisons because this range now is used in PWR fuels and these enrichments are projected (about 4.5%) for high-exposure fuels to improve uranium utilization. The dependence of the source neutron rate on initial fuel enrichment continues throughout the cooling times investigated in this study (up to 120 months). Source neutron rates are higher for the lower enrichments (2.2 to 3.0 wt%) than for the higher enrichments (above 3 wt%) because of the higher flux levels required to maintain a constant power level. Another minor influence is the increased concentration level of the ^{238}U source material with lower enrichments.

If a relative neutron source rate of 10^3 were measured for fuel material with a 36-month cooling time, the exposures would be 22 GWD/tU for the 2.20% initial ^{235}U enrichment material and 32 GWD/tU for the 4.5% initial ^{235}U enrichment. These two exposures represent the approximate exposure levels for fuel material irradiated in a PWR for one and two cycles, respectively. Therefore, to interpret correctly the measured results, we must know the per cent initial ^{235}U enrichment.

Irradiation histories can also significantly influence the source neutron rate, as evidenced by the plots given in Fig. 67. The following histories are represented:

- constant power level through five cycles resulting in an exposure of 50 GWD/tU,
Fig. 63.
Comparison of actual detailed power histories and the constant power approximation.
Fig. 64.

Neutron source rates for fuel material irradiated at power levels of 160, 200, and 240 W/cm.
Effect of changing the fuel density is shown to be relatively constant for cooling times from 0 to 120 months.
Fig. 66.

Initial ^{235}U fuel enrichment effect on source neutron rates. Enrichments cover the range of values expected to occur in FWR fuel materials.
Fig. 67. Comparison of a constant irradiation history with histories having downtimes between cycles of 48 days (d) and 414 days (D). This demonstrates the effect of the beta decay of 241Pu to 241Am, which is a precursor to the 242Cm isotope.
● up-down history in which the up (U) times were 317 days followed by a
downtime (d) equivalent to the time required to reload the reactor
(48.25 days), and
● up-down history in which each up (U) cycle was 317 days and each (D)
cycle was for 413.5 days.

After 36 months, all three irradiation histories merge to the same relationship
between the source neutron rate and the exposure. However, for shorter cooling
times there is an appreciable difference between the plots, with the history
having 413.5-day downtimes (D) showing a significant increase in the neutron
source rate after each downtime. This peculiar behavior is directly related
to the build-up of ^{242}Cm within the fuel material. During the downtimes,
^{241}Pu, with a half-life of 14.7 yr, beta decays to form ^{241}Am with a half-life
of 432.2 yr. Americium-241 captures a neutron to produce ^{242}Am that beta de-
cays to ^{242}Cm. The ^{241}Am concentration increases during the downtime, thereby
providing more source material from which ^{242}Cm is produced. At higher expo-
sures, the per cent contribution of neutrons from ^{242}Cm to the total source
neutrons decreases (see Figs. 57 and 58); therefore, this influence is greatest
at the beginning of the second cycle.

Figure 68 shows the results of five irradiation histories found in typical
power reactors where the fuel assembly is removed for one or two cycles before
being inserted into the reactor to complete its designed exposure. As stated
above, the greatest effect is observed when the fuel material is irradiated for
one cycle and then cooled for one or two cycles before re-irradiation. For
example, the same source neutron rates (10^3) are obtained for fuel material
with a UDDUUU history (15 GWd/tU) and a constant UUU history of 20 GWd/tU if the
fuel assembly was measured at discharge.

VIII. CORRELATIONS BETWEEN SOURCE NEUTRON RATES AND FISSION CONTENT

The total source neutron rates compared to (1) the total fissile content
($^{235}\text{U} + ^{239}\text{Pu} + ^{241}\text{Pu}$), (2) total plutonium, (3) fissile plutonium, and (4) to-
tal plutonium minus ^{239}Pu for 0-, 12-, 48-, and 120-month cooling times are
shown in Fig. 69. After a 36-month cooling time, this relation between the
logarithm (neutron source rate) and total fissile content of the fuel material
approximates a linear relationship. Likewise, the relationship of source
Irradiation histories having 1-yr cycles, either up (U) or down (D). Effects of the irradiation histories become insignificant after a 36-month cooling time.
Correlations of the source neutron rate with total fissile, total plutonium, fissile plutonium, and total plutonium minus ^{239}Pu.

Fig. 69.
neutrons to total plutonium approaches a linear relationship. The neutron plot vs fissile plutonium bends upward as the ^{239}Pu and ^{241}Pu burn out more quickly than they are produced. Remember, in these cases the power level is maintained at a constant value; therefore, at higher exposures there is less ^{235}U available for fissioning. The plots for total plutonium minus ^{239}Pu also converge to a common linear relationship with respect to the logarithm (neutron source rate).

IX. CONCLUSIONS

Actinide isotopes in spent-fuel assemblies are important sources of neutrons. Because of the nature of neutron emission, multiplication, and detection, relating individual neutron signals to specific actinide isotopes is impossible. As a result, the neutron signal's intensity is the only pertinent data that are monitored and used to obtain qualitative information about spent-fuel assemblies. Correlations between the calculated neutron signal's declared exposure, fissile content, and plutonium content are determined. The calculations we describe validate these correlations and establish applicable ranges. Sensitivity studies examining various initial fuel parameters and reactor operating conditions demonstrate that initial ^{235}U enrichment and irradiation history have the largest effects on spent-fuel assembly neutron emission rates. Knowing this dependence on certain reactor parameters, we can establish correction factors to improve the accuracy of the correlations.

If calculationally determined correction factors are to be used to adjust experimental data, the validity of the calculations must be known. Therefore, an ongoing data evaluation program is needed. As either destructive or neutron measurement data become available, calculational results should be verified. Experimental data from past exercises thus far have supported our calculations. In the future, experiments should be designed to specifically complement calculational predictions.

Calculations of the type described in this report provide atom density and neutron source information for transport calculations. These calculations, which simulate fuel assembly and detector geometries, are used to optimize detector configurations and to study various detection concepts. From such studies, techniques may be developed for accurately determining spent-fuel characteristics.
APPENDIX

DEVELOPMENT AND VALIDATION OF CALCULATIONAL TECHNIQUES

The CINDER codes4,13-15 and libraries of processed nuclear data5,16-18 have been used in many calculations of irradiated fuel inventory (nuclide densities) and aggregate absorption properties. These calculations use initial fuel inventory, a neutron flux history, and basic nuclear data to determine inventory during and following irradiation. The original CINDER code13 was developed to calculate aggregate fission-product neutron absorption and decay heating in thermal reactor fuel.17 The original data library,16 using data from all available sources, represented the most complete collection of fission-product data in the early sixties.

A national data collection, the ENDF, has since been developed by the Cross Section Evaluation Working Group (CSEWG); versions of the evaluated file ENDF/B are distributed by the National Nuclear Data Center (NNDC) at Brookhaven National Laboratory (BNL). Version four (ENDF/B-IV), released by NNDC in 1976, was the first to contain a special file of fission-product data;19 the cross-section and decay data of this file were processed and included in a data library for thermal reactor applications.5 The cross-section and decay properties of higher actinides were not well described until the 1978 release of the preliminary ENDF/B-V actinide data file. Cross sections and decay data from this file were included in an actinide data library, and the combined fission-product and actinide data library has been used in several recent calculations of thermal reactor inventory and decay power.20-22

Because of the high relative concentrations of uranium and plutonium nuclides in reactor fuel, the neutron flux shape is perturbed at neutron energies corresponding to the resonances of the uranium and plutonium nuclides. The effect of these flux perturbations on few-group cross sections, known as resonance self-shielding, is complicated by the changing mixture of nuclides in the fuel. Accurate inventory calculations depend on detailed description of the temporal actinide group cross sections and group fluxes. We used the EPRI-CELL code6,23 to provide these temporal data.

The EPRI-CELL code is designed to compute the space, energy, and burnup dependence of the neutron spectrum within cylindrical cells of LWR fuel rods. CELL, developed by Nuclear Associates International (NAI), uses the B_1 method.
of GAM and the integral transport method of THERMOS to produce coarse-group neutron fluxes and cross sections for subsequent use in multidimensional diffusion theory depletion analysis. The behavior of heavy actinide and fission product nuclides is represented as a series of linearized chains consistent with the CINDER methodology.

Data libraries required by EPRI-CELL consist of infinitely dilute multi-group cross sections, composition- and energy-dependent resonance shielding factors, and energy-transfer matrices, including upscattering in the thermal range. For convenience, these library data are divided into three files labelled FASTLIB, for the modified GAM portion of the code; THRMLIB, for the modified THERMOS portion; and BURNLIB, for the modified CINDER portion. Recently, new FASTLIB and THRMLIB data libraries have been generated using ENDF/B-V and the NJOY nuclear data processing system. This has necessitated updating the CELL portion of EPRI-CELL to properly use the more extensive data representations in ENDF/B-V, adding, for example, "an epithermal disadvantage factor" for representing flux depression in the fuel.

The CINDER portion of the EPRI-CELL code, however, has not been upgraded to handle the more extensive actinide and fission product data in ENDF/B-V. Consequently, EPRI-CELL is not used alone, but collapsed flux and cross-section data from EPRI-CELL are used in CINDER-2, a new Los Alamos version of EPRI-CINDER. A small code, PHAZE, was written to link EPRI-CELL and CINDER-2.

The EPRI-CELL model for representing an HBR-2 fuel rod (Fig. A-1) consists of a cylindrical fuel region surrounded by a clad region, a moderator region, and an extra region that represents the fuel rod environment. Note that four space points are assigned to the fuel, one to the clad, seven to the moderator, and two to the extra region.

The detailed energy structure of the FASTLIB library consists of 62 neutron energy groups that range from 1.855 eV to 10 MeV. The THRMLIB group structure consists of 35 groups from 0.001012 to 1.855 eV. The group structure currently used in CINDER-2 consists of four groups (see Table A-I). Figure A-2 plots the FASTLIB and THRMLIB detailed fission cross section for 235U at 300 K, compared with the four-group cross section collapsed by the EPRI-CELL code. Figure A-3 shows a similar comparison of the thermal and fast fluxes in the fuel. Note that the detailed thermal flux is space dependent, with the greatest difference in the lowest energy groups.
Fig. A-1.
EPRI-CELL representation of HBR-2 fuel rod.

TABLE A-I

FOUR-GROUP ENERGY STRUCTURE

<table>
<thead>
<tr>
<th>Group No.</th>
<th>Upper Limit (eV)</th>
<th>Lower Limit (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^7</td>
<td>8.2085×10^5</td>
</tr>
<tr>
<td>2</td>
<td>8.2085×10^5</td>
<td>5.53085×10^3</td>
</tr>
<tr>
<td>3</td>
<td>5.53085×10^3</td>
<td>6.2506×10^{-1}</td>
</tr>
<tr>
<td>4</td>
<td>6.2506×10^{-1}</td>
<td>10^{-5}</td>
</tr>
</tbody>
</table>
Fig. A-2.
Uranium-235 fission cross sections.

Fig. A-3.
Neutron flux in the fuel.
EPRI-CELL has two distinct input types:

- general input, which is required to use the program's capability to handle a wide variety of problems; and
- engineering input, which describes fuel cell problems in familiar engineering units.

The engineering input is convenient for calculating nuclide inventory in spent reactor fuel, because the parameters required are more or less directly available from the Final Safety Analysis Report (FSAR) of the plant under consideration. Table A-II gives some of the engineering input parameters required and base values used for the 2.56%-enriched HBR-2 fuel.

The HBR-2 fuel is one of the few actinide inventory benchmarks available. The power history of the HBR-2 fuel for cycles 1 and 2 is known, and fuel samples from rods of assembly B05 have been analyzed at Battelle Columbus Laboratories (BCL) (rod P8),\(^9\) Idaho National Engineering Laboratory (rod E14),\(^29\) Savannah River Laboratory (rods Al and Ol4),\(^30\) and Los Alamos National Laboratory\(^31\) (rod E14). Of these measurements, only those from BCL included procedures to determine fuel exposure (MWd/tU) or burnup (at.% fission)—a key parameter required for correlating calculated and measured inventory values.

The burnup and select inventory values of three HBR-2 assembly B05 rod P8 samples were analyzed at BCL; the proximity of one sample to a spacer caused flux abnormalities and calculation uncertainties. The remaining two rod P8 samples (P8A and P8B) were selected by EPRI as EPRI-CELL benchmark problems, and the inventories of these samples have been routinely calculated.\(^32\) BCL measurements used the mass-spectrometric \(^{148}\)Nd method of burnup analysis,\(^33\) which relates the fission-product \(^{148}\)Nd content of the fuel to the fuel's cumulative fission history. This method assumes the following:

- Neodymium-148 yield fraction is independent of fissionable nuclide and is equal to 0.0168 ± 0.003 per fission.
- Exposure (MWd/tU) = burnup (at.% fission) x 9600.

The \(^{148}\)Nd yield actually varies with fissionable nuclide, and the ENDF/B-V fission yield values for \(^{148}\)Nd from \(^{235}\)U and \(^{239,241}\)Pu fissions in a thermal reactor spectrum are as follows:

<table>
<thead>
<tr>
<th>Fissionable Nuclide</th>
<th>Neodymium Fission Yield Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{235})U</td>
<td>0.01670038</td>
</tr>
<tr>
<td>(^{238})U</td>
<td>0.02078896</td>
</tr>
<tr>
<td>Variable</td>
<td>Definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>WF243</td>
<td>Weight fraction of 234U in uranium</td>
</tr>
<tr>
<td>WF235</td>
<td>Weight fraction of 235U in uranium</td>
</tr>
<tr>
<td>WF236</td>
<td>Weight fraction of 236U in uranium</td>
</tr>
<tr>
<td>PPMB(I)</td>
<td>Parts per million of natural boron by weight in moderator for time step I</td>
</tr>
<tr>
<td>RHFUEL</td>
<td>Measured pellet density</td>
</tr>
<tr>
<td>VFMOD(5)</td>
<td>Volume fraction of IN-718 in moderator</td>
</tr>
<tr>
<td>VFXTR(2)</td>
<td>Volume fraction of ^4Zr in extra region</td>
</tr>
<tr>
<td>VFVTR(5)</td>
<td>Volume fraction of IN-818 in extra region</td>
</tr>
<tr>
<td>CLAD</td>
<td>2 for ^4Zr clad</td>
</tr>
<tr>
<td>GRID</td>
<td>2 for Inconel grid</td>
</tr>
<tr>
<td>PRESS</td>
<td>System pressure in psia</td>
</tr>
<tr>
<td>NTS</td>
<td>Number of time steps</td>
</tr>
<tr>
<td>TIMSTP(N)</td>
<td>Duration of time steps</td>
</tr>
<tr>
<td>POWR</td>
<td>Power in watts/centimeter of height</td>
</tr>
<tr>
<td>BUCKL</td>
<td>Total buckling in square centimeters</td>
</tr>
<tr>
<td>SPECT</td>
<td>1 for 235U fission spectrum</td>
</tr>
<tr>
<td>TRES(I)</td>
<td>Resonance temperature in °F for time step I</td>
</tr>
<tr>
<td>TFUEL</td>
<td>Fuel temperature in °F</td>
</tr>
<tr>
<td>TCLAD</td>
<td>Clad temperature in °F</td>
</tr>
<tr>
<td>TMOD</td>
<td>Moderator temperature in °F</td>
</tr>
<tr>
<td>PEMOR</td>
<td>Cold pellet radius in inches</td>
</tr>
<tr>
<td>CLADOR</td>
<td>Cold clad outer radius in inches</td>
</tr>
<tr>
<td>CLADIR</td>
<td>Cold clad inner radius in inches</td>
</tr>
<tr>
<td>PITCH</td>
<td>Cold pitch in inches</td>
</tr>
<tr>
<td>XTRA</td>
<td>Nonlattice fraction</td>
</tr>
<tr>
<td>DPITCH(1,2)</td>
<td>Distance in inches for nonuniform Dancoff calculation</td>
</tr>
<tr>
<td>CFRPAC(1,2)</td>
<td>Fractional contribution of Dancoff for DPITCH(1,2)</td>
</tr>
<tr>
<td>P240</td>
<td>Multiplier on C_a 3/4 for ^{240}Pu in CINDER library</td>
</tr>
<tr>
<td>LIBR</td>
<td>2 for ENDF/B-V libraries</td>
</tr>
<tr>
<td>DISAD</td>
<td>Fuel disadvantage factor</td>
</tr>
</tbody>
</table>

Only nonzero parameters are listed.
The constant relationship between exposure and burnup prescribed by this method implies a value of Q, the recoverable energy per fission, that is independent of fissionable nuclide and irradiation history. Sher34 showed the components of Q to be nuclide dependent, and Trapp35 investigated the effect of the composition of nuclides contributing to parasitic neutron absorption and subsequent decay energy of absorption products. EPRI-CELL calculates values of Q for the mixture of fissionable nuclides and parasitic absorbers at each time interval; these are passed to CINDER-2 for detailed inventory calculations. Values of Q increase in P8A calculations, for example, from 199.7 to 209.3 MeV/fission. This increase is due both to an increase in 239,241Pu fissions and to increased radionuclide decay energy associated with parasitic neutron absorption.

We have used iterative tandem EPRI-CELL/CINDER-2 calculations to match calculated sample burnup values with those reported in Ref. 9. These calculations used scaled histogram representations of the assembly B05 power history in Ref. 36. Table A-III compares measured and calculated P8A and P8B sample inventory parameters following 1.32-yr decay; measured and calculated inventory values agree within 15%. The largest differences occurred between the measured and calculated 234U and 238Pu values; these nuclides make small relative contributions to inventory and are produced both by (n,2n) reactions and by 242Cm decay. The disagreements may result from uncertainty in the initial 234U loading and in library data used in calculating the inventory of the nuclides. No uncertainties are given for the measured P8 sample values.

The BCL measurements were made for only a few nuclides, with results given as elemental fractions or nuclide ratios; however, these are the only HBR-2 measurements known to have associated burnup or exposure values. Detailed absolute inventory measurements have been made for assembly B05 samples, but, unfortunately, no sample burnup values are available. The results of a rod E14 sample analyzed at Los Alamos are given in Table A-IV, where values calculated for the P8A and P8B samples are given at the longer 4.86-yr cooling time of the Los Alamos measurements. The high measured concentrations of 238U and 239Pu suggest a small normalization problem between measurement and calculations. As

<table>
<thead>
<tr>
<th>Fissionable Nuclide</th>
<th>Neodymium Fission Yield Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>238Pu</td>
<td>0.01634225</td>
</tr>
<tr>
<td>241Pu</td>
<td>0.01989327</td>
</tr>
<tr>
<td>Quantity</td>
<td>Sample P8A</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Burnup at. fission</td>
<td>2.559</td>
</tr>
<tr>
<td>Exposure MWd/tU</td>
<td>24570</td>
</tr>
<tr>
<td>234U/U</td>
<td>0.00016</td>
</tr>
<tr>
<td>235U/U</td>
<td>0.00816</td>
</tr>
<tr>
<td>236U/U</td>
<td>0.00326</td>
</tr>
<tr>
<td>238U/U</td>
<td>0.98842</td>
</tr>
<tr>
<td>238Pu/Pu</td>
<td>0.01143</td>
</tr>
<tr>
<td>239Pu/Pu</td>
<td>0.59557</td>
</tr>
<tr>
<td>240Pu/Pu</td>
<td>0.23290</td>
</tr>
<tr>
<td>241Pu/Pu</td>
<td>0.11842</td>
</tr>
<tr>
<td>242Pu/Pu</td>
<td>0.04168</td>
</tr>
<tr>
<td>239Pu/238U</td>
<td>0.00494</td>
</tr>
<tr>
<td>148Nd/238U</td>
<td>0.000450</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Measured<sup>b</sup></th>
<th>EPRI-CELL/CINDER-2 Calculation<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rod E14 Sample</td>
<td>Rod P8 Sample A</td>
</tr>
<tr>
<td>Burnup at.% fission</td>
<td>2.560</td>
<td>3.221</td>
</tr>
<tr>
<td>Exposure MWd/tU</td>
<td>24 660</td>
<td>31 191</td>
</tr>
</tbody>
</table>

Nuclide densities, atoms/gram oxide at 4.86-yr cooling

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Measured<sup>b</sup></th>
<th>EPRI-CELL/CINDER-2 Calculation<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rod E14 Sample</td>
<td>Rod P8 Sample A</td>
</tr>
<tr>
<td>^{90}Sr</td>
<td>$2.73 + 18$</td>
<td>$2.092 + 18$</td>
</tr>
<tr>
<td>^{106}Ru</td>
<td>$>1.71 + 16$</td>
<td>$2.013 + 16$</td>
</tr>
<tr>
<td>^{125}Sb</td>
<td>$7.45 + 15$</td>
<td>$7.365 + 15$</td>
</tr>
<tr>
<td>^{134}Cs</td>
<td>$7.61 + 16$</td>
<td>$5.034 + 16$</td>
</tr>
<tr>
<td>^{137}Cs</td>
<td>$3.75 + 18$</td>
<td>$3.115 + 18$</td>
</tr>
<tr>
<td>^{144}Ce</td>
<td>$1.41 + 16$</td>
<td>$1.219 + 16$</td>
</tr>
<tr>
<td>^{154}Eu</td>
<td>$3.92 + 16$</td>
<td>$5.638 + 16$</td>
</tr>
<tr>
<td>^{155}Eu</td>
<td>$1.28 + 16$</td>
<td>$1.518 + 16$</td>
</tr>
<tr>
<td>^{234}U</td>
<td>$3.24 + 17$</td>
<td>$2.941 + 17$</td>
</tr>
<tr>
<td>^{235}U</td>
<td>$1.34 + 19$</td>
<td>$1.759 + 19$</td>
</tr>
<tr>
<td>^{236}U</td>
<td>$7.68 + 18$</td>
<td>$6.845 + 18$</td>
</tr>
<tr>
<td>^{238}U</td>
<td>$2.15 + 21$</td>
<td>$2.098 + 21$</td>
</tr>
<tr>
<td>^{237}Np</td>
<td>$8.19 + 17$</td>
<td>$6.278 + 17$</td>
</tr>
<tr>
<td>^{238}Pu</td>
<td>$3.25 + 17$</td>
<td>$1.659 + 17$</td>
</tr>
<tr>
<td>^{239}Pu</td>
<td>$1.08 + 19$</td>
<td>$1.020 + 19$</td>
</tr>
<tr>
<td>^{240}Pu</td>
<td>$5.23 + 18$</td>
<td>$3.909 + 18$</td>
</tr>
<tr>
<td>^{241}Pu</td>
<td>$2.18 + 18$</td>
<td>$1.806 + 18$</td>
</tr>
<tr>
<td>^{242}Pu</td>
<td>$1.29 + 18$</td>
<td>$7.739 + 17$</td>
</tr>
<tr>
<td>^{241}Am</td>
<td>$6.55 + 17$</td>
<td>$5.382 + 17$</td>
</tr>
<tr>
<td>^{243}Am</td>
<td>$2.2 + 17 ±20%$</td>
<td>$1.193 + 17$</td>
</tr>
<tr>
<td>^{242}Cm</td>
<td>$1.8 + 13$</td>
<td>$1.306 + 13$</td>
</tr>
<tr>
<td>^{244}Cm</td>
<td>$5.10 + 16 ±20%$</td>
<td>$1.960 + 16$</td>
</tr>
</tbody>
</table>

^aMeasurements of Rod E14 sample by Los Alamos CNC-11; calculations of Rod P8 samples by Los Alamos T-2.
^bExperimental uncertainty ±5% unless otherwise indicated.
^c(Atoms/gram) from calculated (atoms/cubic centimeter)/9.95 g/cm³.
^dMeasured value outside of range of calculated values.
in the comparison of measured and calculated P8 sample values, the ^{234}U and ^{238}Pu concentrations seem undercalculated. Most significant is the agreement of measured higher actinide nuclide densities with calculated values.

REFERENCES

10. Evaluated Nuclear Data File (available from and maintained by the National Nuclear Data Center at Brookhaven National Laboratory). Spectral files in these compilations are based on data evaluated at Idaho Nuclear Engineering Laboratory.

Los Alamos