Resonance Equation of State
Number 7411, $A_{2}O_{3}$

Los Alamos
Los Alamos National Laboratory
Los Alamos, New Mexico 87545
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Sesame Equation of State
Number 7411, Al₂O₃

J. F. Barnes
S. P. Lyon

Los Alamos National Laboratory
Los Alamos, New Mexico 87545
A new global equation of state for Al_2O_3 ("alumina") has been constructed and placed on the SESAME Library as material number 7411. Although it turned out that there is no apparent large difference between 7410 and 7411, we do recommend usage of the newer EOS.

Alumina exhibits a very high shear strength which has a considerable effect on the experimentally obtained shock Hugoniot. The data are
thoroughly discussed by Graham and Brooks\cite{3}. The shear offset must be corrected for in constructing an equilibrium equation of state; here we accomplish this by simply representing the \(U_s-U_p \) shock data as given in Marsh\cite{4} by a single straight line through the high pressure data with an intercept at the experimentally obtained bulk sound speed. We used the fit \(U_s = 7.93 + 1.298 \ U_p \) km/s. Shock data were matched to the Thomas-Fermi Dirac calculations at a compression of 1.35.

We used the GRIZZLY code and treated the compound as an average atom with atomic number \(\tilde{Z} = 10.0 \) and atomic weight \(\tilde{A} = 20.392 \). Density at room temperature was taken as 3.97 g/cm\(^3\). GRIZZLY constructed the cold curve using the default formulation of the Grüneisen parameter

\[
\gamma(\eta) = \gamma_0 \left(\frac{1}{\eta}\right) + \frac{2}{3} \left[1-(\frac{1}{\eta})\right]^2
\]

with \(\gamma_0 = 1.595 \), which is both the thermodynamic value and the \(2S+1 \) value from the shock data. The Debye, or characteristic, temperature was calculated to be 1034 K from longitudinal and transverse sound speeds.

The cohesive energy, or energy required to separate \(\text{Al}_2\text{O}_3 \) into 5 separate atoms at 0 K, was calculated as 725 kcal/mole, or 145 kcal/mole for the average atom. The form of the cold curve in expansion was then adjusted with the Lennard-Jones (L-J) parameter in an attempt to produce a critical temperature close to our very rough estimate of 1 eV, a figure based on the known boiling point of \(\text{Al}_2\text{O}_3 \). It proved not to be possible to lower the calculated \(T_c \) beneath about 14,600 K without severely disturbing the calculated isotherms. The corresponding value of the L-J parameter is 0.5.
The following graphs were made for EOS 7411 using the SES2D graphics code. Figures 1 and 2 are the pressure and energy isotherms plotted over the entire temperature range of the tables. Figure 3 shows shock speed versus particle speed along the principal Hugoniot, as used in the model.

REFERENCES

1. J. D. Johnson, private communication.

Figure 1. Selected pressure isotherms for EOS 7411
Figure 2. Selected energy isotherms for EOS 7411
Figure 3. Shock velocity versus particle velocity along the principal Hugoniot for EOS 7411
Los Alamos