Polarized Proton-Neutron Total Cross Sections from Proton-Deuteron Data
Work supported by the US Department of Energy under contract EY-76-C-03-0010PA 24 and by the Istituto Nazionale di Fisica Nucleare.
Polarized Proton-Neutron Total
Cross Sections from Proton-Deuteron Data

G. Alberi*
M. Bleszynski**
T. Jaroszewicz†
S. Santos ‡‡

*Istituto di Fisica Teorica, Universita di Trieste, Miramare Trieste, ITALY
**Visiting Staff Member. Physics Department, University of California, Los Angeles, 405 Hilgard Ave., Los Angeles, CA 90024.
† Institute of Nuclear Physics, Radzikowskieg 152, 31-342, Krakow, POLAND.
‡‡ Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, BRAZIL.
POLARIZED PROTON-NEUTRON TOTAL CROSS SECTIONS FROM
PROTON-DEUTERON DATA

by
G. Alberi, M. Bleszynski, T. Jaroszewicz, and S. Santos

ABSTRACT

Simple expressions are derived for the polarized proton-deuteron total cross sections. Possibilities of extraction of the polarized proton-neutron cross sections from the proton-deuteron data are discussed.

Because recent measurements of the proton-proton (p-p) total cross section with polarized beam and target were successful, and similar experiments are planned for the proton-deuteron case, we are examining corrections to be applied to the raw deuteron data to obtain the polarized proton-neutron (p-n) total cross sections. These corrections were studied in detail for the unpolarized total cross sections and were verified using data obtained with neutron beams.

The general expression for the elastic-scattering amplitude of two particles of spin 1/2 and spin 1 can be obtained using parity and time reversal invariance.

\[\hat{F} = \hat{F}^O + \hat{F}^\leftrightarrow, \]

where

\[\hat{F}^O = F^O_o + F^O_{xy} \hat{Q}_{xy} + F^O_{xx} \hat{Q}_{xx} + F^O_{yy} \hat{Q}_{yy}, \]

\[\hat{F}^\leftrightarrow = F^\leftrightarrow_x \hat{Q}_x + F^\leftrightarrow_y \hat{Q}_y, \]

\[\hat{F}^\uparrow = F^\uparrow_o + F^\uparrow_{xy} \hat{Q}_{xy} + F^\uparrow_{xx} \hat{Q}_{xx} + F^\uparrow_{yy} \hat{Q}_{yy}, \] and

\[\hat{F}^\downarrow = F^\downarrow_o + F^\downarrow_{xy} \hat{Q}_{xy} + F^\downarrow_{xx} \hat{Q}_{xx} + F^\downarrow_{yy} \hat{Q}_{yy}. \]
Here σ is the Pauli matrix of the external proton, \hat{J} is the deuteron spin, and $Q_{ik} = 1/2 \left(\hat{J}_i \hat{J}_k + \hat{J}_k \hat{J}_i \right) - 2/3 \delta_{ik}$.

As usual, the amplitude is defined in the deuteron brick-wall system\(^7\) and z is along the average of the proton momentum, whereas y is orthogonal to the scattering plane. Actually, in the forward direction the brick-wall system coincides with the laboratory system and is along the incident-beam direction.

The missing terms change sign for either parity or time reversal transformation, where the x-, y-, and z-directions are defined in terms of the ingoing and outgoing momenta. Other terms are missing because they are not independent.

When both beam and target are polarized along the i-th axis, the initial density matrix is

$$\hat{\rho} = \left(\frac{1}{2} - \frac{1}{2} P_i \sigma_i \right) \left(\frac{1}{3} + \frac{1}{2} D_i \hat{J}_i + \frac{1}{2} A_i \hat{Q}_{ii} \right),$$

where P_i and D_i are the proton and deuteron polarizations along i, and A_i is the alignment of the deuteron defined\(^7\) as

$$P_i = \text{Tr} \left[\hat{\rho} \sigma_i \right], D_i = \text{Tr} \left[\hat{\rho} \hat{J}_i \right], A_i = 3 \text{Tr} \left[\hat{Q}_{ii} \hat{J}_i \right].$$

The total cross section for the general density matrix, Eq. (3), becomes

$$\sigma_T = \frac{1}{\sqrt{\lambda(s,M^2,m^2)}} \text{Im} \left(\text{Tr} \left[\hat{\rho} \hat{F} \right] \right),$$

where m and M are the nucleon and deuteron masses, s is the square of total c.m. energies of the system, and λ is a variable of relativistic kinematics.\(^8\) From Ref. 6 for the transverse (y-direction) polarizations of the beam and the target,

$$\sigma_T = \frac{1}{\sqrt{\lambda(s,M^2,m^2)}} \text{Im} \left\{ \left(F^0 + P \cdot D \cdot F^Y + \frac{1}{6} A \cdot F^0 \cdot F^Y + \frac{1}{6} A \cdot P \cdot F^Y \right) \right\}.$$
and for the longitudinal (z-direction) polarizations,

\[\sigma_T = \frac{1}{\sqrt{\lambda(s,M^2,m^2)}} \text{Im} \left\{ \left(F^O_0 + F^O_3 z \right) \left(F^O_x + F^O_y \right) \right\} . \]

(5b)

For a purely vector-polarized deuteron target and a polarized beam, we can measure the \(\Delta \sigma_L \) and \(\Delta \sigma_T \) (Ref. 9) for proton-deuteron scattering, which are easily expressed as functions of the proton-deuteron spin amplitudes. These amplitudes are linear and bilinear expressions of the elementary c.m.* nucleon-nucleon amplitudes, in exactly the same way as the nonflip amplitude \(F^O_0 \) (Ref. 4,5). Since the deuteron is larger in size than the nucleon, we can calculate the double-scattering integral \(^4,5\) neglecting the t-dependence of the amplitudes. The result reads

\[
\Delta \sigma_L = \sigma(\uparrow) - \sigma(\downarrow) = \frac{4}{\sqrt{\lambda(s,M^2,m^2)}} \text{Im} \left\{ \epsilon^p(0) + \epsilon^n(0) \right\} \left(1 - \frac{3}{2} P_D \right) \\
+ \text{Re} \left[2 \epsilon^p(0) \alpha_n(0) + 2 \epsilon_n(0) \alpha_p(0) - \alpha_p(0) \epsilon_p(0) - \alpha_n(0) \epsilon_n(0) \right] \\
\times R_L \frac{1}{4\pi \sqrt{\lambda(s,m^2,m^2)}} ,
\]

(6a)

and

\[
\Delta \sigma_T = \sigma(\uparrow\uparrow) - \sigma(\downarrow\downarrow) = \frac{4}{\sqrt{\lambda(s,M^2,m^2)}} \text{Im} \left\{ \epsilon^Y(0) \right\} \\
= \frac{4}{\sqrt{\lambda(s,M^2,m^2)}} \left\{ \text{Im} \left[\beta_p(0) + \beta_n(0) \right] \right\} \left(1 - \frac{3}{2} P_D \right) \\
+ \text{Re} \left[2 \beta_p(0) \alpha_n(0) + \beta_n(0) \alpha_p(0) - \alpha_p(0) \epsilon_p(0) - \alpha_n(0) \epsilon_n(0) \right] \\
\times R_T \frac{1}{4\pi \sqrt{\lambda(s,m^2,m^2)}} ,
\]

(6b)

*Actually the nucleon-nucleon spin amplitudes are calculated in the deuteron brick-wall frame, and they are connected to the c.m. amplitudes by a Wigner rotation.\(^10\) However, in the forward direction the Wigner angle is zero.
where \(\alpha, \beta, \) and \(\gamma \) are nucleon-nucleon c.m. amplitudes in the notation of Goldberger and Watson.\(^{11}\) They are normalized as \(\text{Im} \alpha(0) = \sqrt{\lambda(s,m^2,m^2)} \sigma_T \); \(s \) is the square c.m. energy of the nucleon-nucleon system and \(p \) and \(n \) refer to proton-neutron scattering. The quantities \(R_L, R_T, \) and \(P_D \) can be expressed through the radial wave functions of the deuteron.\(^{12,13}\)

\[
R_L = \int_0^\infty dr r^{-2} \left[u(r) + \frac{1}{\sqrt{2}} w(r) \right]^2 ,
\]

\[
R_T = \int_0^\infty dr r^{-2} \left[u(r) + \frac{1}{\sqrt{2}} w(r) \right] \left[u(r) - \sqrt{2} w(r) \right] ,
\]

\[
P_D = \int_0^\infty dr w^2(r) \text{ (D-wave percentage)} .
\]

The values of \(R_L \) and \(R_T \) are given in Table I for three wave functions of the deuteron.\(^{12,13}\) Also given are the D-wave percentages and the corresponding values for \(\langle 1/r^2 \rangle \) for the S-wave renormalized to 1.

To take into account the \(t \)-dependence of the amplitudes, \(R_L \) and \(R_T \) must be expressed as \(q^2 \) integrals of the deuteron form factors.

\[
R_L = \frac{1}{2\pi} \int d^2 q \epsilon(q^2)x^{-1}(0)\alpha(q^2)x^{-1}(0)
\]

\[
\times \int_0^\infty dr \left[u^2(r) - \frac{w^2(r)}{2} \right] j_0(qr) + \frac{1}{\sqrt{2}} \left[u(r)w(r) + \frac{w^2(r)}{2} \right] j_2(qr) ,
\]

TABLE I

<table>
<thead>
<tr>
<th></th>
<th>(R_L (\text{fm}^{-2}))</th>
<th>(R_T (\text{fm}^{-2}))</th>
<th>(P_D^a)</th>
<th>(\langle \frac{1}{r^2} \rangle^b (\text{fm}^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGee(^{13})</td>
<td>0.449</td>
<td>0.164</td>
<td>0.069</td>
<td>0.300</td>
</tr>
<tr>
<td>Reid S.C.(^{12})</td>
<td>0.382</td>
<td>0.157</td>
<td>0.064</td>
<td>0.265</td>
</tr>
<tr>
<td>Reid H.C.(^{12})</td>
<td>0.374</td>
<td>0.148</td>
<td>0.065</td>
<td>0.256</td>
</tr>
</tbody>
</table>

\(^a\) D-wave percentage.

\(^b\) For the S-wave renormalized to 1.
If we neglect higher order terms in the spin correlation expression C_{NN} in proton-proton scattering and we assume that the α and β phases do not vary with q^2, then q^2 behavior of $\beta(q^2)$ is related directly to the q^2 behavior of C_{NN}. For example,

$$\frac{\beta(q^2)}{\beta(0)} = \frac{\alpha(q^2)}{\alpha(0)} \cdot \frac{C_{NN}(q^2)}{C_{NN}(0)}$$

Although rough, this approximation allows qualitative testing of the R_L and R_T sensitivities to the amplitude t-dependence.

The results for 2 GeV/c are given in Table II; the same dependence as for $\beta(q^2)$ is assumed for $\epsilon(q^2)$.

We can express Eqs. (6a) and (6b) in terms of the polarized cross section for the elementary processes $p-p$ and $p-n$ through relations of the type

$$2 \text{Im} \left[\epsilon_p(0) \right] = \sqrt{\lambda} (s, m^2, m^2) \cdot \Delta \phi_p(0).$$

The result looks very similar to the famous Glauber formula for the total cross sections. To do this however, we must neglect the real parts of the double-spin-flip amplitudes that could be large compared with the imaginary parts. Actually, the real parts were calculated by Grein and Kroll using dispersion relations and the ratio

$$\rho^p = \frac{\left\{ \text{Re}[\beta_p(0)] \right\}}{\left\{ \text{Im}[\beta_p(0)] \right\}} \sim 6 \text{ around } 5 \text{ GeV/c.}$$

For a ratio $\rho^p = \frac{\left\{ \text{Re}[\alpha_p(0)] \right\}}{\left\{ \text{Im}[\alpha_p(0)] \right\}} \sim 0.3$, we find that the Galuber formula is multiplied by a factor of 2.8. The ρ^p value, not known, must be calculated from the $\Delta \phi_p$ values for proton-neutron scattering, extracted from deuteron data with the assumption $\rho^p = \rho^n$.

<p>| TABLE II |
| R_L AND R_T VALUES CALCULATED WITH t-DEPENDENCE OF THE NUCLEON-NUCLEON AMPLITUDES |</p>
<table>
<thead>
<tr>
<th>-</th>
<th>R_L (fm^{-2})</th>
<th>R_T (fm^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>McGee^{13}</td>
<td>0.401</td>
<td>0.115</td>
</tr>
<tr>
<td>Reid S.C.^{12}</td>
<td>0.307</td>
<td>0.111</td>
</tr>
<tr>
<td>Reid H.C.^{12}</td>
<td>0.306</td>
<td>0.105</td>
</tr>
</tbody>
</table>
It also can be determined self-consistently, for instance with an iterative procedure.

Although our discussion has been on pure Glauber theory, there are non-eikonal corrections at intermediate energies \(P_{\text{lab}} \leq 2 \) GeV/c). The effect of these corrections is to modify the expressions for \(R_L \) and \(R_T \) [Eq. (6)] as follows\(^{18}\)

\[
R'_L = \eta_L R_L = 1 + \int_0^\infty \mathrm{d}r r^{-2} \left[u(r) + \frac{w(r)}{\sqrt{2}} \right] e^{2i\kappa r} \left[\frac{w(r)}{\sqrt{2}} \left(2 - 3 j_0(\kappa r) \right) e^{-i\kappa r} - u(r) \right]
\]

and

\[
R'_T = \eta_T R_T = 1 + \int_0^\infty \mathrm{d}r r^{-2} \left[u(r) + \frac{w(r)}{\sqrt{2}} \right] e^{2i\kappa r} \left[\frac{w(r)}{2\sqrt{2}} \left(1 + 3 j_0(\kappa r) \right) e^{-i\kappa r} - u(r) \right].
\]

The \(\eta_L \) and \(\eta_T \) values, listed in Table III for the incident-proton laboratory momenta, were calculated with the Reid soft-core wave function\(^{12}\). The non-eikonal corrections change mainly the \(R_T \) and \(R_L \) phases (by \(\approx 5\% \) for \(P_{\text{lab}} = 1.7 \) GeV/c).

It was suggested recently that around 1.3 GeV the intermediate production of \(\Delta_{33} \) plays an important role in proton-nucleus elastic scattering, but for a \(\pi^- \) exchange model for \(\Delta \) production, the spin structure of the vertices \(N\pi N \) and \(N\pi\Delta \) is such that there is no contribution to the polarized cross section. At higher energies intermediate diffractive production should become important, but too little is known about the spin structure of diffractive production to be conclusive.

<table>
<thead>
<tr>
<th>(K_{\text{LAB}}) (GeV)</th>
<th>(\text{Re} (\eta_L))</th>
<th>(\text{Im} (\eta_L))</th>
<th>(\text{Re} (\eta_T))</th>
<th>(\text{Im} (\eta_T))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.01</td>
<td>-0.15</td>
<td>1.12</td>
<td>0.35</td>
</tr>
<tr>
<td>1.0</td>
<td>1.00</td>
<td>-0.07</td>
<td>0.98</td>
<td>0.11</td>
</tr>
<tr>
<td>1.5</td>
<td>1.00</td>
<td>-0.04</td>
<td>0.99</td>
<td>0.06</td>
</tr>
<tr>
<td>2.0</td>
<td>1.00</td>
<td>-0.03</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>2.5</td>
<td>1.00</td>
<td>-0.03</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>3.0</td>
<td>1.00</td>
<td>-0.02</td>
<td>1.00</td>
<td>0.03</td>
</tr>
</tbody>
</table>
ACKNOWLEDGMENTS

G. Alberi is grateful to E. Berger and A. Yokosawa for stimulating discussions and to CNPq, Brazil, for financial support. M. Bleszynski, T. Jaroszewicz, and S. Santos, acknowledge the hospitality of the International Centre for Theoretical Physics, where most of this work was done.

REFERENCES

Printed in the United States of America. Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

Microfiche $3.00

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>034-050</td>
<td>4.00</td>
<td>9.00</td>
<td>11.00</td>
<td>13.00</td>
<td>15.75</td>
<td>376-400</td>
<td>501-525</td>
<td>534-550</td>
<td>15.50</td>
<td>15.75</td>
<td>15.50</td>
<td>15.50</td>
<td>15.50</td>
<td>15.50</td>
<td>15.50</td>
<td>15.50</td>
<td>15.50</td>
</tr>
<tr>
<td>051-075</td>
<td>5.25</td>
<td>756-775</td>
<td>9.00</td>
<td>11.75</td>
<td>426-450</td>
</tr>
</tbody>
</table>

Note: Add $2.50 for each additional 100-page increment from 601 pages up.