TITLE: ANALYSIS OF $n + ^{197}$Au CROSS SECTIONS FOR $E_n = 0.01-20$ MeV

AUTHOR(S): P. G. Young, T-2
E. D. Arthur, T-2

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.
ANALYSIS OF \(n + {^{197}\text{Au}} \) CROSS SECTIONS FOR \(E_a = 0.01-20 \) MeV

P. G. Young and E. D. Arthur
Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

An analysis of \(n + {^{197}\text{Au}} \) reactions has been completed for incident neutron energies between 0.01 and 20 MeV. The analysis involves use of a deformed optical model to calculate neutron transmission coefficients, a giant-dipole-resonance model and experimental data to determine gamma-ray transmission coefficients, and Hauser-Feshbach statistical theory to calculate partial reaction cross sections. Particular emphasis was given to obtaining gamma-ray strength functions that are consistent with spectral measurements of gamma-ray emission between \(E = 0.2 \) and 20 MeV by Morgan and Newman, while at the same time requiring agreement with \((n,\gamma) \) and \((n,xn) \) cross-section data.

THEORETICAL CALCULATIONS

The deformed optical model parameterization by Delaroche was utilized in our analysis. This parameterization gives good agreement with neutron total cross-section measurements on \({^{197}\text{Au}} \) between 10 keV and 27 MeV, elastic \((n,n) \) angular distributions near 5 MeV, and, making use of isospin relationships, \({^{197}\text{Au}}(p,p) \) elastic scattering angular distributions at 13.8 and 55 MeV. The coupled-channel code ECIS was used for our deformed optical model calculations. The lowest three states of the \({^{197}\text{Au}} \) ground state rotational band were coupled in the calculation \((J^\pi = 3/2^-, 5/2^-, 7/2^- \) at \(E = 0, 279, 548 \) keV, respectively). Neutron transmission coefficients were calculated to 20 MeV with ECIS and were collapsed to a form depending only on incident neutron energy and orbital angular momentum for use in Hauser-Feshbach calculations.

The Hauser-Feshbach statistical theory calculations were performed with the COMNUC and GNASH reaction theory codes. The COMNUC cross section calculations include width-fluctuation corrections, important at lower energies, and the GNASH calculations incorporate preequilibrium effects, which become significant at higher energies. COMNUC was used to calculate all cross sections below 3 MeV, whereas GNASH was used for cross sections above 3 MeV and for all spectra calculations. Both codes use the Gilbert and Cameron level density formulation and the Cook tabulation of level density parameters, modified slightly as described below. A maximum amount of experimental information on discrete energy levels was incorporated into the calculations, and the constant temperature part of the Gilbert and Cameron level density was matched to the discrete level data for each residual nucleus in the analysis.

Gamma-ray transmission coefficients were calculated from \(E_1 \) and \(M_1 \) strength functions. A giant-dipole-resonance shape with the parameters \(E_R^M = 8 \) MeV and \(T_R^M = 5 \) MeV was used for the \(M_1 \) strength function. For radiative capture the shape of the \(E_1 \)
strength function was determined for $E_\gamma < 8$ MeV by trial-and-error calculation of the 197Au(n,γ) spectrum measurements of Morgan and Newman1 at $E_n = 0.2-0.6$ MeV. A second $E1$ strength function was similarly determined from the measured ($n,n'\gamma$) spectrum at $E_n = 6-7$ MeV. Above $E_n = 8$ MeV, the empirically determined $E1$ strength functions were joined to a giant-dipole-resonance shape.

The normalizations of the strength functions were determined with the relationship

$$\frac{\langle \Gamma_\gamma \rangle}{\langle D_\gamma \rangle} = \int B \left[f_{E1}(E_\gamma) + f_{M1}(E_\gamma) \right] E_\gamma^3 (B_n - E_\gamma) dE_\gamma$$

where $f_{E1}(E_\gamma)$ are the gamma-ray strength functions, B is the neutron binding energy of 198Au, $\langle \Gamma_\gamma \rangle$ is the average gamma-ray width ($= 0.122$ eV)10 and $\langle D_\gamma \rangle$ is the mean s-wave resonance spacing ($= 16.2$ eV)10. Based on the review by Lone,9 the ratio $\Gamma_{M1}/(\Gamma_{M1} + \Gamma_{E1}) = 0.12$ was assumed in the calculations.

The level density parameter $'a'$ for 198Au was taken from the Cook tabulation.6 Cook's values were slightly modified (within ±15%) for 197Au and 196Au to concurrently optimize agreement with higher energy measurements of neutron emission spectra, ($n,2n$) and ($n,3n$) cross sections, and the gamma-ray emission spectra. At 14 MeV a preequilibrium fraction of 33% was used in the analysis.

RESULTS

The $E1$ gamma-ray strength functions that resulted from this analysis are compared in Fig. 1 with values inferred from experiments by Joly et al.11 Loper et al.12 and Veyssiere et al.13 The present curve is quite similar to one also obtained from Morgan's data1 by Kitazawa14 using different neutron transmission coefficients and level density parameters. The two strength functions obtained in our analysis of the (n,γ) and ($n,n'\gamma$) measurements are quite similar, differing mainly at the shoulder near $E_\gamma = 5-6$ MeV. While this difference is not large, significantly improved agreement with the higher energy data was obtained with the ($n,n'\gamma$) $E1$ strength function. This strength function was also used in the ($n,2n\gamma$) and ($n,3n\gamma$) calculations.

The resulting 197Au(n,γ)198Au cross section from $E_n = 0.01-20$ MeV is compared with a selection of experimental data and with the ENDF/B-V evaluation15 (with resonance structure averaged out) in Fig. 2. The pronounced peak in the theoretical cross section near $E_n = 12$ MeV results from inclusion of a semi-direct component,16 which is necessary to reproduce the data near 14 MeV.

The calculated gamma-ray emission spectra are compared in Fig. 3 with Morgan and Newman's data at two neutron energies not involved in extracting the gamma-ray strength functions. The left side of Fig. 3 illustrates the calculated and measured data at $E_n = 1.0-1.5$ MeV. Above $E_n = 1.5$ MeV, of course, the spectrum results entirely from radiative capture, and the agreement is seen to be reasonably good. The results for $E_n = 14-17$ MeV are shown in the right side of Fig. 3. In this case9 the spectrum is due mainly to
to \((n,2ny)\) reactions, with a smaller but appreciable mixture of \((n,n'y)\) present. Again, within the accuracy of the experiment, the agreement is reasonable.

![Diagram](image1)

Fig. 1. El y-ray strength functions inferred from \(^{197}\text{Au}(n,y)\) \(^{198}\text{Au}\) and \(^{197}\text{Au}(n,n'y)\) \(^{197}\text{Au}\) measurements.

![Diagram](image2)

Fig. 2. Measured and calculated \(^{197}\text{Au}(n,y)\) \(^{198}\text{Au}\) cross sections from 10 keV to 20 MeV. The dotted curve is ENDF/B-V.

![Diagram](image3)

Fig. 3. Y-ray emission spectra for \(n + ^{197}\text{Au}\) reactions with \(E_n = 1-1.5\) MeV and 14-17 MeV. The histograms are the present calculations.
CONCLUSIONS

The deformed optical model and Hauser-Feshbach statistical theory calculations and gamma-ray strength function formulations described here adequately represent available neutron-induced gamma-ray measurements on 197Au between $E = 0.01$ and 20 MeV. Although not presented here, the calculations also reproduce measurements of the neutron total, $(n,2n)$, and $(n,3n)$ cross sections as well as neutron emission spectra from 14-MeV neutron reactions.

REFERENCES