TITILE: CO_2-Laser Fusion

AUTHOR(S): Eugene E. Stark, Jr.

By acceptance of this article, the publisher recognizes that the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos Scientific Laboratory requests that the publisher identify this article as work performed under the auspices of the Department of Energy.

Los Alamos
Scientific Laboratory
of the University of California
LOS ALAMOS, NEW MEXICO 87545
An Affirmative Action/Equal Opportunity Employer

DEPARTMENT OF ENERGY
CONTRACT W-7405-ENG. 36

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED
ABSTRACT

The basic concept of laser fusion is described, with a set of requirements on the laser system. Systems and applications concepts are presented and discussed. The CO₂ laser's characteristics and advantages for laser fusion are described. Finally, technological issues in the development of CO₂ laser systems for fusion applications are discussed.

FUSION OFFERS THE PROSPECT of virtually limitless energy for mankind, if we can solve the immense scientific problem of confining the reacting gases (deuterium and tritium) at their reaction temperature (50 million degrees C), as well as the engineering problems of translating scientific feasibility into commercial success. The fundamental idea in laser fusion is to heat a small sphere (~1 mm diameter) of DT gas with a short, few nanosecond (10⁻⁹ s) pulse of laser light. Absorption of the laser light on the outer layer of the sphere would cause a blowoff (ablation) of material, whose rocket reaction force would ideally compress the fuel to 10⁴ x liquid density and heat it to the reaction ignition temperature. At this density, the thermonuclear reactions would
The basic elements of a laser fusion energy system would include the following, as shown in Fig. 1:

- A laser that produces short light pulses at high electricity-to-light conversion efficiency, ideally $\sim 5\%$, and that can operate at $\gtrsim 10$ Hz.
- A beam transport system that delivers the laser light onto the pellets.
- An injection system for delivering the pellets into the reaction chamber.
- A reaction chamber to contain the pellet microexplosion, convert the reaction's energy release to heat, and produce new tritium through the reaction of neutrons with lithium.
Table 1 - Laser System Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse Energy</td>
<td>1-5 MJ</td>
</tr>
<tr>
<td>Pulse Length</td>
<td>1-10 ns</td>
</tr>
<tr>
<td>Efficiency</td>
<td>> 5%</td>
</tr>
<tr>
<td>Six or More Beams</td>
<td></td>
</tr>
<tr>
<td>Each beam focusable to</td>
<td>< 1 mm</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetition Rate</td>
<td>1-10 Hz</td>
</tr>
<tr>
<td>Prepulse Limits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50 kW/beam</td>
</tr>
<tr>
<td></td>
<td>1 mJ/beam</td>
</tr>
<tr>
<td></td>
<td>10 mJ total</td>
</tr>
<tr>
<td>Interface to Reactor Chamber</td>
<td>≤ 0.1 torr.</td>
</tr>
</tbody>
</table>
An energy transfer and conversion system for the ultimate power application, whether it be electric power, the production of fissileable fuel for conventional nuclear reactors, or the production of hydrogen or industrial process heat.

Systems studies indicate that the product of the laser efficiency and the pellet gain (pellet thermonuclear energy output ÷ laser pulse energy) must exceed 10 for electric power applications if no more than 25% of the plant's power output should be recirculated to the laser system. The laser system must operate at ~ 10 Hz with multiple reaction chambers pulsed at ~ 1 Hz, with a 30 year system lifetime.

The impact of laser efficiency is illustrated in Fig. 2. The laser efficiency (wall plug to laser light output) is \(\eta \); \(Q \) is the pellet gain. The scientific feasibility of laser fusion is defined as achieving breakeven (\(Q \geq 1 \)) with a laser that can satisfy the fundamental efficiency and repetition-rate requirements for fusion power (Table 1).

The importance of efficiency can be seen by comparing Fig. 1 and Fig. 2. Electricity from the power plant is required to operate the laser. The more efficient the laser, the less power is required to run it, and hence, more is available for sale to the consumer. Based on analyses of this issue from a total system viewpoint, higher laser efficiency will produce significant savings in both capital and operating costs.

APPLICATIONS OF LASER FUSION

Figure 2 refers to the two major electrical applications, electricity from pure fusion and the breeding of fissile fuel to power conventional...
The fact that the latter application requires an
fission reactor. The fact that the latter application requires an
"QI of only 2 (allowing a smaller system because lower Q requires less
laser energy) leads to the prediction that fissile fuel breeding will be
the first commercial application of laser fusion.

Production of synthetic gas using heat, reaction products, or a
combination of both may be another attractive application; the world's
developed economies already have transmission, distribution and
utilization systems for fossil fuels, and continue to depend on
combustible fuels. A related application is the production of process
heat for industrial applications.

CO₂ LASERS FOR FUSION

The CO₂ laser is the most attractive candidate laser-fusion driver
because of its demonstrated operating characteristics. Efficiencies of
30% have been demonstrated in a long-pulse (μs) operation, and a method
has been developed to achieve ≤ 10% in repetitive short-pulse operation.
Repetition rates as high as 750 Hz have been reported, far in excess of
the requirement for laser fusion.

Los Alamos is the only Laboratory in the United States engaged in
CO₂ laser fusion research. Elsewhere, there are CO₂ laser fusion
efforts in Japan, France, the Soviet Union and Canada. This widespread
effort reflects the cost and efficiency advantages of CO₂ over Nd:glass
lasers (a factor of 100 in efficiency, 2-4 in cost, depending on
laser pulse length). Three major CO₂ laser systems have been built at
Los Alamos for laser fusion experimentation and a fourth is under
construction, as described in Table 2.
The Single-Beam-System began operation in 1977, providing the first experimental work on target interaction of 1 ns CO₂ laser pulses at energies of 10-100 J. The Two-Beam System began operation with targets in 1976 and demonstrated the first thermonuclear reactions ever induced by a CO₂ laser in early 1977. The Eight-Beam System reached a laser energy output of 8500 J, at a 16 TW power level, in April 1979, and is scheduled to begin target interaction experiments this summer. On the Antares laser, we plan to demonstrate the scientific feasibility of laser fusion in 1983.

CO₂ LASER TECHNOLOGY-In the context of fusion-qualified laser candidates, the technology of the CO₂ laser is the least complex. The gaseous medium is a mixture of carbon dioxide, nitrogen and sometimes helium at a total pressure of ~ 2.5 atmospheres. An electron beam is injected in order to develop an appropriate gas conductivity, and main discharge electrodes excite the gas with an electric field of ~ 15 kV/cm, with a discharge current of ~ 10 A/cm² and a discharge pulse length of ~ 2-5 μs. The laser gas is at room temperature, is non-toxic, and does not undergo any significant chemical reactions within the discharge. NaCl windows provide an interface between the laser gas and ambient air, and ultimately to the reactor chamber. Directly micromachined mirrors form the beam transport system, reflecting, enlarging, and finally focusing the laser pulses onto the fusion pellet.

For CO₂ laser fusion, as with any research phase program, there are significant technology improvements required to achieve commercial feasibility. These include the pulsed power system, the beam transport
Table 2 - CO₂ Laser Systems for ICF Research

<table>
<thead>
<tr>
<th>System</th>
<th>Energy</th>
<th>Power</th>
<th>Achievement/Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Beam</td>
<td>100 J</td>
<td>100 GW</td>
<td>Laser-target physics</td>
</tr>
<tr>
<td>Two-Beam</td>
<td>1000 J</td>
<td>1 TW</td>
<td>First demonstration of CO₂ laser-induced fusion reactions (1977)</td>
</tr>
<tr>
<td>Antares</td>
<td>10⁵ J</td>
<td>100-200 TW</td>
<td>Demonstrate scientific breakeven (thermonuclear energy release > laser pulse energy)</td>
</tr>
</tbody>
</table>
system, the flow system for cooling the laser gas, as well as the electron-beam emitter and the foil window that is the interface between the evacuated e-beam source chamber and the high-pressure laser gas. These requirements are nearly identical with those of the advanced-laser candidate fusion drivers. (5) High reliability (≈99%) and long life (30 years at 1-10 Hz) are the fundamental needs. A detailed analysis of the needs, prospects and timescale for the development of these technologies has been reported recently. (5)

WAVELENGTH SUITABILITY—In the past two years, serious questions on the suitability of the relatively long wavelength of the CO₂ laser have been substantially mitigated. (6, 7, 8) Previously, incomplete classical arguments predicted that the fractional absorption of 10μm light, and the distance from the pellet center where the light is absorbed, would pose a severe disadvantage in comparison to visible wavelengths. These predictions ignored classically understood processes such as the ponderomotive force of electromagnetic waves and resonant absorption which theoretically remove most of the disadvantages. To date, experimental results have shown no important difference between pellet performance at 1μm and 10.6μm. (6, 7) Important experiments must still be done to show the suitability of other wavelengths.

REFERENCES
31-June 3, 1977.

Electric power generation requires integration of nuclear ICF subsystems with conventional power plant technology.
APPROACHES TO INERTIAL FUSION ENERGY

![Graph showing different approaches to inertial fusion energy]

- **70:10 Reactor Conditions**
- **70:2 Hybrid Option**
- **70:1 Net Energy Gain**
- **Breakeven**

- **Pellet Gain, Q**
- **Driver Efficiency, \(\eta \)**

Legend:
- ND: Glass Lasers
- CO\(_2\) Lasers
- E-Beams, Ions

LASL