a narrow temperature spike that is optically thin, hence incapable of producing an optical signature except in the Lyman continuum or in strong spectral lines.

The primary piston-driven shock finally emerges at $t = 1200$ s. Radiation losses have a profound effect on the propagation of this shock. First, the radiating shock's velocity remains nearly constant, in sharp contrast to an adiabatic shock that accelerates rapidly as it rises. Second, the temperature jump in the radiating shock is quite small, $T_{\text{shock}}/T_0 \approx 1.2$, in contrast to an adiabatic shock for which $T_{\text{shock}}/T_0 \approx 2$ to 10. The compression behind the nearly isothermal radiating shock is about a factor of 2 larger than in the adiabatic shock. When the shock finally reaches small optical depth, it cools rapidly. The emergence of the primary shock is essentially invisible in the emitted radiation field. The reason is that shock heating not only raises the source function S, locally, but also raises the opacity of the gas, hence shifts the effective radiating surface near $\tau = 1$ [recall the Eddington–Barbier relation (79.17)] outward into cooler gas. The two effects nearly cancel, and an external observer never actually sees the hot shock front until it is already too optically thin to affect the emergent radiation field significantly; precisely the same phenomenon occurs in fireballs from intense explosions, see (R2) and (Z3, 598–626).

A related study has been made by Kneer and Nakagawa (K9) who compute the time development of a nonequilibrium thermal transient in the solar chromosphere. They formulate the problem in terms of implicit Eulerian difference equations, ignoring all velocity-field effects on the radiation field, which is assumed to be quasi-static. They allow departures from LTE in a two-level hydrogen atom including the Ly α transition. They also calculate the response of the emergent Ly α radiation field to the thermal pulse.

106. Ionization Fronts

In §§104 and 105 we considered flows in which the radiation is essentially driven by the hydrodynamics, as when radiation is created in the high-temperature downstream gas behind a strong shock. In this and the following section we turn to the opposite case where instead the flow (perhaps including shocks) is driven by radiation. Specifically we examine the physics of ionization fronts (or I-fronts), which occur when intense radiation from a hot source (e.g., an O-star) eats its way into an ambient cold medium (e.g., the interstellar medium). An I-front is an interface only a few photon mean free paths thick, across which the material becomes essentially completely ionized while the temperature and pressure jump nearly discontinuously.

An I-front can produce a wide variety of hydrodynamic phenomena. For example, suppose the material is so rarefied and the incident radiation field is so strong that the photon number density is much larger than the particle
number density and recombinations can be ignored. Then the I-front races into the medium at nearly the speed of light, ionizing every atom as it goes. Hydrodynamic motions will develop much more slowly because the speed of sound is much smaller than the speed of light. Thus at the front the upstream and downstream material will coexist at the same density, despite the fact that the temperature, hence pressure, in the downstream material is orders of magnitude larger than in the upstream material, simply because the I-front continually outruns the hydrodynamic motions that would otherwise be driven by the pressure difference. At the other extreme, suppose the medium is very dense. Then the radiation penetrates into the cold material only very slowly by diffusion, essentially in a Marshak wave (cf. §103). The effect of the I-front is to build a radiatively heated pressure reservoir, which drives a shock into the upstream material. Because the radiation front is choked in the dense material and therefore moves slowly, the shock will run ahead of the I-front.

I-FRONT JUMP CONDITIONS
Let us now derive the jump conditions that apply across a steady I-front. We will discuss only the simplest cases, with the goal of providing basic physical orientation, and refer the reader to more comprehensive treatments in the literature for details. Thus, consider an I-front driven by collimated radiation from a steady source incident normally on a planar slab of pure hydrogen. Assume that the material is completely neutral upstream and completely ionized downstream. Furthermore, for simplicity, assume that no recombinations occur in the ionized material so that radiation from the source always arrives unattenuated at the current position of the I-front. We can then have a steady flow, and it is convenient to transform to the frame moving with the front, using the geometric and sign conventions indicated in Figure 106.1. As usual, subscripts “1” and “2” refer to upstream and downstream quantities, respectively.

The density of the material is

$$\rho = (n_{H1} + n_p)m_{H1},$$ \hspace{1cm} (106.1)

the gas pressure is

$$p = (n_{H1} + n_p + n_e)kT,$$ \hspace{1cm} (106.2)

and the internal energy of the material is

$$pe = \frac{3}{2}kT(n_{H1} + n_p + n_e) + \varepsilon_{H1}n_p.$$ \hspace{1cm} (106.3)

Here n_{H1} is the density of neutral hydrogen atoms, n_p is the proton density, n_e is the electron density, and ε_{H1} is the ionization potential of hydrogen. From charge conservation we have $n_e = n_p$.

The radiation field has a specific intensity $I(\mu, \nu) = I_\nu \delta(\mu - 1)$, that is, it is nonzero only for $\mu = -1$. The number flux of ionizing photons (photons
\[\phi = \int_{\nu_{\text{th}}}^{\infty} (I_{\nu} / h\nu) \, d\nu \]
(106.4)

where \(\nu_{\text{th}} \) is the threshold frequency for hydrogen ionization. Because we neglect recombinations the transfer equation simplifies to

\[(dI_{\nu} / dx) = n_{e} \alpha_{e} I_{\nu} \]
(106.5)

(recall \(\mu = -1 \)), which implies that

\[(d\phi / dx) = n_{e} \bar{\alpha} \phi, \]
(106.6)

where we have defined a mean cross section

\[\bar{\alpha} = \left[\int_{\nu_{\text{th}}}^{\infty} (\alpha_{e} I_{\nu} / h\nu) \, d\nu \right] / \phi. \]
(106.7)

Similarly, we define a mean photon energy

\[\bar{\tilde{\nu}} = h \bar{\nu} \equiv \left(\int_{\nu_{\text{th}}}^{\infty} \alpha_{e} I_{\nu} \, d\nu \right) / \bar{\alpha} \phi. \]
(106.8)
In the frame moving with the front, the statistical equilibrium equations become

\[\frac{d(n_{\text{H}+}u)}{dx} = -R_{\text{e}+} + R_{\text{e}1} = -n_{\text{H}}\bar{\alpha}\phi \]

(106.9)

and

\[\frac{d(n_{\text{e}+}u)}{dx} = R_{\text{e}+} - R_{\text{e}1} = n_{\text{H}}\bar{\alpha}\phi, \]

(106.10)

where we set the recombination rate \(R_{\text{e}1} = 0 \). Adding (106.9) and (106.10) we get the equation of continuity

\[\frac{d}{dx} [n_{\text{H}} + n_{\text{e}+}]u = \frac{d}{dx} (Nu) = 0, \]

(106.11)

whence we have

\[Nu = (n_{\text{H}+}u)_{1} = (n_{\text{e}+}u)_{2} = \text{constant} \]

(106.12a)

or

\[\rho_{1}u_{1} = \rho_{2}u_{2} = \text{constant}, \]

(106.12b)

where we have used the assumption that \(n_{\text{H}+} = n_{\text{e}+} = 0 \).

Combining (106.6) with (106.9) and (106.10) we find

\[(n_{\text{H}+}u)_{1} = (n_{\text{e}+}u)_{2} = \phi_{2} \]

(106.13a)

or

\[\rho_{1}u_{1} = \rho_{2}u_{2} = m_{\text{H}+}\phi_{2}, \]

(106.13b)

which make the physically obvious statement that each ionizing photon incident at the front converts one hydrogen atom to a proton-electron pair.

We have set \(\phi_{1} = 0 \) because all photons are absorbed in the front.

The fluid momentum equation in the frame of the I-front yields

\[\rho_{1}u_{1}^{2} + p_{1} = \rho_{2}u_{2}^{2} + p_{2} \]

(106.14)

where \(p_{1} = k(n_{\text{H}}T)_{1} \) and \(p_{2} = k[(n_{\text{H}} + n_{\text{e}+})T]_{2} = 2k(n_{\text{e}}T)_{2} \). The material energy equation in the frame of the front is

\[\frac{d}{dx} \{u[p(e + \frac{1}{2}u^{2}) + p]\} = n_{\text{H}}\bar{\alpha}\bar{e}\phi. \]

(106.15)

Integrating across the discontinuity with the aid of (106.6) we find

\[\frac{3}{2}(p_{2}/p_{1}) + \frac{1}{2}u_{2}^{2} = \frac{3}{2}(p_{1}/p_{1}) + \frac{1}{2}u_{1}^{2} + \bar{e} - \bar{e}_{1} = \frac{n_{\text{H}}}{m_{\text{H}}} (106.16) \]

Equations (106.12), (106.14), and (106.16) uniquely determine the downstream conditions in the flow for given upstream conditions and a specified photon flux \((K1) \). However in astrophysical applications it is usually the case that radiative relaxation times are orders of magnitude smaller than typical flow times through the I-front. Hence, as was true for shocks (cf. §104), we can often make the simplifying assumption that both the upstream and downstream material remains isothermal at temperatures
appropriate to the radiative heating and cooling mechanisms occurring in the neutral and ionized gases, respectively. We can thus replace (106.16) by the conditions

\[\frac{p_1}{\rho_1} = \frac{k T_1}{\mu_1 m_{\text{H}}} = a_1^2 \]

(106.17a)

and

\[\frac{p_2}{\rho_2} = \frac{k T_2}{\mu_2 m_{\text{H}}} = a_2^2, \]

(106.17b)

where \(a \) denotes the isothermal sound speed. In the interstellar medium, typical temperatures are \(T_1 = 10^2 \) K in the neutral gas, where \(\mu_1 = 1 \), and \(T_2 = 10^4 \) K in the ionized gas, where \(\mu_2 = \frac{1}{2} \) (S20), (S21), (S22). Therefore typical sound speeds are \(a_1 = 0.9 \) km s\(^{-1}\) and \(a_2 = 13 \) km s\(^{-1}\).

Types of I-Fronts

Solutions for the jump conditions written above are described in a fundamental paper by Kahn (K1), who developed a comprehensive classification scheme for I-fronts, discussed their basic physical properties, and delineated the conditions under which they can occur in nature. An exhaustive treatment of these questions was later given by Axford (A8), who also analyzed the structure of I-fronts in great detail.

Combining (106.13), (106.14), and (106.17) we find

\[\frac{p_2}{p_1} = \left\{ a_1^2 + u_1^2 - a_2^2 / 2 \right\} / \frac{a_2}{2}. \]

(106.18)

The restriction that \(p_2/p_1 \) be real implies that \(u_1 \) must satisfy the inequalities

\[u_1 \geq u_R = a_2 + (a_2^2 - a_1^2)^{1/2} = 2a_2, \]

(106.19)

or

\[u_1 = u_D = a_2 - (a_2^2 - a_1^2)^{1/2} = a_1^{1/2}/2a_2 < a_1, \]

(106.20)

where the approximations apply when \(a_2 \gg a_1 \).

When \(u_1 \) exceeds the critical velocity \(u_R \) we have an R-type ionization front; "R" stands for "rarefied" because such fronts occur when \(\rho_1 < \rho_R = m_{\text{H}} \phi/u_R \). For fixed \(\phi \), \(u_1 \to \infty \) (more precisely \(u_1 \to c \)) as \(\rho_1 \to 0 \). Fronts for which \(u_1 = u_R \) and \(\rho_1 = \rho_R \) are called R-critical. Similarly, when \(u_1 < u_D \) and \(\rho_1 > \rho_D = m_{\text{H}} \phi/u_D \) we have a D-type ionization front; "D" stands for "dense". Fronts for which \(u_1 = u_D \) and \(\rho_1 = \rho_D \) are called D-critical. Fronts for which \(u_D < u_1 < u_R \) and \(\rho_R < \rho_1 < \rho_D \) are called M-type.

In an R-front \(u_1 \geq u_R > a_2 > a_1 \). Hence R-fronts always advance supersonically into the neutral gas, and thus cannot be preceded by a hydrodynamic disturbance of the upstream material. D-fronts always advance subsonically into the neutral gas, and thus can be preceded by hydrodynamic disturbances (e.g., a shock or a rarefaction). A steady I-front cannot advance into the neutral gas when conditions ahead of it are M-type.
R-FRONS
We obtain simple expressions for the density jump and downstream velocity in R-fronts in the limiting case that \(u_1 \gg u_R \). Expanding (106.18) and choosing the negative root we find

\[
p_2/p_1 = 1 + (a_2/u_1)^2 \approx 1.
\]

Such fronts are called weak R-fronts because the material is only slightly compressed as it passes through the front. Choosing the positive root we find

\[
p_2/p_1 = (u_i/a_2)^2[1 - (a_2/u_1)^2] \gg 1.
\]

Such fronts are called strong R-fronts because the material is greatly compressed.

The downstream velocity in a weak R-front is

\[
u_2 = u_1[1 - (a_2/u_1)^2] \gg a_2,
\]

and in a strong R-front

\[
u_2 \approx a_2^2/u_1 \ll a_2.
\]

Thus a weak R-front moves supersonically with respect to both the neutral and the ionized gas. In the lab frame the neutral material is at rest, \(v_1 = u_1 + u_t = 0 \), hence the front moves to the left (cf. Figure 106.1) with a speed \(v_f = -u_1 \), and the ionized gas moves subsonically to the left with a speed

\[
v_2 = u_2 + v_t = u_2 - u_1 \approx -a_2^2/u_1.
\]

In contrast, a strong R-front moves supersonically with respect to the neutral gas but only subsonically with respect to the ionized gas. Therefore in the lab frame the ionized gas moves to the left supersonically, almost with the speed of the I-front:

\[
v_2 = -u_1[1 - (a_2/u_1)^2].
\]

For an R-critical front one finds

\[
u_2 = a_2
\]

and

\[
p_2/p_1 = 2 - \frac{1}{2}(a_1/a_2)^2 = 2.
\]

Thus an R-critical front moves exactly sonically with respect to the ionized gas, and produces a moderate density jump across the front. In the lab frame the ionized gas moves to the left nearly sonically.

D-FRONS
In contrast to an R-front, in which \(p_2 \) always exceeds \(p_1 \), the gas passing through a D-front undergoes expansion. We can obtain simple expressions for \(p_2/p_1 \) and \(u_2 \) by assuming that \(u_1 \ll u_{t1} \ll a_1 \). Then by choosing the
positive root in (106.18) we find that in a weak D-front
\[\rho_2/\rho_1 = (a_2^2/2a_0^2)(1 + \delta) = (u_{D}/a_0)(1 + \delta) \ll 1, \]
(106.29)

where
\[\delta = [1 - (2u_1a_2/a_0^2)^2]^{1/2} \]
(106.30)
increases from zero to one as u_1 decreases from u_{D} to zero. In a strong D-front we find
\[\rho_2/\rho_1 \approx (a_2^2/4a_0^2)(u_1/a_0)^2 \approx \frac{1}{2}(u_1/a_0)(u_{D}/a_0) \ll 1, \]
(106.31)
which is smaller than the density ratio in a weak D-front by an additional factor of (u_1/a_0).

The downstream velocities in weak and strong D-fronts are, respectively,
\[u_2/a_2 = (u_1/a_0)/(1 + \delta) \ll 1 \]
(106.32)
and
\[u_2/a_2 \approx 2(u_{D}/a_0) \gg 1. \]
(106.33)

Thus weak D-fronts move subsonically with respect to both the neutral and ionized gas, whereas strong D-fronts move subsonically into the neutral gas but supersonically with respect to the ionized gas. For a D-critical front one finds
\[u_2 = a_2 \]
(106.34)
and
\[\rho_2/\rho_1 = a_2^2/2a_0^2 = (u_{D}/a_0) \ll 1. \]
(106.35)
Thus a D-critical front moves exactly sonically with respect to the ionized gas.

In the lab frame the ionized gas behind a D-front advancing into neutral material at rest always moves to the right, subsonically for weak fronts, nearly sonically for critical fronts, and supersonically for strong fronts.

A more detailed and complete discussion of the properties of steady I-fronts can be found in (A8).

RELATION TO COMBUSTION WAVES

Ionization fronts resemble combustion waves ([L2, Chap. 14], [C20, Chap. 3, Sec. E]) in many respects. In both cases the “chemical composition” of the gas changes across a sharp interface as a result of energy input into the gas: from exothermic chemical reactions (which burn the gas) in the case of combustion waves, and from an external radiation source in the case of I-fronts (which “dissociate” atoms into ions and electrons). In general terms D-fronts resemble deflagrations (or flame fronts) and R-fronts resemble detonations.

A significant difference between the two theories is that, according to the Chapman–Jouget hypothesis, only weak deflagrations and strong detonations are possible. In the former case the front propagates subsonically with
respect to both the unburnt (upstream) and burnt (downstream) gas; in the latter it is driven by a shock that propagates supersonically into the unburnt gas, but subsonically with respect to the combination products. Strong deflagrations and weak detonations are forbidden.

In contrast, for I-fronts, weak R-fronts (corresponding to weak detonations) are not only possible, but, as we will see below, play a central role in the dynamics of gaseous nebulae and ablation fronts. Similarly, whereas the D-fronts in gaseous nebulae are usually D-critical or weak-D, transient strong D-fronts can arise.

Indeed it is strong R-fronts (analogous to strong detonations) that are not expected to occur in nature because some additional (i.e., nonradiative) mechanism would be required to maintain the large velocity of the compressed, ionized gas behind the front. Moreover, sonic disturbances in the hot gas behind the front can catch up with the front and can continually weaken it. An essential reason for this difference is that the exothermic chemical reaction that powers a detonation wave is actually driven by the wave itself; that is, the high temperatures in the shock cause the upstream gas to ignite spontaneously as it passes through the front, while the energy thus released propels the shock forward. Thus the strong detonation (supersonic upstream, subsonic downstream) is the only natural solution. However an I-front will propagate naturally at the speed of light (a signal speed that is independent of the hydrodynamic state of the material) until the density, hence absorption coefficient, of the upstream material becomes large enough to slow the radiation front to a diffusion wave. Thus the weak R-front is a natural solution that reflects the properties of the externally imposed energy source.

A much more penetrating analysis of the differences between combustion waves and I-fronts was carried out by Axford (A8), who demonstrates that the Chapman–Jouguet hypothesis is invalid for I-fronts.

Ablation Fronts

When intense radiation from a hot source (e.g., an O-star) penetrates into optically thick cold material (e.g., an interstellar cloud) bounded by vacuum, an ablation front is driven into the medium, and hot ionized material expands rapidly away from the boundary surface in a blowoff. To gain insight we first assume planar geometry, and, following Kahn (K1), we consider what happens at the vacuum-cloud interface as the intensity of the incident radiation is progressively increased from a very low to a very high level.

When the incident photon flux is very small, conditions in the neutral gas are of extreme D-type, hence the radiation produces a very weak D-front which propagates only very slowly into the neutral material. The ionized gas expands gently into the vacuum, essentially as a mild evaporation. This loss of material induces a weak rarefaction (or expansion wave) to propagate at the speed of sound into the cold medium ahead of the I-front,
which penetrates only subsonically. The resulting flow pattern is sketched in Figure 106.2a.

As the photon flux is increased, the rate of ablation increases, and the pressure in the ionized gas in the blowoff rises. Eventually the back pressure becomes large enough to prevent any expansion of the neutral gas, at which point conditions in the flow are D-critical, as sketched in Figure 106.2b.

A further increase in the photon flux would raise the I-front velocity above the D-critical limit u_D, hence the conditions in the neutral gas would become M-type, and the front could not propagate directly into the quiet material. But at the same time the pressure in the blowoff rises above the value necessary to just stop the backward expansion of the neutral gas, and thus drives a shock that moves supersonically into the quiet gas ahead of the I-front. This shock compresses the material passing through it enough that the postshock density rises to the value ρ_D required to permit continued D-critical propagation of the I-front at the specified value of ϕ.

Fig. 106.2 State of flow in an I-front for (a) a very weak D-front; (b) a D-critical front; (c) a D-critical front preceded by a shock; and (d) an R-critical front.
The resulting flow, comprising an I-front and an *ablation-driven shock*, is sketched in Figure 106.2c.

As the photon flux is increased still further, the ionization rate becomes larger and larger, and the I-front travels through the gas at a speed closer and closer to that of its antecedent shock. Eventually the flux becomes large enough that the I-front and shock have the same speed and thus merge into a single front propagating into the quiet gas. Conditions are then R-critical, and the flow pattern is as sketched in Figure 106.2d.

If the photon flux is made even greater, the I-front moves into the cold material so fast that the shock can no longer keep up with it. The I-front then propagates directly into the neutral gas as a weak R-front.

Newton’s third law of motion implies that the rapid loss of high-velocity material in the blowoff from an ablation front will accelerate the neutral medium in the opposite direction. Oort and Spitzer (O2) have suggested that this *rocket effect* can accelerate neutral interstellar clouds near O- and B-stars to very large velocities. Thus if radiation on a cloud of mass \(M \) forces it to lose mass at a rate \(dM/dt \) in material expanding into vacuum with a velocity \(V \) at the ablation front, then the velocity \(v \) of the cloud can be determined from

\[
\frac{dM}{dt} = -V \frac{dM}{dt},
\]

which yields the standard rocket equation

\[
v = V \ln \left(\frac{M_0}{M} \right).
\]

Here \(M_0 \) is the initial mass of the cloud, which is assumed to be initially at rest. The mass-loss rate is related to the photon number flux by

\[
\frac{dM}{dt} = -\pi R^2 \phi n \mu,
\]

where \(R \) characterizes the projected cross section of the cloud to the stellar radiation. Here we have assumed that each photon ionizes an atom, and that the ionized material all leaves in the blowoff.

To trace the time history of a cloud in detail, one must make a variety of additional assumptions. But with reasonable, if simplified, models one can show that there is a critical initial mass \(M_{\text{crit}} \) at which clouds engulfed in the region of ionized gas surrounding an O-star just evaporate as the cloud remnant reaches the edge of that region (O2), (S20), (S21). Clouds with \(M_0 < M_{\text{crit}} \) evaporate completely; clouds with \(M_0 > M_{\text{crit}} \) can survive and escape from the ionized region, sometimes with large velocities.

The efficiency of the rocket effect is somewhat reduced by recombination of ions and electrons in the blowoff. Neutral atoms formed by recombination attenuate the radiation from the external source before it reaches the ablation front; they thus produce an *insulating layer* that decreases the rate of energy deposition into the front. This decrease can be quite significant in planar geometry (K1), but is less serious for a uniformly irradiated spherical medium because the geometrical divergence of a radial blowoff leads to
a rapid reduction of the density, hence recombination rate, in the expanding material. In this case we can get rather efficient energy deposition into a spherical ablation front that drives a *converging spherical shock* into the cold medium. The converging shock can collapse the core of the original sphere to very high densities. In fact it is just such radiation-driven implosions that are used in laser-fusion experiments to compress pellets containing appropriate isotopes of hydrogen to the high densities and temperatures needed to ignite thermonuclear reactions (M2).

Similar effects occur in interstellar cloud complexes near or around young clusters containing O- and B-stars. In particular the bright rims sometimes observed to surround dark clouds near very hot stars may be insulating layers formed by blowoff from the clouds. Furthermore, radiation-driven implosion of interstellar clouds may provide an effective mechanism of star formation (E2), (S3).

Thus suppose a single seed O-star "lights" deep inside a massive (10^5 to 10^6 M☉) interstellar molecular cloud complex that has a very inhomogeneous structure consisting of dense condensations surrounded by a more rarefied medium. Radiation from the seed star will preferentially burn through the less-dense interstices in the cloud complex, and can produce ablation fronts around several nearby condensations in the original cloud. Each of these fronts may implode a condensation to the point where it becomes Jeans unstable, collapses gravitationally, and forms a new star. Radiation from these new stars may then implode still more stars, and one can imagine the possibility of a multiplicative runaway leading to a violent burst of star formation in the cloud.

There is, of course, a competition between the loss of material into the blowoff and the effects of the converging shock. If the implosion proceeds too slowly, an initial condensation will evaporate before it can collapse gravitationally. Thus the radiation-driven implosion mechanisms may produce mainly high-mass stars, though recent work (K6) suggests that irradiation of a condensation by multiple driving stars may produce low-mass stars as well.

The multiplicative star-formation mechanism described above implies a rapid building of radiation inside the cloud complex. Ultraviolet stellar radiation will continually ionize the less-dense regions between condensations in the complex. In due course, each ionization is followed by a recombination, which results in the emission of one or more photons in subordinate continua and in spectral lines (including Lyman α). This recombination radiation scatters around within the transparent ionized interstices between condensations and steadily accumulates, as in a reservoir, because new ionizing photons are continually emitted by stars. The level of this reservoir, representing the time-integrated luminous output from all stars embedded in the cloud complex, can become quite high. Eventually the ionizing radiation burns through at some position on the outer boundary surface of the cloud complex. It is interesting to speculate
whether one might observe an intense, nonequilibrium burst of radiation at this instant, as the radiation reservoir stored in the cloud pours out. At a somewhat later time one might also expect to observe an energetic hydrodynamic flow through the site of the radiative burn-out.

RADIATION-DRIVEN EXPLOSIONS
A radiation-driven explosion is produced when a large amount of radiant energy is released nearly instantaneously from a point source in a cold gas. The radiation both ionizes and strongly heats the gas and can thus drive violent hydrodynamic phenomena. Good examples are H II regions, which are regions of ionized hydrogen in the interstellar medium surrounding O- and B-stars, and fireballs produced by extremely strong explosions in the Earth's atmosphere.

The dynamics of fireballs is significantly influenced by gravity (stratification of the ambient atmosphere) and by reflected shocks (in explosions near the ground). As fireballs are discussed extensively in (Z3, Chap. 9) and the references cited therein, they will not be considered further here. Rather, we discuss qualitatively the dynamical behavior of an H II region as it expands into the surrounding H I region (i.e., the neutral interstellar medium) until it comes into equilibrium with its surroundings and forms a static Strömgren sphere (S26) around the exciting star. We assume that the H I region is initially homogeneous, and neglect gravitational forces.

Numerous studies have been made of the dynamics of H II regions. Simple analytical considerations are summarized in (S20, S21). A similarity solution was constructed by Goldsworthy (G6), but unfortunately it is valid only for a particular initial density distribution (\(\rho \propto r^{-3/2} \) in spherical geometry and \(\rho \propto r^{-1} \) in cylindrical geometry). Moreover, for a steady photon flux the solution requires that the gas temperature must vanish at the origin in spherical geometry, which is unphysical, hence one is forced to cylindrical geometry, which is unrealistic. Thus these solutions have only limited value. Vandervoort (V1, V2, V3) discussed the early phases of evolution of H II regions using the method of characteristics. The effects of various physical processes on the structure of H II regions in the steady-flow approximation were analyzed by Hjellming (H5).

The most realistic models have been constructed by Mathews (M6) and Lasker (L5) using numerical methods. We will discuss these shortly, but first, following Mathews and O'Dell (M7), it is instructive to study the evolution of an H II region by an analysis of the behavior of the gas in the \((p, V)\) diagram. As we saw in §56, conservation of mass and momentum across a front imply that

\[
p_2 - p_1 = -\dot{m}^2(V_2 - V_1),
\]

where \(\dot{m} \) is the mass flux and \(V = 1/\rho \). This result, which applies for both shocks and I-fronts, shows that the initial and final states of the gas must be connected by a straight line of negative slope in the \((p, V)\) diagram. For the
problem under consideration, the initial and final states must lie on the isotherms $T = T_1$ and $T = T_2$ which, as sketched in Figure 106.3, are hyperbolae in the (p, V) plane. Shocks are represented by straight lines joining two points on the same isotherm; I-fronts by straight lines with negative slope joining points on the two isotherms.

If the initial state of the gas is represented by point O at (p_1, V_1) on the H I isotherm, various types of I-fronts with respect to this point are shown on the H II isotherm. Thus the separation between M-type conditions and R-fronts occurs at infinite photon flux (which implies $\dot{\bar{m}} = \infty$), and between M-type conditions and D-fronts at zero photon flux (which implies that $\dot{\bar{m}} = 0$). A transition via an I-front from point O to any point in the M-type region is clearly impossible because the slope of the line joining the initial and final states would be positive. R-critical and D-critical fronts occur when the line from O is just tangent to the H II isotherm, for this is the condition that the front propagate sonically at $T = T_2$.

Suppose now that an O-star begins to radiate essentially instantaneously in a large, low-density H I cloud having $(p, V) = (p_1, V_1)$. Then initially $\dot{\bar{m}}$ is very large and a weak R-front moves rapidly [$u_1 \sim 800 \text{ km s}^{-1}$ (M6)] outward, producing a transition such as OB in Figure 106.3. As the front moves outward, ϕ, hence $\dot{\bar{m}}$, decreases owing to spatial dilution and to absorptions resulting from recombinations in the H II region. Eventually
the front becomes R-critical, producing the transition OC in Figure 106.3, and moves at the sound speed relative to the ionized gas. The pressure in the H II region exceeds that in the H I region by two orders of magnitude, hence if must expand, and will drive a shock into the H I region. In fact, the transition OC can also be viewed as a strong shock (OD) in the neutral gas followed by a D-critical ionization front (DC) relative to point D.

As the I-front continues outward φ and m decrease further and the front moves subsonically relative to the ionized gas. The shock driven by the excess pressure of the H II region can thus outrun the I-front, and we now have transitions of the type OEF in which a shock in the isothermal neutral gas is followed by a weak D-front. The shock progressively slows and the I-front progressively weakens, passing from transitions like OGH to transitions like OIJ, in which the shock is very weak (OI is nearly tangent to the isotherm, hence the Mach number is near unity) and is followed by a very weak D-front (m is nearly zero). Ultimately, the system approaches equilibrium in the transition OK, with m = 0, and a static Strömgren sphere is formed. Note, however, that all early type stars embedded in H II regions have strong winds (cf. §107) that are a major source of energy and momentum to the interstellar medium, hence the purely radiation-driven flow discussed above ceases to provide a realistic description at late times when the dynamical effects of the stellar wind dominate.

If the sequence just described is reversed, we recover the scenario discussed earlier for ablation fronts. An important difference is that in Kahn’s analysis (K1) of an I-front backed by vacuum, rarefaction waves running ahead of a D-front tend to maintain it in a D-critical condition until φ becomes large enough to force the front to be R-critical. Much of the early analytical work on the propagation of I-fronts in H II regions was based on the simplifying assumption that the I-front following remained exactly D-critical. But numerical calculations show (L5) that in reality this approximation is not at all appropriate for H II regions (because the large pressure in the ionized gas drives a strong shock, which must be followed by a weak D-front) until the H II region expands nearly to its equilibrium position and φ → 0.

The numerical models (M6), (L5) of H II regions employ the one-dimensional Lagrangean hydrodynamics schemes discussed in §59. One uses the equation of continuity to relate radii to a Lagrangean mass or space variable as in (59.84); Euler’s equation of motion with a pseudo-viscous pressure and zero gravity [cf. (59.82)]; and an energy equation of the general form

\[
\frac{D\varepsilon}{Dt} + \frac{p}{\rho} \frac{D(1/\rho)}{Dt} = \mathcal{G} - \mathcal{L},
\]

where \(\mathcal{G}\) and \(\mathcal{L}\) are radiative gains and losses per unit mass. The ionization state of the material is determined by the rate equation

\[
\frac{Dx}{Dt} = (1 - x)\tilde{a} - (\rho/m_{te})x^2\beta(T),
\]

where \(x\) is the ionization fraction and \(\beta(T)\) is a recombination coefficient,
while the photon flux follows from the (quasi-static) transfer equation
\[
\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \phi) = \frac{-\rho}{m_{\text{H}}} (1 - x) \tilde{\phi}.
\]

These equations are discretized and solved using basically the techniques described in §59. The I-front, however, requires special treatment. Mathews (M6) used a special integration scheme suggested by Henyey to handle the numerical stiffness of (106.41) as the ionization fraction approaches equilibrium. In addition he used extremely fine zones in the I-front along with a rezoning scheme that added new zones in the upstream gas as it entered the I-front and discarded unnecessary zones in the downstream flow. In contrast, Lasker (L5) used an algorithm that smears the discontinuous I-front over a few zones, a method analogous to using pseudoviscosity to smear shocks. In present-day computations it would be preferable to handle the I-front with an adaptive-mesh technique.

Lasker’s calculations follow the evolution of an H II region well beyond the R-critical stage studied by Vandervoort and by Mathews. The exciting

![Fig. 106.4](image-url)
Fig. 106.4 Time evolution of velocity structure of an H II region. From (L5), by permission.
Fig. 106.5 Time evolution of density structure of an H II region. From (L5), by permission.

Fig. 106.6 Temperature immediately behind shock in an H II region. From (L5), by permission.
star is assumed to start radiating instantaneously in an infinite homogeneous cloud with an initial temperature $T_0 = 100$ K. The results shown in Figures 106.4 to 106.7 apply to a model with an initial number density $N_0 = 6.4 \text{ cm}^{-3}$. Models A to C cover the initial stages of R-front propagation; in model C the shock has just formed and is slightly separated from the I-front. The shock compresses the neutral material as it passes over it, and in model D a distinct shell of compressed neutral gas is evident. This shell, which is driven outward by excess pressure in the H II region, becomes thicker and thicker in subsequent models as the shock progressively moves away from the I-front. The strength of the shock decreases in time both because of geometrical divergence and because the pressure and density drop in the H II region as it expands. The temperature immediately behind the shock and the velocities of the I-front and shock as functions of time are shown in Figures 106.6 and 106.7.

107. Radiation-Driven Winds

The main effect of radiation in the radiation-driven flows we have considered so far is to provide an energy input to the gas, which heats it, hence raises its pressure, and thus drives a flow, perhaps explosively. We now
consider an example of a flow driven by radiative momentum input to the gas, that is, a flow that results from the work done by the radiation force on the material, even in the absence of net energy exchange between the gas and the radiation field.

In recent years a variety of observations from spacecraft and ground-based observatories have shown that hot, luminous, early type stars have massive stellar winds. Analyses of line profiles and infrared emission (A4), (A5), (G1), (L1) imply mass-loss rates \dot{M} of order 10^{-8} to $10^{-5} M_\odot$/year for O-stars, and perhaps up to $10^{-4} M_\odot$/year for Wolf–Rayet stars; recall from §61 that the mass-loss rate in the solar wind is only $10^{-14} M_\odot$/year. The observations indicate transonic winds, with flow velocities that rise from near zero in the stellar photosphere to highly supersonic values within one stellar radius from the surface. For O-stars the observed terminal velocities v_{∞} are typically about three times the escape velocity v_{esc}, which is about 1000 to 1500 km s$^{-1}$ for a main-sequence O-star and 600 to 900 km s$^{-1}$ for an O-supergiant (A1), (G1). The sound velocity in the atmospheres of these stars is about 25 km s$^{-1}$.

Lucy and Solomon (L10) recognized that these flows cannot be explained by the thermal wind model described in §61 because if the specific enthalpy at the critical point is to provide the observed terminal kinetic energy flux, then the critical-point temperature would have to be $T_c \sim 3 \times 10^7$ K for $v_{\infty} \approx 3000$ km s$^{-1}$. This high value is excluded because lines from ions that would be destroyed by collisional ionization at temperatures greater than about 3×10^8 K are present throughout most of the flow. (However, soft X rays are also observed from O-stars, hence there must be at least some material at coronal temperatures embedded in the flow; nevertheless the bulk of the flow is too cool to be a thermal wind.)

The most natural way to explain the flow is that it is driven by momentum input to the gas from the intense radiation fields of these extremely luminous stars, in particular by the radiation force exerted on strong spectrum lines. We emphasize that, as in §61, our goal here is to elucidate some of the underlying physics of radiation-driven winds, not to develop realistic models of the winds of particular stars.

THE EDDINGTON-LIMIT LUMINOSITY

Radiative momentum input to the gas results when photons are absorbed from the anisotropic (indeed almost purely radially streaming at large distances from the star) stellar radiation field, and then scattered isotropically. The absorbed photons deposit all their outward-directed momentum into the material, but because the scattering process is isotropic, the reemitted photons produce no net change in the momentum of the material, which therefore experiences a net gain of outward momentum. The ions scattering the radiation are thus accelerated radially and they drag along the rest of the plasma through momentum exchange in Coulomb collisions.
Therefore the outward acceleration of the gas is

\[g_R = \int_0^\infty \chi_v F_v \, dv / \rho c, \quad (107.1) \]

where \(\chi_v \) is the total extinction from all sources (continua, electron scattering, and lines) and \(F_v \) is the radiation flux. Note that a photon is not destroyed when it is scattered, but is merely redshifted by at most \(\Delta \nu = \nu_0 v_0 / c \); because \(\Delta \nu / \nu_0 \ll 1 \), each photon can in principle be scattered many times before it is extinguished.

The outward radiative acceleration \(g_R \) is to be compared with the inward acceleration of gravity, \(g = GM/r^2 \); if \(g \) is everywhere greater than \(g_R \), then the atmosphere remains in hydrostatic equilibrium and does not expand. For convenience define the force ratio

\[\Gamma = g_R / g. \quad (107.2) \]

In O-stars the continuous opacity is dominated by electron scattering in those spectral regions where most of the flux emerges. We therefore obtain a reasonable lower bound for \(\Gamma \) if we assume that the opacity is pure Thomson scattering, namely

\[\Gamma_e = \frac{s_e}{4 \pi G \dot{M}}, \quad (107.3) \]

where \(s_e = n_e \sigma_e / \rho \) is the electron scattering coefficient per gram.

Consider now a spherically symmetric steady flow from a star. Parameterizing the radiation force as in (107.2), we write the momentum equation (96.2) as

\[\rho v (dv/dr) = - (dp/dr) - GM(1 - \Gamma) \rho / r. \quad (107.4) \]

The pressure can be expressed as \(p = a^2 \rho \), where \(a \) is the isothermal sound speed, assumed to be, in general, a function of \(r \). [For brevity we drop the subscript "\(T \)" used in (51.26); no confusion should result because we will not be referring to the adiabatic sound speed in this section.] From the equation of state and the continuity equation we find

\[\rho^{-1} (dp/dr) = (da^2/dr) - (2a^2/r) - (a^2/v)(dv/dr), \quad (107.5) \]

whence we can rewrite (107.4) as

\[[1 - (a^2/v^2)] v (dv/dr) = (2a^2/r) - (da^2/dr) - G \dot{M}(1 - \Gamma) / r^2. \quad (107.6) \]

We now ask under what conditions one can have a continuous transonic flow under the combined action of gravity and radiation (M3). For simplicity, assume the envelope is isothermal and drop \((da^2/dr) \). It is then evident that to obtain a smooth transition from subsonic flow at small \(r \) to supersonic flow at large \(r \), the right-hand side of (107.6) must (1) vanish at the sonic radius \(r_s \), where \(v(r_s) = a \); (2) be negative for \(r < r_s \); and (3) be positive for \(r > r_s \). The condition for \(r < r_s \) can be met only if \(\Gamma < 1 \) in that
region; that is, in the subsonic flow region the radiation force must be less than that of gravity if a steady flow is to accelerate outward. In contrast, in the supersonic flow region \((r > r_c)\) \(\Gamma\) may become arbitrarily large; indeed the larger it is, the greater is the momentum input to the gas, and the larger \((dv/dr)\), hence \(v_{\text{ex}}\) will be.

If \(\Gamma\) is greater than unity everywhere in a stellar envelope, steady transonic flow is impossible; one must have either an initially subsonic flow that decelerates outward, an initially supersonic flow that accelerates outward, or (most likely) a time-dependent flow. As Eddington pointed out, if \(\Gamma_c\) (which always underestimates the radiation force because \(\chi_c \leq n_c \sigma_T\)) rises to unity at some point in the envelope, one can expect \(\Gamma \geq 1\) throughout the remainder of the stellar interior because both the radiation flux and the force of gravity scale as \(r^{-2}\). In this event the material is unbound gravitationally, so the star becomes unstable, and can freely expand homologously on a short time scale. The critical luminosity

\[
L_\text{c} = 4\pi c G M/s_e
\]

is called the \textit{Eddington-limit luminosity}. Objects of radius \(R\) having \(L \gg L_\text{c}\) can be expected to be blown apart by radiation pressure on a dynamical time scale of order

\[
t_L \sim \left(4\pi c R^2/s_e L\right)^{1/2}.
\]

Numerically (107.3) gives \(\Gamma_e \approx 2.5 \times 10^{-5}(L/L_\odot)(M_\odot/M);\) for an O-star \(L \approx 10^6 L_\odot\) and \(M = 60 M_\odot\), hence \(\Gamma_e \approx 0.4\). Thus the radiation force from continuum opacity alone does not exceed gravity, which implies (1) that normal O-stars are stable against radiative disruption, and (2) that the continuum radiation force cannot drive a transonic wind by itself. We must therefore look to spectral lines to provide the required force.

\section*{The Radiation Force on Spectral Lines}

In order to focus on the momentum (as opposed to energy) transfer from radiation to the material, we assume pure conservative scattering lines. At great optical depth where the diffusion approximation is valid, \(F_c \propto \chi_c^{-1}\), hence in this regime the product \(\chi_c F_c\) in (107.1) is independent of the value of \(\chi_c\), and lines are no more effective than the continuum in delivering momentum to the gas. Therefore at depth \(\Gamma\) remains essentially equal to \(\Gamma_c\). However in optically thin material the situation is quite different. Near the surface of a star \(F_c\) can rise far above its diffusion-limit value because intense radiation emerges from the material below, and none is incident from above.

To estimate the maximum force that can result from a single line, assume that some optically thin material is irradiated from below with unattenuated continuum radiation, that is, \(F_s = F_c = \pi B_s(T_{\text{eff}})\). Then an upper limit to the acceleration of the gas produced by a single line of an atom of chemical species \(k\) in excitation state \(i\) of ionization state \(j\), is

\[
g_R^0 = \left(\pi^2 e^2/mc^2\right) f_B(T_{\text{eff}})(n_{i\beta}/N_{i\beta})(N_{i\beta}/N_k)(\alpha_k/Xm_{11}),
\]

(107.9)
where n_{ir} is the population of the particular level, N_{ir} is the total number of ions in all excitation states of ionization stage i, N_k is the total number density in all ionization stages of species k, α_k is the abundance of species k relative to hydrogen, and X is the mass fraction of the stellar material that is hydrogen. For example, Lucy and Solomon (L10) considered the C IV resonance line at $\lambda 1548$ Å; adopting an oscillator strength $f = 0.2$, $T_{\text{eff}} = 25,000$ K (to maximize B), $\alpha_C = 3 \times 10^{-4}$, $X = 1$, and $(n_{i,C}/N_{i,C}) = 1$ they found

$$\log (gR)_{\lambda 1548}^C = 5.47 + \log (N_{i,C}/N_C)$$ \hspace{1cm} (107.10)

For an O-supergiant $\log g = 3$; hence in the outer layers of such a star the upper limit for the radiation force from even this one line exceeds the force of gravity by a factor of 300!

The estimate just derived is (purposely) a gross upper limit because ions in the underlying stellar photosphere produce a dark absorption line in which $F_c < F_R$. To account for this effect, Lucy and Solomon solved the line transfer equation in detail and found that above a certain level in the atmosphere the radiation force given by (107.1) for the C IV line above still exceeded gravity. Similar results are also obtained from model atmosphere calculations for early type stars, where the radiation force from a realistic line spectrum is often found to exceed gravity at the surface of the model. Thus for O-stars the radiation force obtained when the atmosphere is assumed to be static is incompatible with that assumption; hence hydrostatic equilibrium in the outermost layers is not possible, and an outflow of material must inevitably occur.

To understand how the flow develops, consider the following scenario. Once the gas in the uppermost layer begins to move outward, its spectrum lines will be Doppler shifted away from their rest wavelengths and will therefore begin to intercept the intense photospheric flux in the adjacent continuum, which enhances the momentum input to the material, hence increases its outward acceleration. The underlying layers must expand to fill the rarefaction left by the outward motion of the upper layers. Furthermore, the absorption lines in these lower layers begin to desaturate because the lines in overlying layers have been Doppler shifted, hence the underlying layers also begin to experience a radiative force that exceeds gravity, and behave, in turn, in the manner just described. Clearly a flow can be initiated by this mechanism; we now must inquire whether (1) the rate of mass loss so produced is significant, and (2) the variation of the radiation force with depth will be consistent with the requirements for transonic flow.

In connection with the latter point, one should note that the radiation force on the continuum plus lines has precisely the right behavior to produce a transonic wind. That is, Γ is less than unity in the diffusion regime inside the star, approaches unity in the atmosphere as some lines begin to desaturate and the gas begins to flow, and reaches very large
values in the supersonic flow region where the lines are sufficiently displaced from their rest frequencies to absorb continuum radiation from the underlying photosphere. Moreover, we will shortly see that to a good approximation the radiation force on lines varies as a power of the velocity gradient in the flow; this dependence allows the force and the flow it drives to accommodate to one another, so that a steady transonic flow can be attained.

The first attempt to obtain quantitative results was made by Lucy and Solomon, who evaluated (107.1) numerically for scattering lines formed in an expanding envelope above a hydrostatic photosphere. In solving the transfer equation, re-emissions can be ignored because they contribute nothing to the net force exerted by radiation on the material. Therefore, the incident photospheric intensity is simply attenuated exponentially as it scatters in a line, hence \(I_r(\tau_v) = I_r(0) \exp(-\tau_v/\mu) \), where \(\tau_v \) is the optical depth, at lab-frame frequency \(\nu \), from the base of the envelope to the test point, allowing for Doppler shifting of the line profile along the path. Then

\[
S_{RI} = (2\pi/cp) \sum_i \int_0^1 d\mu \int_0^\infty d\nu \chi_i(\nu) I_r(0) \mu e^{-\tau_v/\mu} \tag{107.11}
\]

where the sum extends over all lines considered.

Lucy and Solomon coupled (107.11) to the equations of steady flow to construct radiatively driven wind models for O- and B-stars. They assumed planar geometry (adequate for the flow inside the sonic point), isothermal material, a simple nebular photoionization-recombination ionization equilibrium, and that the radiation force results from absorption in the resonance lines of a few abundant ions. The solution was obtained by an iteration procedure that yields the mass flux as an eigenvalue. A large number of models were constructed for a wide range of stellar parameters. These models successfully produced transonic flows having reasonable terminal velocities, \(v_\infty \sim 3000 \text{ km s}^{-1} \), but the computed mass-loss rates were only \(10^{-8} \, M_\odot /\text{year} \) or less, which is two orders of magnitude smaller than the observed values.

The source of this discrepancy was identified by Castor, Abbott, and Klein (C11) who pointed out that hundreds of lines in the spectrum make important contributions to the total radiation force, so that Lucy and Solomon's estimate, based on only a few lines, is roughly a hundredfold too small (C12). As it would be hopeless to calculate the aggregate radiation force from hundreds of lines by a direct numerical solution of the transfer equation, recourse must be had to an approximate analytical method. The essential point is to account for saturation in the lines, so that the correct transition is made between the optically thick and thin limits. This problem was solved in detail by Castor (C9); here we make only a simple heuristic argument to recover the main result.

We assume that the incident photospheric radiation field on the lines is essentially radial, and approximate the momentum absorbed, per unit
mass, by a line of opacity χ_l and width $\Delta \nu_D$ from the unattenuated continuum flux F_c as $g_{R,l}(0) = \chi_l \Delta \nu_D F_c/c\rho$. We ignore re-emitations, as before; then the incident flux is attenuated as $e^{-\tau}$, where, as in (107.11), τ is the line optical depth in a layer, allowing for Doppler shifts. The average rate of momentum input to a layer of optical depth τ is then

$$
(g_{R,l}) = \left(\chi_l \Delta \nu_D F_c/c\rho \right) (1 - e^{-\tau})/\tau.
$$

In their work Castor, Abbott, and Klein approximate τ^{-1} by $\min(1, \tau^{-1})$. In the optically thin limit, (107.13) reduces to

$$
(g_{R,l})_{\text{thin}} = \chi_l \Delta \nu_D F_c/c\rho,
$$

so that, as in (107.9), the force on a line is proportional to its opacity, hence strong lines are more important than weak lines. In the optically thick limit (107.13) reduces to

$$
(g_{R,l})_{\text{thick}} = \chi_l \Delta \nu_D F_c/c\rho \tau_l,
$$

which shows that the force on a line is independent of its strength (because τ_l scales as χ_l), hence all lines are of equal importance, as expected in the diffusion limit.

We must now specify the effective optical thickness of the envelope. For a static medium

$$
\tau_l = \int_0^\infty \chi_l \, dr,
$$

hence τ_l is determined by the strength of the line and the amount of material in the line-forming layers.

For an expanding medium the situation is quite different. Here photons emitted at one position are always redshifted when they arrive at some other position in the flow by an amount proportional to the average velocity gradient times the distance between the two positions. Therefore photons emitted at line center at some point can interact with the material only within a localized resonance region; beyond this region they fall too far in the wing of the line profile of the material at the remote position to be absorbed effectively, hence they escape without further interactions. Line transport in such a flow regime is described by Sobolev theory (S14), (S15), (C8). We cannot discuss this theory in detail here, but from mere dimensional considerations one can see that for an idealized square-topped line profile of width $\Delta \nu = \nu_0 \nu_0/c$ (where ν_0 is the thermal speed of the absorbing atoms), the characteristic distance within which radiative interactions can occur must be of order $l \sim \nu_0/|\nabla \nu|$. Hence for radially streaming radiation in an expanding medium we can take

$$
\tau_l = \chi_l \nu_0/(du/dr).
$$
The important difference between (107.16) and (107.17) is that a large velocity gradient serves to reduce τ_1 from its static value, hence to desaturate the line, and thus to increase the radiation force on that line, perhaps by orders of magnitude.

In estimating the total radiation force from an ensemble of lines, we will use (107.17) throughout the entire wind, even though it becomes invalid in the nearly hydrostatic photosphere (because the line radiation force is unimportant there anyway). It is convenient to use a depth variable that is independent of line strength, so we define $\beta_i \equiv n_e \sigma_e \lambda_i$ and introduce an equivalent electron optical depth scale

$$\ell = \beta_i \tau_i = n_e \sigma_e v_{\text{th}}/(\text{dv}/dr). \quad (107.18)$$

The total radiation force is obtained by summing (107.13) over all lines, which gives

$$g_{\text{R},l} = (s F/c) M(\ell) = (s L/4 \pi c^2) M(\ell) \quad (107.19)$$

where

$$M(\ell) = \frac{1}{F} \sum_i F_c(\nu_i) \Delta \nu_{\text{D},i} (1 - e^{-\ell/\beta_i}) \approx \frac{1}{F} \sum_i F_c(\nu_i) \Delta \nu_{\text{D},i} \min \left(1, \frac{1}{\beta_i \ell}\right) \quad (107.20)$$

is the line force multiplier. The calculation of the radiation force is thus reduced to the evaluation of $M(\ell)$ which, for a specified temperature and density and a given set of lines, is a function of only the one parameter ℓ. The local excitation and ionization equilibrium enters through the parameter β_i.

It is important to note that (107.20) has only limited accuracy because two important approximations have been made in deriving it: (1) We assumed radially streaming radiation, and ignored the angular integration over the finite solid angle subtended by the stellar photosphere. The effect of this omission is to overestimate the radiation force close to the photosphere. (2) We assumed that each photon is scattered only once in one resonance region, and ignored the possibility of multiple scatterings in several (perhaps overlapping) lines. The effect of this omission is to underestimate the total amount of momentum that a photon can deposit in the gas in the high flow-velocity region. We return to these issues later.

LINE-DRIVEN WINDS

A comprehensive and internally consistent analytical theory for line-driven winds was first developed by Castor, Abbott, and Klein (C11), which, for brevity, we call the CAK theory. They assumed that the flow is steady and spherically symmetric, that the gas is a single fluid, and that conduction and viscosity can be neglected; these assumptions are justified in detail in (C12). The flow is calculated for a given temperature distribution $T(r)$, which ultimately is determined in an iteration procedure by imposing
radiative equilibrium. The latter assumption is reasonable because the thermal relaxation time of the gas is much shorter than a characteristic flow time, but may lead to an unrealistic temperature distribution (e.g., if the flow is unstable and disintegrates into shocks) and to an unrealistic predicted spectrum. But we emphasize that the temperature distribution can have essentially no influence on the gross dynamics of the wind unless temperatures rise to order 10^7 K, and/or there are extreme temperature gradients. Gas pressure, hence temperature, is important only in the subsonic flow regime, which is also the part of the flow where radiative equilibrium is most likely to be a good approximation; it is inconsequential in the supersonic flow regime.

Castor, Abbott, and Klein evaluated the line force multiplier $M(\ell)$ for the spectrum of the representative ion C$^+$, and assuming that those results were typical they scaled them to account for the total abundance of C, N, and O. The occupation numbers were computed from LTE. Their results are well fitted by the formula

$$M(\ell) = k \ell^{-\alpha}$$

with $k = \frac{1}{30}$ and $\alpha = 0.7$. An exhaustive analysis (A3) based on a complete line list for all relevant ions of the elements H to Zn yields a more accurate expression valid for 10^4 K $\leq T_{\text{eff}} \leq 5 \times 10^4$ K, namely,

$$M(\ell) = 0.28 (N_{11})^{0.09} \ell^{-0.56}.$$

Here $N_{11} = (n_e/W) \times 10^{-11}$ and W is the dilution factor of the radiation field [the fraction of 4π steradians subtended by photospheric radiation, cf. (M10, 120)]. Substituting (107.21) and (107.18) into (107.19) we have

$$g_{\ell i} = \left(\frac{s_L \sigma_k}{4\pi c^2} \right) \left(\frac{1}{n_e \sigma_v v_i} \frac{dv}{dr} \right)^\alpha = \frac{C}{r^2} \left(\frac{r^2 v}{dr} \right)^\alpha.$$

The second equality follows from the equation of continuity, and the constant is

$$C = \left(s_L L_k / 4\pi c \right) (4\pi s_v v_i M)^\alpha.$$

Using (107.23) for the line radiation force we can rewrite the equation of motion (107.6) as

$$\left(\frac{a^2}{v^2} \right) \frac{dv}{dr} = \frac{2a^2}{r} \frac{da}{dr} - \frac{G M (1 - \Gamma \rho)}{r^2} + \frac{C}{r^2} \left(r^2 v \frac{dv}{dr} \right)^\alpha.$$

Unlike (61.13) for thermal winds, (107.25) is nonlinear in (dv/dr); as a result it has quite different mathematical properties. In particular, notice that the sonic point $(v = a)$ is not the critical point of (107.25) because when the left-hand side vanishes, the right-hand side can be made to vanish as well with a suitable choice of (dv/dr), which need not (1) vanish, or (2) become infinite, or (3) be discontinuous. This difference from thermal wind theory results from our use of a force law that has an explicit
dependence on \((du/dr)\). Had we used some generic \(g_{r,l}\) (perhaps obtained from a numerical line transfer computation) which depends explicitly on \(r\) but only implicitly on \((du/dr)\), we would again conclude that the sonic point \(r_s\) is the critical point. The solution would then proceed as in thermal wind theory, but at the cost, as we shortly see, of losing important physical insight (and possibly of poor numerical convergence as well).

Equation (107.25) is equivalent to

\[
F(u, w, w') = \left[1 - \frac{1}{2} \left(\frac{a^2}{w}\right)\right]w' - h(u) - C(w')^\alpha = 0, \quad (107.26)
\]

where \(w = \frac{1}{2} \sqrt{r}\), \(u = -1/r\), \(w' = (dw/du)\), and

\[
h(u) = -GM(1 - \Gamma_c) - 2\left(\frac{a^2}{u}\right) - (da^2/du). \quad (107.27)
\]

The differential equation (107.26) has a singular point at which solutions terminate, have cusps, or show other discontinuities; it is defined by the condition

\[
\frac{m(u, w, w')}{dw'} = I_{\text{in}} - 2(a'/w) - \alpha C(w')^{-\alpha} = 0. \quad (107.28)
\]

One may eliminate \(w'\) between (107.26) and (107.28), and for a given value of \(C\) thus determine the locus of singular points \(w(u, C)\). To guarantee that the solution passes smoothly through the singular point we demand that \(w'\) be continuous there; this requirement can be met only if the solution is tangent to the singular locus at its point of contact, which is guaranteed by imposing the regularity condition

\[
\frac{\partial F(u, w, w')}{\partial w'} - \alpha \frac{\partial F}{\partial w} = 1 - \frac{1}{2} (a^2/w) - \alpha C(w')^{\alpha - 1} = 0. \quad (107.29)
\]

Equations (107.26), (107.28), and (107.29) uniquely determine the critical point \(u_c\) (or \(r_c\)) for a given \(C\), or, conversely, \(C\) for a specified \(r_c\).

A detailed analysis \(\text{[Page 107]}\), \(\text{[Page 2]}\) of the behavior of (107.26) and (107.27) shows that the \((u, w)\) plane is divided into five regions, in each of which there are zero (regions IV and V), one (regions I and III), or two (region II) mathematically valid solutions. An example is shown in Figure 107.1 for a case with \(v_{\text{esc}} = 4.9a\) and \(\Gamma_{r,l} = g_{r,l}/g = 0.76(w')^{1/2}\); the photospheric radius is denoted as \(R\). We see that there is a unique transonic solution in which the subcritical and supercritical branches join smoothly at tangency with the locus of singular points.

Figure 107.1 shows that a line-driven wind is already supersonic at the critical point. It thus appears that the critical point is located beyond the position in the flow where information can still be propagated upstream, and it is not obvious how conditions at \(r_c\) are able to determine conditions in the entire flow. We must therefore examine the physical significance of the critical point carefully. Abbott \(\text{[Page 2]}\) developed a physical interpretation of the critical point by examining the behavior of small-amplitude disturbances of the flow in its vicinity. Thus consider a time-dependent planar flow with velocity \(v(z')\) and radiation force \(f_l(z', u, du/dz')\) directed along the \(z'\) axis. For simplicity ignore stratification effects. In the neighborhood
of some point \(z_0' \) make a Galilean transformation to a frame moving with a uniform velocity \(v_0 = v(z_0') \), so that \(z = z' - v_0 t \). Write the perturbed velocity as \(v = v_0 + v_1 \). Then the linearized continuity equation is

\[
(\partial p_1 / \partial t) + \rho_0 (\partial v_1 / \partial z) = 0,
\]

and the vertical component of the momentum equation is

\[
\rho_0 (\partial v_1 / \partial t) = -(\partial p_1 / \partial z) + \rho_0 f_1 (\partial v_1 / \partial z),
\]

where we assumed \(f_1 = f_1'(t) = f_1[\rho^{-1}(dv_1/dz)] \), and \(f_1' \) denotes the derivative of \(f_1 \) with respect to \((dv_1/dz) \). We restrict attention to vertically propagating disturbances; Abbott analyzes obliquely propagating disturbances as well.

Using the isothermal equation of state to eliminate the pressure perturbation \(p_1 = a^2 p_1 \), we can combine (107.30) and (107.31) into

\[
(\partial^2 v_1 / \partial t^2) - a^2 (\partial^2 v_1 / \partial z^2) - f_1 (\partial^2 v_1 / \partial t \partial z) = 0.
\]

Equation (107.32) is a wave equation that can be recast as

\[
(\partial^2 v_1 / \partial p \partial q) = 0
\]

by transforming from \((z, t)\) to new coordinates \(p = z + C_{-} t \) and \(q = z - C_{+} t \), where

\[
C_{-} = \frac{1}{2} f_1 + [(\frac{\partial f_1}{\partial t})^2 + a^2]^{1/2}
\]

(107.34a)

and

\[
C_{+} = -\frac{1}{2} f_1 + [(\frac{\partial f_1}{\partial t})^2 + a^2]^{1/2}.
\]

(107.34b)
The solution of \(107.33\) is composed of the two traveling waves

\[
v_1(z, t) = V_1(z + C_- t) + V_2(z - C_+ t),
\]

where \(V_1\) and \(V_2\) are arbitrary functions of their arguments. In the CAK model it follows from \(107.18\), \(107.21\), and the planar version of \(107.28\) that near the critical point \(f_i/a = v/a \gg 1\), hence \(C_- = f_i/a\), and \(C_+ = a(f_i/v) < a\). Thus we have a slow radiation-modified acoustic wave traveling outward and a fast radiation-modified acoustic wave traveling inward. This result applies only to long wavelength disturbances, for which the CAK force law could be valid \(\text{(06)}\).

Abbott showed \((\text{A1})\) that the full nonlinear continuity and momentum equations for a line-driven wind have characteristics in the \((r, t)\) plane given by

\[
(dr/dt) = (v - \frac{1}{2}f_i) \pm [\frac{1}{2}(v^2 + a^2)]^{1/2}.
\]

These characteristics define the speed at which a disturbance will propagate in the flow. Transforming \(107.35\) back to the rest frame we have

\[
v_1(z', t) = V_1[z' - (v_0 - C_-)t] + V_2[z' - (v_0 + C_+)t],
\]

which represents disturbances propagating outward with speeds \(v_0 + C_+\) and \(v_0 - C_-\); from \(107.34\) we see that these speeds are in exact agreement with \(107.36\).

Now at the critical point, the CAK singularity condition \(107.28\) implies \([1 - (a^2/v_c^2)] v_c = f_i\). When this relation is substituted into \(107.36\) we find that the velocity of the radiation-modified acoustic waves as seen by an observer in the rest frame is

\[
v_+ = \frac{1}{2}(v_c \pm v_c)[1 + (a^2/v_c^2)],
\]

or

\[
v_+ = v_c[1 + (a^2/v_c^2)]
\]

and

\[
v_- = 0.
\]

Thus for the adopted force law the flow speed at the critical point of a line-driven wind just equals the inward propagation speed of small disturbances, hence beyond this point information can no longer propagate upstream in the flow. Therefore, as is true for thermal winds, the critical point is, in fact, the point farthest downstream that can still communicate with all other points on a streamline. The main difference between the two theories is the characteristic signal speed: in the absence of radiation the signal and sound speeds are the same, hence the sonic and critical points coincide, whereas in a radiating fluid they differ, hence the sonic and critical points are distinct. These conclusions depend sensitively, however, on the force law adopted, and may not be valid in general \(\text{(06)}\).
MOMENTUM TRANSPORT IN THE WIND

A line-driven wind deposits momentum (originally photon momentum) in the interstellar medium at a rate $\dot{M}v_\infty$. If we assume that every photon emitted by the star scatters exactly once in the wind, then an upper bound on the mass-loss rate is

$$\dot{M} \lesssim L/v_\infty c = 7 \times 10^{-12} (L/L_\odot) (3000/v_\infty)$$

where \dot{M} is measured in M_\odot/year and v_∞ in km s$^{-1}$. For a typical O-star $L \approx 10^6 L_\odot$ and $v_\infty \approx 3000$ km s$^{-1}$, hence $\dot{M} \approx 7 \times 10^{-6} M_\odot$/year, which is, in fact, a typical observed value. The parameter

$$\epsilon = cv_\infty \dot{M}/L$$

provides a measure of the efficiency with which matter is radiatively ejected in a wind; for single scattering of all photons ϵ cannot exceed unity.

A more complete picture of the momentum distribution in a wind emerges from integrating the momentum equation (107.4) over all mass in the envelope (A2). For a general force law $f_i(r, v, dv/dr)$ we obtain

$$\int_0^{v_\infty} 4\pi r^2 \rho v_i \, dv + \int_R^\infty 4\pi r^2 \rho \left[\frac{G\dot{M}(1-\Gamma_e)}{r^2} + \frac{1}{\rho} \frac{dp}{dr} \right] \, dr = \int_R^\infty 4\pi r^2 \rho f_i \, dr.$$

(107.42)

The first integral in (107.42) is simply $\dot{M}v_\infty$. To evaluate the second integral we argue that inside the sonic radius the gas is very nearly in hydrostatic equilibrium, in which case the integrand vanishes, whereas outside the sonic radius the gas pressure gradient is negligible compared to gravity because the line force dominates. Using (107.3) we can then approximate the second integral as

$$[L(1-\Gamma_e)/c\Gamma_e] \int_{\tau_e}^\infty n_e \sigma_e \, d\tau = L(1-\Gamma_e)\tau_e/c\Gamma_e,$$

(107.43)

where τ_e is the electron-scattering optical depth exterior to the sonic point. Finally, using (107.18) and (107.19), we can write the third integral in (107.42) as $\beta L/c$ where

$$\beta = v_\infty^{-1} \int_0^{v_\infty} M(\ell) \ell \, dv$$

(107.44)

is essentially the line optical depth of the envelope, and equals the equivalent number of strong lines a photon encounters as it traverses the wind. For a single-scattering model, $\beta \leq 1$.

Thus momentum conservation in the wind implies that

$$\dot{M}v_\infty + [\tau_e(1-\Gamma_e)/(\Gamma_e)](L/c) = \beta L/c,$$

(107.45)

which shows that the momentum transferred from photons to the gas goes partly into the momentum lost in the wind and partly into supporting the
extended envelope against gravity. One sees that the parameter ϵ defined in (107.41) underestimates the total photon momentum consumed in driving a wind of a given $\dot{M}v_{\infty}$ because it omits the momentum transfer rate required to support the envelope.

RESULTS FROM CAK THEORY

For the CAK radiation-force law, explicit analytical expressions can be obtained for the mass-loss rate, the velocity law, and the critical radius (C11). Assuming that $v_{\infty} \gg \alpha$ and taking the radius at which the velocity vanishes to be approximately the sonic radius r_s (which in turn is nearly the same as the photospheric radius R) one finds

$$M = \left(\frac{4\pi GM}{s_e v_{\infty}}\right)\frac{\alpha}{1-\alpha} \left(\frac{1-\alpha}{1-\Gamma_e}\right)^{1/\alpha},$$

(107.46)

$$v^2 = \frac{2GM(1-\Gamma_e)\alpha}{(1-\alpha)} \left(\frac{1}{r_s} - \frac{1}{r}\right),$$

(107.47)

and

$$r/r_s = 1 + \left\{\frac{1}{2}n + \left[2n^2 + 4 - 2(n+1)\right]^{1/2}\right\}^{-1}. \quad (107.48)$$

Equation (107.48) is based on the assumption that $a^2 \propto T \propto r^{-n}$; likely values for n lie between 0 (isothermal) and 1/2 (radiative equilibrium), hence $1.5 \leq (r_s/r) \leq 1.74$. From (107.47) we have

$$v/v_{\infty} = \frac{\alpha}{(1-\alpha)} \left(\frac{1}{r_s} - \frac{1}{r}\right),$$

(107.49)

thus for $0.5 \leq \alpha \leq 0.7$, CAK theory predicts $1 \leq v/v_{\infty} \leq 1.5$.

For the CAK model one can also evaluate τ_e in (107.45) analytically (A1), obtaining

$$\tau_e = \left[\frac{(1-\alpha)\Gamma_e}{\alpha(1-\Gamma_e)}\right] \frac{Mv_{\infty}/L}{\dot{M}}.$$

(107.50)

Hence a momentum transfer rate $(1-\alpha)\dot{M}v_{\infty}/\alpha$ is needed just to support the envelope in the CAK model. Combining (107.50) and (107.45) we find

$$\left(\dot{M}v_{\infty}\right)_{CAK} = \alpha \beta (L/c),$$

(107.51)

or $\epsilon_{CAK} = \alpha \beta$; inasmuch as $0.5 \leq \alpha \leq 0.7$ and $\beta \leq 1$ for single scattering, ϵ_{CAK} can never exceed unity, and is more likely of order 0.5.

To construct a complete stellar wind model with CAK theory one chooses L, \dot{M}, R, and an assumed temperature distribution $T(r)$; for a given choice of k and α in (107.21) the mass-loss rate is determined almost entirely by \dot{M} and L via Γ_e. One next makes an initial guess for r_s from (107.48) with $r_s = R$; equation (107.25) is then integrated numerically, and the run of optical depth with radius is computed. The value of r_s is adjusted until an optical depth of about 0.9 is reached at the photospheric radius R. Having constructed a dynamical model, one may use the resulting density structure in a spherical model atmosphere code and calculate the temperature structure by enforcing radiative equilibrium. This new temperature distribution can then be used to reconstruct the dynamical model,
and the procedure iterated. Because the dynamics is insensitive to the temperature structure, the iteration process converges rapidly.

Castor, Abbott, and Klein published a solution for parameters appropriate to an O5 star: $M = 60 \, M_\odot$, $L = 9.7 \times 10^5 L_\odot$, $R = 9.6 \times 10^{11} \, \text{cm} = 13.8 R_\odot$, $T_{\text{eff}} = 49,300 \, \text{K}$, $\log g = 3.94$, and $\Gamma = 0.4$. The resulting mass-loss rate is $\dot{M} = 6.6 \times 10^{-6} \, M_\odot$ /year, a reasonable value for a star like ξ Puppis. The terminal velocity is $v_\infty = 1515 \, \text{km s}^{-1}$, so $\dot{M} = \frac{1}{2} L / v_\infty c$, which shows that about one half of the momentum originally carried by radiation is transferred to the flow. Stellar evolution theory gives main-sequence lifetimes of about 3×10^6 years at this mass, which implies a total mass-loss in the wind of about one-third the original mass of the star. Thus the stellar winds from O-stars may have very significant effects on their evolution.

Some results for this model are shown in Figure 107.2. The letters P, S, and C designate the photosphere, sonic point, and critical point respectively. The velocity variation (Figure 107.2a) is quite abrupt, with highly

![Fig. 107.2](image-url)

Fig. 107.2 Velocity, density, and force multiplier in CAK model. From (C11), by permission.
supersonic flow being achieved within a fraction of a stellar radius above
the photosphere. The density distribution (Figure 107.2b) has a decided
"core-halo" nature: inside the sonic point the density gradient is nearly
hydrostatic, while outside the critical point the velocity is essentially
constant at \(u_{m} \), hence \(\rho \propto r^{-2} \). As seen in Figure 107.2c the halo is
transparent in the continuum, and radiates mainly in strong spectral lines.
The run of the radiation-force multiplier is shown in Figure 107.2d. In the
outer envelope \(M=5 \), which implies that the radiation force on the lines is
about twice the force of gravity (recall that \(\Gamma_{e} = 0.4 \)); adding the radiation
force on the electrons and subtracting the force of gravity we find that the
gas outside the critical point experiences a net outward acceleration of
about 1.5 times gravity.

COMPARISON WITH OBSERVATIONS
On the whole, CAK gives a coherent and satisfying account of the basic
dynamics of line-driven winds. Nevertheless it also shows significant dis-
crepancies with observations, an analysis of which leads to a deeper
understanding of the physics of the flow. (1) A critical comparison of
observed mass-loss rates with those computed from CAK theory shows
(A3) that for a comprehensive line list the radiation force is sufficient to
drive the observed mass flux; if anything the computed values of \(\dot{M} \) are
about a factor of 2 too large. Furthermore, the predicted scaling of \(\dot{M} \) with
\(L \) agrees with observation over about four orders of magnitude. (2) In
contrast, the computed values of \(u_{\infty}/v_{esc} \) are systematically too low.
Whereas the observations show that \(u_{\infty}/v_{esc} \) is about 1 to 1.5 for early-A
and late-B stars, and rises to about 3.0 for early-B and O-stars, CAK
theory always predicts \(1 \leq u_{\infty}/v_{esc} \leq 1.5 \) [cf. (107.49)]. Thus (107.20) fails to
provide sufficient radiative acceleration in the high-velocity part of the
flow. (3) the CAK velocity distribution (107.47) likewise rises much too
sharply inside the critical point. A variety of observations (B2), (C7), (L1)
indicate a "softer" velocity law, rising like

\[v = u_{m}[1-(R/r)]. \] (107.52)

Evidently (107.20) gives too large a radiation force in the low-velocity
regime near the stellar photosphere. (4) The CAK model cannot provide
the total momentum flux observed in the winds of some stars. Using
empirical values of \(u_{\infty}, \tau_{e} \), and \(\Gamma_{e} \), Abbott (A2) shows that for two
well-observed stars, \(\beta \) in (107.45) exceeds unity even though \(\epsilon \) in (107.41)
is less than unity. This result is in conflict with CAK theory and demon-
strates the need to account for multiple scattering of the stellar photons.

TRANSFER AND MULTIPLE-SCATTERING EFFECTS
To improve upon the CAK models one must use a more accurate
radiation-force law, which implies that the transfer problem in the lines
must be solved more accurately. A step in this direction was made by
Weber (W3) who calculated self-consistent, line-driven, steady-flow models by solving the comoving-frame line transfer equations numerically [cf. (M10, Chap. 14), (M11)] for a prechosen distribution of line strengths. This approach is expected to yield better results because: (1) it removes the Sobolev approximation inherent in (107.17) and (107.20) (which surely breaks down near the photosphere because the velocity gradient becomes small and continuum sources and sinks become increasingly important), and (2) it accounts accurately for the angular distribution of the radiation field instead of assuming radial streaming (again, an effect that is important near the stellar surface).

Weber's results are encouraging. First, the velocity rise is softer, mimicking (107.52) fairly closely near the surface of the star, and shifting towards a relation like (107.47) at large distances. Second, the terminal velocities are larger, by about a factor of 4, than the CAK results for the same line strengths. Weber finds that these improvements result mainly from accounting for the radiation field's angular distribution, in particular for the finite solid angle subtended by the stellar photosphere. This result is in harmony with the analysis by Castor (C10) who showed that neglect of the angular distribution causes CAK theory to overestimate the line force by about a factor of 2 near the stellar photosphere. In fact, the radiation force calculated from the CAK formula (with an optimized choice of k and α) using the wind structure obtained from the transfer solution agrees closely with the force given by the transfer calculation. Therefore the velocity distribution in the flow is quite sensitive to even small departures from the CAK force law; Abbott shows (A2) that this sensitivity to small changes is a peculiarity of the CAK model and is not a general property of line-driven winds.

In Weber's approach each line is modeled in detail. It is hopeless to use such a method to obtain the force law for a realistic line spectrum having hundreds to perhaps thousands of important lines, each of which may have a distinctive response to variations of temperature and density. It is therefore necessary to develop a simpler theory that still accounts for the important physics. The problem has been addressed by Castor and Friend (C10), (F3) who calculate the line radiation force allowing for multiple scattering in an ensemble of lines described by a statistical model for the distribution of lines over frequency and line strength, and also accounting for the angular distribution of the radiation field. They perform a consistent solution of the dynamical equations and random-line transfer equations to evaluate a correction factor to the force computed for radially streaming radiation.

As predicted by Castor (C10) the resulting force is substantially smaller near the star and much larger at large distances. Most of the discrepancies between theory and observation are removed by Friend and Castor's work (FC). For example, for a model that closely resembles the one published by CAK, \(\dot{v}_{\text{w}}(\text{FC}) = 3900 \text{ km s}^{-1} \) instead of \(\dot{v}_{\text{w}}(\text{CAK}) = 1515 \text{ km s}^{-1} \), while near
the star the velocity behaves like \(107.52\) instead of \(107.47\), as desired. The mass-loss rate is nearly unchanged: \(\dot{M}(\text{FC}) = 8.6 \times 10^{-6} \dot{M}_\odot \text{/year}, \dot{M}(\text{CAK}) = 6.6 \times 10^{-6} \dot{M}_\odot \text{/year}\). The velocity at the critical point drops from \(v_c(\text{CAK}) = 950\ \text{km s}^{-1}\) to \(v_c(\text{FC}) = 275\ \text{km s}^{-1}\), and the critical point moves inward from \(r_c(\text{CAK}) = 1.5R\) to \(r_c(\text{FC}) = 1.06R\). The radiation force at \(r_c\) in the FC model is only two thirds as large as the force in the CAK model, but the total momentum flux in the wind is much larger, \(\epsilon(\text{FC}) = 1.71\) compared to \(\epsilon(\text{CAK}) = 0.51\). Likewise, the effective number of scatterings is \(= 1.93\); both of these results vividly illustrate the effect of multiple scattering.

Recent models of line-driven winds include the effects of rotation and magnetic fields; see (C10), (F4), (N2).

ALTERNATIVE WIND THEORIES

The cool (i.e., radiative equilibrium), line-driven wind model appears to provide a good basic picture of the dynamics of the flow, but yields little, if any, information about the temperature structure and excitation-ionization equilibrium of the material. The latter are quantities of considerable interest because observations show spectrum lines from “anomalously” high ions such as N V and O VI, as well as soft X rays, all of which indicate gas temperatures far in excess of \(T_{\text{eff}}\) of the star.

A variety of models have been suggested to explain these observations including (1) the modified cool wind model in which the gas temperature is about \(6 \times 10^4\ \text{K}\) and the wind is optically thick in the He II resonance continuum; (2) the warm wind model in which the gas temperature is of order \(2 \times 10^5\ \text{K}\); and (3) the hybrid corona plus cool wind model in which a thin \((-0.1R)\) hot corona with \(T \approx 5 \times 10^6\ \text{K}\) is surrounded by a cool \((T \approx 0.8 T_{\text{eff}})\) envelope. All of these models require a source of nonradiative energy input, such as heating by shocks that grow from instabilities; their relative merits are discussed in (C4), (C5), (C6) and the references cited therein.

All of the models mentioned so far have difficulty in explaining the soft X-ray data. Models developed by Lucy and White (L9), (L11) to explain the X-ray data invoke the growth of instabilities into the nonlinear regime. In the more recent version of the theory it is argued that small flow perturbations are radiatively amplified into shocks, which survive until “shadowing” by following shocks deprives them of the radiation force that drives them, thus allowing them to dissipate and decay.

Observations show variations in the spectra produced by winds on time-scales from hours to years. They strongly suggest that the winds may in fact be unstable. The stability of line-driven winds has been examined theoretically by several authors (A2), (C2), (K2), (M1), (M5), (N1), (O5). The results obtained depend sensitively on the radiation force law adopted.

For example, in an optically thin disturbance, a velocity-induced Doppler shift from the rest position of a saturated line produces a net radiation
force $\delta g_{r,1} = Aw_1$, where A is positive. This force is like that for a damped harmonic oscillator, but with a negative "damping coefficient", hence one expects the perturbation to be unstable; this can indeed be the case. Nelson and Hearn (N1) and Martens (M5) showed that under certain conditions an initial disturbance varying as $e^{i\omega t}$ is absolutely unstable (i.e., ω is complex with a negative real part), and grows exponentially. Under similar assumptions MacGregor et al. (M1) showed that a driven disturbance (real ω, complex k) is subject to a drift instability, and grows in amplitude as it propagates outward in the wind. These results can be understood intuitively by noting that in this case ω_1 and $\delta g_{r,1}$ are in phase, hence the work done by the radiation force, which is proportional to $(\omega_1 \delta g_{R,1})$ is necessarily positive (O5). In contrast, Abbott (A2) considered optically thick disturbances and assumed that the line radiation force depends on the velocity gradient, not the velocity perturbation. As discussed earlier, he found stable radiation-modified acoustic waves. His results can also be understood intuitively by noting that in this case ω_1 and $\delta g_{R,1}$ are 90° out of phase, hence $(\omega_1 \delta g_{R,1}) = 0$, so that the radiation force does no net work on the perturbation (O5). However Abbott's result applies only to long-wavelength disturbances, assuming the validity of the Sobolev force law, and may not be achieved in real stellar winds. A more complete theory that recovers these two limiting cases and works at intermediate optical thicknesses as well has been constructed by Owocki and Rybicki (O6). They conclude that the wind must inevitably be unstable to short-wavelength disturbances.

References

(S2) Sachs, R. G. (1946) Phys, Rev. 69, 514.
(S19) Spiegel, E. A. (1976) in Physique des Mouvemens dans les Atmospheres

Elements of Tensor Calculus

The equations of radiation hydrodynamics are most naturally expressed in terms of vectors and tensors. We summarize here the concepts used elsewhere in this book. While reasonably complete derivations are given, no attempt at mathematical rigor is made; the reader should consult the references listed at the end of §A3 for further details.

A1 Notation

The three types of geometrical objects with which we will deal are scalars, vectors, and tensors (of the second rank). Scalars will be written as italic or Greek symbols, usually without an affix. Suffixes may be used in some instances to denote a quantity evaluated at a particular position or time, or in a particular reference frame. Vectors and tensors will be distinguished by the use of a special type font or by indices that denote components. Vectors will be written in boldface type (e.g., \(\mathbf{v} \)); tensors will be written in Gothic type (e.g., \(R \)). Individual components of vectors and tensors will be denoted by italic or Greek symbols with one more suffixes (e.g., \(v' \), \(R^{ab} \)). In the text, Roman indices range from 1 to 3, and denote components in a three-dimensional Euclidian space, while Greek indices range from 0 to 3, and denote components in the four-dimensional spacetime of special relativity, 0 indicating time. To avoid confusion with powers of scalars, specific components of vectors and tensors with definite numerical (or symbolic) values assigned to their indices may be written e.g., \(V^{(k)} \) or \(R^{(a b)} \). Finally, matrices, two-dimensional rectangular arrays such as appear in a transformation of coordinates (e.g., rotation or Lorentz transformation) will also be written in boldface type. These may be of arbitrarily large dimensionality, depending on the use to which they are put. The distinction we make between a matrix and a tensor (which sometimes is represented by a matrix of its components) is that the latter is a physical or geometrical entity whose components transform, under a change of coordinate systems, according to particular transformation laws, while the former is merely an array of numbers defined in such a way as to systematize algebraic manipulations involving systems of equations or coordinate transformations.

As we will see below, in curvilinear coordinates vectors and tensors can
be described by abstract components of two different kinds, called contravariant and covariant, which have different transformation properties under a change of coordinates. Contravariant components will be denoted with superscripts (e.g., \(v' \), \(T'^{ab} \)) and covariant components with subscripts (e.g., \(v_n \), \(R_{ij} \)). In general these abstract components differ from the physical components, which give the values of the components in physical units along the directions of the coordinate curves. Physical components will be labeled with subscripts that indicate the relevant coordinate [e.g., \(v_n \), \(v_m, v_\phi \) for the spherical polar coordinates \((r, \theta, \phi)\)].

In Cartesian coordinates, all three kinds of components (contravariant, covariant, and physical) are identical, and usually no distinction is made among them by changes in the positions of component labels. We will often depart from this practice, however, and write even Cartesian tensors with subscripts and superscripts when it serves our purposes to do so (in particular we always write the coordinates themselves as contravariant quantities \(x' \)). An advantage is gained by this device because one can then see by inspection the invariance and transformation properties of an equation under a change of coordinates. As we will see, the power of tensor notation is that it allows us to write equations in a covariant form, which means that the equation has the same form in all coordinate systems. This formalism is thus responsive to the demands of relativity, which insists that equations expressing genuine physical laws must remain valid in all coordinate systems.

The Einstein summation convention, by which repeated indices imply sums over the appropriate range, will be used throughout. For example

\[
a'^{b}_{b} = a'^{b}_{1} + a'^{b}_{2} + a'^{b}_{3},
\]

and similarly for Greek indices. Summed indices are dummy and may be replaced by any other symbol without changing the meaning of the expression (e.g., \(a_{b}^{b} = a_{k}^{k} \), etc.). In cases where repeated indices appear but summation is not implied we will write the indices in parentheses [e.g., \(g_{(ij)} \) denotes that particular tensor component].

Ordinary partial derivatives \(\partial \partial x^{i} \) will often be abbreviated to the notation \(\partial/\partial x^{i} \) thus: \((\partial v/\partial x^{i}) = v'_{i} \). When convenient to do so we will sometimes abbreviate \(\partial/\partial t \) to \(\partial_{t} \). Covariant derivatives (cf. §A3.10) will be written \(\partial_{a} \) thus: \(T'^{ab}_{\partial_{b}} \).

A2 Cartesian Tensors

Let us now consider vectors and tensors in a three-dimensional space with orthogonal Cartesian coordinates. It is straightforward to generalize most of the results obtained to \(n \) dimensions, but we will not pursue this matter.

A2.1 Vectors and Their Algebra

Choose an origin \(O \) and three mutually perpendicular coordinate axes with a right-handed orientation. A vector \(\mathbf{a} \) is a directed line segment drawn
from \(O \) to some point \(P \) whose coordinates are \((a_1, a_2, a_3)\). This number triple completely specifies the vector by giving the components along each coordinate axis, that is, the length of the projection of the vector onto that axis (see Figure A1).

By applying the Pythagorean theorem to triangles \(OPQ \) and \(OQR \) in Figure A1 we see that the length (or magnitude) of \(\mathbf{a} \) is

\[
a = |\mathbf{a}| = (a_i a_i)^{1/2}.
\]

Unit vectors are vectors of unit length. In particular we may choose basis vectors

\[
e_{(1)} = \mathbf{i} = (1, 0, 0); \quad e_{(2)} = \mathbf{j} = (0, 1, 0); \quad \text{and} \quad e_{(3)} = \mathbf{k} = (0, 0, 1).
\]

Then

\[
\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}.
\]

If we multiply a vector \(\mathbf{A} \) by a scalar \(\alpha \) we obtain a new vector \(\mathbf{B} = \alpha \mathbf{A} \) with components \(B_i = \alpha A_i \). \(\mathbf{B} \) lies along \(\mathbf{A} \), has magnitude \(|\mathbf{B}| = \alpha |\mathbf{A}| \), and points in the same direction (or opposite to) as \(\mathbf{A} \) according to whether \(\alpha \) is greater than (or less than) zero. Vectors may be added and subtracted; thus \(\mathbf{C} = \mathbf{A} \pm \mathbf{B} \) has components \(C_i = A_i \pm B_i \). Furthermore, \(\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A} \); \((\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C}) \); \(\mathbf{A} - (-\mathbf{B}) = \mathbf{A} + \mathbf{B} \); and \(\alpha (\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B} \).

If some vector quantity, say velocity \(\mathbf{v} \), can be assigned a definite value at
each point \(\mathbf{x} = (x^{(1)}, x^{(2)}, x^{(3)}) \) within some region during a definite time interval, then \(\mathbf{v} \) is a vector field. Similarly we may have scalar fields [e.g., pressure \(p(x^{(1)}, x^{(2)}, x^{(3)}, t) \)] and tensor fields (e.g., the radiation stress-energy tensor \(\mathbf{R} \)).

A2.2. Scalar Product

Consider two vectors \(\mathbf{a} \) and \(\mathbf{b} \) and their difference \(\mathbf{c} = \mathbf{a} - \mathbf{b} \), as shown in Figure A2. Then from the familiar law of cosines we know that

\[
 c^2 = a^2 + b^2 - 2ab \cos \theta, \quad \text{hence}
\]

\[
 2ab \cos \theta = a_i a_i + b_i b_i - (a_i - b_i)(a_i - b_i) = 2a_i b_i. \tag{A2.4}
\]

The quantity

\[
 \mathbf{a} \cdot \mathbf{b} = a_i b_i \tag{A2.5}
\]

is called the scalar (or inner, or dot) product of \(\mathbf{a} \) and \(\mathbf{b} \). If \(\mathbf{m} \) and \(\mathbf{n} \) are unit vectors along \(\mathbf{a} \) and \(\mathbf{b} \), we see from (A2.4) that

\[
 \cos \theta = \mathbf{m} \cdot \mathbf{n} = a_i b_i / (ab). \tag{A2.6}
\]

This is a convenient way to determine the angle between any two vectors. Notice that when two vectors \(\mathbf{a} \) and \(\mathbf{b} \) are orthogonal, \(\theta = \pi/2 \), hence \(\mathbf{a} \cdot \mathbf{b} = 0 \); in particular \(\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0 \) as would be expected from (A2.2). If \(\mathbf{b} = \mathbf{a} \) then \(\theta = 0 \) and (A2.4) yields (A2.1) for the length of a vector. In general the scalar product gives the length of one vector times the projection of the length of another vector onto the first.

![Fig. A2 Vector subtraction.](image)

A2.3. Orthogonal Transformations

Let us now inquire how vectors are affected by changes in the coordinate system. Having fixed the origin \(O \), the only significant change we can make is to perform a rigid rotation of the three axes around \(O \). (We could also
reflect, that is, reverse the direction of axes, but we will not consider that case in this book.) We then obtain new basis vectors \(\mathbf{e}_i \). Let \(l_{ij} \) be the cosine of the angle between \(\mathbf{e}_i \) and \(\mathbf{e}_j \). Then \(\mathbf{e}_i \) can be resolved along the old basis set and expressed as

\[
\mathbf{e}_i = l_{ij} \mathbf{e}_j.
\]

(A2.7)

Similarly, we can resolve \(\mathbf{e}_i \) along the new basis set to find

\[
\mathbf{e}_i = l_{ji} \mathbf{e}_j.
\]

(A2.8)

Now choose some vector \(\mathbf{a} \); we can express \(\mathbf{a} \) in terms of its components in either system. Noting that we get the same vector in either case, we see that

\[
\mathbf{a} = a_i \mathbf{e}_i = \tilde{a}_i \tilde{\mathbf{e}}_i = \tilde{a}_i l_{ij} \mathbf{e}_j.
\]

(A2.9)

hence

\[
a_i = l_{ji} \tilde{a}_j.
\]

(A2.10)

By reversing the argument we find

\[
\tilde{a}_i = l_{ij} a_j.
\]

(A2.11)

The matrix \(L \) whose element in the \(ij \)th row and \(j \)th column is \(l_{ij} \) is the transformation matrix from basis set \(\mathbf{e}_i \) to set \(\mathbf{e}_j \). From (A2.7) and (A2.8) or (A2.10) and (A2.11) we see that the inverse transformation \(L^{-1} \) has a matrix \(L' \) that is the transpose of \(L \). This implies that \(L \) must be an orthogonal matrix. It is easy to prove that this is so. Let the Kronecker \(\delta \) symbol be defined such that \(\delta_{ij} = 0 \) if \(i \neq j \), and \(\delta_{ij} = 1 \). Then \(\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j \). Hence

\[
\delta_{ij} = \mathbf{e}_i \cdot \mathbf{e}_j = (l_{ik} \tilde{\mathbf{e}}_k) \cdot (l_{jm} \tilde{\mathbf{e}}_m) = l_{ik} l_{jm} \delta_{km} = l_{ik} l_{jk}.
\]

(A2.12)

Thus the row vectors of \(L \) are orthonormal (i.e., of unit length and mutually orthogonal). Starting from \(\mathbf{e}_i \cdot \mathbf{e}_j \) one can show that the column vectors of \(L \) are also orthonormal. Therefore \(L \) is in fact orthogonal, and \((LL') = (L)_{ik} (L')_{kj} = l_{ik} l_{jk} = \delta_{ij} = (I)_{ij} \) where \(I \) is the identity matrix.

Although here we started with the geometrical notion of a vector and then deduced its transformation properties, a perfectly consistent set of results is obtained if one proceeds in the opposite direction and defines a vector \(\mathbf{a} \) to be an object whose components \((a_1, a_2, a_3) \) become \((\tilde{a}_1, \tilde{a}_2, \tilde{a}_3) \), where \(\tilde{a}_i = l_{ij} a_j \), under a rotation of axes having a transformation matrix \((L)_{ij} = l_{ij} \). The naturalness of this approach becomes evident when one considers general vectors and tensors in curvilinear coordinates.

A2.4. Transformation Properties and Algebra of Tensors

We define a Cartesian tensor of rank \(n \) to be a geometrical object with \(n \) indices, which transforms according to the rule

\[
\tilde{A}_{ab...} = l_{pa} l_{qb} \cdots l_{pn} A_{pq...}.
\]

(A2.13)
Vectors as defined above are obviously tensors of rank one. Scalars do not change their value under coordinate transformation ($\vec{\alpha} = \alpha$) and thus can be considered to be tensors of rank zero. Aside from scalars and vectors, the tensors we shall most frequently encounter in this book are of rank two (e.g., A_{ij} or $T_{\alpha \beta}$, having 9 or 16 components in three- and four-dimensional spaces, respectively). For example, the Kronecker δ symbol δ_{ij} is a tensor of the second rank, which has the property of being invariant under coordinate transformation:

$$\delta_{ij} = \delta_{lk} \delta_{ln} = \delta_{ik} \delta_{lj} = \delta_{ij}. \quad (A2.14)$$

For this reason it is sometimes called the isotropic tensor.

Tensors obey simple algebraic rules. Thus if $B = \alpha A$ then $B_{ij} = \alpha A_{ij}$. Tensors of identical rank may be added and subtracted; thus if $C = A \pm B$, $C_{ij} = A_{ij} \pm B_{ij}$. Similarly, $A + B = B + A$; $A + (B + C) = (A + B) + C$; and $\alpha (A + B) = \alpha A + \alpha B$. Tensors may also be multiplied. Thus if $A_{abc...m}$ and $B_{p...n}$ are tensors of rank m and n, respectively, then the set of products $A_{abc...m} B_{p...n}$ are the components of a tensor of rank $m + n$. In particular if we form the outer (or tensor) product of two vectors a_i and b_j we obtain a second-rank tensor $T_{ij} = a_i b_j$.

A2.5. Symmetry

A tensor is symmetric with respect to two indices, say i and j, if interchange of the indices does not change the value of the tensor component (e.g., if $A_{ab...i...j...n} = A_{ab...j...i...n}$). A tensor is antisymmetric (or skew symmetric) with respect to two indices if their interchange produces a component of the same magnitude but opposite sign.

Any tensor T_{ij} of rank two can be uniquely decomposed into a symmetric part S_{ij} and an antisymmetric part A_{ij}. Thus defining

$$S_{ij} \equiv \frac{1}{2}(T_{ij} + T_{ji}) \quad (A2.15)$$

and

$$A_{ij} \equiv \frac{1}{2}(T_{ij} - T_{ji}) \quad (A2.16)$$

we have

$$T_{ij} = S_{ij} + A_{ij}. \quad (A2.17)$$

In three dimensions a second-rank symmetric tensor has only six distinct components and a second-rank antisymmetric tensor has only three distinct nonzero components.

A2.6 Contraction

Given a tensor of order n, we may form a new tensor of order $n - 2$ by contraction in which we set two indices to the same value and sum over their range. The rank of a tensor is thus equal to the number of free
indices. For example, if we contract the second-rank tensor $T_{ij} = a_i b_j$ we get the scalar (tensor of rank zero) $T_{ij} = a_i b_j$, the usual inner product of a and b. We can verify directly that the inner product is in fact a scalar invariant under coordinate transformation:

$$\tilde{a}_i \tilde{b}_j = l_i a_i l_j b_j = (l_i l_k) a_i b_k = \delta_{ik} a_i b_k = a_i b_i.$$ \hfill (A2.18)

By contracting a tensor A_{ij} of rank two we can form a unique scalar A_{ij}, called the trace, the sum of the diagonal elements. From an argument similar to (A2.18) we can show that A_{ij} is invariant, a fact we exploit in our discussion of fluid kinematics in §21. Notice that for the Kronecker δ tensor, $\delta_{ij} = \delta_{ii} = \delta_{i}$ where δ is the dimensionality of the space.

Contraction of the fourth-order tensor formed by the multiplication of two second-order tensors, e.g., $A_{ijkl} = B_{ij} C_{kl}$, yields four distinct “inner products,” each of which is a second-order tensor, namely $B_{ij} C_{kl}$, $B_{ij} C_{kl}$, $B_{ij} C_{kl}$, and $B_{ij} C_{kl}$. Thus while $a \cdot b$ has a unique meaning for vectors, a similar notation for tensors is ambiguous, and we will avoid it, preferring instead to use component notation, which is explicit.

A2.7. The Permutation Symbol

In a space of three dimensions we define the *permutation symbol* ε_{ijk} such that

$$\varepsilon_{ijk} = \begin{cases} +1 & \text{if } ijk \text{ is an even permutation of 123}, \\ -1 & \text{if } ijk \text{ is an odd permutation of 123}, \\ 0 & \text{if any two indices are the same}. \end{cases}$$ \hfill (A2.19)

The generalization to n dimensions is obvious. This symbol proves to be extraordinarily useful in a variety of contexts. A result of particular importance is the statement

$$\varepsilon_{ijk} \varepsilon_{imn} = \delta_{jm} \delta_{kn} - \delta_{jn} \delta_{km},$$ \hfill (A2.20)

which follows immediately from a direct enumeration of cases. From (A2.20) we easily have $\varepsilon_{ijk} \varepsilon_{imn} = 2 \delta_{jm}$. We show below that ε_{ijk} is a tensor of rank three whose value is invariant under coordinate rotation.

A2.8. Determinants

The *determinant* of the $(n \times n)$ matrix a with components a_{ij} is defined to be the sum of the $n!$ distinct products composed of one element from each row (in order) and column, each given a positive or negative sign according to whether an even or odd number of permutations is required to restore the column indices to ascending numerical order. The same definition with the words “row” and “column” interchanged also holds. Thus

$$|a| = |a_{ij}| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = a$$ \hfill (A2.21)
can be written compactly as
\[a = e_{i_1j_1k_1}a_{i_1}a_{j_1}a_{k_1} \ldots a_{i_n}a_{j_n}a_{k_n} = e_{i_1j_1k_1}a_{i_1}a_{j_1}a_{k_1} \ldots a_{i_n}a_{j_n}. \]
(A2.22)

For simplicity in constructing proofs, let us temporarily set \(n = 3 \), so that
\[a = e_{ijk}a_ia_ja_k = e_{ijk}a_ia_ja_k. \]
(A2.23)

From (A2.23) one sees immediately that the determinant of the transpose of a matrix equals the determinant of the matrix itself. Let us now show that the sum \(e_{ijk}a_ia_ja_k \) is skew symmetric under interchange of two rows, say \(p \) and \(q \):
\[e_{ijk}a_ia_ja_k = e_{ijk}a_jia_ia_k = e_{ijk}a_ia_ja_k = -e_{ijk}a_ia_ja_k. \]
(A2.24)

A similar result is obtained for interchanges of the other indices. It follows that
\[e_{ijk}a_ia_ja_k = e_{ijp}a. \]
(A2.25)

By a similar analysis we find
\[e_{ijk}a_ia_ja_k = e_{ijp}a. \]
(A2.26)

Equations (A2.25) and (A2.26) show that if any two rows or columns are identical (or even scalar multiples of one another) the determinant is zero.

Determinants can also be expanded in cofactors. For example, expanding along the first row we have
\[a = |a_{ij}| = a_{i_1}e_{i_1j_1k_1}a_{j_1}a_{k_1} \ldots a_{i_n}a_{j_n} = a_{i_1}A_{(1)}^k, \]
(A2.27)

where the cofactor
\[A_{(1)}^k = e_{k_1j_2 \ldots i}a_{j_2} \ldots a_{i_n}. \]
(A2.28)

From (A2.28) we immediately see that \(a_{i_1}A_{(1)}^k = \delta_{ik}a. \)

Consider now the determinant of the matrix \(\mathbf{c} \), which is the product of two matrices \(\mathbf{a} \) and \(\mathbf{b} \), so that \(c_{ij} = a_i b_j \). Then
\[c = |c_{ij}| = e_{pq_1}c_{q_1}a_{q_2} \ldots a_{q_n} = e_{pq_1}c_{q_1}a_{q_2} \ldots a_{q_n} = |a_{q_1}b_{j_1}b_{j_2} \ldots b_{j_n}| = |a_{q_1}||b_{j_1}b_{j_2} \ldots b_{j_n}|, \]
(A2.29)

where we have used (A2.25). We thus recover the familiar rule that the determinant of the product of two matrices equals the product of the determinants of those matrices.

Applying this result to the transformation matrix \(L \) introduced in §A2.3 we find
\[L^2 = |L||L| = |L|L = |L^{-1}L| = |L| = 1, \]
(A2.30)

so that \(L = \pm 1 \). The case \(L = +1 \) applies to rotations of coordinates, and \(L = -1 \) applies if an odd number of the coordinate axes undergoes reflection, thereby changing the system from right handed to left handed; we
consider only rotations. We can now see that the permutation symbol is invariant under rotations:

$$\varepsilon_{ijk} = \varepsilon_{i|j|k} = \varepsilon_{i|j|k} = \varepsilon_{i|j|k} = L e_{ijk} = e_{ijk}. \quad (A2.31)$$

A2.9. Cross Products; Triple Products

We define the cross (or vector) product of \mathbf{a} and \mathbf{b} to be the vector $\mathbf{c} = \mathbf{a} \times \mathbf{b}$, whose components are

$$c_i = e_{ijk} a_j b_k. \quad (A2.32)$$

Note then that $\mathbf{b} \times \mathbf{a} = -(\mathbf{a} \times \mathbf{b})$ and that $\mathbf{a} \times \mathbf{a} = 0$ for any \mathbf{a}. Using (A2.2) in (A2.32) one finds $i \times j = k; j \times k = i; k \times i = j; i \times i = j \times j = k \times k = 0$. From (A2.32) we see that \mathbf{c} can be written symbolically as the determinant

$$\mathbf{c} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}. \quad (A2.33)$$

Consider now the geometrical interpretation of $\mathbf{a} \times \mathbf{b}$. Without changing $\mathbf{a}, \mathbf{b},$ or \mathbf{c} we can rotate the coordinate axes so that \mathbf{i}' lies along \mathbf{a}, and \mathbf{i}' and \mathbf{j}' lie in the plane defined by \mathbf{a} and \mathbf{b}. We can then write $\mathbf{a} = a_i i'$ and $\mathbf{b} = b \cos \theta i' + b \sin \theta j'$ where θ is the angle between \mathbf{a} and \mathbf{b}. Therefore

$$\mathbf{c} = a_i i' \times b (\cos \theta i' + \sin \theta j') = ab \sin \theta k'. \quad (A2.34)$$

Thus \mathbf{c} is a vector perpendicular to the plane of \mathbf{a} and \mathbf{b}, whose magnitude is $ab \sin \theta$; this is the area of the parallelogram generated by \mathbf{a} and \mathbf{b} (i.e., \mathbf{a} and \mathbf{b} along two of its sides).

We can define two kinds of triple products of vectors. The scalar triple product is

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = e_{ijk} a_j b_k c_i. \quad (A2.35)$$

This product has a simple geometrical interpretation: it is the length of \mathbf{a} projected onto a vector perpendicular to the plane of \mathbf{b} and \mathbf{c}, times the area of the parallelogram generated by \mathbf{b} and \mathbf{c}, and hence is the volume of the parallelepiped whose sides are $\mathbf{a}, \mathbf{b},$ and \mathbf{c}. Notice that (A2.35) is unaltered by cyclic permutation (i.e., $i \rightarrow j \rightarrow k \rightarrow i$), hence

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}). \quad (A2.36)$$

which is also self-evident from the geometrical meaning of the scalar triple product.

The vector triple product is $\mathbf{d} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$. Because $(\mathbf{b} \times \mathbf{c})$ is perpendicular to \mathbf{b} and \mathbf{c}, while \mathbf{d} is perpendicular to $(\mathbf{b} \times \mathbf{c})$, it follows that \mathbf{d} lies in the plane of \mathbf{b} and \mathbf{c}. We see this explicitly by using (A2.20) to show that

$$d_i = e_{ijk} a_j (e_{klm} b_l c_m) = (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) a_j b_l c_m = b_l (a_i c_j - c_i a_j). \quad (A2.37)$$
and hence
\[\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}. \] (A2.38)

By similar use of (A2.20) it is easy to prove the useful relations
\[(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{d}) - (\mathbf{a} \cdot \mathbf{d})(\mathbf{b} \cdot \mathbf{c}) \] (A2.39)

and
\[(\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \mathbf{c} \cdot (\mathbf{d} \times \mathbf{a})\mathbf{b} - \mathbf{c} \cdot (\mathbf{d} \times \mathbf{b})\mathbf{a} \]
\[= \mathbf{a} \cdot (\mathbf{b} \times \mathbf{d})\mathbf{c} - \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})\mathbf{d}. \] (A2.40)

A.2.10. **Gradient, Divergence, Laplacian, and Curl**

Thus far we have dealt with the algebra of individual vectors. We now turn to the calculus of (continuous and differentiable) vector fields. First, notice that (A2.10) and (A2.11) can be applied to the position vector of a point, from which it follows that
\[\frac{\partial x'}{\partial x^i} = l_{ij} \] (A2.41a)

and
\[\frac{\partial x'}{\partial x^i} = l_{ij}. \] (A2.41b)

Starting with the scalar field \(f = f(x, y, z) \), form the vector
\[\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}, \] (A2.42)

which is called the **gradient** of \(f \). We can verify that \(\nabla f \) is, in fact, a vector in the sense of §A.2.3 by noting that in a new coordinate system the component \((\nabla f)_i = (\partial f/\partial x^i) = f_{,i} \) becomes
\[\frac{\partial f}{\partial x^i}(\partial x^i/\partial \tilde{x}^j) = l_{ij}(\partial f/\partial x_j) = l_{ij}(\nabla f)_j \] (A2.43)

which is consistent with (A2.10). Now choose a **level surface** on which \(f(x, y, z) \) is constant; then for any \(\mathbf{dr} = (dx, dy, dz) \) lying in this surface
\[df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz = (\nabla f) \cdot \mathbf{dr} = 0. \] (A2.44)

Thus geometrically \(\nabla f \) is a vector field perpendicular to level surfaces of \(f \), and \((\nabla f) \cdot \mathbf{dr} \), for arbitrary \(\mathbf{dr} \), measures the change in the value of \(f \) along the increment \(\mathbf{dr} \).

In Cartesian coordinates, \(n \) successive differentiations of a tensor of rank \(n \) yield a new tensor of rank \(m + n \). For example, consider \(A_{ij,\text{est}} \), which we
see is in fact a tensor of rank four because
\[
\begin{align*}
A_{abcd} &= \frac{\partial^2 A_{ab}}{\partial x^c \partial x^d} = \frac{\partial^2 A_{ab}}{\partial x^c \partial x^d} (l_{a} l_{b} A_{ij}) \\
&= l_{a} l_{b} l_{c} l_{d} A_{ij,kl} \quad (A2.45)
\end{align*}
\]
Here we have used (A2.41a) and the constancy of the l_i's under a given rotation of coordinates.

We may regard
\[
\nabla = \frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}, \quad (A2.46)
\]
called del, as a symbolic vector. The dot product of del with a vector field \mathbf{a} yields the divergence of \mathbf{a}:
\[
\nabla \cdot \mathbf{a} = (\partial a_1 / \partial x) + (\partial a_2 / \partial y) + (\partial a_3 / \partial z) = a_i, \quad (A2.47)
\]
The divergence of a vector is obviously a scalar, a fact also indicated by the notation a_i, which shows that it is the contraction of the second-order tensor a_{ij}. By direct calculation it is easy to see that
\[
\nabla \cdot (\alpha \mathbf{a}) = (\alpha a_i)_i = \alpha_j a_i + \alpha a_{ij} = \mathbf{a} \cdot (\nabla \alpha) + \alpha \nabla \cdot \mathbf{a}. \quad (A2.48)
\]

If we calculate the divergence of the gradient of a scalar field f we obtain the Laplacian of f:
\[
\nabla^2 f = \nabla \cdot (\nabla f) = (f_{,i})_i = f_{,ii} = (\partial^2 f / \partial x^2) + (\partial^2 f / \partial y^2) + (\partial^2 f / \partial z^2) \quad (A2.49)
\]
where the summation convention holds. The Laplacian of a vector \mathbf{a} is a new vector $\mathbf{b} = \nabla^2 \mathbf{a}$ whose components are $b_i = a_{ij,} \quad (\text{sum on } j)$.

The symbolic cross product of ∇ with a vector field \mathbf{a} yields a new vector field called the curl of \mathbf{a}. It has components
\[
b_i = (\nabla \times \mathbf{a})_i = e_{ijk} (\partial / \partial x^j) a_k = e_{ijk} a_{kj}. \quad (A2.50)
\]
Thus $b_i = (a_{3,j} - a_{2,j})$, etc. The curl is sometimes written as the symbolic determinant
\[
\nabla \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial / \partial x & \partial / \partial y & \partial / \partial z \\ a_1 & a_2 & a_3 \end{vmatrix}, \quad (A2.51)
\]
but in practice (A2.50) is more useful in establishing vector identities. For example, to calculate the curl of the curl of a vector we write
\[
[\nabla \times (\nabla \times \mathbf{a})]_i = e_{ijk} (e_{kln} a_{n,j}) = e_{klm} \epsilon_{kln} a_{m,ij} = (\delta_{ni} \delta_{pj} - \delta_{nj} \delta_{pi}) a_{m,ij} \quad (A2.52)
\]
\[= a_{i,j} - a_{j,i} = [\nabla (\nabla \cdot \mathbf{a})]_i - (\nabla^2 \mathbf{a})_i
\]
\[\nabla \times (\nabla \times \mathbf{a}) = \nabla (\nabla \cdot \mathbf{a}) - \nabla^2 \mathbf{a}. \quad (A2.53)
\]
By similar reasoning it is easy to prove the useful relations

\[\nabla \cdot (\nabla \times \mathbf{a}) = 0, \quad (A2.54) \]

\[\nabla \cdot (\mathbf{a} \times \mathbf{b}) = \mathbf{b} \cdot (\nabla \times \mathbf{a}) - \mathbf{a} \cdot (\nabla \times \mathbf{b}), \quad (A2.55) \]

\[\nabla \times (\mathbf{v} \cdot \mathbf{a}) = (\mathbf{v} \cdot \nabla) \mathbf{a} + \mathbf{a} \times (\mathbf{v} \times \mathbf{a}), \quad (A2.56) \]

\[\nabla \cdot (\alpha \mathbf{a}) = \nabla \alpha \cdot \mathbf{a} + \alpha \nabla \cdot \mathbf{a}, \quad (A2.57) \]

\[\nabla \times (\mathbf{a} \times \mathbf{b}) = (\nabla \cdot \mathbf{b}) \mathbf{a} - (\nabla \cdot \mathbf{a}) \mathbf{b} + (\mathbf{b} \cdot \nabla) \mathbf{a} - (\mathbf{a} \cdot \nabla) \mathbf{b}, \quad (A2.58) \]

and

\[\nabla (\mathbf{a} \cdot \mathbf{b}) = (\mathbf{a} \cdot \nabla) \mathbf{b} + (\mathbf{b} \cdot \nabla) \mathbf{a} + \mathbf{a} \times (\nabla \times \mathbf{b}) + \mathbf{b} \times (\nabla \times \mathbf{a}). \quad (A2.59) \]

A2.11. Duals

Consider an antisymmetric second-rank tensor \(\Omega_{ij} \) in three-space. With any such tensor we may associate a vector by the definition

\[\omega_i = \frac{1}{2} \epsilon_{ijk} \Omega_{jk}. \quad (A2.60) \]

The vector \(\omega_i \) is called the dual of \(\Omega_{jk} \) because of the reciprocal relation that

\[\Omega_{ij} = \epsilon_{ijk} \omega_k, \quad (A2.61) \]

which can easily be verified by substitution from (A2.60) and use of (A2.20). Thus

\[\Omega = \begin{pmatrix} 0 & \omega_3 & -\omega_2 \\ -\omega_3 & 0 & \omega_1 \\ \omega_2 & -\omega_1 & 0 \end{pmatrix}. \quad (A2.62) \]

The dual concept can be generalized to spaces of higher dimension and tensors of higher rank, see (S2, 134–135) and (S2, 245–247).

A result of considerable importance is that

\[\Omega_{jk} a_j = \epsilon_{ijk} \omega_k a_i = (\mathbf{a} \times \mathbf{a})_k, \quad (A2.63) \]

which shows that this particular sum of a vector against an antisymmetric tensor is identical to the cross product of the vector with the vector dual of the tensor. We exploit this result in our discussion of fluid kinematics in §21.

Vectors of the type described above are called axial vectors (or pseudovectors because they are “really” tensors of rank two). Important examples of axial vectors are the cross product, \(\mathbf{c} = \mathbf{a} \times \mathbf{b} \), for which the associated tensor has components \(C_{ij} = a_i b_j - a_j b_i \), and the curl, \(\mathbf{b} = \nabla \times \mathbf{a} \), for which the associated tensor has components \(B_{ij} = a_{i,j} - a_{j,i} \). An interesting distinction between axial vectors and vectors of the type defined in §A2.1, called polar vectors, is that under reversal of the directions of the coordinate axes, the components of polar vectors change sign whereas the components of axial vectors are unaltered. This statement is obviously true
for the two examples given above. As discussed in §21, the angular velocity $\mathbf{\omega}$ of a rigid body or an infinitesimal element of fluid may be considered to be an axial vector.

A2.12. The Divergence Theorem

The divergence theorem (also known as Gauss's theorem or Green's theorem) is one of the most useful tools of tensor calculus, and is employed frequently in almost all branches of theoretical physics. Let V be a simple convex volume with surface S. Let \mathbf{n} be the outward-pointing normal at any point on S. Then at each position on S we can write an oriented surface element as $d\mathbf{S} = \mathbf{n} \, dS$. It is easy to see that the projection of $d\mathbf{S}$ onto a plane perpendicular to any particular direction \mathbf{l} is $\mathbf{l} \cdot d\mathbf{S} = \mathbf{l} \cdot \mathbf{n} \, dS$.

The divergence theorem states that for any differentiable function f,

$$\int_V f \, dV = \int_S f \mathbf{n} \, dS. \quad (A2.64)$$

To prove this theorem, choose $i = 3$ and partition S into upper and lower surfaces S^+ and S^- with respect to the $(x^{(1)}, x^{(2)})$ plane (see Figure A3). Consider an elementary vertical rectangular tube within V, having a volume dV and a projection Σ on the $(x^{(1)}, x^{(2)})$ plane. Let S^+ be given by $x^{(3)} = g^+(x^{(1)}, x^{(2)})$ and S^- by $x^{(3)} = g^-(x^{(1)}, x^{(2)})$. Then carrying out the integration over dV we have

$$\int_{\delta V} f_3 \, dx^{(1)} \, dx^{(2)} \, dx^{(3)} = \int_{\Sigma} [f(x^{(1)}, x^{(2)}, g^+(x^{(1)}, x^{(2)})]
- [f(x^{(1)}, x^{(2)}, g^-(x^{(1)}, x^{(2)})]) \, dx^{(1)} \, dx^{(2)}. \quad (A2.65)$$

But from the definition of the oriented surface element we see that on S^+

![Fig. A3](image-url) Geometry of surface and volume integrals.
we have $dx^{(1)} dx^{(2)} = n_3^+ dS^+$, and on S^-, $dx^{(1)} dx^{(2)} = -n_3^- dS^-$. Hence

$$
\int_{S^+} f_3 \, dV = \int_{S^+} f[x^{(1)}, x^{(2)}, g^+(x^{(1)}, x^{(2)})] n_3^+ \, dS^+ \\
+ \int_{S^-} f[x^{(1)}, x^{(2)}, g^-(x^{(1)}, x^{(2)})] n_3^- \, dS^- \tag{A2.66}
$$

$$
= \int_{S^+} f^+ n_3^+ \, dS^+ + \int_{S^-} f^- n_3^- \, dS^-,
$$

where now f^+ and f^- denote the value of f on S^+ and S^-, respectively. Finally, by summing over all elementary tubes, and recognizing that S is the union of S^+ and S^-, we recover (A2.64) for $i = 3$; the choice of i is arbitrary, hence the theorem holds for all i.

Perhaps the most familiar form of the divergence theorem is that for a vector, say \mathbf{F}. Writing $f = F^i$ in (A2.64) and summing we have

$$
\int_V F^i_i \, dV = \int_S F^i n_i \, dS, \tag{A2.67}
$$

or

$$
\int_V \nabla \cdot \mathbf{F} \, dV = \int_S \mathbf{F} \cdot \mathbf{n} \, dS. \tag{A2.68}
$$

As another example, if we choose $f = e_{ik} a_k$, then $f_i = e_{kj} a_{ki} = (\nabla \times \mathbf{a})_k$, while $f n_i = e_{ik} n_i a_k = (\mathbf{n} \times \mathbf{a})_k$, so that

$$
\int_V (\nabla \times \mathbf{a}) \, dV = \int_S (\mathbf{n} \times \mathbf{a}) \, dS. \tag{A2.69}
$$

It is very important to note that (A2.64) is quite general, and holds for any differentiable f, whether scalar, vector, or tensor (the latter usually being considered one component at a time, or as the contraction of a set of components against the derivative). In fact the theorem is actually a result from analysis, and has no roots in vector or tensor analysis per se.

A2.13. Stokes's Theorem

If S is a caplike surface bounded by a closed curve C, Stokes's theorem states that for a differentiable vector field \mathbf{a},

$$
\int_S (\nabla \times \mathbf{a}) \cdot \mathbf{n} \, dS = \oint_C \mathbf{a} \cdot \mathbf{t} \, ds, \tag{A2.70}
$$

where \mathbf{t} is the unit tangent to C. To prove (A2.70), cover S with a rectilinear coordinate mesh (u, v) so that S is a collection of points $\mathbf{r}(u, v)$. Consider the integrals in (A2.70) for an element $d\gamma d\delta$ bounded by the
curve \(\Gamma \), where \(\alpha = (u, v) \), \(\beta = (u + du, v) \), \(\gamma = (u + du, v + dv) \), \(\delta = (u, v + dv) \). Then to first order

\[
a(u + du, v) = a(u, v) + \left[\left(\frac{\partial \mathbf{r}}{\partial u} \right) \cdot \nabla \right] a,
\]

and similarly for \(a(u, v + dv) \). Then, calculating the line integral to first order we have

\[
\oint \mathbf{a} \cdot ds = \left\{ \left[\left(\frac{\partial \mathbf{r}}{\partial u} \right) \cdot \nabla \right] a \right\} \cdot \frac{\partial \mathbf{r}}{\partial u} du dv.
\] (A2.72)

But by using component notation and (A2.20), (A2.32), and (A2.50) we see that

\[
\frac{\partial r_i}{\partial u} a_{k,i} \frac{\partial r_k}{\partial v} - \frac{\partial r_k}{\partial u} a_{k,i} \frac{\partial r_i}{\partial v} = \delta_{ik} \delta_{km} - \delta_{im} \delta_{ik} a_{k,i} \frac{\partial r_i}{\partial u} \frac{\partial r_m}{\partial v}
\]

\[
= e_{ijk} e_{km} \frac{\partial r_i}{\partial u} \frac{\partial r_m}{\partial v}.
\]

(A2.73)

From the geometrical meaning of the cross product we know that \(\left[\left(\frac{\partial \mathbf{r}}{\partial u} \right) \times \left(\frac{\partial \mathbf{r}}{\partial v} \right) \right] du dv \) is just the oriented area \(\delta S \) of \(\alpha \beta \gamma \delta \). We therefore find that (A2.70) holds for the element \(\alpha \beta \gamma \delta \). Now sum over all elements. The line integrals on the interior mesh lines cancel in pairs, leaving only the line integral around the bounding curve \(C \); the surface integrals sum to the integral over the whole surface. Thus (A2.70) is valid as stated.

As was true for the divergence theorem, Stokes's theorem is quite general, and can be written

\[
\oint_S e_{ijk} a_{k,i} n_i dS = \oint_C a_{i} ds
\]

(A2.74)

where \(a_k \) may be the components of any differentiable tensor (e.g., \(T_{k \ell m} \) with \(\ell m \) fixed).}

A3 General Tensors

We now consider general tensors in curvilinear coordinates. We will not usually specify the dimensionality of the space, and most of the results are valid in \(n \) dimensions. In this section, unless specified otherwise, both roman and Greek indices are assumed to run from 1 to \(n \).

A3.1 Transformation Properties

In order to deal with vectors and tensors in curvilinear coordinates, we must now consider transformations of a quite general, but not arbitrary,
kind. We restrict attention to what we shall call admissible transformations, which have the following properties.

1. They are real, single-valued transformations of the form
 \[x^i = f^i(x^{(1)}, \ldots, x^{(n)}), \quad (i = 1, \ldots, n). \]
 \[(A3.1) \]

2. They are reversible so that
 \[x^i = g^i(x^{(1)}, \ldots, x^{(n)}), \quad (i = 1, \ldots, n). \]
 \[(A3.2) \]

3. The \(g^i \) are single valued so that the direct and inverse transformations are one to one.

To guarantee these properties it is sufficient to demand that the \(f^i \) and \(g^i \) be continuous and have continuous derivatives, and that the Jacobian determinant

\[J = \left| \frac{\partial x^i}{\partial \bar{x}^j} \right| \]
\[(A3.3) \]

be nonzero everywhere in the domain of the transformation.

Under general transformations, vectors and tensors are represented by two different kinds of abstract components, called contravariant and covariant, each of which will in general differ from the physical components of the tensor. We emphasize that all three sets of components represent the same physical quantity, and all are related by definite rules (cf $$A3.5 \text{ and } A3.7$$); the three representations can be used interchangeably as convenient.

A contravariant tensor of rank \(m \) has components \(A_{\alpha_1 \ldots \alpha_m} \) that transform according to the rule

\[\bar{A}_{\alpha_1 \ldots \alpha_m} = \frac{\partial \bar{x}^\alpha}{\partial x^\alpha} \frac{\partial \bar{x}^\beta}{\partial x^\beta} \ldots \frac{\partial \bar{x}^m}{\partial x^m} A_{\alpha_1 \ldots \alpha_m}. \]
\[(A3.4) \]

In particular a contravariant vector transforms as

\[\bar{A}^\alpha = (\partial \bar{x}^\alpha/\partial x^\alpha) A^\alpha. \]
\[(A3.5) \]

The archetype for a contravariant vector is the set of coordinate differentials \(dx^i \) for which we obviously have \(d\bar{x}^\alpha = (\partial \bar{x}^\alpha/\partial x^\alpha) dx^\alpha \).

A covariant tensor of rank \(m \) has components \(A_{\alpha \beta \ldots \mu} \) that transform according to the rule

\[\bar{A}_{\alpha \beta \ldots \mu} = \frac{\partial \bar{x}^\alpha}{\partial x^\alpha} \frac{\partial \bar{x}^\beta}{\partial x^\beta} \ldots \frac{\partial \bar{x}^\mu}{\partial x^\mu} A_{\alpha \beta \ldots \mu}. \]
\[(A3.6) \]

In particular a covariant vector transforms as

\[\bar{A}_\alpha = (\partial \bar{x}^\alpha/\partial x^\alpha) \phi_{\alpha}. \]
\[(A3.7) \]

The archetype for a covariant vector is the gradient \(\phi_\alpha \) for which we obviously have \(\phi_{\alpha} = (\partial \bar{x}^\alpha/\partial x^\alpha) \phi_{\alpha} \).
A mixed tensor of contravariant rank m and covariant rank n has components $A_{kl...}^{ab...m}$ that transform according to the rule

$$
\tilde{A}_{a\mu...}^{\alpha\beta...} = \frac{\partial x^\alpha}{\partial x^a} \frac{\partial x^\beta}{\partial x^b} \cdot \frac{\partial x^m}{\partial x^a} \frac{\partial x^n}{\partial x^b} \cdot A_{kl...}^{ab...m}.
$$

(A3.8)

In general we suppose that tensors of the kinds defined above can exist throughout a finite region of space, and thereby constitute a tensor field.

A3.2. Tensor Algebra

General tensors obey simple rules of algebra. We may multiply a tensor whose components are $A_{\mu...}^{ab...}$ by a scalar a to obtain a tensor whose components are $a A_{\mu...}^{ab...}$. We can add and subtract tensors of identical contravariant and covariant ranks (which are shown by the number of free, that is, unsummed, indices of the appropriate kinds); these operations are associative. For a tensor $A_{\mu...}^{ab...}$ of contravariant rank c and covariant rank k, and a tensor $B_{\nu...}^{lm...}$ of contravariant rank n and covariant rank r, the outer product

$$
C_{\mu...\nu...}^{ab...lm...} = A_{\mu...}^{ab...} B_{\nu...}^{lm...}
$$

is a tensor of contravariant rank $(c + n)$ and covariant rank $(k + r)$, as can be verified immediately by application of (A3.8). The outer product is distributive.

From a tensor $A_{\mu...}^{ab...}$ of contravariant rank k and covariant rank l one may construct a new tensor of contravariant rank $(k - 1)$ and covariant rank $(l - 1)$ by the operation of contraction, in which one covariant and one contravariant index are set to the same value and summed. For example, contract $A_{\mu...}^{ab...}$ to form $A_{\mu...}^{ab...}$. Then

$$
\tilde{A}_{\lambda...}^{\alpha\beta...} = \frac{\partial x^\alpha}{\partial x^a} \frac{\partial x^\beta}{\partial x^b} \cdot \frac{\partial x^n}{\partial x^a} \frac{\partial x^n}{\partial x^b} \cdot A_{\mu...}^{ab...}.
$$

(A3.10)

implies that

$$
\tilde{A}_{\lambda...}^{ab...} = \frac{\partial x^\alpha}{\partial x^\nu} \frac{\partial x^\beta}{\partial x^\lambda} \left(\frac{\partial x^\nu}{\partial x^b} \frac{\partial x^\nu}{\partial x^b} \right) A_{\mu...}^{ab...}.
$$

(A3.11)

But

$$
\frac{\partial x^\gamma}{\partial x^b} \frac{\partial x^m}{\partial x^b} = \frac{\partial x^m}{\partial x^b} = \delta^m_b
$$

(A3.12)

where δ^m_b is the mixed tensor that represents the Kronecker δ symbol. Note in passing that δ^m_b is the isotropic tensor whose value is the same in all coordinate systems (which is trivial to prove). Using (A3.12) in (A3.11) we have

$$
\tilde{A}_{\lambda...}^{ab...} = \frac{\partial x^\alpha}{\partial x^\nu} \frac{\partial x^\beta}{\partial x^\lambda} A_{\mu...}^{ab...},
$$

(A3.13)
which is the correct transformation for tensor whose contravariant and covariant ranks are unity (and hence reduced by one from those of the original tensor, as claimed above).

The null tensor is that tensor whose components are all zero in some coordinate system. It follows from (A3.4), (A3.6), and (A3.8) that its components must remain zero in all other admissible coordinate systems. This result is of great importance in physics, for it implies that if we can express a physical law as a tensor equation in some frame, say $A_{\mu\nu..,k} = B_{\mu\nu..,k}$, then this equation remains true in all coordinate systems (hence the physical law is covariant) because $(A_{\mu\nu..,k} - B_{\mu\nu..,k}) = 0$ in the first frame, and hence in every frame.

If the interchange of two contravariant (or covariant) indices of a tensor does not alter the value of any of its components, the tensor is symmetric with respect to those indices. A tensor is antisymmetric with respect to a pair of indices if their interchange changes the sign but not the magnitude of the tensor’s components. The symmetry properties of pure contravariant or pure covariant tensors are intrinsic (i.e., they remain the same in all coordinate frames). Symmetry (or antisymmetry) is not intrinsic to mixed tensors; however, because the relationship $A_i^j = A^j_i$, for example, in one coordinate system will not in general carry over to another. These statements may be proved directly by application of (A3.8).

A3.3. Relative Tensors

The tensors described above are absolute tensors. Relative tensors transform according to a more general law: a relative tensor of contravariant rank $n!$, covariant rank n, and weight W transforms as

$$
\tilde{A}_{k,\ell...m} = J^w \frac{\partial \tilde{x}^a}{\partial x^\alpha} \ldots \frac{\partial \tilde{x}^m}{\partial x^\ell} \frac{\partial \tilde{x}^k}{\partial x^\mu} \frac{\partial \tilde{x}^n}{\partial x^\nu} \ldots \frac{\partial \tilde{x}^u}{\partial x^v} A_{\alpha,\mu...\nu,\ell...m},
$$

(A3.14)

where J is the Jacobian of the transformation, $J = |\frac{\partial x}{\partial \tilde{x}}|$. Absolute tensors are obviously relative tensors of weight zero; similarly a relative scalar of weight zero is an absolute scalar. Scalars and tensors of weight one are often given the special names scalar and tensor density for reasons indicated in §A3.4.

A3.4. The Line Element and the Metric Tensor

In a Euclidean three-space E_3 the length ds of the line element corresponding to an infinitesimal displacement vector dy^k in orthogonal Cartesian coordinates is given by

$$
ds^2 = dy^k dy^k
$$

(A3.15)

where k is summed. Generalizing, we adopt (A3.15) as the definition of ds^2 in E_n, where k now runs from 1 to n. Suppose now we transform to a
curvilinear coordinate system \(x' \), and that we can express \(y^k = y^k(x^{(1)}, x^{(2)}, \ldots, x^{(n)}) \) and hence \(dy^k = \left(\frac{\partial y^k}{\partial x^i} \right) dx^i \). Then in terms of the new coordinates the line element is

\[
ds^2 = \left(\frac{\partial y^k}{\partial x^i} \right) \left(\frac{\partial y^k}{\partial x^j} \right) dx^i \, dx^j = g_{ij} \, dx^i \, dx^j,
\]

where \(k \) is summed from 1 to \(n \).

The tensor \(g_{ij} \) is the metric tensor; any space characterized by a metric tensor is called a Riemannian space. The metric tensor is obviously symmetric in its indices, and is an absolute covariant tensor of rank two, which implies that the line element is a scalar. We verify these statements directly by transforming to a new coordinate system \(\tilde{x}^i \); then

\[
\tilde{g}_{ab} = \frac{\partial y^k}{\partial \tilde{x}^a} \frac{\partial y^k}{\partial \tilde{x}^b} = \frac{\partial x^i}{\partial \tilde{x}^a} \frac{\partial x^i}{\partial \tilde{x}^b} \, g_{ij} = \frac{\partial x^i}{\partial \tilde{x}^a} \frac{\partial x^j}{\partial \tilde{x}^b} \, g_{ij}
\]

which is the correct transformation law for a second-rank covariant tensor. The fact that \(ds \) is a scalar is then obvious. In Cartesian coordinates the elements of the metric tensor are \(g_{ij} = \delta_{ij} \) (the Kronecker \(\delta \)), and hence are everywhere constant. Any coordinate system in which the elements of \(g_{ij} \) are constant, but not necessarily \(\delta_{ij} \), may also be considered to be Cartesian because in this case one can reduce \(g_{ij} \) to \(\delta_{ij} \) by a suitable linear transformation.

As an example of a metric in curvilinear coordinates, consider spherical polar coordinates \((x^{(1)}, x^{(2)}, x^{(3)}) = (r, \theta, \phi) \), for which \(y^{(1)} = r \sin \theta \cos \phi \), \(y^{(2)} = r \sin \theta \sin \phi \), and \(y^{(3)} = r \cos \theta \). Then from (A3.16) we find

\[
ds^2 = dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta \, d\phi^2,
\]

so that \(g_{11} = 1 \), \(g_{22} = r^2 \), \(g_{33} = r^2 \sin^2 \theta \), and \(g_{ij} = 0 \) for \(i \neq j \).

Given the covariant tensor \(g_{ij} \), we can construct a second-order contravariant tensor \(g^{ij} \), which is called the reciprocal (or conjugate) tensor, defined such that

\[
g_{ij} g^{jk} = \delta^i_k.
\]

Equation (A3.19) states that the components of \(g^{ij} \) are the elements of the inverse of the matrix whose components are \(g_{ij} \). As long as \(g \) is nonsingular (i.e., \(g = |g_{ij}| \neq 0 \)), its inverse is unique; therefore (A3.19) uniquely determines \(g^{ij} \), and specifically implies that \(g^{ij} = G^{ij}/g \) where \(G^{ij} \) is the cofactor of element \(g_{ij} \) in \(|g_{ij}| \).

The determinant \(g \) appears in many tensor formulae. We can show that \(g \) is a relative scalar by taking determinants in (A3.17) and using (A2.29) to find

\[
g = |g_{ij}| = \left| \frac{\partial x^b}{\partial \tilde{x}^a} \frac{\partial x^a}{\partial \tilde{x}^i} \, g_{ab} \right| = \left| \frac{\partial x^a}{\partial \tilde{x}^i} \right| \left| \frac{\partial x^b}{\partial \tilde{x}^j} \right| |g_{ab}| = J^2 g
\]

where \(J \) is the Jacobian of the transformation; this is the transformation
law for a relative scalar of weight two. It follows that $g^{1/2}$ is a relative scalar of weight one.

The factor g also appears in definitions of volume elements via the formula

$$dV = dy(1) dy(2) \ldots dy(n) = g^{1/2} dx(1) dx(2) \ldots dx(n)$$ \hspace{1cm} (A3.21)

where the y^i again denote orthogonal Cartesian coordinates. We can justify (A3.21) in two different ways. First, we can regard it as a result from analysis obtained by a direct evaluation of an n-dimensional iterated integral (J1, 183 et seq.). By direct transformation $y^i \rightarrow x^i$ one finds

$$I = \int \int \int dy(n) dy(n-1) \ldots dy(1) f[y(1), \ldots, y(n)]$$

$$= \int \int \int dx(n) dx(n-1) \ldots dx(1) f[y(1), \ldots, y(n)] J(y(1), \ldots, y(n) / x(1), \ldots, x(n))$$

$$\hspace{1cm} (A3.22)$$

where in the second integral y^i is regarded as $y^i(x(1), \ldots, x(n))$, and J denotes the Jacobian of the transformation. Alternatively we can recognize that (A3.21) is the natural generalization of (A2.35) to an n-dimensional space, and view it as giving the volume of an n-dimensional parallelepiped whose sides are spanned by the elementary vectors $(dx(1), 0, \ldots, 0)$, $(0, 0, \ldots, dx(n))$. Under the transformation $x^i \rightarrow y^i$ these vectors become $\left(\frac{\partial y(1)}{\partial x(1)}, \frac{\partial y(2)}{\partial x(1)}, \ldots, \frac{\partial y(n)}{\partial x(1)}\right) dx(1), \ldots, \left(\frac{\partial y(1)}{\partial x(n)}, \frac{\partial y(2)}{\partial x(n)}, \ldots, \frac{\partial y(n)}{\partial x(n)}\right) dx(n)$, which again leads to (A3.21). We thus identify the rightmost member of (A3.21) as the invariant volume element; the volume of any finite region is then

$$V = \int \ldots \int g^{1/2} dx(1) dx(2) \ldots dx(n).$$ \hspace{1cm} (A3.23)

Finally, suppose we calculate the mass within some volume containing fluid of density ρ; then

$$M = \int \ldots \int \rho dy(1) \ldots dy(n) = \int \ldots \int \rho g^{1/2} dx(1) \ldots dx(n)$$

$$= \int \ldots \int \rho dx(1) \ldots dx(n).$$ \hspace{1cm} (A3.24)
Thus in terms of $\rho = g^{1/2} \rho_c$, a relative scalar of weight one, the integral giving the mass assumes an invariant form. It is this result that motivates the name scalar “density” for relative scalars of weight one.

A3.5. Associated Tensors

Having at our disposal the metric tensor and its reciprocal we can carry out the operation of raising and lowering indices to construct new tensors associated with any given tensor. To lower a contravariant index (say j) we multiply the tensor by g_{ij} and sum against j; for example

$$g_{ij} T_{ab} = T_{b}^{ab}. \quad (A3.25a)$$

Notice that it may be necessary to use a notation that shows explicitly which index is affected, as was done here by filling vacant positions with dots, because in general the tensors $g_{ij} T_{ab} = T_{ab}^{i}$ and $g_{ij} T_{ab} = T_{ab}^{i}$ will be different. The operation of raising covariant indices proceeds similarly; for example

$$g_{ij} T_{iab} = T_{iab}^{j}. \quad (A3.25b)$$

which shows explicitly that the operation of raising is the direct inverse of lowering. These operations can also be performed on relative tensors.

In the case of vectors the notation is unambiguous, and we can write

$$A_i = g_{ij} A^j \quad (A3.26a)$$

and

$$A^i = g^{ij} A_j. \quad (A3.26b)$$

Moreover we have

$$A_i = g_{ij} A^j = g_{ij} g^{ik} A_k = \delta^k_i A_k = A_i \quad (A3.27)$$

which shows the complete reciprocity of contravariant and covariant components.

The fact that we can raise and lower indices at will shows convincingly that, as mentioned before, the contravariant, covariant, and physical components of a tensor are all merely different representations of the same physical entity. A direct geometrical interpretation of this relationship can be most easily provided for vectors. Choose a set of basis vectors along coordinate curves:

$$a_i = r_i. \quad (A3.28)$$

Then

$$ds^2 = dr \cdot dr = (r_i dx^i) \cdot (r_j dx^j) = (a_i \cdot a_j) dx^i dx^j = g_{ij} dx^i dx^j \quad (A3.29)$$

shows that $a_i \cdot a_j = g_{ij}$. Furthermore we see that these vectors are not in general unit vectors because $a_i \cdot a_i = g_{ij} g^{ij}$ is not necessarily unity. Now resolve A along this basis: $A = A^i a_i$. Then we can see that the geometrical
interpretation of the contravariant components of \(A \) is that \((g^{ij})^{1/2}A^i \) is the length, along the unit vector \(\mathbf{e}_i = a_i / (g^{ii})^{1/2} \), of the \(i \)th edge of the parallelepiped whose diagonal is \(A \).

Alternatively, define the reciprocal basis set

\[
\mathbf{a}^i = \frac{(a \times a_k)}{g^{1/2}}
\]

where \((ijk)\) is a cyclic permutation of \((123)\). Then clearly \(a_i \cdot a^i = \delta^i_i \), and by using \((A3.30)\) in \((A2.40)\) it is easy to show that

\[
a_i = g^{1/2}(a^i \times a^k),
\]

where again \((ijk)\) is a cyclic permutation of \((123)\). Moreover, because

\[
ds^2 = d\mathbf{r} \cdot d\mathbf{r} = (a^i \, dx_i) \cdot (a^j \, dx_j) = (a^i \cdot a^j)g_{ij} \, dx^i \, dx^j = g_{mn} \, dx^m \, dx^n,
\]

we see that \(g_{mn} = g_{ij}g_{ik}(a^i \cdot a^k) \). Contracting both sides of this equality against \(g^{ia} g^{mb} \) we find

\[
g^{ia} g^{mb} g_{mn} = g^{ia} \delta^i_a = g^{ab} g_{bm} g_{im}(a^i \cdot a^j) = \delta^a_\delta^i_a (a^i \cdot a^j) = a^a \cdot a^b,
\]

so that we must have \(a^i \cdot a^j = g^{ij} \).

Now resolve \(A \) along the \(a^i \) as \(A = A_i a_i \). Then

\[
A \cdot a_i = (A_k a^k) \cdot a_i = A_k \delta^k_i = A_i = (A^k a_k) \cdot a_i = (a_i \cdot a_k) A^k = g_{ik} A^k
\]

which shows that the \(A_i \) are in fact the covariant components associated with the contravariant components \(A^i \). In addition we can now see that \(A_i / (g^{ii})^{1/2} = A \cdot e_i \), so that the geometrical interpretation of the covariant components \(A_i \) is that \(A_i / (g^{ii})^{1/2} \) is the length of the orthogonal projection of \(A \) onto the unit vector that is tangent to the \(x^i \) coordinate curve. [See \((A2, \S 7.22\) and \(7.35)\) and \((S1, \S 45)\) for further details.]

The geometrical interpretations given above show that in orthogonal Cartesian coordinates, for which the \(g^{ii} = 1 \), the contravariant and covariant coordinates of a vector are identical. But in curvilinear coordinates one sees [e.g., from \((A3.18)\) and \((A3.26)\)] that the two types of abstract components can be quite different, and moreover, from the discussion above, that individual components of a given type do not necessarily even have the same physical units (cf. \(\S A3.7\)).

A3.6. Scalar Product

The natural covariant generalization of \((A2.5)\) is

\[
a \cdot b = a_i b^i = g_{ii} a_i b^i = g^{ii} a_i b_i.
\]

This expression is manifestly invariant under coordinate transformation:

\[
a_i b^i = (\partial x^a / \partial \tilde{x}^i) a_i (\partial \tilde{x}^j / \partial x^a) b^a = \delta^a_\delta^i_a a_i b^a = a_i b^i.
\]
The natural covariant generalization of (A2.1) for the magnitude of a vector is
\[|\mathbf{a}| = (a_i a^i)^{1/2} = (g_{ij} a^i a^j)^{1/2} = (g^{ij} a_i a_j)^{1/2}. \]
(A3.37)

Furthermore, this suggests that we take as the covariant generalization of (A2.6) the expression
\[\cos \theta = \frac{(a b^j)}{[(a a^i)^{1/2} (b b^i)^{1/2}]} = \frac{(g_{ij} a^j b^i)}{[(g_{ij} a^j a^i)^{1/2} (g_{ij} b^j b^i)^{1/2}].} \]
(A3.38)

As before, two vectors are considered to be orthogonal if \(\cos \theta = 0 \).

Choosing displacement vectors \((dx^{(1)}, 0, 0), (0, dx^{(2)}, 0), (0, 0, dx^{(3)})\) along the coordinate curves of a three space we find from (A3.38) that the angles \(\theta_{12}, \theta_{13}, \) and \(\theta_{23} \) between these curves are
\[\cos \theta_{12} = g_{12}/(g_{11} g_{22})^{1/2} \]
(A3.39a)
\[\cos \theta_{13} = g_{13}/(g_{11} g_{33})^{1/2} \]
(A3.39b)
\[\cos \theta_{23} = g_{23}/(g_{22} g_{33})^{1/2}. \]
(A3.39c)

From (A3.39) it immediately follows that the necessary and sufficient condition for a curvilinear coordinate system to be orthogonal is that \(g_{ij} = 0 \) for \(i \neq j \). In this important case, which is the only one we consider in our work, the metric tensor is diagonal and its reciprocal is simply \(g^{(i)(i)} = \frac{1}{g_{(i)(i)}} \). For example, in spherical polar coordinates \(g^{11} = 1, g^{22} = 1/r^2, g^{33} = 1/r^2 \sin^2 \theta \).

A3.7. Physical Components

Consider an orthogonal coordinate system in three-space. The metric is diagonal and the line element can be written
\[ds^2 = (h_1 dx^{(1)})^2 + (h_2 dx^{(2)})^2 + (h_3 dx^{(3)})^2, \]
(A3.40)
where \(h_i \equiv (g_{(i)(i)})^{1/2} \). It is clear that the increment of path length associated with a coordinate increment \(dx^i \) is not \(dx^i \) itself, but \(ds^2 = h_i dx^i \). More generally, using (A3.37) to calculate the length of a vector we have
\[a^2 = (h_1 a^{(1)})^2 + (h_2 a^{(2)})^2 + (h_3 a^{(3)})^2. \]
(A3.41)

To obtain consistency with the Pythagorean theorem, we find that with the abstract contravariant component \(a^{(i)} \) we must associate the physical component
\[a(i) = h_{(i)} a^{(i)}. \]
(A3.42)

Using (A3.37) again, now for covariant components, and noting that \(g^{(i)(i)} = (1/h_i)^2 \), we have
\[a_i = (a_{1i}/h_1)^2 + (a_{2i}/h_2)^2 + (a_{3i}/h_3)^2 \]
which shows that the physical components are related to covariant components by the expression
\[a(i) = a_{(i)}/h_{(i)}. \]
(A3.43)
To compute the physical components of a tensor T we notice that in Cartesian coordinates if λ^i and μ^i are unit vectors along some coordinate axes, then the expression

$$c = T_{ij} \lambda^i \mu^j$$

(A3.43)

gives the physical component of the tensor along those axes. But this expression is an invariant, and can be applied in curvilinear coordinates as well. If λ is to be a unit vector, we must have $h_i^2 (\lambda^i)^2 = 1$. Thus if we choose three unit vectors along the $x(1)$, $x(2)$, and $x(3)$ coordinate curves, we must have $\lambda_{(1)} = (1/h_1, 0, 0)$, $\lambda_{(2)} = (0, 1/h_2, 0)$, and $\lambda_{(3)} = (0, 0, 1/h_3)$, respectively. Using these vectors in (A3.43) we find that the physical components of T in terms of its covariant components are

$$T(i, j) = T_{(i)(j)}/(h_0 h_{(i)})$$

(A3.44)

Carrying out the same analysis for contravariant components we have

$$T(i, j) = h_{(i)} h_{(j)} T^{(i)(j)}.$$

(A3.45)

Generalization of these expressions to nonorthogonal systems is discussed in (A2, §§7.42 and 7.43).

As a specific example, the relations between the abstract and physical components of a vector in spherical coordinates are:

$$v^{(1)} = v_r, \quad v^{(2)} = \frac{v_{\theta}}{r}, \quad v^{(3)} = \frac{v_{\phi}}{r \sin \theta};$$

(A3.46a)

and

$$v_1 = v_r, \quad v_2 = v_{\theta}, \quad v_3 = (r \sin \theta) v_{\phi};$$

(A3.46b)

For a symmetric tensor in spherical coordinates we have

$$T^{11} = T_{rr}, \quad T^{12} = T_{r\theta} r, \quad T^{13} = T_{r\phi} (r \sin \theta), \quad T^{22} = T_{\theta\theta} r^2,$$

$$T^{23} = T_{\theta\phi} (r^2 \sin \theta), \quad \text{and} \quad T^{33} = T_{\phi\phi} (r \sin \theta)^2,$$

(A3.47)

with analogous formulae for covariant components.

A3.8. The Levi-Civita Tensor

In curvilinear coordinates where index position is significant, the appropriate generalizations of (A2.25) and (A2.26) are

$$\epsilon_{\mu_1 \ldots \mu_n} \epsilon_{\nu_1 \ldots \nu_n} a_{\mu_1} \ldots a_{\mu_n},$$

(A3.48)

and

$$\epsilon_{\mu_1 \ldots \mu_n} \epsilon_{\nu_1 \ldots \nu_n} a_{\mu_1} \ldots a_{\nu_n},$$

(A3.49)

where a_{μ}^ν is the element in the νth row and μth column. In particular, if we set $a_{\epsilon}^\nu = (\partial \hat{x}^\nu/\partial \hat{x})$, (A3.48) becomes

$$\epsilon_{\mu_1 \ldots \mu_n} J = \left(\frac{\partial \hat{x}^1}{\partial \hat{x}^\mu} \right) \left(\frac{\partial \hat{x}^1}{\partial \hat{x}^\nu} \right) \ldots \left(\frac{\partial \hat{x}^n}{\partial \hat{x}^\nu} \right) \epsilon_{\mu_1 \ldots \nu}.$$

(A3.50)
which shows that the covariant permutation symbol is a relative tensor of weight -1. By a similar analysis one finds that $e^{\mu..\nu}$ is a relative tensor of weight +1. Recalling from (A3.20) that $J = (\tilde{g}/g)^{1/2}$ and that g is a relative scalar of weight two, we then see that

$$e_{\mu..\nu..\kappa} = g^{1/2}e_{\mu..\nu..\kappa}$$ \hspace{1cm} (A3.51)

and

$$e^{\mu..\nu..\kappa} = g^{-1/2}e^{\mu..\nu..\kappa}$$ \hspace{1cm} (A3.52)

are of weight zero, and hence are absolute tensors. These are the covariant and contravariant components of the Levi-Civita tensor, which is skew symmetric in all indices.

Using the Levi-Civita tensor we can write a covariant generalization of the cross product (A2.32) as

$$c_i = e_{ijk}a^jb^k$$ \hspace{1cm} (A3.53a)

or

$$c^i = e^{ijk}a^jb_k.$$ \hspace{1cm} (A3.53b)

Similarly the covariant generalization of (A2.60) for the vector dual associated with an antisymmetric tensor in three-space is

$$\omega_i = \frac{1}{2}e_{ijk}\Omega^k,$$ \hspace{1cm} (A3.54)

and

$$\Omega^k = e^{ijk}\omega_k.$$ \hspace{1cm} (A3.55)

A3.9. Christoffel Symbols

As will be seen in §A3.10, certain combinations of partial derivatives of the metric tensor appear when we attempt to construct a covariant generalization of the operation of differentiation. Thus we define the Christoffel symbol of the first kind to be

$$[ij,k] = \frac{1}{2}(g_{ik,j} + g_{jk,i} - g_{ij,k}),$$ \hspace{1cm} (A3.56)

and the Christoffel symbol of the second kind as

$$\begin{pmatrix} i \\ j \\ k \end{pmatrix} = g^{il}[jk,l].$$ \hspace{1cm} (A3.57)

The rather cumbersome (and customary) notation employed here emphasizes that the Christoffel symbols are not tensors (see below). By inspection of (A3.56) it is obvious that $[ij,k] = [ji,k]$, and hence that $\{ij,k\} = \{kj,i\}$. Notice that in Cartesian coordinates all Christoffel symbols (of both kinds) are identically zero.

From (A3.56) we easily find the useful result

$$g_{ik,k} = [ik,j] + [jk,i]$$ \hspace{1cm} (A3.58)
and hence
\[g_{i;k} = g_{il} \left\{ \begin{array}{c} \ell \\ i \\ k \end{array} \right\} + g_{ik} \left\{ \begin{array}{c} l \\ j \\ k \end{array} \right\}. \] (A3.59)

We can also write an extremely important formula for the derivative of the determinant \(g \) in terms of Christoffel symbols of the second kind. From the fact that \(g = g_{ij} G^{ij} \), where \(G^{ij} \) is the cofactor of \(g_{ij} \), and recalling that \(G^{ij} = g^{ij} \), we see from (A3.59) that
\[g_{,k} = (\partial g/\partial y_s) g_{i;k} = g^{ij} \left(g_{il} \left\{ \begin{array}{c} \ell \\ i \\ k \end{array} \right\} + g_{ik} \left\{ \begin{array}{c} l \\ j \\ k \end{array} \right\} \right) \\
= g \left(\left\{ \begin{array}{c} i \\ i \\ k \end{array} \right\} + \left\{ \begin{array}{c} j \\ j \\ k \end{array} \right\} \right) = 2 g_{i;k}. \] (A3.60)

Therefore
\[\left\{ \begin{array}{c} i \\ i \\ k \end{array} \right\} = \ln g^{1/2}, \] (A3.61)

For orthogonal coordinate systems, the Christoffel symbols can be written in a very compact form that is useful for computation. If \(g_{ij} = 0 \) when \(j \neq i \) one easily finds from (A3.56) and (A3.57) that
\[\left\{ \begin{array}{c} i \\ i \\ i \end{array} \right\} = \frac{1}{2} (\ln g_{ii})_{,i}, \] (A3.62a)
\[\left\{ \begin{array}{c} i \\ i \\ j \end{array} \right\} = \frac{1}{2} (\ln g_{ij})_{,i}, \] (A3.62b)
\[\left\{ \begin{array}{c} i \\ j \\ j \end{array} \right\} = -\frac{1}{2} (g_{ij})_{,i} g_{ii}, \] (A3.62c)
and
\[\left\{ \begin{array}{c} i \\ j \\ k \end{array} \right\} = 0. \] (A3.62d)

In (A3.62), \(i, j, \) and \(k \) are distinct, and there is no sum on repeated indices. In particular, for spherical coordinates we find, using (A3.18) and (A3.62) that the nonzero Christoffel symbols are
\[\left\{ \begin{array}{c} 1 \\ 2 \\ 2 \end{array} \right\} = -r, \quad \left\{ \begin{array}{c} 1 \\ 3 \\ 3 \end{array} \right\} = -r \sin^2 \theta, \] \[\left\{ \begin{array}{c} 2 \\ 3 \\ 3 \end{array} \right\} = -\sin \theta \cos \theta, \quad \text{and} \quad \left\{ \begin{array}{c} 2 \\ 1 \\ 2 \end{array} \right\} = 1/r, \] (A3.63)

\[\left\{ \begin{array}{c} 3 \\ 2 \\ 3 \end{array} \right\} = \cot \theta, \quad \left\{ \begin{array}{c} 3 \\ 1 \\ 3 \end{array} \right\} = 1/r. \]

Last, we must develop the transformation law for Christoffel symbols. Consider two curvilinear coordinate systems \(y^i \) and \(x^\alpha \) with metric tensors
\(h_{ij} \) and \(g_{\alpha \beta} \), respectively. Then
\[
\frac{\partial x^\alpha}{\partial y^i} \left(\frac{\partial x^\beta}{\partial y^j} \right) g_{\alpha \beta} = x^\alpha_i x^\beta_j g_{\alpha \beta} \text{ (A3.64)}
\]
and
\[
\frac{\partial y^j}{\partial x^\alpha} \left(\frac{\partial y^i}{\partial x^\beta} \right) g^{\alpha \beta} = y^j_i y^i_j g^{\alpha \beta} \text{ (A3.65)}
\]
Differentiating \(h_{ij} \) we have
\[
\frac{\partial h_{ij}}{\partial x^\gamma} = \frac{\partial g_{\alpha \beta}}{\partial x^\gamma} \left(x^\alpha_i x^\beta_j + x^\alpha_j x^\beta_i \right)
= g_{\alpha \beta} \left(x^\alpha_i x^\beta_j + x^\alpha_j x^\beta_i \right) g_{\gamma \delta} \gamma \delta \text{ (A3.66)}
\]
The second step follows because \(\alpha \) and \(\beta \) are dummy and \(g_{\alpha \beta} \) is symmetric.
Now permuting \(i \rightarrow j \rightarrow k \) in (A3.66) and adding, we find that
\[
[h_{ij} k] = \frac{1}{2} \left(h_{ikj} + h_{kji} - h_{ijk} \right) = x^\alpha_i x^\beta_j x^\gamma_k [\alpha \beta, \gamma] + x^\alpha_i x^\beta_j x^\gamma_k g_{\alpha \beta, \gamma} \text{ (A3.67)}
\]
which shows that \([\alpha \beta, \gamma]\) is, in general, not a tensor. It would be a tensor only if the second term on the right-hand side were to vanish identically, which happens to be true if the coordinate transformation is linear (i.e., \(x^\alpha = c^\alpha y^i \) where the \(c \)’s are constants), but not in general. Using (A3.57) and (A3.65) in (A3.67) we find
\[
\left\{ \begin{array}{l}
\alpha \\
\beta
\end{array} \right\} = y^\alpha_i x^\beta_j g^{\gamma \delta} \left(x^\gamma_i x^\delta_j x^\alpha_k [\alpha \beta, \gamma] + x^\gamma_i x^\delta_j x^\alpha_k g_{\alpha \beta, \gamma} \right)
= y^\alpha_i x^\beta_j g^{\gamma \delta} \left([\alpha \beta, \gamma] + y^\alpha_i x^\beta_j g_{\alpha \beta, \gamma} \right) \text{ (A3.68)}
\]
which simplifies to
\[
\left\{ \begin{array}{l}
k \\
i
\end{array} \right\} = y^\kappa_i x^\gamma_j x^\alpha_k \left\{ \begin{array}{l}
\gamma
\\
\alpha \beta
\end{array} \right\} + y^\kappa_i x^\gamma_j x^\alpha_k g_{\alpha \beta, \gamma} \text{ (A3.69)}
\]
Equation (A3.69) shows that \(\left\{ \begin{array}{l}
k \\
i
\end{array} \right\} \) is also not in general a tensor, although it would be if the coordinate transformation were linear. Finally, by contracting (A3.69) against \(x^\alpha_k \) we obtain the useful result
\[
x^\alpha_k = x^\alpha_k \left\{ \begin{array}{l}
k \\
i
\end{array} \right\} - x^\alpha_j x^\gamma_j \left\{ \begin{array}{l}
\gamma
\\
\alpha \beta
\end{array} \right\}. \text{ (A3.70)}
\]

A3.10. Covariant Differentiation

We are now in a position to generalize the notion of differentiation into a covariant form. Suppose we differentiate the covariant vector
\[
B_i = \left(\frac{\partial x^\gamma}{\partial y^i} \right) A_\gamma = x^\gamma_i A_\gamma \text{ (A3.71)}
\]
We obtain
\[
B_{ij} = x^\gamma_j x^\beta_\gamma A_{\alpha \beta} + x^\gamma_i A_\gamma \text{ (A3.72)}
\]
It is obvious from (A3.72) that \(B_{ij} \) is not a tensor. But if we use (A3.70) in
(A3.72) we can rewrite the equation as

\[B_{ij} = x^\alpha x^\beta \left(A_{\alpha, \beta} - \frac{\lambda}{\alpha \beta} A_\lambda \right) + \left\{ k \right\} x^\lambda A_\lambda, \]

(A3.73)

or

\[B_{ij} - \left\{ k \right\} \frac{1}{i j} B_k = x^\alpha x^\beta \left(A_{\alpha, \beta} - \frac{\lambda}{\alpha \beta} A_\lambda \right). \]

(A3.74)

Thus the combination

\[B_{ij} = B_{ij} - \left\{ k \right\} \frac{1}{i j} B_k \]

(A3.75)

is a covariant second-rank tensor, and reduces to the ordinary partial derivative of \(B_i \) in Cartesian coordinates. We therefore take (A3.75) as the definition of the covariant derivative of the vector \(B_i \).

By a similar analysis, one can show that the covariant derivative of a contravariant vector is a mixed tensor of the second rank:

\[B^i_j = B^i_j + \left\{ i \right\} B^k. \]

(A3.76)

The extra terms containing Christoffel symbols that appear in equations (A3.75) and (A3.76) account for the effects of curvature of the coordinate system [see (S1, §46) for a detailed discussion].

These formulae are easily extended to mixed tensors of arbitrary rank. We find that the covariant derivative of the mixed tensor \(A_{il...k}^{\alpha...\beta} \) is

\[A_{il...k}^{\alpha...\beta} = A_{il...k}^{\alpha...\beta} + \left\{ \alpha \right\} A_{il...k}^{\alpha...\beta} + \left\{ \beta \right\} A_{il...k}^{\alpha...\beta} + \ldots + \left\{ \lambda \right\} A_{il...k}^{\alpha...\beta} - \left\{ \alpha \right\} A_{il...k}^{\alpha...\beta} - \left\{ \beta \right\} A_{il...k}^{\alpha...\beta} - \ldots - \left\{ \lambda \right\} A_{il...k}^{\alpha...\beta}. \]

(A3.77)

In particular, for a contravariant tensor of the second rank,

\[T^i_j = T^i_j + \left\{ i \right\} T^j_l + \left\{ j \right\} T^i_l. \]

(A3.78)

Note in passing that the covariant derivative of a scalar is identical to its ordinary partial derivative, and that the operation of covariant differentiation increases the rank of the resulting tensor by one relative to the original tensor. Furthermore, it is straightforward to generalize (A3.77) to relative tensors [see, e.g., (L1, §36) or (S2, §7.2)], but we will not require this result in our work.

The derivation of formulae for covariant differentiation given above proceeds by direct analysis. While this approach has the merit of brevity, it fails to communicate the deeper geometrical significance of the process, which raises questions concerning parallel transport and transplantation of
vectors in a curved space. Discussions of these important and interesting matters, and generalizations of covariant differentiation to nonmetrical spaces, can be found in \((A1, \S\S 2.1, 2.2, \text{and } 3.1), \) \((L2, \S\S 33-36 \text{ and } 39-41), \) and \((S2, \text{Chap. } 8). \)

Let us now calculate the covariant derivative of the metric tensor; from \((A3.77) \) we have

\[
\Gamma_{ij,k} = \Gamma_{ij}^l - \Gamma_{lj}^i \Gamma_{jk}^i - \Gamma_{kj}^i \Gamma_{lj}^i. \tag{A3.79}
\]

But from \((A3.59) \) the right-hand side is identically zero. Thus we have \textit{Ricci's theorem}: the covariant derivative of the metric tensor (or its reciprocal) is identically zero in any coordinate system. This implies that in tensor equations we may freely interchange the operations of raising and lowering indices and of covariant differentiation. By a similar calculation we find that the Kronecker delta also behaves like a constant under covariant differentiation:

\[
\delta_{l,k} = \delta_{l}{}^i - \Gamma_{lj}^i \delta_{k} = 0 + \Gamma_{ki}^j = 0. \tag{A3.80}
\]

Suppose now that through some region in which a tensor field \(A_{ij}{}^{ab, \ldots} \) is defined, we choose a specific path, parameterized in terms of a path-length variable \(s \) as \(x^i(s) \). Then we define the intrinsic (or absolute) derivative of the tensor field along this path to be

\[
\frac{\delta A_{ij}{}^{ab, \ldots}}{\delta s} = A_{ij}{}^{ab, \ldots} \frac{dx^a}{ds} = \frac{dA_{ij}{}^{ab, \ldots}}{ds} + \left\{ \begin{array}{c} a = \begin{array}{c} a \end{array} \\
\end{array} \right. A_{ij}{}^{ab, \ldots} + \ldots - \left\{ \begin{array}{c} m \end{array} \right. A_{ij}{}^{ab, \ldots} \right. \frac{dx^a}{ds}. \tag{A3.81}
\]

Here we have written \((dA_{ij}{}^{ab, \ldots}/ds) = (\partial A_{ij}{}^{ab, \ldots}/\partial x^a)(dx^a/ds) \). In particular, for a contravariant vector \(A^i \),

\[
\frac{\delta A^i}{\delta s} = \frac{dA^i}{ds} + \Gamma^i_{jk} A^j \frac{dx^k}{ds}. \tag{A3.82}
\]

In \((A3.81) \) and \((A3.82) \), \(s \) is an arbitrary path-length parameter. But in problems of fluid flow, it is natural to describe the path followed by a fluid element in terms of the time \(t \), so that \(x^i = x^i(t) \), and \((dx^i/dt) = x^i_j = v^i \), the velocity of the fluid element. In addition we must then allow for the possibility that any vector or tensor field may be an explicit function of time as well as of position, say \(A^i = A^i(r, t) \). Suppose now we choose time as the independent variable; then the intrinsic derivative with respect to time is the derivative with respect to time along the path followed by the fluid, that is, as measured in a frame moving with the fluid. In physical terms it is therefore identical to the \textit{Lagrangean derivative} employed in
descriptions of fluid kinematics and dynamics (cf. §15). For example

$$(\delta A^i/\delta t) = (DA^i/Dt) = A^i_{,i} + A^i_{,j} v^j + \frac{i}{j} A^i v^k.$$ \hfill (A3.83)

Equation (A3.83) is the covariant generalization of the customary Lagrangean derivative for the vector field A^i; similar formulae can be written for tensors.

A3.11. Gradient, Divergence, Laplacian, and Curl

Covariant generalizations of the various operations with the symbolic operator ∇ discussed in §A2.10 can in most instances be obtained simply by replacing the partial derivatives with covariant derivatives. In the case of the gradient of a scalar field, the two derivatives are identical, $f_{,i} = f_{,i}$, and we obtain a covariant vector, say F. For instance, in spherical coordinates the covariant components of F are $(df/dr, df/d\theta, df/d\phi)$. Then from (A3.42) we find physical components

$$\nabla f = \left(\frac{\partial f}{\partial r}, \frac{1}{r} \frac{\partial f}{\partial \theta}, \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \right).$$ \hfill (A3.84)

One can of course also form the gradient of vector and tensor fields, for example, $(\nabla F)_j = v^i_{,j}$, etc.

The covariant generalization of the divergence of a vector is

$$\nabla \cdot \mathbf{v} = v^j_{,i} = v^j_{,i} + \sum_{j} v^j_{,i}.$$ \hfill (A3.85)

In view of (A3.61) we can rewrite (A3.85) as

$$v^j_{,i} = g^{-1/2}(g^{1/2} v^j)_{,i}$$ \hfill (A3.86)

which is a convenient form for calculating $\nabla \cdot \mathbf{v}$ in curvilinear coordinates. For example, in spherical coordinates $g^{1/2} = r^2 \sin \theta$, and we find

$$v^i_{,i} = \frac{\partial v^{(1)}}{\partial r} + \frac{\partial v^{(2)}}{\partial \theta} + \frac{\partial v^{(3)}}{\partial \phi} + \frac{2}{r} v^{(1)} - \cot \theta v^{(2)}.$$ \hfill (A3.87)

Converting to physical components via (A3.46a) we recover the familiar result

$$v^i_{,i} = \frac{1}{r^2} \frac{\partial (r^2 v_i)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta v_i)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta v_i)}{\partial \phi}.$$ \hfill (A3.88)

For an arbitrary tensor we can form a divergence by contracting the covariant derivative index against any contravariant index, for example, $A^i_{;j..}$. In our work we have occasion to deal only with second-rank tensors, which, in view of (A2.17), we can assume to have a definite
symmetry. Applying (A3.78) to a symmetric tensor we find, using (A3.61),

\[S_{ij} = S_{ij} + \{ i \}_{k j} S_{ik} + \{ j \}_{k i} S_{jk} = g^{-1/2}(g^{1/2} S_{ij}) + \{ i \}_{k j} S_{ik} \]

(A3.89)

For an antisymmetric tensor, individual terms in the last sum in (A3.89) cancel in pairs because the Christoffel symbols are symmetric in \(j \) and \(k \), and we obtain the simpler result

\[A_{ij} = g^{-1/2}(g^{1/2} A_{ij}) \]

(A3.90)

Using (A3.89) and (A3.63) for a symmetric tensor \(T_{ij} \) in spherical coordinates and converting to physical components via (A3.47) we obtain the useful results:

\[T_{ij} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{ij}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{ij}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\partial \phi T_{ij}) \]

(A3.91a)

\[T_{ij} = \frac{1}{r} \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{ij}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{ij}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\partial \phi T_{ij}) \right] \]

(A3.91b)

and

\[T_{ij} = \frac{1}{r \sin \theta} \left[\frac{1}{r^2} \frac{\partial}{\partial r} (r^2 T_{ij}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta T_{ij}) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} (\partial \phi T_{ij}) \right] \]

(A3.91c)

The additional factors outside the square brackets account for the fact that the quantities on the left-hand side of (A3.91) are contravariant components, not physical components.

The easiest way to find a covariant expression for the Laplacian of a scalar is to follow (A2.49) and take the divergence of the vector obtained by forming the gradient of \(f \). Thus \(g^{ij} f_{,i} \) is a contravariant representation of \(\nabla f \), hence

\[\nabla^2 f = (g^{ij} f_{,i})_{,j} = g^{-1/2}(g^{1/2} g^{ij} f_{,i})_{,j} \]

(A3.92)

where we have used (A3.86). Similarly, for a vector we could write

\[\nabla^2 a^k = (g^{ik} a^k)_{,j} \]

As an example, the Laplacian of a scalar in spherical coordinates is, from
For the curl of a vector we can obtain a covariant generalization of (A2.50) by replacing the permutation symbol with the Levi-Civita tensor and partial derivatives with covariant derivatives. Then
\[(\nabla \times \mathbf{a})^i = g^{-1/2} e^{ik} a_{k:j} - g^{-1/2} (a_{k:i} - a_{i:k}) \]
where \((i, j, k)\) are distinct and are a cyclic permutation of \((1, 2, 3)\). But the Christoffel symbols are symmetric in their lower indices, so that (A3.94) reduces to
\[(\nabla \times \mathbf{a})^i = g^{-1/2} (a_{k:i} - a_{i:k}), \]
which is easy to evaluate. For example, in spherical coordinates \(g^{1/2} = r^2 \sin \theta\), and converting to physical components via (A3.46) one easily finds
\[(\nabla \times \mathbf{a})_r = \frac{1}{r \sin \theta} \left[\frac{\partial (\sin \theta a_\theta)}{\partial \theta} - \frac{\partial a_\theta}{\partial \phi} \right], \]
\[(\nabla \times \mathbf{a})_\theta = \frac{1}{r} \left[\frac{\partial a_\phi}{\partial \phi} - \frac{\partial (r a_\theta)}{\partial r} \right], \]
and
\[(\nabla \times \mathbf{a})_\phi = \frac{1}{r} \left[\frac{\partial (r a_\phi)}{\partial r} - \frac{\partial a_\phi}{\partial \theta} \right]. \]
Finally, note in passing that (A3.94) shows that \((\nabla \times \mathbf{a})\) is the dual of the antisymmetric tensor \(A_{ij} = a_{i:j} - a_{j:i}\).

A3.12. Geodesics

Suppose that a constant vector \(\mathbf{A}\) in Cartesian coordinates is moved parallel to itself through a displacement \(d\mathbf{y}^i\); we know that all components \(A^i\) remain unchanged, so that \(dA^i = 0\). Now consider the same operation transformed to curvilinear coordinates in which \(B^\alpha = (\partial x^\alpha/\partial y^i)A^i = x^\alpha A^i\). Then
\[dB^\alpha = x^\alpha_{;i} A^i dy^i + x^\alpha_i dA^i = x^\alpha_{;i} A^i y^i_{;\alpha} dx^\alpha \]
because \(dA^i = 0 \). Thus for parallel displacement,

\[
dB^x = x_{i\alpha} y_i y_j B^\gamma dx^\beta. \tag{A3.98}
\]

Now using (A3.70) with \(\{i^k\} = 0 \) for Cartesian coordinates, (A3.98) becomes

\[
dB^x = -B^\gamma x_{i\alpha} x_{j\beta} \left\{ \alpha \beta \gamma \sigma \right\} y_i y_j y_\sigma dx^\beta = -\delta_\sigma^{\alpha \beta} B^\gamma dx^\beta \left\{ \alpha \beta \gamma \sigma \right\} = -\left\{ \alpha \beta \gamma \sigma \right\} B^\beta dx^\gamma. \tag{A3.99}
\]

If we parameterize a path as \(x'(s) \), then (A3.99) shows that for parallel displacement of \(\mathbf{B} \) along that path the intrinsic derivative will be identically zero:

\[
\frac{\delta B^x}{\delta s} = \frac{dB^x}{ds} + \left\{ \alpha \beta \gamma \sigma \right\} B^\gamma \frac{dx^\beta}{ds} = B^\beta \frac{dx^\beta}{ds} = 0. \tag{A3.100}
\]

In a Euclidian space we can construct a straight line by choosing the curve that has the property that an arbitrary vector displaced along it always remains parallel to itself. We generalize the notion of a straight line in a Riemannian space to that of a geodesic, which is the curve generated by parallel displacement of its unit tangent vector; that is, along a geodesic the tangents at all points are parallel, so that the curve's direction remains "constant" in the curved space. The equations describing a geodesic follow immediately by substituting \(B' = A; = \frac{dx_i}{ds} \) into (A3.100), which yields

\[
\frac{d^2 x^i}{ds^2} + \left\{ i j k \right\} \frac{dx^i}{ds} \frac{dx^j}{ds} = 0. \tag{A3.101}
\]

Other forms are discussed in \((S2, \S 2.4)\).

Another property of straight lines in Euclidian space is that they are the shortest distance between two points. If one requires that a geodesic have the property of minimizing the path length between two points and therefore that

\[
\delta \int_{p_1}^{p_2} ds = \delta \int_{p_1}^{p_2} \left[g_{ij} \frac{dx^i}{ds} \frac{dx^j}{ds} \right]^{1/2} ds = 0, \tag{A3.102}
\]

then a variational analysis leads again to (A3.101) [see e.g. \((A1, S5-57), (L1, \S 128)\), or \((S1, \S 58)\)].

A3.13. Integral Theorems

It is possible to generalize the divergence theorem and Stokes's theorem to curvilinear coordinates in \(n \) dimensions, and also to nonmetrical spaces. We will not develop these generalizations here because we do not require them in our work; the reader may pursue these matters in \((S2, \text{Chap. 7})\).
References

Glossary of Physical Symbols

\(a \)
Sound speed

\(a_n \)
Frequency quadrature weight

\(a_R \)
Radiation density constant

\(a_T \)
Isothermal sound speed

\(a_x, a_y, a_z \)
Components of acceleration in \((x, y, z)\) directions

\(a_0 \)
Bohr radius

\(\mathbf{a} \)
Acceleration

\(\alpha \)
Invariant opacity

\(A \)
Atomic weight

\(A \)
Surface area

\(A_v \)
Vector part of Chapman–Enskog solution of Boltzmann equation

\(A_b \)
Einstein spontaneous emission probability

\(A_k \)
Amplitude of \(k \)th Fourier component

\(A^\alpha \)
Four acceleration

\(A_0 \)
Avogadro’s number

\(b \)
Impact parameter in collision

\(b_i \)
Non-LTE departure coefficient, \(n_i/n_p^\alpha \)

\(b_n \)
Angle quadrature weight

\(\ell \)
Dimensionless impact parameter

\(B_v \)
Tensor part of Chapman–Enskog solution of Boltzmann equation

\(B_0 \)
Einstein absorption probability

\(B_e \)
Einstein stimulated emission probability

\(B(T), B \)
Integrated Planck function

\(B_v(T), B_v, B \)
Planck function

\(B_0 \)
Boltzmann number

\(c \)
Speed of light

\(c_r \)
Specific heat at constant pressure

\(c_v \)
Specific heat at constant pressure per heavy particle

\(c_{r,v} \)
Specific heat at constant volume

\(c_v \)
Specific heat at constant volume per heavy particle

\(C \)
Heat capacity

\(C_{AB} \)
Bimolecular collision frequency

\(C_i \)
Numerical constant in Saha ionization formula

\(C_{ij} \)
Collision rate from level \(i \) to level \(j \)

\(C_{\alpha i} \)
Collisional ionization rate from level \(i \)
GLOSSARY OF PHYSICAL SYMBOLS

C_v Heat capacity at constant volume
C_s Coefficient in power-law potential
d Diameter of rigid elastic sphere
d_o Average distance between particles
D Debye length
D_{ni} Traceless rate of strain tensor
D_{nall} Covariant traceless shear tensor
(D/Dt) Lagrangean time derivative (fluid element fixed)
$(Df/Dt)_{coll}$ Collisional source term in Boltzmann equation
$\dot{\gamma}$ Differential operator in Boltzmann equation
D Traceless shear tensor
e Electron charge
e Specific internal energy (per gram)
ϵ_{disso} Internal energy of molecular dissociation
ϵ_{exc} Internal energy of atomic excitation
ϵ_{ion} Internal energy of atomic ionization
ϵ_{rot} Internal energy of molecular rotation
ϵ_{trans} Translational internal energy
ϵ_{vib} Internal energy of molecular vibration
ϵ_{chk} Permutation symbol
$\dot{\epsilon}$ Internal energy per unit volume
$\dot{\epsilon}$ Internal energy per particle
$\dot{\epsilon}$ Total specific internal energy of radiating fluid, $\epsilon_{rad} + (E/P)$
ϵ Invariant emissivity
$\dot{\epsilon}$ Total internal energy per unit volume, including rest energy, $\rho_0(c^2 - 1)$
$\dot{\epsilon}$ Total energy of particle including rest energy
$\epsilon(\nu)$ Radiation energy spectral profile
$\epsilon(\infty)$ Energy flux per particle at infinity in stellar wind
$\epsilon_{c}(\infty)$ Heat-conduction flux per particle at infinity in stellar wind
E_{i} Rate of strain tensor
E_{in} Energy transported in wave per period
E_{nall} Covariant shear tensor
$E_{\delta}(T), E_{\delta}$ Radiation energy density in thermal equilibrium at temperature T, $4\pi B/c$
$E_{\delta}(\nu, T), E_{\delta}$ Monochromatic radiation energy density in thermal equilibrium at temperature T, $4\pi B_{\nu}/c$
$E(x, t), E$ Radiation energy density
$E(x, t; \nu), E_{\nu}$ Monochromatic radiation energy density
$E(\delta)$ Wave-amplitude scale factor
ϵ Energy flux in spherical flow
ϵ Explosion energy
ϵ Internal energy in a volume V
ϵ Scalar part of Eckart decomposition of radiation stress-energy tensor
ϵ_{rad} Total energy in flow at time t^{n+1}
$\epsilon_{c}(\infty)$ Heat-conduction flux at infinity in stellar wind
E Rate of strain tensor
f Oscillator strength of spectral line
\(f \) Line radiation force
\(f, f(x, t; \nu) \) Monochromatic variable Eddington factor
\(f_0 \) Maxwellian velocity distribution
\(f_1 \) First-order term in Chapman-Enskog solution of Boltzmann equation
\(\bar{f} \) Dimensionless distribution function
\(f(x, u, t) \) Particle distribution function
\(f_p(x, t; n, p), f_{\mu} \) Photon distribution function
\(f \) Newtonian force density
\(f_R \) Radiation force
\(f' \) Radiation flux spectral profile
\(F_{\text{on}} \) Radiation flux from black body
\(F' \) Four-force density
\(F(u) \) Spontaneous recombination probability for electrons of speed \(u \)
\(F \) Force
\(\bar{F}(x, t), \bar{F} \) Radiation flux
\(\bar{F}(x, t; \nu), \bar{F}_\nu \) Monochromatic radiation flux
\(\mathcal{F} \) Particle flux in spherical flow
\(\mathcal{F}' \) Vector part of Eckart decomposition of radiation stress-energy tensor
\(g \) Acceleration of gravity (planar geometry)
\(g \) Determinant of metric tensor
\(g \) Relative speed of collision partners
\(g_{\text{electron}} \) Statistical weight of free electron
\(g_i \) Statistical weight of state \(i \)
\(g_0, g_0i \) Metric tensor
\(g_{\text{R}} \) Radiative acceleration
\(g_{\text{R}, t} \) Radiative acceleration from spectral lines
\(g'' \) Invariant photon distribution function for blackbody radiation at rest relative to observer
\(g \) Gravitational acceleration
\(g \) Relative velocity of collision partners
\(G \) Newtonian gravitation constant
\(G' \) Radiation four-force density
\(G(u) \) Induced recombination probability for electrons of speed \(u \)
\(G \) Center of mass velocity
\(G \) Space components of radiation four-force density
\(G(\Delta t, k) \) Amplification matrix of system of difference equations
\(\mathcal{G} \) Radiative gain rate per unit mass
\(\mathcal{G}_s \) Total radiation momentum density, \(\bar{F}/c^2 \)
\(\mathcal{G}_s \) Monochromatic radiation momentum density, \(\bar{F}_\nu/c^2 \)
\(\hbar \) Planck constant
\(\hbar \) Planck constant
\(\hbar \) Planck constant
\(\hbar, h \) Specific enthalpy
\(h \) Normalized flux perturbation, \(H_0/B_0 \)
\(\bar{h} \) Enthalpy per particle
\(h(\mu, \nu), h_{\nu, i}, h \) Antisymmetric part of specific intensity, \(2I(\mu, \nu) - I(-\mu, \nu) \)
\(\bar{h} \) Total enthalpy per particle, including rest energy, \(m_0(c^2 + e)/(p/N) \)
GLOSSARY OF PHYSICAL SYMBOLS

\(H \) Scale height, density scale height
\(H_e \) Pressure scale height
\(H(x, t), H \) Integrated Eddington flux, \(F/4\pi \)
\(H(x, t; \nu), H \) Monochromatic Eddington flux, \(F/4\pi \)
\(i \) Unit vector along \(x \) axis
\(l \) Boltzmann collision integral
\(I(x, t; \mathbf{n}, \nu) \) Specific intensity
\(I(x, t; +\mathbf{n}, \nu), I(+\mu, \nu), I \) Outward directed intensity
\(I(x, t; -\mathbf{n}, \nu), I(-\mu, \nu), I \) Inward directed intensity
\(J \) Boltzmann collision integral
\(J(\mu, \nu), J \) Invariant intensity
\(\mathbf{I} \) Unit tensor
\(j_1(\mu, \nu), j_{\text{out}} \) Symmetric part of specific intensity, \(\frac{1}{2}[I(+\mu, \nu) + I(-\mu, \nu)] \)
\(j \) Unit vector along \(y \) axis
\(J \) Jacobian determinant of transformation
\(\mathbf{J} \) Mean intensity averaged over line profile, \(\int \phi \mathbf{J} \, d\nu \)
\(J(f_i, f_i) \) Boltzmann collision integral for functions \(f_i \) and \(f_i \)
\(J(x, t; \nu), J \) Monochromatic mean intensity
\(k \) Boltzmann constant
\(k \) Wave number
\(k_{\text{eff}} \) Dimensionless coefficient in pseudoviscosity
\(k_s, k_p, k_\varepsilon \) Components of wave vector in \((x, y, z) \) directions
\(\mathbf{k} \) Unit vector along \(z \) axis
\(K \) Wave vector
\(K \) Coefficient of thermal conductivity
\(K_e \) Electron thermal conduction coefficient
\(K_s \) Conduction coefficient of a Lorentz gas
\(K_p \) Proton thermal conduction coefficient
\(K_r \) Radiative conductivity
\(K^* \) Photon propagation four-vector
\(L_{\text{eff}} \) (\(c/4\pi \)) \(P_e \)
\(\mathbf{K} \) Total conductivity of radiating fluid
\(\mathbf{K}_n \) Knudsen number
\(l \) Characteristic length
\(\ell \) Affine path-length variable
\(L \) Wave damping length
\(L_e \) Eddington luminosity
\(L(r, t), L(r), L_n, L \) Luminosity passing through sphere of radius \(r \)
\(\mathbf{L} \) Linear difference operator
\(L_n, L_n^* \) Lorentz transformation matrix
\(\mathcal{L} \) Radiative loss rate per unit mass
\(\mathcal{L} \) Thermalization length
\(m \) Mass
\(m \) Column mass
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Electron mass</td>
</tr>
<tr>
<td>m</td>
<td>Relativistic mass</td>
</tr>
<tr>
<td>m_e</td>
<td>Electron mass</td>
</tr>
<tr>
<td>m_{H}</td>
<td>Mass of hydrogen atom</td>
</tr>
<tr>
<td>m_p</td>
<td>Proton mass</td>
</tr>
<tr>
<td>μ</td>
<td>Rest mass</td>
</tr>
<tr>
<td>\dot{m}</td>
<td>Mass flux (planar geometry)</td>
</tr>
<tr>
<td>\tilde{m}</td>
<td>Reduced mass of collision partners</td>
</tr>
<tr>
<td>M</td>
<td>$M_1^2 - 1$, where M_1 is upstream Mach number in shock</td>
</tr>
<tr>
<td>M_{cr}</td>
<td>Critical Mach number</td>
</tr>
<tr>
<td>M_{c}</td>
<td>Mass contained within sphere of radius r</td>
</tr>
<tr>
<td>M^\prime</td>
<td>Photon four-momentum</td>
</tr>
<tr>
<td>M^{as}</td>
<td>Material stress-energy tensor</td>
</tr>
<tr>
<td>$M(t)$</td>
<td>Radiation force multiplier</td>
</tr>
<tr>
<td>M</td>
<td>Mach number</td>
</tr>
<tr>
<td>M_{st}</td>
<td>Mass of star</td>
</tr>
<tr>
<td>\dot{M}</td>
<td>Radial mass flux (spherical geometry)</td>
</tr>
<tr>
<td>\mathbf{M}</td>
<td>Material stress-energy tensor</td>
</tr>
<tr>
<td>n</td>
<td>Number of moles of gas</td>
</tr>
<tr>
<td>n_e</td>
<td>Number density of free electrons</td>
</tr>
<tr>
<td>n_{H}</td>
<td>Number density of neutral hydrogen atoms</td>
</tr>
<tr>
<td>n_i^eq</td>
<td>Number density in level i in thermal equilibrium</td>
</tr>
<tr>
<td>n_p</td>
<td>Number density of protons</td>
</tr>
<tr>
<td>n_s</td>
<td>Number density of particles of species s</td>
</tr>
<tr>
<td>$n_{x_1}, n_{x_2}, n_{x_3}$</td>
<td>Components of photon propagation vector in (x, y, z) directions</td>
</tr>
<tr>
<td>n_i</td>
<td>Number density of ions</td>
</tr>
<tr>
<td>$n(k)$</td>
<td>Inverse radiative relaxation time for disturbance of wavenumber k</td>
</tr>
<tr>
<td>$n_{E}(k)$</td>
<td>Inverse radiative relaxation time in Eddington approximation for disturbance of wavenumber k</td>
</tr>
<tr>
<td>\mathbf{n}</td>
<td>Direction of photon propagation</td>
</tr>
<tr>
<td>\mathbf{n}</td>
<td>Unit normal to surface</td>
</tr>
<tr>
<td>N</td>
<td>Total number density of particles</td>
</tr>
<tr>
<td>N_{H}</td>
<td>Number density of all (neutral plus ionized) hydrogen atoms</td>
</tr>
<tr>
<td>N_j</td>
<td>Number density of ion state j in all excitation states</td>
</tr>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
</tr>
<tr>
<td>N'</td>
<td>Total number of particles in volume V</td>
</tr>
<tr>
<td>p</td>
<td>Impact parameter</td>
</tr>
<tr>
<td>p</td>
<td>Pressure</td>
</tr>
<tr>
<td>p_{gas}, p_{ion}</td>
<td>Gas pressure</td>
</tr>
<tr>
<td>p_{e}</td>
<td>Photoionization probability</td>
</tr>
<tr>
<td>p_{i}</td>
<td>Pressure perturbation in wave</td>
</tr>
<tr>
<td>\tilde{p}</td>
<td>Total pressure in radiating fluid, $p_{\text{gas}} + p_{\text{ion}}$</td>
</tr>
<tr>
<td>\mathbf{p}</td>
<td>Momentum</td>
</tr>
<tr>
<td>\tilde{p}</td>
<td>Fractional pressure jump across shock front, $(p_2 - p_1)/p_1$</td>
</tr>
<tr>
<td>P</td>
<td>Complex amplitude of pressure perturbation in a wave</td>
</tr>
<tr>
<td>P_{zz}, P_{rr}</td>
<td>zz or rr component of radiation pressure tensor</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>P^*</td>
<td>Thermal radiation pressure</td>
</tr>
<tr>
<td>P_c</td>
<td>Average collision probability per unit length</td>
</tr>
<tr>
<td>P_i</td>
<td>Photon destruction probability</td>
</tr>
<tr>
<td>P_{ij}</td>
<td>Probability of transition from level i to level j</td>
</tr>
<tr>
<td>P_{ab}, P_{bb}, P_{bb}</td>
<td>Diagonal components of radiation pressure tensor in spherical geometry</td>
</tr>
<tr>
<td>P_{xx}, P_{yy}, P_{zz}</td>
<td>Diagonal components of radiation pressure tensor in planar geometry</td>
</tr>
<tr>
<td>p^a</td>
<td>Four-momentum</td>
</tr>
<tr>
<td>p^a_α</td>
<td>Projection tensor</td>
</tr>
<tr>
<td>$p^{a\beta}$</td>
<td>Radiation pressure tensor</td>
</tr>
<tr>
<td>P_{zz}</td>
<td>zz or rr components of monochromatic radiation pressure tensor</td>
</tr>
<tr>
<td>P^β</td>
<td>Monochromatic thermal radiation pressure</td>
</tr>
<tr>
<td>$P_c(\tau)$</td>
<td>Photon escape probability</td>
</tr>
<tr>
<td>$\bar{P}(x, t; v), \bar{P}_c$</td>
<td>Mean monochromatic radiation pressure</td>
</tr>
<tr>
<td>Pe</td>
<td>Peclet number</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>Θ^ρ_{σ}</td>
<td>Tensor part of Eckart decomposition of radiation stress-energy tensor</td>
</tr>
<tr>
<td>\mathbf{P}</td>
<td>Projection tensor</td>
</tr>
<tr>
<td>\mathbf{P}</td>
<td>Radiation pressure tensor</td>
</tr>
<tr>
<td>$\mathbf{P}(x, t; v), P_c$</td>
<td>Monochromatic radiation pressure tensor</td>
</tr>
<tr>
<td>q</td>
<td>Heat transferred to unit mass of gas</td>
</tr>
<tr>
<td>\dot{q}</td>
<td>Rate of heat input to gas</td>
</tr>
<tr>
<td>q_c</td>
<td>Sphericality factor</td>
</tr>
<tr>
<td>$q(\tau)$</td>
<td>Hopf function</td>
</tr>
<tr>
<td>\mathbf{q}</td>
<td>Thermal conduction flux</td>
</tr>
<tr>
<td>$\mathbf{q}^\alpha_{\alpha+1}$</td>
<td>Integrated heat input to flow at time $t^\alpha_{\alpha+1}$</td>
</tr>
<tr>
<td>Q</td>
<td>Heat gained or lost by gas</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>Viscous pressure, pseudoviscous pressure</td>
</tr>
<tr>
<td>\dot{Q}</td>
<td>$-(\partial \ln \rho^\delta / \partial \ln T)_0$</td>
</tr>
<tr>
<td>Q^α</td>
<td>Heat-flux four-vector</td>
</tr>
<tr>
<td>\mathbf{Q}</td>
<td>Pseudoviscosity tensor</td>
</tr>
<tr>
<td>r</td>
<td>Radial coordinate in spherical coordinate system</td>
</tr>
<tr>
<td>\dot{r}</td>
<td>Ratio of continuum to line opacity, κ_c / κ_l</td>
</tr>
<tr>
<td>r_0</td>
<td>Critical radius in stellar wind</td>
</tr>
<tr>
<td>r_t</td>
<td>Radial position of shock</td>
</tr>
<tr>
<td>r_s</td>
<td>Sonic radius in stellar wind</td>
</tr>
<tr>
<td>r_{00}</td>
<td>Maximum compression ratio in shock $(\gamma + 1)/(\gamma - 1)$</td>
</tr>
<tr>
<td>\mathbf{r}</td>
<td>Radial unit vector in spherical coordinate system</td>
</tr>
<tr>
<td>\mathbf{r}</td>
<td>Generalized Lagrangean radial coordinate</td>
</tr>
<tr>
<td>R</td>
<td>Complex amplitude of density perturbation in a wave</td>
</tr>
<tr>
<td>\mathbf{R}</td>
<td>Gas constant for particular gas</td>
</tr>
<tr>
<td>\mathbf{R}</td>
<td>Spectral radius of matrix</td>
</tr>
<tr>
<td>\mathbf{R}</td>
<td>Stellar radius</td>
</tr>
<tr>
<td>R_{ij}</td>
<td>Radiative rate from level i to level j</td>
</tr>
</tbody>
</table>
GLOSSARY OF PHYSICAL SYMBOLS

\(T_p \) Proton temperature
\(T_R \) Radiation temperature
\(T_\gamma \) Temperature perturbation in wave
\(T_- \) Temperature immediately in front of shock
\(T_+ \) Temperature immediately behind shock
\(T \) Stress tensor
\(u \) Fluid speed relative to shock front
\(u \) Speed
\(u \) Velocity component along x axis
\(u_D \) Critical speed of D-type ionization front
\(u_2 \) Horizontal component of group velocity
\(u_R \) Critical speed of R-type ionization front
\(\mathbf{u} \) Particle velocity
\(U \) Complex amplitude of horizontal component of wave velocity
\(U \) Random particle speed
\(U_x, U_y, U_z \) Components of particle random velocity in (x, y, z) directions
\(\mathbf{U} \) Random velocity of particle
\(U_1 \) Dimensionless random particle speed
\(U_i \) i-th component of dimensionless random particle velocity
\(\mathbf{U}_i \) Traceless outer product of dimensionless random velocity components
\(\mathbf{U} \) Dimensionless random particle velocity
\(v \) Specific volume (1/\(\rho \))
\(v \) Speed
\(v \) Velocity component along y axis
\(v_\infty \) Critical velocity in stellar wind
\(v_{esc} \) Escape velocity
\(v_g \) Group speed
\(v_i \) Velocity gradient tensor
\(v_p \) Phase speed
\(v_r \) Radial velocity in spherical coordinate system
\(v_s \) Shock speed
\(v_\phi \) Phase trace speed
\(v_x, v_y, v_z \) Components of velocity in (x, y, z) directions
\(v_\theta \) Tangential velocity in spherical coordinate system
\(v_\phi \) Azimuthal velocity in spherical coordinate system
\(v_\infty \) Terminal flow speed in stellar wind
\(v \) Fluid velocity
\(v_x \) Group velocity
\(v_1 \) Velocity perturbation in wave
\(\mathbf{V} \) Specific volume in shock theory (1/\(\rho \))
\(\mathbf{V} \) Volume
\(\mathbf{V}_o \) Four-velocity
\(\mathbf{V} \) Material volume (fixed in fluid)
\(w \) Velocity component along z axis
\(w_k \) Vertical component of group velocity
\(w_k \) Quadrature weight
\(w_k \) Vertical component of wave velocity
\(\mathbf{W} \) Complex amplitude of vertical component of wave velocity
W \text{ Rate of energy input from nonmechanical sources} \\
W \text{ Thermodynamic probability} \\
W_{n+1} \text{ Boundary work term in flow at time } t^{n+1} \\
x \text{ Cartesian coordinate} \\
x \text{ Degree of ionization [e.g., } n_e/(n_n + n_p)] \\
x \text{ Dimensionless frequency displacement from line center, } (v-n_0)/\Delta n_0 \\
x_F \text{ Position of a front} \\
x \text{ Position vector} \\
x_s \text{ Fluid displacement in wave} \\
X \text{ Complex amplitude of horizontal component of wave displacement} \\
X[f(x)] \text{ } X \text{ operator} \\
y \text{ Cartesian coordinate} \\
z \text{ Cartesian coordinate} \\
z \text{ Dimensionless radiative relaxation rate, } n_{th} \\
z \text{ Dimensionless wavenumber, } ak/\omega \\
Z \text{ Charge number} \\
Z \text{ Complex amplitude of vertical component of wave displacement} \\
Z_{	ext{elec}} \text{ Partition function} \\
Z_{	ext{rot}} \text{ Partition function for molecular rotation} \\
Z_{	ext{trans}} \text{ Partition function for translational motions} \\
Z_{\text{vib}} \text{ Partition function for molecular vibration} \\
\alpha \text{ Angle of wave phase propagation relative to horizontal plane} \\
\alpha \text{ Exponent in power-law potential} \\
\alpha \text{ Exponent in radiation force law} \\
\alpha \text{ Ratio of radiation pressure to gas pressure in thermal equilibrium, } P^*/p_X \\
\bar{\alpha} \text{ Mean photoionization cross section} \\
\alpha_{bb}(\nu) \text{ Bound-bound absorption cross section} \\
\alpha_{bf}(\nu) \text{ Bound-free absorption cross section} \\
\alpha_{vf}(\nu, T) \text{ Free-free absorption cross section} \\
\alpha_{p} \text{ Photoionization cross section} \\
\beta \text{ Coefficient of thermal expansion} \\
\beta \text{ Effective line optical depth in stellar wind} \\
\beta \text{ } 1/kT \\
\beta \text{ } v/c \\
\beta_l \text{ } (n_e\sigma_c/\chi_l) = l/\pi_l \\
\gamma \text{ Ratio of specific heats} \\
\gamma \text{ } (1-v^2/c^2)^{-1/2} \\
\gamma \text{ Dimensionless relative velocity of collision partners} \\
\Gamma \text{ Circulation} \\
\Gamma \text{ Force ratio } g_F/g \\
\Gamma, \Gamma_1, \Gamma_2, \Gamma_3 \text{ Generalized adiabatic exponents} \\
\Gamma_{bc} \text{ Ricci rotation coefficient} \\
\Gamma \text{ Dimensionless center of mass velocity}
GLOSSARY OF PHYSICAL SYMBOLS

\(\delta \)
Continuum destruction probability

\(\delta \)
Width of shock front

\(\delta_{AB} \)
Phase shift between quantities \(A \) and \(B \) in a wave

\(\delta_{ij} \)
Kronecker delta symbol

\(\delta(x) \)
Dirac delta function

\((\delta/\delta t) \)
Intrinsic derivative with respect to time

\(\Delta \)
Thickness of temperature relaxation layer

\(\Delta_{10} \)
Line Doppler width

\(\varepsilon \)
Momentum flux in stellar wind normalized to momentum in radiation field

\(\varepsilon \)
Rate of thermonuclear energy release (per gram)

\(\varepsilon \)
Thermalization parameter

\(\varepsilon_{\nu}, \varepsilon_{\omega} \)
Transformation between coordinate and tetrad frames

\(\varepsilon_{i} \)
Ionization potential (from ground state) of hydrogen

\(\varepsilon_{i} \)
Energy above ground of state \(i \)

\(\varepsilon_{i1} \)
Excitation energy of state \(i \) of hydrogen

\(\varepsilon_{i} \)
Ionization potential above state \(i \)

\(\varepsilon_{n+1} \)
Ionization energy

\(\nu \)
Wave energy density

\(\nu_{0} \)
Residual energy at infinity per particle in stellar wind

\(\nu \)
Mean energy per ionizing photon

\(\nu \)
Basis vectors in orthonormal tetrad frame

\(\nu \)
Basis vectors of coordinate system

\(\zeta \)
Coefficient of bulk viscosity

\(\zeta_{\nu} \)
Bulk viscosity coefficient for radiation

\(\zeta_{i} \)
Vertical displacement of fluid element in a wave

\(\eta \)
Photoionization sink term in line source function

\(\eta_{i} \)
Volume ratio in shock, \(V/V_{i} = \rho_{i}/\rho \)

\(\eta_{\nu} \)
Line emission coefficient

\(\eta_{iab} \)
Lorentz metric

\(\eta_{i} \)
Maximum compression ratio in radiation-dominated shock

\(\eta_{i}(x, t; \theta_{i}, \nu_{i}) \)
Emission coefficient

\(\eta_{i}(x, t; \theta_{i}, \nu_{i}) \)
Scattering emission coefficient

\(\eta \)
Lorentz metric tensor

\(\theta \)
Fluid expansion

\(\theta \)
Polar angle in spherical coordinate system

\(\theta \)
Recombination source term in line source function

\(\theta \)
Time-centering coefficient in implicit difference equations, \(0 \leq \theta \leq 1 \)

\(\theta_{i} \)
Normalized temperature perturbation, \(T_{i}/T_{0} \)

\(\theta \)
Unit vector in direction of increasing polar angle in spherical coordinate system

\(\Theta \)
Complex amplitude of temperature perturbation in a wave

\(\Theta \)
Polar angle of radiation propagation vector relative to local outward normal in planar or spherical geometry

\(\kappa_{c} \)
Continuum opacity

\(\kappa_{E} \)
Absorption mean opacity

\(\kappa_{f} \)
Absorption mean opacity

\(\kappa_{p} \)
Planck mean opacity
\begin{itemize}
\item $\kappa_{\text{P}, \lambda}$ Group Planck mean
\item κ_{λ} Coefficient of adiabatic compressibility
\item κ_{r} Coefficient of isothermal compressibility
\item $\kappa(x, t; n, \nu), \kappa_{\text{r}}, \kappa_{\pi}$ True absorption coefficient
\item λ Coefficient of dilatational viscosity (second coefficient of viscosity)
\item Λ Dimensionless potential energy in stellar wind
\item λ Eigenvalue
\item λ_{p} Particle mean free path
\item λ_{ph} Photon mean free path
\item λ_{R} Free-flight distance of photon in time Δt, $c\Delta t$
\item λ_{R} Rosseland mean free path, χ_R
\item λ_{ν} Photon mean free path at frequency ν, χ_{ν}^{-1}
\item Λ Ratio of maximum to minimum impact parameter
\item Λ Wavelength
\item $\Lambda_{\nu}[f(x)], \Lambda_{\nu}$ Lambda operator
\item Λ Lorentz transformation in Minkowski metric
\item μ Angle cosine of photon propagation vector relative to outward normal, $\mu = \mathbf{n} \cdot \mathbf{k}$ or $\mathbf{n} \cdot \mathbf{\hat{r}}$
\item μ Coefficient of dynamical viscosity
\item μ Mean molecular weight
\item μ_{e} Electron viscosity coefficient
\item μ_{wn} Angle-quadrature point
\item μ_{p} Proton viscosity coefficient
\item μ_{O} Artificial viscosity coefficient
\item μ_{G} Coefficient of radiative viscosity
\item μ_{G} Effective viscosity coefficient for one-dimensional flows, $\mu' = \mu + \frac{2}{3} \zeta$
\item μ Momentum density
\item μ_{w} Wave momentum density
\item ν Frequency
\item ν Kinematic viscosity coefficient (μ/ρ)
\item ν Inverse radiative relaxation time for optically thin disturbance
\item v_i Occupation number of state i (number of particles in state i in volume V)
\item v_0 Line-center frequency
\item ξ Similarity variable
\item ξ_{λ} Average thermal coupling parameter
\item ξ_{λ} Amplification factor of kth Fourier component
\item ξ_{λ} Monochromatic thermalization parameter, $(r + \epsilon \phi_{\lambda})/(r + \epsilon \phi_{\lambda})$
\item ξ_{λ} Horizontal displacement of fluid element in a wave
\item Π Gas pressure ratio in radiating shock
\item Π_{θ} Momentum flux-density tensor
\item Π Momentum flux-density tensor
\item ρ Newtonian density
\item ρ Lab density of proper mass, $\gamma \rho_0$
\item ρ' Lab density of relative mass, $\gamma' \rho_0$
\item ρ_0 Proper density of proper mass
\end{itemize}
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_0</td>
<td>Mass density of fluid including internal energy, $\rho_0(1+e/c^2)$</td>
</tr>
<tr>
<td>ρ_{00}</td>
<td>Mass density of fluid including enthalpy, $\rho_0(1+e/c^2)+p/c^2$</td>
</tr>
<tr>
<td>ρ_0^*</td>
<td>Density perturbation in wave</td>
</tr>
<tr>
<td>ρ_E</td>
<td>$\gamma\rho_{00}$</td>
</tr>
<tr>
<td>σ_e</td>
<td>Thomson electron scattering cross section</td>
</tr>
<tr>
<td>σ_i</td>
<td>Viscous stress tensor</td>
</tr>
<tr>
<td>σ_l</td>
<td>Line scattering coefficient</td>
</tr>
<tr>
<td>σ_R</td>
<td>Stefan–Boltzmann constant</td>
</tr>
<tr>
<td>σ_T</td>
<td>Total collision cross section</td>
</tr>
<tr>
<td>$\sigma_{T(2)}$</td>
<td>Collision cross section in transport coefficient</td>
</tr>
<tr>
<td>$\sigma(u, v)$</td>
<td>Collision cross section</td>
</tr>
<tr>
<td>$\sigma(x, t; n, \nu)$</td>
<td>Scattering coefficient</td>
</tr>
<tr>
<td>σ</td>
<td>Viscous stress tensor</td>
</tr>
<tr>
<td>Σ</td>
<td>Strength of vortex tube</td>
</tr>
<tr>
<td>$\langle\rangle$</td>
<td>Average collision time</td>
</tr>
<tr>
<td>τ</td>
<td>Dimensionless temperature in stellar wind</td>
</tr>
<tr>
<td>τ</td>
<td>Optical depth</td>
</tr>
<tr>
<td>τ_p</td>
<td>Proper time</td>
</tr>
<tr>
<td>τ</td>
<td>Scaled temperature in thermal front</td>
</tr>
<tr>
<td>τ_a</td>
<td>Wave period</td>
</tr>
<tr>
<td>τ_a</td>
<td>Optical thickness of disturbance of frequency ω traveling with speed of sound, ae/ω</td>
</tr>
<tr>
<td>τ_{ac}</td>
<td>Acoustic-cutoff period</td>
</tr>
<tr>
<td>τ_c</td>
<td>Optical thickness of disturbance of frequency ω traveling with speed of light, ck/ω</td>
</tr>
<tr>
<td>τ_e</td>
<td>Electron optical depth of stellar wind</td>
</tr>
<tr>
<td>τ_l</td>
<td>Effective line optical depth</td>
</tr>
<tr>
<td>τ_R</td>
<td>Rosseland optical depth</td>
</tr>
<tr>
<td>τ_Λ</td>
<td>Optical thickness of disturbance of wavelength Λ</td>
</tr>
<tr>
<td>$\tau_\Lambda(x, x')$, τ_Λ</td>
<td>Monochromatic optical depth</td>
</tr>
<tr>
<td>ϕ</td>
<td>Azimuthal angle in spherical coordinate system</td>
</tr>
<tr>
<td>ϕ</td>
<td>Photon number flux</td>
</tr>
<tr>
<td>ϕ</td>
<td>Velocity potential</td>
</tr>
<tr>
<td>ω</td>
<td>Wave phase</td>
</tr>
<tr>
<td>ϕ_n, $\phi(\nu)$</td>
<td>Line profile function</td>
</tr>
<tr>
<td>$\phi(\tau)$, ϕ</td>
<td>Potential</td>
</tr>
<tr>
<td>ϕ</td>
<td>Newtonian three-force</td>
</tr>
<tr>
<td>ϕ_w</td>
<td>Wave energy flux</td>
</tr>
<tr>
<td>$\hat{\phi}$</td>
<td>Unit vector in direction of increasing azimuthal angle in spherical coordinate system</td>
</tr>
<tr>
<td>ϕ</td>
<td>Azimuthal angle of radiation propagation vector around local outward normal in planar or spherical geometry</td>
</tr>
<tr>
<td>Φ</td>
<td>Potential</td>
</tr>
<tr>
<td>Φ</td>
<td>Viscous dissipation function</td>
</tr>
<tr>
<td>Φ_1</td>
<td>Scaled first-order term in Chapman–Enskog solution of Boltzmann equation, f_1/f_0</td>
</tr>
<tr>
<td>Φ^a</td>
<td>Four-force</td>
</tr>
</tbody>
</table>
\(\Phi_i(T) \) Saha–Boltzmann factor of bound state \(i \) of ion state \(j \) relative to ground state of ion \(j-1 \). \(n_i^0 = n_{i,j-1} \Phi_i(T) \)

\(\Phi_i[f(x)] \) Phi operator

\(\chi \) Angle of deflection in collision

\(\chi_e \) Thermal diffusivity, \(K/\rho c_p \)

\(\chi_m \) Flux mean opacity

\(\chi_c(\nu) \) Line absorption coefficient

\(\chi_R \) Rosseland mean opacity

\(\chi_{R,e} \) Group Rosseland mean

\(\chi(x, t; \mathbf{n}, \nu), \chi_e \) Opacity coefficient (per unit volume)

\(\psi \) Dimensionless kinetic energy in stellar wind

\(\psi \) Wave phase

\(\psi(x, t; \mathbf{n}, \nu), \psi_e, \psi \) Photon number density

\(\Psi \) Solution vector in complete linearization method

\(\omega \) Angular frequency

\(\omega \) Solid angle

\(\omega_{ac} \) Acoustic cutoff frequency

\(\omega_{BrV} \) Brunt–Väisälä frequency

\(\omega \) Brunt–Väisälä frequency in isothermal medium

\(\omega_r, \omega_\theta, \omega_\phi \) Radial, tangential, and azimuthal components of vorticity

\(\omega_r, \omega_\theta, \omega_\phi \) Components of vorticity in \((x, y, z)\) directions

\(\omega(\nu), \omega \) Opacity per gram, \(\chi/\rho \)

\(\omega_{ac}(RR) \) Effective acoustic-cutoff frequency in Newtonian cooling approximation

\(\omega_{max}(RR) \) Effective maximum gravity-wave frequency in Newtonian cooling approximation

\(\omega \) Vorticity

\(\Omega \) Solid angle

\(\Omega \) Vorticity tensor

\(\Omega_{RB} \) Covariant rotation tensor

\(i \) Partial derivative with respect to coordinate \(x^i \)

\(i \) Partial derivative with respect to time

\(; \alpha \) Covariant derivative with respect to coordinate \(x^\alpha \)

\(\langle \phi/(\partial t) \rangle \) Eulerian time derivative (space coordinates fixed)

\(\delta_\alpha \) Pfaffian derivative

\(\nabla \) Gradient with respect to wave-vector components

\(\oplus \) Earth symbol

\(\odot \) Sun symbol
Index

Aberration, 325, 467, 492
Ablation front, 618–622, 624
Absolute derivative (see Intrinsic derivative)
Absolute space, 129–130
Absolute temperature, 2–3
Absolute tensor, 667
Absorption
Cross section, 331–332
Probability, 329–330
True (thermal), 326
Absorption coefficient (see Opacity)
Absorption mean opacity, 362, 473
Acceleration
Fluid, 55–57
Four, 138–139
Radiative, 629–645
Terms in comoving-frame transfer equation, 434–437, 445–447, 468–471
Accretion
Flow, 301, 557, 603–607
Shock, 301, 603–607, 610
Acoustic cutoff
Frequency, 193, 598
Period, 288
Acoustic-gravity waves, 184–226
In isothermal atmosphere, 190–201, 536–540
In radiating fluid, 526–549
In solar atmosphere, 102, 540–545
Mainly damped, 538
Mainly propagating, 538
Radiatively damped, 536–549
Acoustic waves, 169–184
Conductive, 179–184
Gravity-modified, 190–226
In radiating fluid, 521–536
Numerical simulation of, 266–268
Radiation-dominated, 521–536
Radiation-modified, 528, 638
Radiative amplification, 535–536
Viscous, 179–184
Adaptive mesh, 288, 433, 484, 604–606
Adiabatic
Acoustic-gravity waves, 184–226
Compressibility, 5, 9–10
Compression or expansion of radiation, 474–475
Exponent, 9–10
Exponent, generalized, 52
Flow of ideal fluid in, 79
Process, 4, 6
Sound speed, 171–173, 181–182, 228, 525, 534
Adiabatic exponent, 9–10
Effective, in radiating fluid, 525
Generalized, 50–53
Ionizing gas plus thermal radiation, 322–324
Perfect gas plus thermal radiation, 320–322
Thermal radiation, 319–320
Amplification factor, 269
Amplification matrix, 271
Amplification of waves, radiative, 535–536
Amplitude functions, wave, 180, 197, 202, 541–542
Angular momentum
Conservation of, 17, 72
Artificial viscosity, 86–88
Tensor, 283–285
von Neumann-Richtmyer, 273–275, 483–485
Associated tensor, 670–671
Atmosphere
Finite, 344
Grey, 355–359
Isothermal, 74, 190–201, 288–291, 536–540, 586–591
Non-grey, 359–366
Semi-infinite, 344, 346–349
Shock propagation in, 586–591
Solar, 193–194, 201, 217–226
Spherical, 344, 350–353
Stellar, 201
Atmosphere (contd.)
- Thermal response of solar, 519–521
- Atmospheric resonance, 192–193

Atom
- Equivalent two-level, 401
- Multi-level, 401–407
- Two-level, 396–398
- Avogadro’s number, 3
- Axial vector, 661

BBGKY hierarchy, 15
- Backward Euler scheme, 277, 394, 460, 480, 486
- Barotropic flow, 76
- Basis, 670–671
- Bernoulli–Euler equation, 76
- Bernoulli’s equation, 76, 297
- Bimolecular collision frequency, 97
- Binary collisions, 11–24
- Black body, 317–318
- Flux from, 318–319
- Blast wave, 291–294, 602
- Blowoff, 618
- Body force, 68–77
- Work done by, 77–81
- Boltzmann equation, 11–15, 102–106
- Chapman–Enskog solution of, 107–126
- Collisionless, 14
- Moments of, 102–106
- Photon, 418, 439, 463
- Boltzmann excitation formula, 41, 386–389
- Boltzmann H-Theorem, 28–29
- Interpretation of, 47
- Boltzmann number, 410, 527–528, 575
- Analogy with Peclet number, 410
- Boltzmann statistics, 37–48
- Boltzmann’s relation, 35–37
- Boltzmann transport equation, 14, 22
- Boost matrix, 136
- Bound-bound absorption-emission process, 329, 330, 332–333
- Bound-free absorption-emission process, 331–333
- Boundary conditions, 77–81
- In Feautrier method, 376
- In numerical simulations, 279
- Radiation transfer, 343–349, 368–370, 405
- Spherical geometry, 379–380, 405
- Boundary layer, 77, 94
- Break-out, shock, 294
- Breeze, stellar, 299–301
- Bremsstrahlung, 332, 585
- Brinkley–Kirkwood theory, 265

Brunt–Väisälä frequency, 185, 191, 212–213, 219
- Temperature-gradient and ionization effects on, 212–213
- Bulk viscosity, 83, 115, 467
- Buoyancy energy density, 189, 200
- Buoyancy force, 184, 185
- Buoyancy frequency, 191, 212
- Buoyancy oscillations, 184–186

Caloric equation of state, 80, 149
- Cauchy–Stokes decomposition theorem, 64–68
- Relativistic generalization, 162
- Cauchy’s equation of motion, 71, 73, 86
- Cavity, chromospheric, 220
- Cell, phase space, 35–37
- Number of quantum states in, 37–49
- Central force, 15–24
- Chapman–Enskog solution, 107–126
- Eucken correction, 117
- Heat flux vector, 113
- Limitations of, 115–116
- Relation to radiation diffusion, 309, 351, 461–471

Viscous stress tensor, 114
- Christoffel symbol, 85, 426, 439, 441, 447, 449, 674–677, 680
- Circulation, 62, 77
- Circulation-preserving flow, 76–77
- Circulation theorem, Kelvin, 76–77
- Closure problem, 340, 455–456, 481–494
- Coefficient
 - Adiabatic compressibility, 5
 - Bulk viscosity, 83
 - Dynamical viscosity, 83
 - Isothermal compressibility, 5
 - Kinematic viscosity, 87
 - Radiative viscosity, 464, 466
 - Shear viscosity, 83
 - Thermal conduction, 90
 - Thermal expansion, 5
- Cofactor, 657
- Collective photon pool, 402
- Collision
 - Cross section, 18
 - Frequency, bimolecular, 97
- Integral
Alternative forms, 23–24
Basic form, 21–22
For photons, 418–420
Probability, 96–99
Rates, 390
Time, 97, 98
Collisionless Boltzmann Equation, 14
Collisions, binary, 11–24
Column mass, 75, 369
Combustion wave, 617–618
Comoving frame, 138, 144, 325–329, 432–494
Complete linearization method (see Linearization method)
Compressibility
 Adiabatic, coefficient of, 5
 Adiabatic, in perfect gas, 10
 Isothermal, coefficient of, 5
 Isothermal, in perfect gas 9
Compression ratio, 235, 560, 581–582
Compressional energy, 177–179, 189, 200
Conditional present, 135
Conditional stability, 269–273
Conduction, radiative, 351, 465
Coefficient of, 351
Conduction, thermal, 90, 96–102, 107–117
 Coefficient of, 90, 96–102, 117–126
 Effects of excitation and ionization, 116–117
 Flux-limiting of, 302
 Fourier’s law, 90, 166
 In ionized gases, 124–126
 In relativistic flow, 162–164
 In shocks, 244–250
 In wind, 295–296, 301–302
 Wave damping by, 179–184
Conduction wave
 Linear, 550
 Nonlinear, 551
Conductivity
 Radiative, 351, 465
 Spitzer–Härm, 302
 Thermal, 551
 Thermal: Chapman–Enskog formulae, 117–126
Conservation laws
 Angular momentum, 72
 Entropy, 79, 166
 For equilibrium flow, 106–107
 General, from Boltzmann equation, 102–106
 In ionization front, 614
 In radiating fluid, 426–432, 448–503
 In shock, 231–239, 557–585
 Linearized, 170, 187–189
 Particle flux, 146
 Conservation relation, discrete form, 268, 277–287, 484–489
 Conservation theorem, Boltzmann equation, 103
Constant flux approximation, 554
Constitutive relations, 80, 147–149
Continuity, equation of, 60–62, 102–106, 145–146
 Linearized, 170, 187–188
 Relativistic, 146
 Species, 389
Continuum
 Gas as, 11–15
 Ionization, 48
 Continuum absorption coefficient (see Opacity)
 Convection, tensor, 655–656
 Convective stability, 185
 Coronal expansion, 295–296
 Coulomb force, 29–35, 123–126
 Cutoff procedure for, 31–34
 Courant
 Condition, 270, 280, 489
 Limit, 280
 Time, 285
 Covariance, 129–130, 651
 Covariance of laws of physics, 129–130
 Covariant
 Derivative, 676–679
 Tensor, 664–666
 Vector, 664–666
 Convective stability, 185
 Coronal expansion, 295–296
 Coulomb force, 29–35, 123–126
 Cutoff procedure for, 31–34
 Critical
 Points, multiple in wind, 303
 Radius, 297, 636–639
 Solution, 298, 636–639
 Velocity (speed),
 In radiatively-driven wind, 638
 In shock, 234
 In wind, 297
 Cross section
 Absorption, 331–332
 Collision, 18, 390
INDEX

Cross section (contd.)
Differential, 18–21
Carl, 659–661, 679–681
Curvature effects, 490
Curvature of spacetime, intrinsic, 152
Curvilinear coordinates, 73–74
Cutoff frequency
Acoustic, 193, 538
Gravity-wave, 538
Cutoff period
Acoustic, 288
Cycle, thermodynamic, 7–8
Irreversible, 7–8, 232–233, 245–248, 585
Reversible, 7–8
Schatzmann, 585
Weymann, 585, 594

D-front (see also Ionization fronts), 611–627
Dalton’s law of partial pressures, 27
DeBroglie wavelength, 12
Debye length, 32, 124, 255
Decomposition theorem
Cauchy–Stokes, 64–68, 162
Eckart, 160, 462
Deflagration, 617–618
Deflection time, 30, 33
Degeneracy, degree of, 37
Hydrogen bound state, 48–49
Degenerate
Gas, 160
States, 37
Degree of freedom, 251–254
Degree of ionization, 50–55, 251
Density
Gas, 2–3
Hydrogen plasma, 50–53
Of proper mass in lab frame, 145–146
Of relative mass in lab frame, 145–146
Power law, 588
Proper, 145–146
Density scale height, 190, 213
Departure coefficients, 394, 401
Derivative
Absolute, 676–679
Comoving, 56, 145
Covariant, 57, 676–679
Eulerian, 56
Fluid-frame, 56
Intrinsic, 57, 145, 676–679
Lagrangian, 56, 145
Material, 56
Pfaffian, 440
Proper time, 144–145

Substantial, 56
Detailed balance, principle of, 24, 387, 391
Determinant, 656–658
Jacobian, 664–666
Detonation, 617–618
Diagnostic diagram, 191–194, 220–221
Temperature-gradient and ionization effects on, 220–221
Difference equations (see Finite difference equations)
Differential
Exact thermodynamic, 4
Inexact thermodynamic, 4
Differential cross section, 18–21
Invariance properties, 20–21
Diffusion, radiation, 341–353, 421–481
Dynamic, 343, 352, 431, 447, 458
Equilibrium, 457–472
Eulerian, 461
Flux-limiting of, 458, 478–481
Multigroup, 476–477
Nonequilibrium, 458, 472–478, 555–557
Relation to Chapman–Enskog solution, 309, 351, 461–468
Second-order, 458–459
Time-dependent, 341–342, 353, 479–481
Diffusion time, radiation, 342, 353, 447, 449, 458, 478
Dilatation, 67–68
Direct mean opacity, 475
Discrete ordinates, method of, 358, 555
Discrete-space method, 383, 497
Dispersion relation
Acoustic-gravity waves, 190–191
Acoustic waves in radiating fluid, 523, 525, 531
Damped acoustic waves, 180–183
Equilibrium diffusion regime, 525
Radiatively-damped thermal fluctuations, 514
Dissipation
By radiative viscosity, 469
Function, 89, 91–92, 284, 469
In shocks, 226–239, 241–259
In waves, 179–184
Viscous, 88–93
Dissipation zone, 250, 582, 584
Distinguishable particles, 38
Distribution function
Boltzmann, 37–48, 386–389
Equilibrium, 37–48
Invariance of, 153, 312
Maxwellian, 24–28
INDEX

Particle, 14, 153, 387–388
Photon, 311–312, 414, 418–420, 439, 463
Photon, for black-body radiation, 463
Saha–Boltzmann, 48–49, 386–389
Divergence, 659–661, 679–681
Divergence theorem, 662–663
Doppler
Core, of spectral line, 327
Shift, effect on opacity, 325
Shifts, 333, 410, 413, 474
Width, 399
Drift instability, 549, 645
Driven harmonic disturbance, 179–184, 521–549
Dual, tensor, 661–662
Dynamical friction, 30
Dynamical time (see Fluid-flow time)

Eckart covariant material heat-conduction vector, 465
Eckart decomposition theorem, 160, 163, 462
Eddington approximation, 357, 377, 481, 510–519, 526–535
Eddington–Barbier relation, 346, 611
Eddington factor (see Variable Eddington factor)
Eddington–Krook boundary condition, 367
Eddington-limit luminosity, 628–630
Eddington variables, 341
Effective temperature, 351
Eigenvectors, 514
Einstein coefficients, 329–330
Einstein–Milne relations, 331
Einstein relations, 329–30
Electron avalanche, 258
Electron-isothermal shock, 257
Ellipsoid, rate of strain, 68, 91
Emission
Induced, 329, 332
Spontaneous, 329, 332
Stimulated, 329, 332, 391
Emission coefficient (see Emissivity)
Emissivity, 325
Anisotropy in lab frame, 326
Continuum, 331–333
Invariant, 414, 419, 438–443, 463
Isotropy in comoving frame, 326, 413–414
Line, 329–330, 333
Lorentz transformation of, 413–414
Thermal, 326, 333
Energy
Buoyancy, 189, 200
Compressional, 177–179, 189, 200
Equi-partition of, 27
Excitation, 41
Gravitational, 189, 200
Inertia of, 142
Ionization, 48
Relativistic, 142, 155–158
Rest, 142
Translational, 26, 44
Wave, 177–179, 189, 200
Energy conservation, numerical, 280–282, 489
Energy density
Material, 155–156, 177–179, 189, 200
Radiation, 351–352, 317–318
Radiating fluid, 322, 324, 468
Energy dissipation, 82–85, 89–90
In shocks, 236–239, 241–259, 585–596
In waves, 179–184, 521–549
Energy equation
From kinetic theory, 105–106
Gas, 77–81, 89, 92, 151, 186–187, 429–430, 454, 478, 484, 499, 522, 527
Linearized, 170, 187–188
Mechanical, 77–78, 89, 429–430
Radiating fluid, 429–432, 451–455, 460, 468, 499
Relativistic, 164–166
Wave, 177–179, 186–187
Energy-exchange time, 30, 33
Implications for shock structure, 255–256
Energy flux
Material, 78, 88, 178, 189, 200
Radiating fluid, 468
Total, 452, 468–469
Wave, 177–179, 189, 538
Energy flux density, 78, 157–159
Enthalpy
Ionizing gas, 51
Nonequilibrium gas, 395
Perfect gas, 9, 26
Perfect gas plus thermal radiation, 321
Radiating fluid, 321, 469, 471
Relativistic, 148
Specific, 6, 26
Entropy, 7–8
Entropy (contd.)
From partition function, 45
Perfect gas, 9–10, 27, 45, 47
Perfect gas plus thermal radiation, 320–321
Relation to thermodynamic probability, 36–37
Specific, 7–8, 45
Thermal radiation, 319
Entropy conservation, equation of, 79, 90–91, 165–166
Entropy flux density, 79, 166
Entropy generation
By radiation conduction, 469
By radiative viscosity, 469
By thermal conduction, 89–91
By viscosity, 89–91
Equation, 90, 165
In shocks, 236–239, 241–259
Entropy jump in shock, 236, 247–248
Equation of continuity, 60–62, 104–105, 146
From kinetic theory, 104
Linearized, 170, 187
Relativistic, 146
Equation of entropy conservation, 79, 90–91, 165–166
Equation of motion
Cauchy’s, 73
Euler’s, 73
From kinetic theory, 104–105
Linearized, 170, 187
Navier–Stokes, 86, 108, 167
Radiating fluid, 428–429, 448–449, 452–455, 460, 468, 483, 485, 499
Relativistic, 151–152, 166–167
Equation of state
Caloric, 80
Extreme relativistic, 159
Ionizing gas, 50–53
Ionizing gas plus thermal radiation, 322–324
Linearized, 525
Perfect gas, 2, 43–45
Perfect gas plus thermal radiation, 320–322
Relativistic, material, 159
Thermal radiation, 319–320
Equation of transfer (see Transfer equation)
Equations of radiation hydrodynamics
Comoving frame, 448–455
Consistency of, 452–455, 503
Diffusion limit, 457–481
Eulerian, 426–432, 477–478
Inertial frame, 426–432
Lagrangian, 448–455, 457–494
Mixed frame, 422–423, 494–500
Quasi-Lagrangian, 428–431
Shock frame, 558–559, 614–615
VERA form, 476–478, 500–503
Equilibrium
Flow, 106–107
Hydrostatic, 74–75, 404
Local thermodynamic, 310, 328, 332–333, 386–389
Radiative, 338, 403
Statistical, 386, 389–402, 614
Thermodynamic, 3–8, 310, 316
Equi-partition of energy, 27
Escape probability, photon, 399
Eucken correction, 117
Euler expansion formula, 58–60
Eulerian time derivative, 56
Euler’s equation of motion, 70–77
Linearized, 170, 187–188
Evanescent waves, 193, 204–207
Evaporation, 618
Event, 133
Exchange mode, 515–519
Exclusion principle, Pauli, 44
Expansion
Euler formula, 58–59
Fluid, 58, 68, 162
Explosion
Nova, 285
Point, 291–293
Supernova, 293, 596–602
Radiation-driven, 622–627
Exponential integral, 347–348
Extinction coefficient (see Opacity)
Feautrier method, 374, 380, 406–407, 496
Field
Scalar, 651
Tensor, 651
Vector, 651
Finite difference equations
Backward Euler, 277
Complete linearization, 403–406
Equations of hydrodynamics, 266–288
Equations of radiation hydrodynamics, 485–489, 494–503
Explicit, 268, 276, 277–285
Heat-conduction equation, 275
Implicit, 276–277, 285–288
Radiation diffusion, 457–481
Radiation transfer, 371
Stability of, 269–273
INDEX

Statistical equilibrium equations, 389–395
Fireball, 622
First law of thermodynamics, 3–7
Expressed in terms of various state variables, 186–187
For equilibrium radiation, 319
For material in radiating fluid, 449
For perfect gas plus thermal radiation, 320
For radiating fluid, 450, 460, 469, 471, 511
For radiation, 450, 460
Gas energy equation as, 78–79
Flame front, 617
Flow
Accretion, 410, 488, 603–607
Barotropic, 76
Circulation-preserving, 77
Equilibrium, 106–107
Eulerian description, 55
Homentropic, 79
Incompressible, 61, 76
Irrotational, 62, 77
Isentropic, 79
Lagrangian description, 56
Laminar, 94
Near ionization front, 615–627
Nonequilibrium, 107–126
Potential, 75–76, 170–172
Radiation, 341–385
Steady, 61, 76, 80–81, 93, 296–297, 452
Subsonic, 96, 298
Supersonic, 96, 298
Transonic, 96, 295–301, 627–645
Turbulent, 94
Flow velocity, 56
Kinetic theory definition, 13, 104, 153
Fluctuations, thermodynamic, 41–43
Fluid
Ideal, 55–81, 106–107
Maxwellian, 84, 102–106, 107–117
Newtonian, 83
Nonideal, 70, 82–127
Non-Newtonian, 72
Polar, 72
Radiating, 426–432, 448–549, 557–645
Real, 70
Stokesian, 83
Viscous, 70, 82–85, 89, 102–106, 107–126
Fluid displacement, 185
Fluid-flow time, 250, 342, 426–455, 479
Fluid frame (see Comoving frame),

Flux-limiting
In supernova simulation, 601
Radiation diffusion, 458, 478–481
Thermal conduction, 302
Flux mean opacity, 361, 457–481
Flux, radiation, 313–314
Emergent from blackbody, 318–319
Emergent from star, 351
In diffusion regime, 320–353, 457–481
Fokker–Planck equation, 30–34, 125
Force
Body, 68–81, 88
Buoyancy, 184–185
Central, 15–24
Coulomb, 29–35, 123–126
Density of, 149
Four, 141
Gravitational, 74–75
Line, 627–645
Power-law, 123
Radiation, 339, 417–418, 627–645
Surface, 68, 77, 88
Viscous, 82–85, 97, 467
Force density
Four, 149, 417–418
Newtonian, 147, 427
Radiation, 417–418
Formal solution of transfer equation, 343–349, 373
Four acceleration, 139, 161
Four force, 141
Density, 149, 417–418
Radiation, 417
Four momentum, 140
Photon, 143, 412–413
Four tensor, 137
Four vector, 136–137
Four velocity, 138
Fourier's law of heat conduction, 90
Relativistic form, 166
Frame
Comoving, 138, 144, 325, 432–494
Inertial, 129, 421–426
Mixed, 423, 494–503
Noninertial, 420
Proper, 138, 144
Reference, 129, 130
Shock's, 230–232, 558–559
Tetrad, 439–440
Free boundary, 279
Free-molecule flow, 99
Frequency
Acoustic-cutoff, 193
Brunt–Väisälä, 185, 191, 212–213
<table>
<thead>
<tr>
<th>Frequency (contd.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lorentz transformation of photon, 412–413</td>
</tr>
<tr>
<td>Photon, 143, 311–312, 412–413</td>
</tr>
<tr>
<td>Wave, 173</td>
</tr>
<tr>
<td>Frequency groups, 364, 475–477</td>
</tr>
<tr>
<td>Frequency-shift of radiation by adiabatic compression or expansion, 474–475</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Front</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablation, 618–622, 624</td>
</tr>
<tr>
<td>Flame, 617</td>
</tr>
<tr>
<td>Ionization, 611–627</td>
</tr>
<tr>
<td>Thermal, 549–557</td>
</tr>
</tbody>
</table>

| Galilean relativity, 129 |
| Galilean transformation, 129, 130, 558 |
| Gas |
| Binary, 125 |
| Dilute, 2, 99 |
| Ionizing, 48–53 |
| Mixture, 27–28, 125–126 |
| Perfect, 2 |
| Relativistic, 152–160 |
| With internal excitation, 45–47 |
| Gas constant, 2 |
| Gas energy equation |
| Linearized, 187–188, 522, 527 |
| Material fluid, 77–81, 89, 92, 151, 186–187 |
| Radiating fluid, 429–430, 449, 478, 499 |
| Relativistic, 151 |
| Gaseous nebulae, 582, 618 |
| Gauss formula for quadrature weights, 359 |
| Gaussian elimination, 277, 280, 286, 375, 406, 460, 488 |
| Gauss's theorem, 662–663 |
| General relativity |
| Dynamical equations, 152 |
| Metric, 152 |
| Geodesic, 419, 432, 681–682 |
| Geometrical acoustics, 208–210 |
| Gibbs paradox, 38 |
| Gradient, 659–661, 679–681 |
| Gravitational energy density, 189 |
| Gravity waves (see Acoustic-gravity waves) |
| Group velocity, 175–177, 194–197 |
| Growth factor, 269 |

| Harmonic mean opacity, 365, 475 |
| Heat capacity |
| Ionizing gas plus thermal radiation, 323 |
| Material, 4 |
| Perfect gas plus thermal radiation, 320–322 |
| Thermal radiation, 320 |
| Heat-conducting shock, 244–250 |
| Heat conduction (see Thermal conduction) |
| Heat flux |
| Inertia of, 166–167, 449, 469, 471 |
| Material, 88–89, 101, 106, 113, 162–166, 299–301 |
| Radiation, 313, 460, 468–469 |
| Heat transfer coefficient, 95 |
| Heaviside function, 349 |
| Helmholtz's vortex theorem, 63 |
| Hermite integration formula, 372 |
| Hohraum, 316–318 |
| Homentropic flow, 79 |
| Homogeneity of space, 131 |
| Hopf function, 356 |
| Hugoniot curve, 232, 236, 252–253, 580–582 |
| Nonequilibrium, 252–253 |
| Hydrogen plasma |
| Debye length in, 32 |
| Ionizing, 48–53 |
| Time of relaxation for, 33 |
| Thermal conduction in, 124–125 |
| Shocks in, 254–258, 569–570 |
| Viscosity of, 124–125 |
| Hydrostatic equilibrium, 74–75, 404 |
| Hydrostatic stress, 70 |

| Ideal fluid, 55–81, 106–107, 144–160 |
| Impact parameter, 17 |
| Impact pressure, 301 |
| Implosion, radiation-driven, 621 |
| Incompressible flow, 61, 76 |
| Indices, tensor, 650, 670–671 |
| Dummy, 651 |
| Raising and lowering, 670–671 |
| Induced emission (see Stimulated emission) |
| Inelastic collision time, 388 |
| Inertial frame, 129, 421–432, 444 |
| Initial conditions, 81, 344 |
| Instability |
| Absolute, 645 |
| Drift, 549, 645 |
| Numerical, 269–273 |
| Of radiatively-driven wind, 645 |
| Of rarefaction discontinuity, 233, 239 |
| Rayleigh–Taylor, 601, 603 |
Thermal, 513, 608
Insulating layer, 620
Integral equation, 346–349
Integrodifferential equation, 335
Intensity, radiation
Emergent, 346
Invariant, 414
Lorentz transformation of, 413–414
Mean, 312
Specific, 311
Interaction volume, 310
Internal energy
Extreme relativistic, 159
Ionizing gas, 50–51
Ionizing gas plus thermal radiation, 322
Gas with internal excitation, 46
Nonequilibrium gas, 395–396
Perfect gas, 9, 26, 46
Perfect gas plus thermal radiation, 320–322
Internal gravity waves (see Acoustic-gravity waves)
Interstellar medium, shock transition, 301
Interval, spacetime, 133
Classification of, 133–134
Intrinsic curvature of spacetime, 152
Intrinsic derivative, 57, 145, 676–679
Relation to Lagrangean derivative, 57, 676–679
Invariant emissivity, 414, 419, 438–443, 463
Invariant intensity, 414
Invariant opacity, 414, 419, 438–443, 463
Invariant photon distribution function, 311, 419, 438–443, 463
Blackbody radiation, 463
Ionization, 48–49
By collisions, 390
By photons, 331, 388, 391
Degree of, 50
Effects on Brunt–Väisälä frequency, 212–213
Effects on diagnostic diagram, 220–221
Effects on heat conduction, 116–117
Fraction, 322
Potential, 48–49
Saha formula, 48–50, 323, 332, 388
Ionization front, 287, 611–627
Ionization potential, 48–49
For Hydrogen, 49
Irradiational flow, 62, 77
Isentropic flow, 79
Isothermal
Atmosphere, 74, 190–201, 288–291, 536–540, 586–591
Compressibility, 5, 9
Shock, 249, 582–583
Sound speed, 382, 297, 526
Wind, 297–299
Isotropization mode, 515–519
Jacobian, 22, 58–60, 442, 664–666
Jeans unstable protostellar cloud, 604, 621
Joule–Kelvin experiment, 4, 26, 36
Jump relations
Ionization front, 612–615
Kappa mechanism, 595, 608
Kelvin’s circulation theorem, 76–77
Kelvin’s equation, 63
Kinematic viscosity, 87
Kinetic energy density, wave, 178, 189, 200
Kinetic temperature, 25, 105
Kirchhoff–Planck relation, 327, 333
Knudsen number, 99, 230
Laboratory frame (see Inertial frame)
Lagrange multipliers, 40
Lagrange polynomial, 383
Lagrangean coordinate, 267, 277–278, 282, 441–445
Lagrangean frame (see Comoving frame)
Lagrangean time derivative
As proper time derivative, 144–145
Relation to Eulerian derivative, 56
Relation to intrinsic derivative, 56–57, 678
Lagrange’s acceleration formula, 75
Lambda-iteration, 368
Lambda-operator, 347–348
Laminar flow, 94
Laplacian, 659–661, 679–681
Lax–Wendroff method, 496
Length, proper, 133
Levi-Civita tensor, 64, 673–674
Line blanketing, 492
Line element, 414, 419, 438–443, 463
Comoving frame, 444
Lagrangean, 441
Line force multiplier, 634
Linearization method, 393, 402, 460, 488–489, 497
Liouville’s equation, 15
Local thermodynamic equilibrium (LTE), 310, 328, 332–333, 386–389
INDEX

Longitudinal waves, 171
Lorentz–Fitzgerald contraction, 133
Lorentz gas, 125
Lorentz metric, 134, 145
Lorentz transformation, 129–138
 Approximate, local to comoving frame, 444
 As a rotation in spacetime, 138
 General, 135–136
 Inverse, 132
 Of emissivity, 414
 Of monochromatic radiation moments, 500
 Of photon four momentum, 412–413
 Of opacity, 414
 Of radiation stress-energy tensor, 416–417, 462–465, 501
 Of specific intensity, 414
 Of transfer equation, 418–426, 432–438, 500
 Special, 130–133
Luminosity, 338
 Eddington limit, 628–630
 Gradient, 353
 Stellar, 351, 450
Lyman continuum, in shock, 583

Mach number, 96, 235–239, 244–266
Macrostate, thermodynamic, 35
Markov process, 30
Marshak wave, 570–571, 549, 552–557
Mass
 Proper, 140
 Reduced, 16
 Relative, 140
 Rest, 140
Mass cell, 267
Mass, conservation of, 61
Mass, density of proper
 In laboratory frame, 146
 In proper frame, 145
Mass, density of relative, 146
Mass flux, 61, 104, 627–645
Mass flux vector, 104
Mass loss rates, 628–645
Material element, 56
Material stress-energy tensor, 147–149, 158–159, 162–164
Material temperature, 159, 458, 463, 467
Material volume, 60
Mathematical structure of dynamical equations
 Material fluid, 80–81
Radiating fluid, 455–456
Maxwell equations, and relativity, 129
Maxwellian fluid, 84, 106–117
Maxwellian velocity distribution, 24–28
Average speed in, 26
From kinetic theory, 24–29
In equilibrium flow, 106–107
Most probable speed in, 25
Root-mean-square speed in, 26
Mean free path
 Distribution of, 96–102
 Effective, 480, 483
 Optical, 480
 Particle, 96–102
 Photon, 309, 325, 336, 350, 368, 459
 Relation to shock thickness, 244, 248, 559
 Relation to wave-damping length, 180
Mean intensity, radiation, 312, 346–7
Mean molecular weight, 53
 Perfect gas plus thermal radiation, 324
Mean opacity (see also Opacity), 355–366
 Absorption, 362, 473
 Direct, 475
 Harmonic, 365, 475, 487
 Flux, 361, 476
 Planck, 362, 473, 602
 Rosseland, 351, 360, 406, 464, 498, 553
Mechanical energy equation
 Material fluid, 77–78, 89
 Radiating fluid, 429–430, 451
Method of characteristics, 24, 273, 591
Method of discrete ordinates, 358, 555
Metric, 134, 137–138, 667–670
Comoving frame, 444
 General, 463
 General relativity, 152
 Indefinite, 134
 Inertial frame, 444
 Langrangean, 444, 447
 Lorentz, 134, 145
 Minkowski, 137
M-front (see also Ionization front), 615, 619
Microstate, thermodynamic, 35
Milne’s problem, 356
Minkowski
 Coordinates, 137
 Metric, 137
 Spacetime, 432
 Transformation matrix, 137–138
Mixed frame, 423, 494–500
Mode
 Exchange, 515–519
 Isotropization, 515–519
 Of quantized oscillation, 317

706
INDEX

Photoacoustic, 549
Photogravity, 549
Radiation, 515-519
Radiation diffusion, 534
Thermal relaxation, 510, 514-519
Wave, 179-201, 507-549
Model Lagrangean transfer equation, 489
Molecular chaos, 21
Moment
Closure problem, 337-341, 481-482
Of Boltzmann equation, 102-106
Of radiation field, 312-316, 343-349
Of transfer equation, 337-341
Moment equations
Closure problem, 337-341, 481-482
Combined, 379, 480, 487-488, 492-493
Multigroup, 493, 499-503
Radiation, 337-386, 421-426, 432-448, 457-503
Moment density
Material, 104, 147, 156, 178
Radiation, 313, 339, 415, 469
Momentum equation
Cauchy’s 71
Euler's, 71
From kinetic theory, 104-105
Linearized, 170, 187-188
Navier-Stokes, 86-88, 108, 167
Radiating fluid, 428-429, 448-449, 452-455, 460, 468, 483, 485, 499
Radiation, 338-339, 423-426, 431-432, 435-438, 446, 482, 491, 495, 499, 502
Relativistic, 151-152, 166-167
Momentum flux density tensor
Newtonian, 73, 104
Radiation, 314, 339
Relativistic, 147, 158, 415
Monochromatic waves, 173-175, 190-201, 353-355
Moving mesh (see Adaptive mesh), Multifrequency/grey method, 476-477, 484, 503
Multigroup
Diffusion, 475-478
Moment equations, 475, 499
Opacities, 355-365, 475-477
Transport, 478-481, 492-500

N-wave, 230, 260-263, 586
Navier-Stokes equations, 86-88, 108, 167
Newton-Cotes formula, quadrature weights, 359
Newton-Raphson method, 393-395, 404-407, 476-477, 484-489, 496-497, 499-503
Newtonian
Absolute space, 129
Cooling approximation, 522-524, 536-545
Fluid, 83
Force density, 427
Relativity, 129
Newton’s laws of cooling, 511
Newton’s laws, invariance of, 129-130
Nonequilibrium flow, 107-126
Nonequilibrium gas, 395
Noninertial frame, 420
Formulation of transfer equation, 438-447
Non-Newtonian fluid, 72
Nonpolar fluid, 72
Normal rates of strain, 65
Normal stress, 68, 105
Nova explosion, 285
Nuclear evolution time, 285, 342, 451, 488
Null cone, 135, 418, 439
Null interval, 134
Number conservation, 392
Numerical stability, 269-273
Nusselt number, 95

Occupation number, 37, 386, 397
Saha-Boltzmann formula for, 48-49
Opacity (see also Mean opacity), 325-329, 331-332
Anisotropy in lab frame, 325
Bound-bound, 332
Bound-free, 332
Continuum, 332-333
Distribution function, 365, 475, 493-495
Effect of Doppler shift, 325
Extinction coefficient, 325
Free-free, 332
Grey, 350-353
In in stellar pulsation calculations, 486
Invariant, 414, 419, 438-443, 463
Isotropy in comoving frame, 325, 413-414
Lab-frame, 333
Line, 329-330, 332-333
Lorentz transformation of, 413-414
Mean, 351, 355-366, 472-478
Multigroup, 355-365, 475-477, 492-494, 494-500
Nongrey, 355-366
Pickets, 366
Relation to photon mean free path, 325
Sampling technique, 366
Opacity (contd.)
Temperature sensitivity in pulsations, 480
Optical depth, 336, 487

Packet velocity, 176
Parallel displacement, 681–682
Partial pressures, Dalton’s law, 27
Particle conservation, 389, 392
Particle flux density vector, 146, 157
Particle mean free path, 96–102
Relation to shock thickness, 259
Relation to wave-damping length, 180
Particle path, 57
Particles, distinguishable, 38
Partition function, 40–41, 44–47
Electronic, 45–46
Rotational, 45
Translation motion, 44–46
Vibrational, 45
Pathlength, 345, 418, 439, 681–682
Pauli exclusion principle, 44
Peclet number, 95
Analogy with Boltzmann number, 410
Photon, 143–144
Boltzmann equation, 418–419, 439, 463
Collective pool, 402
Destructive length, 310, 367–368, 400
Destruction probability, 367–368, 400
Distribution function, 311, 414, 418–420, 439, 463
Energy, 143, 412
Escape probability, 399

Flight time, 100, 342
Four momentum, 143, 412–413
Frequency, 143, 311–312, 412, 432
Mean free path, 309, 325, 336, 350, 368, 459, 562
Mean free path in shock, 259
Number density, 311
Pool, 402
Propagation vector, 144, 412
Random walk, 342, 350, 368
Redistribution by scattering, 327
Rest energy of, 143
Thermalization length, 367–368, 400
Trajectory, 419, 432, 440
Wave number, 144
Photoionization
Process, 331
Rate, 331, 388, 391
Pickets, opacity, 366
Planck function, 317
Planck mean opacity, 362, 473, 602
Group, 364, 475
Two-temperature, 474–475
Polarization relations, 197–199, 539–540, 543–545
Poission’s equation, 32
Polar fluid, 72
Polar vector, 661–662
Polytrope, 10, 229
Thermal radiation, 320
Postshock tail, 253, 566, 571
Potential
Excitation, 45–46
Ionization, 46, 48
Velocity, 62, 170
Potential flow, 75–76, 170–172
Power-law potentials, 17, 19, 123
Prandtl number, 95
For monatomic gas, 123
For rigid-sphere gas, 101, 123
Prandtl relation, 235
Precursor, shock
Radiation, 565, 570–571, 576, 584
Thermal conduction, 257
Pressure
From kinetic theory, 26–27, 105, 155
From partition function, 44
Hydrostatic, 70, 83, 105
Impact, 301
Ionizing gas, 50
Ionizing gas plus thermal radiation, 322
INDEX

Jump in shock, 235
Of radiating fluid, 468
Partial, 27
Perfect gas, 2–3
Perfect gas plus thermal radiation, 322
Pseudoviscous, 485
Radiation, 315, 319, 351, 416–417, 460, 466, 468
Viscous, 86, 90
World scalar, 148
Pressure scale-height, 74, 190, 213
Principal axes of rate of strain tensor, 67, 91
Principal rates of strain, 67, 91
Probability
Absorption, 329
Induced (stimulated) emission, 329
Induced recombination, 331
Photoionization, 331
Photon destruction, 367–368, 400
Photon escape, 399
Redistribution, 327
Spontaneous emission, 329
Spontaneous recombination, 331
Stimulated emission, 329
Stimulated recombination, 331
Thermodynamic, 35, 39
Process
Adiabatic, 4, 6
Bound-free, 331–333, 390–392
Bremsstrahlung, 332, 585
Collisional excitation, 390
Collisional ionization, 390
Emission, 325–326
Free-free, 332–333
Ionization, 48–49
Irreversible thermodynamic, 8, 90–92, 236–237, 241–242
Photoionization, 331–332, 390–392
Photon destruction, 368, 400
Photon diffusion, 309–310, 342, 350, 457–458
Radiative excitation, 390–392
Random walk, photon, 342, 350, 458
Recombination, 331–332, 390–392
Relaxation, 84, 250
Reversible thermodynamic, 4, 6, 7–8
Scattering, 326–328
Thermal (true) absorption, 326
Thermonuclear, 352–353
Product
Cross, 658–659
Dot, 653
Inner, 653
Outer, 654–655
Scalar, 653, 671–672
Scalar triple, 658–659
Tensor, 654–655
Vector, 358–359
Vector triple, 358–359
Projection tensor, 148, 160, 465
Propagation vector
Photon, 144, 412–413
Wave, 174
Proper density, 145–146
Proper frame (see also Comoving frame), 138, 144, 432
Proper length, 133
Proper mass, 140
Proper temperature, 149
Proper time, 133
Pseudovector, 661–662
Pseudoviscosity (see Artificial viscosity)
Pulsation, stellar, 410, 448, 470–471, 486, 490
Pulse, propagating, 263–264
Quadrature
Points, 358
Sum, 358, 372
Weights, 358–359
R-front (see also Ionization front), 615–616
Radiating fluid
Gas energy equation, 429–430, 449–450, 454, 478, 499, 522, 527
Ionization front in, 611–616
Momentum equation, 428–429, 448–449, 452–455, 460, 468, 483, 485, 496, 499
Shocks in, 557–558
Stress-energy tensor, 426–427, 459, 462–465
Thermal fluctuations in, 523, 536
Thermodynamics of, 320
Total energy equation, 429–430, 451–452, 460, 469, 471
Two-temperature description of, 473
Waves in, 521–549
Radiating shock, 557–611
Radiation
Absorption, 326
Attenuated waves, 513, 533–535
Blackbody, 318
Boltzmann equation for, 418, 439, 463
Compression wave, 608
Conduction, 351, 465
INDEX

Radiation (contd.)
Diffusion, 341–353, 457–481
Diffusion layer, 559–560
Diffusion, nonlinear, 552–557
Diffusion, terminology, 472 (footnote)
Diffusion time, 342, 353, 424–426, 447, 449, 458, 478
Diffusion wave, 528–534, 549, 608
Effects on shocks, 557–611
Emission, 325
Energy density, 312, 317–318, 351–352, 416
Energy spectral profile, 473–476, 482, 484, 492, 496
Exchange zone, 562–563
Flow time, 342, 424–426, 430, 437, 445, 447, 479
Flux spectral profile, 482, 484, 492, 496
Four force density, 417–418
Mean intensity, 312, 346–347
Modes, 317–318
Moments, 312–316, 337, 341, 343–349, 590
Momentum density, 313, 339, 415, 469
Nonequilibrium, 310
Nonlinear, 552–557
Pressure, 314–315, 319, 351, 416–417, 453, 460, 466, 468
Pencils, 358
Propagating waves, 513–519, 534–535
Quasistatic, 342
Quasi-stationary, 342
Scattering, 326–328
Specific intensity, 311, 343–346, 413–414
Stress-energy tensor, 414–418, 459, 461, 465
Stress tensor, 314, 416, 468
Temperature, 473, 606
Thermal, 316
Time dependent, 348–349
Viscosity, 461–472
Radiation diffusion wave, 528–534, 549
Radiation-flow time, 342, 424–426, 430, 437, 445, 447, 479
Radiation hydrodynamics, equations of
Consistency of, 452–455, 503
Diffusion limit, 457–481
Eulerian, 426–432, 477–478
Inertial frame, 426–432
Lagrangian, 448–455, 457–494
Mixed frame, 422–423, 494–500
Quasi-Lagrangian, 428–431, 498–500
Shock frame, 558–559
VERA form, 476–478, 500–503
Radiative conduction, 351, 465
Coefficient of, 351
Radiative cooling time, 602
Radiative damping
Shocks, 557–585
Temperature fluctuations, 507–521
Waves, 521–549
Radiative equilibrium, 338, 403
Radiative recombination time, 388
Radiative relaxation time, 509, 519, 522, 537–538, 541–543
Radiative Reynolds number, 467
Radius, critical, 297, 630–639
Random velocity, 13, 105–106, 153
Random-walk, photon, 342, 350, 353, 368, 458–459
Rank, tensor, 654–655
Rankine–Hugoniot relations, 232, 240, 273, 275, 287, 301, 558–559
Including radiation, 558–559
Relativistic, 240
Rarefaction, 233
Impossibility of discontinuous, 239
Rarefied gasdynamics, 99
Rate equations, 386, 389–395, 406
In accretion flow, 624
Stiffness of, 394
Rate of shear deformation, 65
Rate of strain, 83
Ellipsoid, 68, 91
Normal, 65
Principal, 67, 91
Rate of strain tensor, 65, 67, 82–85, 91–92, 162, 466
Ratio of specific heats
Ionizing gas, 52
Ionizing gas plus thermal radiation, 322–324
Perfect gas, 9–10, 26–27, 44
Perfect gas plus thermal radiation, 320–
INDEX

322

Thermal radiation, 319–320
Ray (tangent ray method), 380–383, 491, 497, 503
Rayleigh formulae, 249, 258
Rayleigh–Taylor instabilities, 601, 603
Reciprocal tensor, 670–671
Recombination
Processes, 331
Rate, 331, 390
Time, 84
Redistribution, photon
Complete, 327
Function, 327
Partial, 327
Reduced mass, 16
Reference frame, 129
Reflectance, 203
Reflection, wave, 201–208, 210–212
Refraction, wave, 201–207, 208–210
Relative mass, 140
Relative tensor, 667
Relativity
Galilean, 129, 433
General, 152
Newtonian, 129
Special, 130
Relativity principle, 130
Einstein’s 130–138
Relaxation process, 84, 250
Relaxation zone (layer), 251–259
Dissociation, 251
External, 252, 583–585
In fully ionized plasma, 254–258
In molecular gas, 251–254
Internal, 252, 583–585
Ionization, 258–259, 583–585
Radiation-exchange, 582
Rotational, 251
Temperature, 253–259
Temperature overshoot in, 253
Translational, 251
Vibrational, 251
Rest energy, 142
Of photons, 143
Rest mass, 142
Retardation effects, 490
Retarded time, 349
Reynolds number, 94
Radiative, 467
Reynolds transport theorem, 60, 62
Rezoning scheme, 288, 433, 484, 604–606
Ricci rotation coefficient, 440, 442–443
Ricci’s theorem, 676–679
Rigid sphere model, 19–20, 96–102
Rocket effect, 620
Rosseland mean opacity, 351, 360, 464, 498, 553
Group, 365, 475
Optical depth scale, 360, 406
Two-temperature, 473
Rotation coefficient, Ricci, 440, 442–443
Rotation, spacetime, 138
Rotation tensor
Newtonian, 65
Relativistic, 161
Rybicki method, 377–378, 407
Sm method, 383
Sackur–Tetrode equation, 44
Saha–Boltzmann formula, 49, 396, 388
Saha ionization formula, 48, 50, 323, 332, 388
Sawtooth wave, 230
Scalar
Field, 651
Gradient of, 659–661, 679–681
Product, 653, 671–672
Triple product, 658–659
World, 134
Scale-height
Density, 190, 213
Pressure, 74, 190, 213
Scattering, 310, 326–328
Coefficient, 326
Effects on statistical equilibrium, 396–402
Implications for radiation transport, 366–369, 396–402
Redistribution function, 327
Thomson, 326, 332, 337, 457, 474, 629
Schatzman cycle, 585
Schwarzschild convection criterion, 185
Schwarzschild–Milne relation, 346–348
Second law of thermodynamics, 7–8, 166, 570
Implications for shocks, 236–239
Secular equation, 65
Sedov
Blast Wave, 602
Method, 291–295
Seed electrons, 258
Seed O-star, 621
Self-collision time, 34, 388
Self-propagating shock, 294
Semi-infinite atmosphere, 344
Shear deformation, rate of, 65
Shear stress, 70
Shear viscosity, 83, 100–101, 115, 117–126
Evaluation of, 117–126
Radiation, 461–467
Shock
Ablation-driven, 618–624
Accretion, 603–607, 610
Break-out, 294
Conducting, 244–250
Conduction precursor in, 257
Conservation laws, 231–232
Converging spherical, 621
Critical, 570
Critical strength, 248
Detection, 273, 591
Development, 227–230, 273–274
Dispersion by relaxation processes, 253
Dispersion by radiation, 563, 577–579, 597
Electron isothermal, 257
Entropy jump in, 247–248
Fitting, 273, 287, 591
Frame, 230–232, 599
Heat-conducting, 244–250
Heating, 259–266, 587, 591–596
In exponential atmosphere, 293–295
In gaseous nebulae, 582
In ionized hydrogen, 569–570
In isothermal material, 582–583, 588
In stellar wind, 295–301, 627–645
Isothermal, 249, 571
Nonequilibrium effects in, 563–573
Non-LTE, 607–611
Periodic, 288–291
Propagation, 259–266, 288–295, 585–611
Pulse, 263–264
Radiating, 557–611
Radiation precursor in, 562–563, 565, 570–571, 584
Radiation pressure in, 579–582
Rankine Hugoniot relations, 232, 240, 273, 275, 287, 301, 559–559
Relativistic, 239–241
Relaxation zones, 583, 585
Self-propagating, 294
Similarity solution, 586–591
Stability, 239
Steady, 230–241, 557–585
Strength, 235–236
Subcritical, 565–570, 576
Supercritical, 570–573
Tail, 253, 566–567, 571–573
Temperature overshoot in, 253, 272, 276, 572, 576–577
Venting, 294
Viscous, 242–244, 597
Weak, 244–248, 259–266, 290, 585–586
Shock dispersal
By material relaxation processes, 253
By radiation, 563, 577–579, 597
Signature of metric, 133
Similarity parameters, 93–96, 99
Simple waves, 228
Singular point, 636
Locus of, 636
Slowness surface, 194
Snapshot, 343, 490, 503
Sobolev
Approximation, 643
Force law, 645
Theory, 633
Solar
Atmosphere, 193–194, 201, 217–226
Chromosphere, 218, 264–265, 586, 591–596
Chromospheric network, 596
Chromospheric cavity, 220
Corona, 218, 295–296, 303
Flare, 293
Photosphere, 217, 529
Plage, 596
Temperature minimum, 218, 592
Thermal responses of atmosphere, 519–521
Transition region, 218
Wind, 218, 295–296, 301–303
Solid angle, 311
Sonine polynomials, 118, 120
Sound speed (see Speed of sound)
Source function, 336–337
Archetype, 336–337
Collision domination, 398
Discretized, 372
Frequency-independent, 330
Line, 330, 337, 397, 400
Mixed domination, 398
Photoionization domination, 398
Two-level atom, 396–402
Space, absolute, 129
Spacelike interval, 134
Spacelike signature of metric, 133
Spacetime, 129–130
Spacetime interval, 133
Spacetime rotation, 138
Spacetime volume element, 133
Invariance of, 134
Specific enthalpy, 6
Ionizing gas, 51
Nonequilibrium gas, 395
Perfect gas, 9, 26
Perfect gas plus thermal radiation, 321
Radiating fluid, 469, 471
Relativistic, 148
Specific entropy, 7–8, 45
From partition function, 45
Gas with internal excitation, 47
Ionizing gas, 50–53
Perfect gas, 9–10, 27, 45, 47
Perfect gas plus thermal radiation, 320–321
Translational, 45
Specific heat, 186–187
Constant pressure, 4, 27, 44, 47, 52, 186–187
Constant volume, 4, 27, 44, 47, 51, 186–187
Gas with internal excitation, 46–47
Ionizing gas plus thermal radiation, 323
Perfect gas, 27, 44
Perfect gas plus thermal radiation, 321
Ratio of in ionizing gas, 52
Ratio of in perfect gas, 9–10, 27, 44, 47
Specific intensity, 311
Emergent, 346
In thermal equilibrium 318
Lorentz transformation of, 413–414
Relation to photon distribution function, 312
Relation to photon number density, 311
Specific internal energy, 3
Gas with internal excitation, 46
Ionizing gas, 50–51
Ionizing gas plus thermal radiation, 322
Nonequilibrium gas, 395
Perfect gas, 9, 26, 46, 106
Perfect gas plus thermal radiation, 320
Radiating fluid, 468
Relativistic, 159
Specific volume, 3
Spectral profile
Radiation energy, 473–476, 482, 484, 492, 494, 496
Radiation flux, 482, 484, 492, 494
Spectral radius, 271
Spectrum line
Collision dominated, 398
Mixed domination, 398
Photoionization dominated, 398
Source function, 330, 337, 397, 400
Speed
Average Maxwellian, 26
Critical, 297
Group, 175–177, 193–197
Most probable Maxwellian, 25
Phase, 174, 181, 183–184, 191–195
Phase trace, 174
Root-mean-square–Maxwellian, 26
Shock, 294
Signal, 479
Speed of sound
Adiabatic, 171–173, 181–182, 228, 525, 534
In ionizing gas, 172
In ionizing gas plus thermal radiation, 324
In perfect gas plus thermal radiation, 322
In pure thermal radiation, 320
In radiating fluid, 322, 324, 525–526, 534
In relativistic fluid, 172–173
In solar atmosphere, 182
Isothermal, 182, 526, 297
Spherical
Envelope, 344
Shell, 344
Shock, 291–293
Transfer equation, 335, 378–386
Wave, 174–175, 355
Spherically factor, 379, 482
Sphericity factor (see Sphericality factor)
Spin, electron, 48
Spitzer–Härm conductivity, 125, 302
Spontaneous emission, 329, 332
Stability
Absolute, 645
Analysis, von Neumann, 486
Drift, 549, 645
Numerical, 269–273
Of radiatively-driven wind, 644–645
Shock, 239
Thermal, 513, 608
Standing waves, 193, 207–208, 290
Star
A-type, 642
B-type, 608, 621–622
Formation, 621
Start (contd.)

O-type, 621–622, 629–645
O-type, Boltzmann number in, 529
Wolf-Rayet-type, 628
Statistical equilibrium, equations of, 386, 389–402, 614
Statistical weight, 37–48
Electron-ion system, 49
Free electron, 48
Hydrogen, 49
Statistics
Boltzmann, 41–43
Quantum, 44–45
Steady flow, 61, 76, 80–81, 93, 296–297, 452
Stefan–Boltzmann constant, 319
Stefan's law, 318
Stellar
Evolution theory, 641
Pulsation, 287, 293, 410, 470–471, 486, 490
Structure equations, 352–353, 452, 459
Stimulated emission, 329, 332, 391
Correction factor for opacity, 331–333
Stirling’s formula, 39
Stokes hypothesis, 84
Stokes relation, 84
Stokesian fluid, 85
Stokes’s theorem, 663–664
Strain (see Rate of strain)
Streakline, 58
Stream tube, 58
Streamline, 58, 75
Stress
Fluid, 68–70
Hydrostatic, 70
Mean, 83, 315, 105
Normal, 70, 105
Principal, 67, 83
Radiation, 314, 416, 468
Shear, 70
Surface, 68
Tangential, 70
Work done by, 77, 88–90
Stress-energy tensor
Material, 148, 158–159, 162–164
Radiation, 414–418, 459, 461, 465
Radiating fluid, 426–427, 459, 462–465
Stress tensor, 68–70
Newtonian fluid, 82–85
Radiation, 314, 416, 468
Radiation viscous, 468
Symmetry of, 71
Viscous, 70, 105, 114
Strömgren sphere, 622–624
Strong-collision time, 33
Subcritical shock, 565–570, 576
Subsonic flow, 96, 298
Behind shock, 235
Near ionization front, 615–627
Summational invariants, 16, 103
Supercritical shock, 570–573
Supernova
Explosion, 293, 436, 596–602
Presupernova, 602–603
Remnant, 602–603
Supersonic flow, 96, 298
In front of shock, 235
Near ionization front, 615–627
Surface force, 68–77
Work done by, 77–81
Symmetry, tensor, 655
Tangent ray method, 380–383, 491, 497
Tangential stress, 70
Telegrapher’s equation, 515–516
Temperature
Absolute, 2
Critical (for shock), 570
Effective, 351
Kinetic, 25, 105, 110
Material, 159, 458, 463, 467
Perfect gas, 2
Proper, 149
Radiation, 473, 606
Thermal equilibrium 467
Thermodynamic, 2
Temperature fluctuations, radiative damping, 507–521
Temperature overshoot, postshock, 253, 272, 276, 572, 576–577
Tensor
Absolute, 667
Associated, 670–671
Contraction, 655–656
Contravariant, 664–666
Covariant, 664–666
Dual, 661–662
Divergence of, 679–681
Equations, covariance of, 129–130
Field, 651
Form of artificial viscosity, 283–285
Form of radiation energy and momentum equations, 447
Four, 137
Indices, 670–671
Levi-Civita, 64, 673–674
INDEX

Metric, 134, 137–138, 667–670
Mixed, 664–666
Momentum flux density, 73, 104, 147, 158, 415
Product, 654–655
Projection, 148, 160, 465
Radiation pressure, 319, 351, 416, 462–468
Radiation stress, 314, 416, 468
Rank, 654–655
Rate of strain, 65, 82–85, 162, 466
Relative, 667
Reciprocal, 667
Rotation, 65, 83, 161
Stress-energy, material, 147–149, 158–159, 162–164
Stress-energy, radiating fluid, 426–427, 459, 462–465
Stress-energy, radiation, 414–418, 459, 461, 465
Stress, material, 68, 82–85, 102–105, 155
Stress, radiation, 344, 414–417, 468
Symmetry, 655
Trace, 655–656
Transformations, 137
Velocity gradient, 64, 83, 161
Viscous stress, material, 70, 82–83, 105, 114, 163
Viscous stress, radiative, 468
Tensor components
Contravariant, 664–666, 670–671
Covariant, 664–666, 670–671
Physical, 664–666, 670–671, 672–673, 679–681
Tetrad, 440
Tetrad frame, 440
Thermal conduction, 89–90, 96–106, 113–114
Coefficient of, 90, 101, 107–126
Effects of excitation and ionization, 116–117
Electron, 257
Flux-limiting of, 302
Fourier’s law, 90, 166
In ionized gases, 124–126
In relativistic flow, 163
In shocks, 244–250
In wind, 299–301, 301–302
Wave damping by, 179–184
Thermal conductivity, Spitzer–Härm, 125
Thermal coupling parameter, 366, 400
Thermal diffusivity, 525, 550
Thermal equilibrium (see Thermodynamic equilibrium) Thermal expansion, coefficient of, 5
Perfect gas, 9
Thermal instability, 513, 608
Thermal relaxation mode, 310, 514–519
Thermal waves, 181–184, 549–557
Thermalization depth, 367, 399–400
Thermalization length, 367–368, 399–400
Thermally-driven wind, 295–304
Thermodynamic equilibrium 3–8, 310, 317–318, 319–320
Local (LTE), 310, 328, 332–333, 386–389
Thermodynamic probability, 35, 39
Thermodynamic state variables, 2–3
Thermodynamic temperature, 2
Thermodynamics
Relation to statistical mechanics, 37
Second law of, 7–8, 166, 236–239, 570
Thermoelectric effects, 125
Thermonuclear energy release, 353, 449–452, 460, 469, 484, 486
Time
Absolute, 129
Courant, 285
Deflection, 30, 33
Dilation of, 133
Dynamical, 342
Energy-exchange, 30, 33
Inelastic collision, 388
Kelvin Helmholtz, 286
Nuclear, 283, 451, 488
Photon-flight, 342, 513
Proper, 133
Radiative cooling, 602
Radiative recombination, 388
Radiative relaxation, 509, 519, 522, 537–538, 541–543
Relaxation, 29
Retarded, 349
Self-collision, 34, 388
Strong-collision, 33
Universal, 129
Time dilation, 133
Time of relaxation, 29
Time, proper, 133
Time, universal, 129
Timelike interval, 134
Total energy equation
Material fluid, 78, 89, 106
Radiating fluid, 429-430, 451-452, 460, 469, 471
Relativistic, 150, 164-167
Trace, tensor, 65, 83, 655-656
Trajectory, photon, 419, 432, 440
Transfer equation
Boundary conditions, 344, 368
Comoving-frame, 432-448
Conservative form, 434-435, 491
Coupling to conservation relations, 402-407
Covariance of, 418-419
Diffusion limit, 353-355
Discrete-ordinates method, 358, 555
Discrete-space method, 383
Feautrier method, 374-375, 369, 380
Finite difference equation, 371, 402
Formal solution, 343-349, 373, 382, 489-492
Grey, 355-366
Inertial-frame, for moving fluid, 421-426, 433
Integral relations, 345-348
Lagrangean, 420, 443, 445
Line, 396-402, 402
Linearized, 402-407
Lorentz transformation of, 411-426, 432-438, 500
Mixed frame, 422-423, 461, 494, 498, 500
Model Lagrangean, 489
Moments of, 337-386, 422, 435-436, 481-483
Multigroup, 495-499
Operator formulation, 346-348
Planar geometry, 334, 346-349, 366-378
Rybicki method of solution, 377-378
S_n-method, 383
Second-order form, 369-373
Spherical geometry, 335, 378-386, 433-437, 491
Streaming limit, 353-355
Time-dependent, 333-335, 348-349
Wave limit, 353-355
Transformation
Admissible, 665
Galilean, 129
Transmitting boundary, 279
Transonic flow, 96, 295-301, 627-645
Transport coefficients, evaluation of, 117-126
Transport phenomena, 96-102, 107-126
Transport theorem, Reynolds, 60, 62
Trapping, wave, 207-208
Tube
Stream, 58
Vortex, 62-63
Tunneling, wave, 204-207
Turbulent flow, 94
Two-level atom, 396-402
Equivalent, 401
Two-stream approximation, 357
Two-temperature description of radiating fluid, 473
Unconditional stability, 269-273
Universal gas constant, 2
Universal time, 129
Upstream differencing, 270
Upwind differencing (see Upstream differencing)
Variational principle, 118-120
Vector
Axial, 661-2
Contravariant, 664-666
Covariant, 664-666
Curl of, 659-661, 679-681
Divergence of, 659-661, 679-681
Field, 651
Four, 136
Length of (magnitude), 652
Null, 144, 412, 439
Polar, 661-662
Product, 658-659
Pseudo, 661-662
Scalar product of, 653, 671-672
Triple product, 658-659
Velocity
Critical, 234, 297, 638
Fluid, 56
Four, 138-139
Group, 175-177, 193-197
Packet, 176
Potential, 62, 170, 537, 541
Velocity gradient tensor
In Newtonian stress tensor, 83
Newtonian, 64
Relativistic, 161
Venting, shock, 294
VERA method (see Radiation hydrodynamics, equations of)
Viscosity, artificial, 86–88
Tensor, 283–285
von Neumann-Richtmyer, 273–275, 283–285
Viscosity, coefficient of, 83
Bulk, 83, 115
Dilatational, 83
Dynamical, 83, 101, 107–126
Evaluation of, 117–126
Kinematic, 87, 242
Radiative, 461, 466–467
Second, 83
Shear, 83, 101, 115, 117–126
Viscosity, fundamental role of in shocks, 244
Viscous energy dissipation, 88–92
In shock, 241–244
In waves, 179–184
Viscous force, 82–85, 97, 467
Viscous pressure, 86, 90, 275, 278–279, 485
Viscous shock, 242–244, 597
Viscous stress tensor
From kinetic theory, 105, 114–115
General, 70
Newtonian fluid, 83
Radiating fluid, 468
Radiation, 465–466
Relativistic, 163
Vlasov equation, 14
Volume, 3, 667–670
Invariant volume element, 670–671, 133
Material, 90
Specific, 3
Volume ratio, 247
Limiting, 247, 564
von Neumann-Richtmyer artificial viscosity, 273–275, 485
von Neumann stability analysis, 269, 486
Vortex
Line, 62
Theorem, Helmholtz, 63
Tube, 62
Tube, strength, 63
Vorticity, 62
Flux of, 63
Tensor, 64, 83
Wave
Acoustic, 169–173
Acoustic-gravity, 184–201
Amplitude functions, 180, 197, 202, 541–542
Attenuated radiation, 513, 533–535
Blast, 291–294
Combustion, 617–618
Damped radiation, 515–519, 533
Detonation, 617–618
Energy density, 177–179, 189, 200
Energy equation, 177–178, 186–187
Energy flux, 177–179, 189, 199–201, 538
Evanescent, 193, 204–207
Exchange mode, 515–519
Expansion, 618
Frequency, 173
In radiating fluid, 521–549
In radiatively-driven wind, 636–638, 644–645
Interference, 545
Linear conduction, 550
Longitudinal, 171
Marshak, 549, 552–557
Modes, 179–201, 507–549
Momentum, 177–179
Monochromatic, 173–175
Nonlinear conduction, 551
N-wave, 230, 260–263
Propagating radiation, 513, 515–519
Propagation, 190–226
Radiating shock, 559–611
Radiation, 316, 353–355, 515–519
Radiation diffusion, 528–534
Radiation-dominated acoustic, 533–535
Radiation-modified acoustic, 521–526, 528, 638
Rarefaction, 233, 239
Reflection, 201–208, 210–212
Refraction, 201–207, 208–210
Sawtooth, 230
Shock, 226–295, 557–611
Simple, 228
Spherical, 174–175, 355
Standing, 193, 290, 207–208
Steepening, 227–230
Thermal, 181, 183, 549–557
Trapping, 207–208
Tunneling, 204–207
Wave damping
Viscosity and thermal conduction, 179–184
Radiation, 521–549
Newtonian cooling, 511–513, 536–545
Wave energy, 177–179, 189
Wave momentum, 177–179
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave packet</td>
<td>174</td>
</tr>
<tr>
<td>Wavelength</td>
<td>174</td>
</tr>
<tr>
<td>Wavenumber</td>
<td>143-144, 174</td>
</tr>
<tr>
<td>Weak shock</td>
<td>244-248, 259-266, 585–586, 290</td>
</tr>
<tr>
<td>Weak solution of fluid equations</td>
<td>79, 233</td>
</tr>
<tr>
<td>Weymann cycle</td>
<td>585, 594</td>
</tr>
<tr>
<td>Wind</td>
<td></td>
</tr>
<tr>
<td>CAK Theory</td>
<td>634-644</td>
</tr>
<tr>
<td>Isothermal</td>
<td>297-299</td>
</tr>
<tr>
<td>Line-driven</td>
<td>627-645</td>
</tr>
<tr>
<td>Multiple scattering effects</td>
<td>642</td>
</tr>
<tr>
<td>Radiatively-driven</td>
<td>627–645</td>
</tr>
<tr>
<td>Singular point in</td>
<td>636–642</td>
</tr>
<tr>
<td>Solar</td>
<td>295–304</td>
</tr>
<tr>
<td>Thermally-driven</td>
<td>295–304</td>
</tr>
<tr>
<td>Transonic</td>
<td>295–301, 627–645</td>
</tr>
<tr>
<td>Viscous</td>
<td>302</td>
</tr>
<tr>
<td>World line</td>
<td>133</td>
</tr>
<tr>
<td>World point</td>
<td>133</td>
</tr>
<tr>
<td>World scalar</td>
<td>134, 148</td>
</tr>
<tr>
<td>X-operator</td>
<td>347</td>
</tr>
</tbody>
</table>