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Notice that, unlike Christoffel symbols, the rotation coefficients are not
symmetric in the two lower indices.

Because M is a n uII vector, only three of its tetrad components can be
independent, as any three suffice to determine the fourth. Therefore in the
evaluation of (95.44) we need differentiate only with three components of
M, which we take to be the three space components M“, (a= 1,2, 3).

We now specialize (95.44) to spherical symmetry. Choose a comoving-
frame metric of the general form

d~2 = –ez’p d~z+ez’y d*2+R2(d%2+sin2 0 d$z), (95.45)

where .~ is a generalized Lagrangean radial coordinate, and ~, A, and R

are functions of z and ~ only. In spherical symmetry the derivatives (d/de)
and (~/d@) are identically zero, so we need calculate only terms containing

(d/d~) and (d/dz). From straightforward calculation one finds that the
nonzero Christoffel symbols for (95.45) are:

{1
~0 = (iW/t3~), {~1 } = exp [2(A - W)](C3A/~T),
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o
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At the event (~, ~, 0, ~) introduce the orthonormal

eO = e–’v~., c1 = e–Ac,t,, c2=R–~ee3 and

(95.46)

basis

E3 = (R sin O)–l E+.

(95.47)

. . . .. ,. . .
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One then sees that the transfomlation matrix &~ is diagonal:

.:=~;;.l(Rj,_) (95.48)

whence we have

()

eWOO o

&:=(.:)-’= : ;’ : : > (95.49)

o 0 0 Rsin O

Furthermore, write M in terms of spherical coordinates with E, taken to be
the polar axis:

kd=u, M’ = v COS@, M2 = v sin @ cos cD, M3 = u sin @ sin Q,

(95.50)

where v is the photon’s energy. We can then compute the Jacobian
.T(M’, M2, M3/v, @, ~) and its inverse

J-1= d(v, 0, @)

d(M’ , M2, M3)

(
Cos @ -(sin @)/v o

)

= sin @ cos @ (cos @ cos @)/v –(sin @)/v sin @ , (95.51)

sin @ sin@ (cos @ sin @)/v (cos @)/v sin@

whence we have

(tI/dM’) = fA(d/dV)+ P-’(l - V2)(d/@), (95.52)

(d/dM2) = (] - &L2)J’2COS @[(d/h) - V-’ y(d/@)], (95.53)

and

(d/dA43) = (1- ~2)”2 sin @[(d/~v) - v-’p(d/d~)], (95.54)

where ~ = cos 0. Here we have dropped (d/d@) because of azimuthal
symmetry.

We now must compute the Ricci rotation coefficients. Because e: and s:
are diagonal, (95 .43) reduces to

(95.55)

where there is no sum on repeated indices. We can ignore terms with b = O
because in (95.44) we differentiate only with respect to space components
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of Mh. Following (L5), define the operators

~.= e-’r(i3/i37) (95.56a)

and
Il., = e ‘A(d/8h], (95.56b)

and the auxiliary variables

U= D.R (95.57a)

and
~ = D,LR. (95.57b)

Using (95.46), (95.48), and (95.49) in (95.55) we find that the nonzero
Ricci coefficient ts are

1’:0 = D.*, ~~z = r:3 = –r/R, 1’:0 = DTA,

r:3 = –R-l cot o> r~O = r:O = u/R,

1

(95.58)

r;, =r:l = r/~, and T;Z=R-’ cot f3.

In the transfer equation (95.44) we then have

Maaa = M“E: (d/ax”) = VDT+ pvDt, (95.59)

while

wiwr:c(a/d M’) = (M”ikf”r:o + M’M’r;2 + M3M’r;3 + M* M’r; o)(d/aiw’)

+ (A43M’r:3 + M’ M*r;l + fvf~MT;o)(d/dM2) (95 .60)

+ (,kz’M3r:, + M@kfT:o + M2M’r:2)(i3/aM’).

Substituting (95.50) and (95.52) to (95.54) into (95.60), collecting terms,
and using the results along with (95.59) in (95.44) we obtain finally the
comoving-frarne transfer equation

DT.9 + pDiJ – v[~D,W+ p2D.A+(l – p2)(fJ/f?)](W/?V)
(95.61)

+(1 –~2){(1’/R) –D>W+p[(U/R) –D.A]}(dY/@) = v-’(e–d$).

Equation (95.61) is exact for the general metric (95.45). To apply it to a
particular flow we must obtain explicit expressions for the coefficients in
the metric; it is at this point that we must forsake exactness if we wish to
obtain analytical results. One sees that some kind of approximation must
be made by realizing that in general the acceleration field a(r, t)can be
arbitrarily complicated, and by recalling (hat the principle of ecluivalence
implies that this field can be viewed as resulting from the gravitational field
of an arbitrarily complex distribution of masses. Thus an attempt to obtain
an exact analytical metric for an arbitrary flow field is as difficult as solving
exactly the field equations of general relativity for an arbitrary mass
distribution, which is not possible by known methods. in practice, it is
feasible to work analytically only to O(o/c). An alternative is to construct
the metric numerically; but by doing so we forsake having explicit analyti-
cal expressions for the metric and the transfer equation. See (Gl) for a
discussion of the numerical approach in the context of radiative transfer.

. .
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For one-dimensional spherically symmetric flows, Castor (C3) adopted
inertial-frame coordinates (t’, r, 0, ~) and Lagrangean coordinates
(t, M,, 0, c~), and related them by the coordinate transformation

!

r
M,(r, t’)= 47r(r’)2p(r’, t’) dr’ (95.62)

o
and

J

r
t(r, t’)= t’–c–2 v(r’, t’) clr’, (95.63)

o

where o = (dr/2t’) = –(47rr2p)– [(dM,/dt’), is the fluid velocity, Equations

(95.62] and (95.63) provide an O(u/c) approximation to a local Lorentz
transformation between the inertial and comov ing frames in the nei,ghlmr-
hood of the event (r, t’).From these equations o~e readily finds

dx = (dMJ4n-r2p) = dr – v dt’

and

dt = (1 – I/cz) dt’ – (v/c*) dr,

where

J
[= ‘[&u(r’, t’)/dt’] dr’.

o

Solving for dr and dt’ we have

dr = [(1 – I/C2)/D] dx + (u/D) dt

and

dt’ = (v/c2D) dx + D-’ dt

where

D=l–(I~v2)/c2.

Substituting (95.67) and (95.68) into the inertial-frame metric

ds2=dr2+r2(d02+sin20 d~2) – cz(dt’)’

we obtain the comoving-frame metric

(95.64)

(95.65)

(95.66)

(95.67)

(95.68)

(95.69)

(95.70)

ds2 = F(dM,/4~r2p)2+ r2(d92 + sinz (3d@2) – G dt2 – 2HdM, dt

where [see (M6)] (95.71)

F= [(1 – I/c*)*– (u2/c2)]/D2, (95.72)

G = (C2 – V2)/~2, (95.73)
and

H = vl/(4mr2pc2D2). (95.74)

Inasmuch as we are interested in final results correct to O(o/c), we may
now discard terms of 0(vz/c2). We see by inspection that H is 0(02/cz),
and hence can be dropped, while F = 1 + 0(02/c2). For G we have

G = c2/(1 –21/c2)+0(u2/c2) = C2+2~+0(7J2/C2); (95.75)
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I/c* can be O(v/c) for radiation-flow time scales tR- Ar/c or when the

fluid acceleration is comparable to (cv/r) or c (dv/cb), and hence should be
retained.

Comparing (95.71 ) with (95.45) in which dr = dt and dz - dM4, we can
make the identifications

R=r, A = –ln (4 fir2pj, and W=;ln (C2+21), (95.76)

whence we find, to O(v/c),

DT =C-’(d/dt) = c-’(D/Dt) and Dz = (47rr2p)(tl/dA4,) = (d/dr).

(95.77)

Here we noted that the time derivative calculated in the comoving frame is
jdentical to the customary Lagrangean (D/Dt). From (95.57) and (95.77)
we find t-f= (IJ/c), r-l,

and

D7A = –c-l[D(ln p)/Dt+(2v/r)]. (95.79)

Using (95.76) to (95.79) in (95.61) and expressing 5, Z, and e in terms of

1O(LLO,VO), XO(VO),and TIO(VO),we find, aftel- some elementary reductions,
the comoving-frame transfer equation

This equation is fully Lagrangean in the sense that all radiation and

material pl-operties are in the comoving frame, the jndepenctent variable
M, is Lagrangean, and the time derivatives (D/Dt) are evaluated in a
moving fluid element. Recall ing the equatjon of continuity

(D In p/Dt) = –r-2[d(r2v)/dr] = -(?u/dr) - (2v/r), (95.81)

one easily sees that (95.80) is identical to (95.17). We thus have IWO
logically independent derivations of the resull.
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Taking angular moments of (95.80) we obtain the monochromatic radia-

tion energy equation

DEO(VO)
+ 4Tp~

Dt
& [r2FJvJl -~ [3 P0(v0) - E~(vo)l

r

Dlnp
–~ [EO(VO)+ PO(VO)]+% FO(VO)

(95.82)

u{ Dlnp
+ fi VO f [3 PO(UO)– EO(VO)]+= po(~o) –: Fo(vo)III

= 4wqo(vO) – CXO(VO)EO(UO),

and the monochromatic radiation momentum equation

1 DFC,(Vo) (3PO(VO)+ 3PO(UO)– Eo(vo)
+4#p-

C2 Dt dM, r

-$(;+%3Fo(vo) +: [Eo(vo) + po(~o)]

[{

(95.83)

+: V. : [30.(.0) – Fo(vo)]+$ ~ Qo(vo) -: Po(vo)}n
c)7“0

_ Xo(vo)
–— Fo(vo),

c

which are equivalent to (95.18) and (95.1 9).
Integrating over frequency we obtain the radiation energy equation

DEO d(r2Fo) u
—+ 4mp —–#3Po-Eo)- ~ (Eo + Po) ~-~
Dt aM,

I-m (95.84)

=J [4~To(vo)-.xo(vo)~o(vo)l~vo
o

and the radiation momentum equation

1 DFO
3 —+ 4rrr2p
c Dt ‘+3p0-E[’-%+%)Fo+5(Eo+po)dM, r

(95.85)

--[

Im—— Xo(vo) ~o(~o) ~vo>
co

which are equivalent to (95.20) and (95.21). These equations also follow
directly from

where R~~ is given by (91.9) with all radiation quantities evaluated in the
comoving frame, G~ is given by (91.25), and the covariant derivatives are
evaluated in the curved spacetime of the fluid frame. Using (A3.89) with
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Christoffel symbols calculated in the metric (95.71), one can show that
(95.86) does, in fact, yield (95.84) and (95.85).

Equations (95.84) and (95.85) apply in spherical symmetry. Buchler has
shown (B2) that tensorial forms of these equations, applicable in any
geometry, are

()D EO
p— — +V. Fo+Po:Vv+~ a. Fo+cG~=O,

Dt p
(95.87)

c

and

()PDFO 1 1—— — +V. Po+z FO. Vv+7(EOa+a. PO)+ GO=O. (95.88)
C2 Dt p c c

The term P. :Vv in (95.87) is dyadic notation for the contraction of PO
with Vv. Buchler also gives tensorial forms for the monochromatic moment
equations [see his equations (9) and (10)].

lMPORTANCE OF O(v/ C) TERMS

In $93 we showed that in order to solve correctly the inertial-frame
transfer equation and its moments one must retain terms that are formally
O(o/c) (cf. $93). Building on the discussion by Castor (C3), we now show
that the same conclusion applies to the comoving-frame radiation and
momentum equations. In lmaking estimates of the relative sizes of terms we
shall ignore the acceleration terms [which are never larger than O(v/c)],
and consider (dv/dr), (v/r), and (D in p/Dt) to be O(v/1). In the diffusion
regime, we shall use results to be derived in $97 for estimating the sizes of
the net absorption-emission terms, FO, and (3F’0 – EO).

Consider first the radiation energy equation (95 .84); group the net
absorption-emission into a single term. In the streaming limit, dimensional
anal ysis suggests that on a fluid-flow tim~-scale the five terms in (95.84)

scale as (v/c): 1: (de): (de): (l/AD), hence we need retain only the flux
divergence and the absorption-emission terms; the radiation tield is quasi-
static. On a radiation-flow time scale we must also retain the (11/Dt) term. If
the material is essentially in radiative equilibrium, the absorption-emission
terms cancel almost exactly, and the (D/llt) and velocity-dependent terms,
although small, may significantly affect the energy balance; we should
then retain all terms. In the static diffusion limit, the terms scale as
(u/c) (l/A,,): 1: (v/c)2: (tdc)(l/AP): 1, hence only the flux-divergence and
absorption-emission terms need be retained. As (u/c) e (AO/l), all terms

except the one containing (3P0 – Eo) are of the same order, and all must
be kept. In the dynamic diffusion regime the scaling is 1: (c/v )(AP/l):
(v/c) (Au/l): 1:1. The dominant terms are the rate of change of the energy
density, the rate of work done by radiation pressure, and the net
absorption-emission terms; the flux divergence is of less importance than in
other regimes, and again we can drop (3P” – Eo). In summary, to guarantee
the correct radiation energy balance in all regimes, we must retain all terms in

(95 .84) except the acceleration term.
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Now consider the radiation momentum equation (95. 85). In the stream-

ing limit, dimensional analysis suggests that on a fluid-flow time scale the
terms scale as (v/c): 1:1: (u/c): (l/AO). Hence we need I-etain only V “ Pa
and the integral of XOFO/c. If we follow radiation flow, the (D/llt)
term must also be kept. In the diffusion regime the terms scale as
(v/c) (Ap/l): 1: (v/c) (AP/l): (v/c) (AP/l): 1.,hence we can drop (D/fit), (3P. – Eo),
and the velocity-dependent terms. This result contrasts strongly with that

for the inertial-frame radiation momentum ecluation (where it is essential
to retain all the velocity-dependent terms to obtain the correct inertial-
frame flLIx), and reveals an important advantage of the Lagrangean formu-
lation. In summary, in solving the cornoving-!rame radia~ion rnomemwn

equation (95 .85) on a .fluid-jlow time scale we can drop the time derivative
and all ve~ocity -dependent terms.

Castor (C3) arrives at the same conclusions for a pulsating star where
(D/Dt) is of the order of w the pulsation frequency.

96. Comoving-Frame Equations of Radiation Hydrodynamics

We are now in a position to write the Lagrangean equations of radiation
hydrodynamics. We consider one-dimensional spherically symmetric flows;
the corresponding planar equations are obtained by taking the limit
(l/r) ~ (!. We ignore the acceleration terms in the radiation energy and
momentum equations, which are 0(v2/c2) on fluid-flow time scales (but see
$97).

THE MOMENTUM EQUATION

The simplest way to obtain the comoving-frarne momentum equation is to
reduce the relativisticall y correct equation (94.12a) to the proper frame, in
which v = O instantaneously. We then have, to O(v/C),

(xmo(Dv/~t) = f–vp + Go. (96.1)

For nonrelativistic fluids (P+ pee)<< pOC2, and we can ignore the difference
between pooo and p. Specializing (96.1) to one-dimensional spherically

symmetric flow we find

rp(DdDt) = –(GMrp/r2) – (dp/dr) + (l/c) xO(vO)FO(vO) dv~, (96.2)
o

which states that a fluid element accelerates in response to applied external
forces (e.g., gravity), the pressure gradient, and the force exerted by the
radiation on the material as measured in its rest frame. The velocity-
dependent terms in the inertial-frame momentu]m equation vankh in the
Lagrangean frame.

To obtain the comoving-frame analogue of (94. 12b), we use (95.85) to
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eliminate the integral in (96.2), which yields

Dv 1 DFo _ GM,p _~—+=—
Dt C Dt rz ( :+%+3P”:E”)+$(:’-%)F0

(96.3)

We can also derive (96.3) by evaluating (94. 12b) directly in the comovi ng

frame provided that we replace [c-2(dF/dt) + V . P] with (R~@),~ and calcu-
late the covariant derivative using the (nonzero) Christoffel symbols ob-
tained from the metric (95.71). Regrouping terms in (96.3), we can write it
in the more instructive form

%[”’-($91’-7- dr - r -H%

GA4.P d(p + PO) 3?’0 – EO

(96.4)

which states that the rate of change of the total (material plus radiative)
momentum density in a radiating fluid equals the applied force minus the
divergence of the total stress, minus an additional (relativistic) term that
arises because the radiant energy flux has inertia (cf. $97).

On a fluid-flow time scale both terms containing F“ in (96.4) are O(v/c)
in the streaming limit, and O(APv/lc) in the diffusion limit, relative to
(dPO/dr), and can be dropped in practical calculations. Hence another
useful form of the Lagrangean momentum equation is

p(Dv/Dt) =f–vp –v . P,. (96.5)

Equation (96.5) is slightly more approximate than (96.2), but assumes a
particularly simple form in the diffusion limit, where V “ P. reduces to VPO,
so that the fluid acceleration depends on the total (gas plus radiation)
pressure gradient.

THE G.4S-EYERGY EQUATIQN

The comoving-frame gas-energy equation follows directly from the re-
lativistic equation (94.18) by evaluating VmFa and VaGa in the proper
frame. We obtain

po{(DdDT) + PID(MPo)/DTl} = c(R+ G~), (96.6)

where G: is given by (91.25a). For ordinary body forces cm= (v “ f). = O.
But in the presence of nonmechanical energy sources cm equals the rate,
per unit volume, of energy input to the material, as measured in the fluid
frame (cf. $37). For example, in stellar interiors thermonuclear reactions
irreversibly release E ergs g‘1 s–’ into the material. In this case

[

De

OIJ

Dl”
P, ~+p — — . [CXO(V”)E”(VO)– 4m@,)] Cbo+ pus.

DT p. ,
(96.7)

Equation (96.7) is the first law of thermodynamics for the material; it
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states that the rate of change of the material energy density plus the rate of
work clone by the material pressure equals the net rate of energy input
from the radiation field and thermonuclear sources, all per unit lmass. in
what follows we work to O(v/c), hence in (96.7) we replace pO by p and
(D/D~) by (D/Dt).

Tm RADw-r]0N-ENERG%EQUATION

By rearranging terms we can write (95.84) in a form that makes its physical

content more apparent:

~[:(:)+po:(;)-(’po-~o’;l

J

(96.8)

= ~[4wqo(wo] - CXC)(VO)EO(UO)]dv, ‘; ; (r’~,).
o

The second and third terms on the left-hand side of (96.8) reduce to
PjtIL ,i, the contraction of the radiation-pressure and fluid-velocity tensors,
hence equal the rate of work done by the radiation stress [cf. (27.7)]. Thus

(96.8) is the first law of thermodynamics for the radiation field; it states
that the rate of change of the radiation energy density, plus the rate of
work done by radiation pressure, equals the net rate of energy input into

the radiation field from the material, mi nLISthe net rate of radiant energy
flow out of a fluid element by transport [again cf. (27.7)], all per unit mass.

THE FIRST LAW OF 11-lERNIODYNAMrCS FOR THE R.&l)[AT[NG FLUID

Taking the sum of (96.7) and (96.8) we obtain the first law of ther-
modynamics for the radiating fluid:

which states that the rate of change of the total (material plus radiation)
energy density in a fluid element plus the rate of work done by the total
pressure in the element equals the rate of thermonuclear energy input into
the element minus the rate of radiant energy loss by transport to adj scent
fluid elements.

When the radiation field is isotropic (e.g., in the diffusion regime), (96.9)
simplifies to

D

-( ) ()

dL~
e+q +(p+Po)2 ~ =s– —

Dt p Dt p dM, ‘
(96.10)

where L! is the luminosity at radius r, measured in the cornoving frame. In
this limit, the r-adiating fluid behaves like a gas whose total energy density
and pressure are lhe simple sums of the contributions from the radiation
and material components.
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In the equilibrium diffusion limit, (96.10) is the standard energy equation
used in dynamical stellar evolution calculations [cf. (97.7)]. For a static
medium, it reduces to one of the standard eclualions of stellar structure

(d~:/dkf,) = E, (96.11)

which apply to stable stars evolving on a nuclear time scale t~, which is so
long compared to dynamical times of interes[ (e.g., the free-fall time or a
pulsation period) that the evolution is quasi-stationary and fluid motions
can be neglected.

THE MECHANICAL ENERGY I3QUATION

To obtain the fluid-frame mechanical energy equation we multiply the
momentum equation (96.2) by u, which yields

J

.

pD(~u2)/Dt= –(GA4,vp/r2) – zi(dp/dr) + (u/c) XO(VO)FO(PO)dZJO,
o

(96.12)

which is identical to (24.8) if we lump the radiative force into f, and to

(94.17a) except that here the radiation force is evaluated in the comoving
frame.

THE TOTAL ~N13RGYEQUAT1ON
To obtain a total energy equation we first rewrite (96.12) as

–(4~’2”p)=~:(:)+:J:x(””o)Fo(””o)~~og(i.2-?)+dLr
(96.13)

Next, substituting from (95 .85) for the radiation force, and ignoring terms
of O(uz/c2) we obtain

:(,u2-+7& ()[4mr2v(p +Po)] = (p+Po) ~ ~ –~ (3 P0-EO).

(96.14)

Finally, adding (96.14) to (96.9) we have

-(D E. GM,
e+ —+-$v2— —

)
~ {4mr2[u(p +Po) +Fo]} = s, (96.15)-

Dt p r r

which is clearly a statement of overall energy conservation for the radiating
fluid. All radiation quantities in (96.15] are to be evaluated in the comov-
ing frame.

Equation (96. 15) is essentially identical to equation (27.4), written in
spherical coordinates, for an inviscid but conducting (via radiation) fluid
whose internal energy density is the sum of the gas and radiation energy
densities, and whose pressure equals the sum of the gas and radiation
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pressures, with the term on the right-hand side accounting for “external”
energy input from thermonuclear reactions. This equation, with 4mr2Fo

replaced by L,, and EO and POgiven their thermal equilibrium values, is the
total energy equation used in dynamical stellar structure calculations [see,

for example, (C4, eq. 6); (Fl, eq. 3); (K7, eq. 15); or (L2, eq. 51.3)].
We can rewrite (96.15) in Eulerian coordinates as

‘( GM.p
~ pe +EO+$pv2— —

r )

[{[(

(96.16)
la

)

GM,
+7$ r2 p e+~vz–~

1 1
+p+PO+EO L)+FO = P&.

Then using (91 .17a) and ignoring 0(v2/c2) terms in converting EO to E in
the time derivative, we obtain

(~ pe+E+~pv2– —
)

GM,p

r

[{[(

~larz
p e+$.,2–

rz dr %9+d’+dll=p’ ‘96”17)

which is identical to the Eulerian result (94. 15b) when thermonuclear
energy release is allowed. in (96.17), radiation quantities are now meas-
ured in the laboratory frame.

Assuming that X is so small that we can neglect the time variation of M,,
we can write an explicit integral of (96.17) for the case of steady flow [cf.
(24.22] for a nonradiating fluid]. We find

J

r
~[h +~v’– (G-A4,/r)]+L, = 4rr paz dx.

o

That is, the total energy flux passing through a surface

(96.18)

of radius r,—.
consisting of the material energy flux (i. e., the mass flux times the enthalpy

plus kinetic plus potential energy per unit mass) plus the luminosity
radiated by the surface (measured in the lab frame) equals the total
thermonuclear energy release in the volume bounded by the sulfacc. in
physical terms, (96. 18) states that all the energy contained in radiation and
in fluid motions in a star originates ultimately from thermonuclear energy
release in the star’s interior.

CONSISl%NCYOF ~ARIOUS ~OkUS OF ‘rHE COMO~lNG-FRAM~~N~RGY AND
MOMENTUMEQUXrrONS
We now show that O(tdc) terms must also be retained in order to obtain
consistency among various forms of the comoving-frame energy equation,
and between the comoving-frame and inertial-frame energy and momen-
tum equations. Our discussion summarizes and extends a penetrating
analysis of these issues by Castor (C3). An earlier, but incomplete, treat-
ment was given by Wendroff (W2).
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In an optically thin medium, or near a radiating surface of an opaque
medium, the radiation field departs strongly from thermal equilibrium,
hence -1 can differ markedly from B, the flux is large, and the radiation
pressure tensor is anisotropic. In this regime, it is natural to describe the
energy exchange between the material and radiation in terms of dil-ect
gains and losses, as in (96.7), and momentum exchange in terms of

radiation forces acting on the material, as in (96.2).
In contrast, in the diffusion regime J + B, so that the net absorption-

emission term in (96.7) vanishes to high order, and the flux becomes a very
small leak from the large reservoir of radiant energy. The radiation energy
density and pressure both approach their equilibrium values, and the
radiation pressure becomes isotropic. It is then natural to calculate the
total energy content and pressure of the radiating fluid by adding the
material and radiative contributions, and to use (96.9) as the energy
equation and (96.5) as the momentum equation.

In any practical computation we must choose one form of the fluid
energy equation even when the flow spans both the optically thin and thick
limits. If the O(u/c) terms are retained in the radiation energy equation
(95.84), and this equation is solved simultaneously with either fluid energy
equation, the choice is immaterial because exact consistency between the
two is guaranteed. But suppose we drop the O(v/c) terms from (95.84).
Then if we use (96.7), we will obtain satisfactory results in the optically

thin regime, but will make serious errors in the optically thick regime,
where Y~ B and the right-hand side vanishes almost identically, because
we have not accounted explicitly for either the rate of change of the
internal energy in the radiation or the rate of work done by radiation
pressure. Castor concludes (C3) that in the diffusion regime the tempera-
ture determined from (96 .7) with the O(v/c) terms omitted from (95.84)
can be in error by an amount of O(P/p). If, instead, we use (96.9) the
difficulty is reversed. We then obtain an accurate solution at great depth,
but wil I make serious errors in the optically thin regime where the gas

decouples from the radiation; Castor finds that the error in the tempera-
ture is again O(P/p). In short, it is essential to retain O(rjc) terms in
(95.84) in order to bridge the transition between the optically thick and
thin limits.

The situation for the momentum equation is difierent. Here (DFO/Dt)

and the velocity-dependent terms multiplying FO in (96.3) are never larger
than O(rJ/c), and are much smaller in the cliffusion 1imit. We can therefore
drop these terms, which means that we will obtain consistency with (96.2)
even if we drop the time-derivative and velocity-dependent terms from the
radiation momentum equation (95.85). Moreover, in the derivation of the
mechanical energy equation (96.12), which when combined with (96.9),
leads to the total energy equation (96.15), all O(v/c) terms in (95.85)

become 0(v2/c2], and hence can be dropped from the outset. In short, we
do not adversely affect consistency among various forms of the energy or
momentum equations by dropping all O(v/c) terms from (95.85).

. . —..
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CONSlSl”13iCY’ OF THE INERTIALFRAME AND COMOVING-FRAME ENERGY AhrD

MOMENTUM EQUAI-JONS FOR A RADIATING FLUID

Let us now examine the mutual consistency of the inertial-frame and

comoving-frame energy and momentum equations. Consider first the
inertial-frame gas-energy equation (94. 19b). On a fluid-flow time scale the

(dF/2t) term is 0(ti2/c2) relative to V “F and hence can be dropped.
Similarly the (v/c) terms in the transformations of (E, P) into (Eo, PO) will
produce terms of 0(02/c2); we thus need to retain O(v/c) terms only to
transform F to Fo. In particular, for one-dimensional spherically symmetric
flow we have

V . F=~~ [r’(FO+ UEO+ @O)]

‘~+%+””r:+%)+r:+:)(~o+~o) “’””)

Furthermore, from (66. 10)

V o PO= (dPO/dr) + (3P0 – Eo)/r. (96.20)

Using these results in (94. 19b) we find

R+w=-[= 1
~t +~~ (r2Fo)+~ (3 EO– PO)+ (EO +Po) ~ ,

(96.21)

which, by virtue of (95.84) is identical to the comoving-frarne gas-energy
equation (96.7). If the velocity-dependent term on the right-hand side of

(94.19b] had been omitted, we would be left with an extra term in (96.21)
of the form v (dP/dr), that is, the rate of work done by the fluid against the
radiation pressure gradient. For tluids with intense radiation fields, this
term is large and would Lead to serious errors. By a similar analysis, one
readily shows that (94.22) is consistent with (96.9).

Alternatively, consider the inertial-frame equation (94. 19a), which for
grey material reduces to

J%+%;)]=
Ko(C~ – 47TB0 – 2V “F/c)+ 0(u2/c2). (96.22)

Then using (91. 16) we have

pE+p:(:)l=Ko(c~o-4~Bo)
(96.23)

which is identical to the comoving-frame equation (96.7) for grey material.
Had the O(v/c) terms been omitted from (94.19a), from (93.10) and
(93.11), or from (91.16), this exact reduction would not be achieved; the
error would equal Kov “ F/c, the rate of work done by radiation forces on
the material.
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In summary, consistency between the inertial-frame and comoving-frame
equations requires that all O(v/c) terms be retained in both gas-energy
equations, in the radiation energy equation, and in the transformation laws
between frames [see also (P4)]. In contrast, all O(v/c) terms can be omitted
from the radiation momentum equation without loss of consistency.

Finally, consider the inertial-frame momentum equation (94. 13b), which
for spherically symmetric ffow reduces to

D’u – Gkfrp dp

[

1 8F dP (3P–E) V (3E dF 2——— ~%+%+ ——
‘%= r2 ( 71

;+%+— .
~r r C2 r

(96.24)

On a fluid-flow time scale the term containing (dE/dt) is 0(v2/c2) relative
to (d F’/dr), and therefore can be dropped. Similarly all terms containing F
are at most O(o/c) relative to the terms in E and P. Hence to obtain a final

result accurate to O(v/c) it is sufficient to set F = FO, but all terms must be
retained in transforming from (E, P) to (~0, E’o). Making these conversions

we find

(96.25)

which is icfent ical to the comoving-frame equation (96.3). Thus consistency
of the momentum equation between frames is assured if, and only if, one
accounts for O(u/c) terms in both frames.

Similarly, in light of (93.10) and (93.11) the inertial-frame moment urn
equation (94. 13a) for a spherically symmetric flow of grey material is

p(Dv/Dt) = –(GM,p/r2) – (dp/~r) + (Ko/c)[F– (u/c)(J3 + F’)]+ 0(v2/c2),

(96.26)

which, from (91. 19), is identical to the comoving-frame equation (96.2) for

grey material. Again we see that the O(v/c) terms are essential for
consistency.

7.3 Solution of the Equations of Radiation Hydrodynamics

MATHEMATICAL STRUCTURE OF THE PRO13LEM

In $$93 to 96 we formulated the equations of radiation hydrodynamics in
both the Eulerian and Lagrangean frames; we now ask how to solve them.
In this connection it is instructive to count the number of variables to be
determined and the number of equations available to determine them, as in

$24. As before we must find seven fluid variables: p, p, T, e, and three
components of v; in addition we must now find ten radiation variables: E,
the three components of F, and the six nonredundant components of P.

. .


