China Naval Modernization: Implications for U.S. Navy Capabilities—Background and Issues for Congress

Updated July 1, 2021
Summary

In an era of renewed great power competition, China’s military modernization effort, including its naval modernization effort, has become the top focus of U.S. defense planning and budgeting. China’s navy, which China has been steadily modernizing for more than 25 years, since the early to mid-1990s, has become a formidable military force within China’s near-seas region, and it is conducting a growing number of operations in more-distant waters, including the broader waters of the Western Pacific, the Indian Ocean, and waters around Europe.

China’s navy is viewed as posing a major challenge to the U.S. Navy’s ability to achieve and maintain wartime control of blue-water ocean areas in the Western Pacific—the first such challenge the U.S. Navy has faced since the end of the Cold War. China’s navy forms a key element of a Chinese challenge to the long-standing status of the United States as the leading military power in the Western Pacific. Some U.S. observers are expressing concern or alarm regarding the pace of China’s naval shipbuilding effort and resulting trend lines regarding the relative sizes and capabilities of China’s navy and the U.S. Navy.

China’s naval modernization effort encompasses a wide array of ship, aircraft, and weapon acquisition programs, as well as improvements in maintenance and logistics, doctrine, personnel quality, education and training, and exercises. China’s navy has currently has certain limitations and weaknesses, and is working to overcome them.

China’s military modernization effort, including its naval modernization effort, is assessed as being aimed at developing capabilities for addressing the situation with Taiwan militarily, if need be; for achieving a greater degree of control or domination over China’s near-seas region, particularly the South China Sea; for enforcing China’s view that it has the right to regulate foreign military activities in its 200-mile maritime exclusive economic zone (EEZ); for defending China’s commercial sea lines of communication (SLOCs), particularly those linking China to the Persian Gulf; for displacing U.S. influence in the Western Pacific; and for asserting China’s status as the leading regional power and a major world power.

Consistent with these goals, observers believe China wants its navy to be capable of acting as part of a Chinese anti-access/area-denial (A2/AD) force—a force that can deter U.S. intervention in a conflict in China’s near-seas region over Taiwan or some other issue, or failing that, delay the arrival or reduce the effectiveness of intervening U.S. forces. Additional missions for China’s navy include conducting maritime security (including antipiracy) operations, evacuating Chinese nationals from foreign countries when necessary, and conducting humanitarian assistance/disaster response (HA/DR) operations.

The U.S. Navy in recent years has taken a number of actions to counter China’s naval modernization effort. Among other things, the U.S. Navy has shifted a greater percentage of its fleet to the Pacific; assigned its most-capable new ships and aircraft and its best personnel to the Pacific; maintained or increased general presence operations, training and developmental exercises, and engagement and cooperation with allied and other navies in the Indo-Pacific; increased the planned future size of the Navy; initiated, increased, or accelerated numerous programs for developing new military technologies and acquiring new ships, aircraft, unmanned vehicles, and weapons; begun development of new operational concepts (i.e., new ways to employ Navy and Marine Corps forces) for countering Chinese maritime A2/AD forces; and signaled that the Navy in coming years will shift to a more-distributed fleet architecture that will feature a smaller portion of larger ships, a larger portion of smaller ships, and a substantially greater use of unmanned vehicles. The issue for Congress is whether the U.S. Navy is responding appropriately to China’s naval modernization effort.
Contents

Introduction ... 1
 Issue for Congress ... 1
 Sources and Terminology ... 1
Background .. 2
 Brief Overview of China’s Naval Modernization Effort .. 2
 Numbers of Ships; Comparisons to U.S. Navy ... 5
 Ultimate Size and Composition of China’s Navy Not Publicly Known 5
 Number of Ships Is a One-Dimensional Measure, but Trends in Numbers Can Be
 of Value Analytically ... 5
 Three Tables Showing Numbers of Chinese and U.S. Navy Ships 5
Selected Elements of China’s Naval Modernization Effort ... 10
 Anti-Ship Missiles .. 10
 Submarines ... 14
 Aircraft Carriers .. 17
 Surface Combatants ... 23
 Amphibious Ships .. 28
 Operations Away from Home Waters ... 33
U.S. Navy Response ... 33
 Overview .. 33
 Cooperation with Naval Forces of Allies and Other Countries 34
 Size of Navy, Fleet Architecture, and Operational Concepts 35
 Programs for Acquiring Highly Capable Ships, Aircraft, and Weapons 37
Issues for Congress .. 37
 Overview .. 37
 Discussion .. 38
Legislative Activity for FY2022 ... 42
 Coverage in Related CRS Reports .. 42

Figures

Figure 1. DF-21D Anti-Ship Ballistic Missile (ASBM) ... 11
Figure 2. DF-26 Multi-Role Intermediate-Range Ballistic Missile (IRBM) 11
Figure 3. Reported Image of Anti-Ship Cruise Missile (ASCM) 12
Figure 4. Reported Image of Anti-Ship Cruise Missile (ASCM) 13
Figure 5. Reported Image of Anti-Ship Cruise Missile (ASCM) 14
Figure 6. Yuan (Type 039) Attack Submarine (SS) ... 15
Figure 7. Shang (Type 093) Attack Submarine (SSN) ... 16
Figure 8. Jin (Type 094) Ballistic Missile Submarine (SSBN) .. 16
Figure 9. Liaoning (Type 001) Aircraft Carrier .. 18
Figure 10. Shandong (Type 002) Aircraft Carrier ... 19
Figure 11. Type 003 Aircraft Carrier Under Construction ... 20
Figure 12. J-15 Flying Shark Carrier-Capable Fighter ... 22
Figure 13. Renhai (Type 055) Cruiser (or Large Destroyer) ... 24
Figure 14. *Renhai* (Type 055) Cruiser (or Large Destroyer) ... 25
Figure 15. *Luyang III* (Type 052D) Destroyer ... 26
Figure 16. *Jiangkai II* (Type 054A) Frigate ... 27
Figure 17. *Jingdao* (Type 056) Corvette ... 28
Figure 18. *Yuzhao* (Type 071) Amphibious Ship .. 29
Figure 19. Type 075 Amphibious Assault Ship .. 30
Figure 20. Type 075 Amphibious Assault Ship .. 31
Figure 21. Notional Rendering of Possible Type 076 Amphibious Assault Ship 32
Figure 22. Notional Rendering of Possible Type 076 Amphibious Assault Ship 32

Tables

Table 1. Numbers of Certain Types of Chinese and U.S. Ships Since 2005 7
Table 2. Numbers of Chinese and U.S. Navy Battle Force Ships, 2000-2030 9
Table 3. Numbers of Chinese and U.S. Navy Ships, 2020-2040 10

Appendixes

Appendix A. Comparing U.S. and Chinese Numbers of Ships and Naval Capabilities 44
Appendix B. U.S. Navy’s Ability to Counter Chinese ASBMs 47

Contacts

Author Information ... 52
Introduction

Issue for Congress

This report provides background information and issues for Congress on China’s naval modernization effort and its implications for U.S. Navy capabilities. In an era of renewed great power competition, China’s military modernization effort, including its naval modernization effort, has become the top focus of U.S. defense planning and budgeting. The issue for Congress for this CRS report is whether the U.S. Navy is responding appropriately to China’s naval modernization effort. Decisions that Congress reaches on this issue could affect U.S. and allied security, Navy capabilities and funding requirements, and the defense industrial base.

Another CRS report provides an overview of China’s military in general.

Sources and Terminology

This report is based on unclassified open-source information, such as the annual Department of Defense (DOD) report to Congress on military and security developments involving China, a 2019 Defense Intelligence Agency (DIA) report on China’s military power, a 2015 Office of Naval Intelligence (ONI) report on China’s navy, published reference sources such as IHS Jane’s Fighting Ships, and press reports.

For convenience, this report uses the term China’s naval modernization effort to refer to the modernization not only of China’s navy, but also of Chinese military forces outside China’s navy that can be used to counter U.S. naval forces operating in the Western Pacific, such as land-based anti-ship ballistic missiles (ASBMs), land-based surface-to-air missiles (SAMs), land-based Air Force aircraft armed with anti-ship cruise missiles (ASCMs), and land-based long-range radars for detecting and tracking ships at sea.

1 For further discussion of the shift to an era of renewed great power competition, see CRS Report R43838, Renewed Great Power Competition: Implications for Defense—Issues for Congress, by Ronald O'Rourke.

3 CRS Report R46808, China’s Military: The People’s Liberation Army (PLA), by Caitlin Campbell.

7 IHS Jane’s Fighting Ships 2018-2019, and previous editions. Other sources of information on these shipbuilding programs may disagree regarding projected ship commissioning dates or other details, but sources present similar overall pictures regarding PLA Navy shipbuilding.
China’s military is formally called the People’s Liberation Army (PLA). Its navy is called the PLA Navy, or PLAN (also abbreviated as PLA[N]), and its air force is called the PLA Air Force, or PLAAF. The PLA Navy includes an air component that is called the PLA Naval Air Force, or PLANAF. China refers to its ballistic missile force as the PLA Rocket Force (PLARF).

This report uses the term China’s near-seas region to refer to the Yellow Sea, East China Sea, and South China Sea—the waters enclosed by the so-called first island chain. The so-called second island chain encloses both these waters and the Philippine Sea that is situated between the Philippines and Guam.8

Background

Brief Overview of China’s Naval Modernization Effort

Key overview points concerning China’s naval modernization effort include the following:

- China’s naval modernization effort, which forms part of a broader Chinese military modernization effort that includes several additional areas of emphasis,9 has been underway for more than 25 years, since the early to mid-1990s, and has transformed China’s navy into a much more modern and capable force. China’s navy is a formidable military force within China’s near-seas region, and it is conducting a growing number of operations in more-distant waters, including the broader waters of the Western Pacific, the Indian Ocean, and waters around Europe.

- China’s navy is, by far, the largest of any country in East Asia, and within the past few years it has surpassed the U.S. Navy in numbers of battle force ships (meaning the types of ships that count toward the quoted size of the U.S. Navy), making China’s navy the numerically largest in the world.

- Some U.S. observers are expressing concern or alarm regarding the pace of China’s naval shipbuilding effort and resulting trend lines regarding the relative sizes and capabilities of China’s navy and the U.S. Navy.10 ONI states that at the end of 2020, China’s will have 360 battle force ships, compared with a projected total of 297 for the U.S. Navy at the end of FY2020. ONI projects that China will have 400 battle force ships by 2025, and 425 by 2030.11

8 For a map showing the first and second island chains, see 2019 DIA CMP, p. 32.

9 Other areas of emphasis in China’s military modernization effort include space capabilities, cyber and electronic warfare capabilities, ballistic missile forces, and aviation forces, as well as the development of emerging military-applicable technologies such as hypersonics, artificial intelligence, robotics and unmanned vehicles, directed-energy technologies, and quantum technologies. For a discussion of advanced military technologies, see CRS In Focus IF11105, Defense Primer: Emerging Technologies, by Kelley M. Sayler.

U.S.-China competition in military capabilities in turn forms one dimension of a broader U.S.-China strategic competition that also includes political, diplomatic, economic, technological, and ideological dimensions.

10 See, for example, Dan De Luce and Ken Dilanian, “China’s Growing Firepower Casts Doubt on Whether U.S. Could Defend Taiwan, In War Games, China Often Wins, and U.S. Warships and Aircraft Are Kept at Bay,” NBC News, March 27, 2021.

11 Source for China’s number of battle force ships: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, p. 3. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission.
China’s naval ships, aircraft, and weapons are now much more modern and capable than they were at the start of the 1990s, and are now comparable in many respects to those of Western navies. ONI states that “Chinese naval ship design and material quality is in many cases comparable to [that of] USN [U.S. Navy] ships, and China is quickly closing the gap in any areas of deficiency.”

China’s navy is viewed as posing a major challenge to the U.S. Navy’s ability to achieve and maintain wartime control of blue-water ocean areas in the Western Pacific—the first such challenge the U.S. Navy has faced since the end of the Cold War. China’s navy forms a key element of a Chinese challenge to the long-standing status of the United States as the leading military power in the Western Pacific.

China’s naval modernization effort encompasses a wide array of platform and weapon acquisition programs, including anti-ship ballistic missiles (ASBMs), anti-ship cruise missiles (ASCMs), submarines, surface ships, aircraft, unmanned vehicles (UVs), and supporting C4ISR (command and control, communications, computers, intelligence, surveillance, and reconnaissance) systems. China’s naval modernization effort also includes improvements in maintenance and logistics, doctrine, personnel quality, education and training, and exercises.

China’s military modernization effort, including its naval modernization effort, is assessed as being aimed at developing capabilities for addressing the situation with Taiwan militarily, if need be; for achieving a greater degree of control or domination over China’s near-seas region, particularly the South China Sea; for enforcing China’s view that it has the right to regulate foreign military activities in its 200-mile maritime exclusive economic zone (EEZ); for defending China’s commercial sea lines of communication (SLOCs), particularly those linking China to the Persian Gulf; for displacing U.S. influence in the Western Pacific; and for asserting China’s status as the leading regional power and a major world power.

Consistent with these goals, observers believe China wants its navy to be capable of acting as part of a Chinese anti-access/area-denial (A2/AD) force—a force that can deter U.S. intervention in a conflict in China’s near-seas region over Taiwan or some other issue, or failing that, delay the arrival or reduce the effectiveness of intervening U.S. forces. Additional missions for China’s navy include conducting maritime security (including antipiracy) operations, evacuating Chinese nationals from foreign countries when necessary, and conducting humanitarian assistance/disaster response (HA/DR) operations.

14 For additional discussion, see CRS Report R42784, U.S.-China Strategic Competition in South and East China Seas: Background and Issues for Congress, by Ronald O’Rourke.

China Naval Modernization: Implications for U.S. Navy Capabilities

- Until recently, China’s naval modernization effort appeared to be focused less on increasing total platform (i.e., ship and aircraft) numbers than on increasing the modernity and capability of Chinese platforms. Some categories of ships, however, are now increasing in number. The planned ultimate size and composition of China’s navy is not publicly known. In contrast to the U.S. Navy, China does not release a navy force-level goal or detailed information about planned ship procurement rates, planned total ship procurement quantities, planned ship retirements, and resulting projected force levels.

- Although China’s naval modernization effort has substantially improved China’s naval capabilities in recent years, China’s navy currently is assessed as having limitations or weaknesses in certain areas, including joint operations with other parts of China’s military, antisubmarine warfare (ASW), long-range targeting, a limited capacity for carrying out at-sea resupply of combatant ships operating far from home waters, a limited number of overseas bases and support facilities, a need to train large numbers of personnel to crew its new ships, and a lack of recent combat experience. China is working to reduce or overcome such limitations and weaknesses. Although China’s navy has limitations and weaknesses, it may nevertheless be sufficient for performing missions of interest to Chinese leaders. As China’s navy reduces its weaknesses and limitations, it may become sufficient to perform a wider array of potential missions.

- In addition to modernizing its navy, China in recent years has substantially increased the size of its coast guard. China’s coast guard is, by far, the largest of any country in East Asia. China also operates a sizeable maritime militia that includes a large number of fishing vessels. China relies primarily on its maritime militia and coast guard to assert and defend its maritime claims in its near-seas region, with the navy operating over the horizon as a potential backup force.

16 For a discussion focusing on these limitations or weaknesses, see Mike Sweeney, Assessing Chinese Maritime Power, Defense Priorities, October 2020, 14 pp.
18 See, for example, Kristin Huang, “Size of China’s Navy May Be Closing Gap on US Fleet But What Can the PLA Do with Just One Overseas Naval Base?” South China Morning Post, March 14, 2021.
19 See, for example, Minnie Chan, “China’s Navy Goes Back to Work on Big Ambitions but Long-Term Gaps Remain,” South China Morning Post, August 22, 2020.
20 The use of a dual command structure in the crews of larger Chinese ships, involving both a commanding officer and a political officer, has also been raised as a source of potential reduced command effectiveness in certain tactical situations. See “Leadership: China Cripples Naval Officers,” Strategy Page, July 18, 2020. Some observers argue that corruption in China’s shipbuilding companies may be a source of additional weaknesses in China’s naval modernization effort. See, for example, Zi Yang, “The Invisible Threat to China’s Navy: Corruption,” Diplomat, May 19, 2020. See also Frank Chen, “Ex-PLA Navy Chief in Deep Water Amid War on graft,” Asia Times, June 26, 2020.
21 For example, China’s naval shipbuilding programs were previously dependent on foreign suppliers for some ship components. ONI, however, states that “almost all weapons and sensors on Chinese naval ships are produced in-country, and China no longer relies on Russia or other countries for any significant naval ship systems.” (Source: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, pp. 2-3. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission.) See also Ma Xiu and Peter W. Singer, “How China Steals US Tech to Catch Up in Underwater Warfare,” Defense One, June 8, 2021.
22 For additional details, see 2020 DOD CMSD, p. 71, and 2019 DIA CMP, p. 78.
23 For additional discussion, see CRS Report R42784, U.S.-China Strategic Competition in South and East China Seas:
Numbers of Ships; Comparisons to U.S. Navy

Ultimate Size and Composition of China’s Navy Not Publicly Known

The planned ultimate size and composition of China’s navy is not publicly known. The U.S. Navy makes public its force-level goal and regularly releases a 30-year shipbuilding plan that shows planned procurements of new ships, planned retirements of existing ships, and resulting projected force levels, as well as a five-year shipbuilding plan that shows, in greater detail, the first five years of the 30-year shipbuilding plan. In contrast, China does not release a navy force-level goal or detailed information about planned ship procurement rates, planned total ship procurement quantities, planned ship retirements, or resulting projected force levels. It is possible that the ultimate size and composition of China’s navy is an unsettled and evolving issue even among Chinese military and political leaders. One observer states that “it seems the majority of past foreign projections of Chinese military and Chinese navy procurement scale and speed have been underestimates…. All military forces have a desired force requirement and a desired ‘critical mass’ to aspire toward. Whether the Chinese navy is close to its desired force or not, is of no small consequence.”

Number of Ships Is a One-Dimensional Measure, but Trends in Numbers Can Be of Value Analytically

Relative U.S. and Chinese naval capabilities are sometimes assessed by showing comparative numbers of U.S. and Chinese ships. Although the total number of ships in a navy (or a navy’s aggregate tonnage) is relatively easy to calculate, it is a one-dimensional measure that leaves out numerous other factors that bear on a navy’s capabilities and how those capabilities compare to its assigned missions. As a result, as discussed in further detail in Appendix A, comparisons of the total numbers of ships in China’s navy and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to those navies. At the same time, however, an examination of the trends over time in these relative numbers of ships can shed some light on how the relative balance of U.S. and Chinese naval capabilities might be changing over time.

Three Tables Showing Numbers of Chinese and U.S. Navy Ships

Table Showing Figures from Annual DOD Reports

Table 1 shows numbers of certain types of Chinese navy ships from 2005 to the present (and the number of China coast guard ships from 2017 to the present) as presented in DOD’s annual reports on military and security developments involving China. DOD states that China “has the largest navy in the world, with an overall battle force of approximately 350 ships and submarines including over 130 major surface combatants. In comparison, the U.S. Navy’s battle force is approximately 293 ships as of early 2020.” DIA states that “although the overall inventory has
remained relatively constant, the PLAN is rapidly retiring older, single-mission warships in favor of larger, multimission ships equipped with advanced antiship, antiair, and antisubmarine weapons and sensors and C2 [command and control] facilities.”

As can be seen in Table 1, about 72% of the increase since 2005 in the number of Chinese navy ships shown in the table (a net increase of 84 ships out of a total net increase of 117 ships) resulted from increases in missile-armed fast patrol craft starting in 2009 (a net increase of 35 ships) and corvettes starting in 2014 (49 ships). These are the smallest surface combatants shown in the table. The net 35-ship increase in missile-armed fast patrol craft was due to the construction between 2004 and 2009 of 60 new Houbei (Type 022) fast attack craft28 and the retirement of 25 older fast attack craft that were replaced by Type 022 craft. The 49-ship increase in corvettes is due to the Jingdao (Type 056) corvette program discussed earlier. ONI states that “a significant portion of China’s Battle Force consists of the large number of new corvettes and guided-missile frigates recently built for the PLAN.”

As can also be seen in the table, most of the remaining increase since 2005 in the number of Chinese navy ships shown in the table is accounted for by increases in cruisers and destroyers (12 ships), frigates (6 ships), and amphibious ships (15 ships). Most of the increase in frigates occurred in the earlier years of the table; the number of frigates has changed little in the later years of the table.

Table 1 lumps together less-capable older Chinese ships with more-capable modern Chinese ships. In examining the numbers in the table, it can be helpful to keep in mind that for many of the types of Chinese ships shown in the table, the percentage of the ships accounted for by more capable modern designs was growing over time, even if the total number of ships for those types was changing little.

For reference, Table 1 also shows the total number of ships in the U.S. Navy (known technically as the total number of battle force ships), and compares it to the total number of the types of Chinese ships that are shown in the table. The result is an apples-vs.-oranges comparison, because the Chinese figures exclude certain ship types, such as auxiliary and support ships, while the U.S. Navy figure includes auxiliary and support ships but excludes patrol craft. Changes over time in this apples-vs.-oranges comparison, however, can be of value in understanding trends in the comparative sizes of the U.S. and Chinese navies.

On the basis of the figures in Table 1, it might be said that the total number of Chinese navy ships of the types shown in the table (which might be thought of as the principal combat ships of China’s navy) surpassed the total number of U.S. Navy battle force ships (a figure that includes both combat ships and auxiliary ships) in 2015. It is important, however, to keep in mind the differences in composition between the two navies. The U.S. Navy, for example, has many more aircraft carriers, nuclear-powered submarines, and cruisers and destroyers, while China’s navy has many more diesel attack submarines, frigates, and corvettes.

27 2019 DIA CMP, p. 69.
28 The Type 022 program was discussed in the August 1, 2018, version of this CRS report, and earlier versions.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic missile submarines</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>+3</td>
</tr>
<tr>
<td>Nuclear-powered attack submarines</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Diesel attack submarines</td>
<td>51</td>
<td>50</td>
<td>53</td>
<td>54</td>
<td>54</td>
<td>49</td>
<td>48</td>
<td>49</td>
<td>51</td>
<td>53</td>
<td>57</td>
<td>54</td>
<td>47</td>
<td>50</td>
<td>46</td>
<td>-5</td>
</tr>
<tr>
<td>Aircraft carriers</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cruisers</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Destroyers</td>
<td>21</td>
<td>25</td>
<td>25</td>
<td>29</td>
<td>27</td>
<td>25</td>
<td>26</td>
<td>23</td>
<td>24</td>
<td>21</td>
<td>23</td>
<td>31</td>
<td>28</td>
<td>33</td>
<td>32</td>
<td>+11</td>
</tr>
<tr>
<td>Frigates</td>
<td>43</td>
<td>45</td>
<td>47</td>
<td>45</td>
<td>48</td>
<td>49</td>
<td>53</td>
<td>53</td>
<td>52</td>
<td>49</td>
<td>52</td>
<td>56</td>
<td>51</td>
<td>54</td>
<td>49</td>
<td>+6</td>
</tr>
<tr>
<td>Corvettes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>15</td>
<td>23</td>
<td>23</td>
<td>28</td>
<td>42</td>
<td>49</td>
</tr>
<tr>
<td>Missile-armed coastal patrol craft</td>
<td>51</td>
<td>45</td>
<td>41</td>
<td>45</td>
<td>70</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>88</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>+35</td>
</tr>
<tr>
<td>Amphibious ships: LSTs and LPDs</td>
<td>20</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>29</td>
<td>29</td>
<td>30</td>
<td>34</td>
<td>33</td>
<td>37</td>
<td>37</td>
<td>+17</td>
</tr>
<tr>
<td>Total of types above (does not include other types, such as auxiliary and support ships)</td>
<td>216</td>
<td>221</td>
<td>222</td>
<td>233</td>
<td>262</td>
<td>276</td>
<td>276</td>
<td>271</td>
<td>273</td>
<td>283</td>
<td>294</td>
<td>303</td>
<td>317</td>
<td>306</td>
<td>335</td>
<td>333 +117</td>
</tr>
</tbody>
</table>

China Coast Guard ships
n/a 185 240 248 255 n/a

Total U.S. Navy battle force ships (which includes auxiliary and support ships but excludes patrol craft)

Total U.S. Navy battle force ships compared to above total for certain Chinese ship types
Source: Table prepared by CRS based on 2005-2019 editions of annual DOD report to Congress on military and security developments involving China (known for 2009 and prior editions as the report on China military power), and (for U.S. Navy ships) U.S. Navy data as presented in CRS Report RL32665, Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress, by Ronald O'Rourke.

Notes: n/a means data not available in report. LST means tank landing ship; LPD means transport dock ship; LSM means medium landing ship. The DOD report generally covers events of the prior calendar year. Thus, the 2019 edition covers events during 2018, and so on for earlier years. Similarly, for the U.S. Navy figures, the 2019 column shows the figure for the end of FY2018, and so on for earlier years.
Table Showing ONI Figures from February 2020

Table 2 shows comparative numbers of Chinese and U.S. battle force ships (and figures for certain types of ships that contribute toward China’s total number of battle force ships) from 2000 to 2030, with the figures for 2025 and 2030 being projections. The figures for China’s ships are taken from an ONI information paper of February 2020. Battle force ships are the types of ships that count toward the quoted size of the Navy. For China, the total number of battle force ships shown excludes the missile-armed coastal patrol craft shown in Table 1, but includes auxiliary and support ships that are not shown in Table 1. Compared to Table 1, the figures in Table 2 come closer to providing an apples-to-apples comparison of the two navies’ numbers of ships, although it could be argued that China’s missile-armed coastal patrol craft can be a significant factor for operations within the first island chain.

On the basis of the figures in Table 2, it might be said that China’s navy surpassed the U.S. Navy in terms of total number of battle force ships sometime between 2015 and 2020. As mentioned earlier in connection with Table 1, however, it is important to keep in mind the differences in composition between the two navies. The U.S. Navy, for example, currently has many more aircraft carriers, nuclear-powered submarines, and cruisers and destroyers, while China’s navy currently has many more diesel attack submarines, frigates, and corvettes.

Table 2. Numbers of Chinese and U.S. Navy Battle Force Ships, 2000-2030

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic missile subs</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>Nuclear-powered subs</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Diesel subs</td>
<td>56</td>
<td>56</td>
<td>48</td>
<td>53</td>
<td>55</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Aircraft, cruisers, ...</td>
<td>19</td>
<td>25</td>
<td>25</td>
<td>26</td>
<td>43</td>
<td>55</td>
<td>65</td>
</tr>
<tr>
<td>Frigates, corvettes</td>
<td>38</td>
<td>43</td>
<td>50</td>
<td>74</td>
<td>102</td>
<td>120</td>
<td>135</td>
</tr>
<tr>
<td>Total China navy ...</td>
<td>110</td>
<td>220</td>
<td>220</td>
<td>255</td>
<td>360</td>
<td>400</td>
<td>425</td>
</tr>
<tr>
<td>Total U.S. Navy ...</td>
<td>318</td>
<td>282</td>
<td>288</td>
<td>271</td>
<td>297</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Source: Table prepared by CRS. Source for China’s navy: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED China: Naval Construction Trends vis-à-vis U.S. Navy Shipbuilding Plans, 2020-2030,” February 2020, 4 pp. Provided by Senate Armed Services Committee to CRS and CBO on March 4, 2020, and used in this CRS report with the committee’s permission. Figures are for end of calendar year. Source for figures for U.S. Navy: U.S. Navy data; figures are for end of fiscal year.

Note: “n/a” means not available.

Table Showing U.S. Navy Figures from October 2020

Table 3 shows numbers of certain types of Chinese navy ships in 2020, and projections of those numbers for 2025, 2030, and 2040, along with the total number of U.S. Navy battle force ships in 2020. The figures for China’s ships were provided by the Navy at the request of CRS. As with Table 1, the result for 2020 is an apples-vs.-oranges comparison between the Chinese navy and U.S. navy totals, because the Chinese total for 2020 excludes certain ship types, such as auxiliary and support ships, while the U.S. Navy total for 2020 includes auxiliary and support ships.
As shown in Table 3, the U.S. Navy projects that between 2020 and 2040, the total number of Chinese ships of the types shown in the table will increase by 94, or about 39%, with most of that increase (77 ships out of 94) coming from roughly equal increases in numbers of large surface combatants (cruisers and destroyers—39 ships) and small surface combatants (frigates and corvettes—38 ships). Numbers of ballistic missile submarines and nuclear-powered attack submarines are each projected to more than double between 2020 and 2040, and the total number of diesel attack submarines is projected to remain almost unchanged. The number of large surface combatants is projected to almost double, and the number of small surface combatants is projected to increase by more than one-third. Numbers of larger (LHA- and LPD-type) amphibious ships are projected to increase, and the number of smaller (LST-type) amphibious ships is projected to decline, with the result that the total number of amphibious ships of all kinds is projected to decline slightly.

Table 3. Numbers of Chinese and U.S. Navy Ships, 2020-2040
Figures for Chinese ships are from U.S. Navy, reflecting data as of October 2020

<table>
<thead>
<tr>
<th>Ship type</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2040</th>
<th>2040 change from 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballistic missile submarines</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>+6</td>
</tr>
<tr>
<td>Nuclear-powered attack submarines</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>+10</td>
</tr>
<tr>
<td>Diesel attack submarines</td>
<td>47</td>
<td>47</td>
<td>46</td>
<td>46</td>
<td>-1</td>
</tr>
<tr>
<td>Aircraft carriers</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>+4</td>
</tr>
<tr>
<td>Cruisers and destroyers</td>
<td>41</td>
<td>52</td>
<td>60</td>
<td>80</td>
<td>+39</td>
</tr>
<tr>
<td>Frigates and corvettes</td>
<td>102</td>
<td>120</td>
<td>135</td>
<td>140</td>
<td>+38</td>
</tr>
<tr>
<td>LHA-type amphibious assault ships</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>+6</td>
</tr>
<tr>
<td>LPD-type amphibious ships</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td>14</td>
<td>+7</td>
</tr>
<tr>
<td>LST-type amphibious tank landing ships</td>
<td>30</td>
<td>24</td>
<td>24</td>
<td>15</td>
<td>-15</td>
</tr>
<tr>
<td>TOTAL of types shown above</td>
<td>239</td>
<td>276</td>
<td>310</td>
<td>333</td>
<td>+94</td>
</tr>
<tr>
<td>TOTAL number of U.S. Navy battle force ships</td>
<td>297</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Source: For Chinese navy ships: U.S. Navy data provided to CRS by Navy Office of Legislative Affairs, reflecting data as of October 26, 2020.

Notes: “n/a” means not available.

Selected Elements of China’s Naval Modernization Effort

This section provides a brief overview of elements of China’s naval modernization effort that have attracted frequent attention from observers.

Anti-Ship Missiles

Anti-Ship Ballistic Missiles (ASBMs)

China is fielding two types of land-based ballistic missiles with a capability of hitting ships at sea—the DF-21D (Figure 1), a road-mobile anti-ship ballistic missile (ASBM) with a range of more than 1,500 kilometers (i.e., more than 910 nautical miles), and the DF-26 (Figure 2), a
road-mobile, multi-role intermediate range ballistic missile (IRBM) with a maximum range of about 4,000 kilometers (i.e., about 2,160 nautical miles) that DOD says “is capable of conducting both conventional and nuclear precision strikes against ground targets as well as conventional strikes against naval targets.”

Figure 1. DF-21D Anti-Ship Ballistic Missile (ASBM)

Figure 2. DF-26 Multi-Role Intermediate-Range Ballistic Missile (IRBM)
Until recently, reported test flights of DF-21s and SDF-26s have not involved attempts to hit moving ships at sea. A November 14, 2020, press report, however, stated that an August 2020 test firing of DF-21 and DF-26 ASBMs into the South China resulted in the missiles successfully hitting a moving target ship south of the Paracel Islands. A December 3, 2020, press report stated that Admiral Philip Davidson, the commander of U.S. Indo-Pacific Command, “confirmed, for the first time from the U.S. government side, that China’s People’s Liberation Army has successfully tested an anti-ship ballistic missile against a moving ship.” China reportedly is also developing hypersonic glide vehicles that, if incorporated into Chinese ASBMs, could make Chinese ASBMs more difficult to intercept.

Observers have expressed strong concerns about China’s ASBMs, because such missiles, in combination with broad-area maritime surveillance and targeting systems, would permit China to attack aircraft carriers, other U.S. Navy ships, or ships of allied or partner navies operating in the Western Pacific. The U.S. Navy has not previously faced a threat from highly accurate ballistic missiles capable of hitting moving ships at sea. For this reason, some observers have referred to ASBMs as a “game-changing” weapon.

Anti-Ship Cruise Missiles (ASCMs)

China’s extensive inventory of anti-ship cruise missiles (ASCMs) (see Figure 3, Figure 4, and Figure 5 for examples of reported images) includes both Russian- and Chinese-made designs, including some advanced and highly capable ones, such as the Chinese-made YJ-18.

![Figure 3. Reported Image of Anti-Ship Cruise Missile (ASCM)](image)

34 2020 DOD CMSD, p. 59.
The article states “According to Chinese news media reports, the China Aerospace Science and Industry Corporation (CASIC) CM-302 missile is being marketed for export as “the world’s best anti-ship missile.” The missile was showcased at the Zhuhai air show in the southern People’s Republic of China (PRC) in early November 2016, and is advertised as a supersonic Anti-Ship Missile (AShM) which can also be used in the land attack role. The report, published by the national newspaper China Daily, suggests that the CM-302 is the export version of CASIC’s YJ-12 supersonic AShM, which is in service with the PRC’s armed forces.

Figure 4. Reported Image of Anti-Ship Cruise Missile (ASCM)

Source: Photograph accompanying “YJ-18 Eagle Strike CH-SS-NX-13,” GlobalSecurity.org, updated October 1, 2019. The article states “A grand military parade was held in Beijing on 01 October 2019 to mark the People’s Republic of China’s 70th founding anniversary… One weapon featured was a new generation of anti-ship missiles called YJ-18. China unveiled YJ-18/18A anti-ship cruise missiles in the National Day military parade in central Beijing.”

Although China’s ASCMs do not always receive as much press attention as China’s ASBMs (perhaps because ASBMs are a more recent development), observers are nevertheless concerned about them. As discussed later in this report, the relatively long ranges of certain Chinese ASCMs have led to concerns among some observers that the U.S. Navy is not moving quickly enough to arm U.S. Navy surface ships with similarly ranged ASCMs.
Submarines

Overview

China has been steadily modernizing its submarine force, and most of its submarines are now built to relatively modern Chinese and Russian designs. Qualitatively, China’s newest submarines might not be as capable as Russia’s newest submarines, but compared to China’s earlier submarines, which were built to antiquated designs, its newer submarines are much more capable.

For a discussion of Russian military transfers to China, including transfers of submarine technology, see Paul Schwartz, The Changing Nature and Implications of Russian Military Transfers to China, Center for Strategic and International Studies (CSIS), June 2021, 8 pp.

Types and Numbers

Most of China’s submarines are non-nuclear-powered attack submarines (SSs). China also operates a small number of nuclear-powered attack submarines (SSNs) and a small number of nuclear-powered ballistic missile submarines (SSBNs). The number of SSNs and SSBNs may grow in coming years, but the force will likely continue to consist mostly of SSs. DOD states that “The PLAN will likely maintain between 65 and 70 submarines through the 2020s, replacing older units with more capable units on a near one-to-one basis.”37 ONI states that “China’s submarine force continues to grow at a low rate, though with substantially more-capable submarines replacing older units. Current expansion at submarine production yards could allow higher future production numbers.” ONI projects that China’s submarine force will grow from a total of 66 boats (4 SSBNs, 7 SSNs, and 55 SSs) in 2020 to 76 boats (8 SSBNs, 13 SSNs, and 55 SSs) in 2030.38

China’s newest series-built SS design is the Yuan-class (Type 039) SS (Figure 6), its newest SSN class is the Shang-class (Type 093) SSN (Figure 7), and its newest SSBN class is the Jin (Type 094) class SSBN (Figure 8). In May 2020, it was reported that two additional Type 094 SSBNs had entered service, increasing the total number in service to six.39

Figure 6. Yuan (Type 039) Attack Submarine (SS)

37 2020 DOD CMSD, p. 45.
DOD states that since the mid-1990s, “China’s shipyards have delivered 13 Song class SS units (Type 039) and 17 Yuan class diesel-electric air-independent-powered attack submarine (SSP)
China Naval Modernization: Implications for U.S. Navy Capabilities

(Type 039A/B). The PRC is expected to produce a total of 25 or more Yuan class submarines by 2025.40 DOD states further:

Over the past 15 years, the PLAN has constructed twelve nuclear submarines—two Shang I class SSNs (Type 093), four Shang II class SSNs (Type 093A), and six Jin class SSBNs (Type 094), two of which were awaiting entry into service in late 2019. Equipped with the CSS-N-14 (JL-2) submarine-launched ballistic missile (SLBM), the PLAN’s four operational Jin class SSBNs represent the PRC’s first credible sea-based nuclear deterrent. Each Jin class SSBN can carry up to 12 JL-2 SLBMs….China’s next-generation Type 096 SSBN, which will likely begin construction in the early 2020s, will reportedly carry a new type of SLBM. The PLAN is expected to operate the Type 094 and Type 096 SSBNs concurrently and could have up to eight SSBNs by 2030....

By the mid-2020s, China will likely build the Type 093B guided-missile nuclear attack submarine. This new Shang class variant will enhance the PLAN’s anti-surface warfare capability and could provide a clandestine land-attack option if equipped with land-attack cruise missiles (LACMs).41

Submarine Weapons

China’s submarines are armed with one or more of the following: ASCMs, wire-guided and wake-homing torpedoes, and mines. Wake-homing torpedoes can be very difficult for surface ships to decoy. Each Jin-class SSBN is armed with 12 JL-2 nuclear-armed submarine-launched ballistic missiles (SLBMs).42 A May 2, 2021, press report stated that China’s latest Jin-class SSBN is armed with a new and longer-ranged SLBM called the JL-3.43

Aircraft Carriers

Overview44

China’s first aircraft carrier, Liaoning (Type 001) (Figure 9), entered service in 2012. China’s second aircraft carrier (and its first fully indigenously built carrier), Shandong (Type 002) (Figure 10) entered service on December 17, 2019. An April 2021 press report stated that Shandong

40 2020 DOD CMSD, p. 45.
41 2020 DOD CMSD, p. 45.
42 DOD estimates the range of the JL-2 at 7,200 km (2020 DOD CMSD, p. 58). Such a range could permit Jin-class SSBNs to attack targets in Alaska (except the Alaskan panhandle) from protected bastions close to China, targets in Hawaii (as well as targets in Alaska, except the Alaskan panhandle) from locations south of Japan, targets in the western half of the 48 contiguous states (as well as Hawaii and Alaska) from mid-ocean locations east of Hawaii, or targets in all 50 states from mid-ocean locations east of Hawaii.

43 Minnie Chan, “China’s New Nuclear Submarine Missiles Expand Range in US: Analysts,” South China Morning Post, May 2, 2021. The article states that the JL-3 has a “range [of] over 10,000km (6,200 miles), a source close to the [Chinese] navy said.” Such a range could permit Jin-class SSBNs to attack larger portions of the United States from the locations described in the previous footnote.

44 For an article providing a review of developments in China’s aircraft carrier and carrier-based aircraft programs, see Rick Joe, “003 and More: An Update on China’s Aircraft Carriers,” Diplomat, September 29, 2020. Consistent with the discussion in that article, this CRS report uses the following updated designations of China’s carriers: China’s second aircraft carrier, previously referred to as the Type 001A, is now referred to as the Type 002; the next aircraft carrier design after that, previously referred to as the Type 002, is now referred to as the Type 003, and the potential design that could follow, previously referred to as the Type 003, is now referred to as the Type 004.
“might soon be heading out on the high seas as it continues its preparations to become combat-ready.”45 Liaoning and Shandong launch fixed-wing aircraft using a “ski ramp” at the ship’s bow.

Figure 9. Liaoning (Type 001) Aircraft Carrier

Compared with Liaoning and Shandong, U.S. Navy aircraft carriers are larger (about 100,000 tons full load displacement), nuclear powered (giving them greater cruising endurance than a conventionally powered ship), able to embark and operate a larger number of aircraft (60 or more), and launch fixed-wing aircraft using catapults, which can give those aircraft a range/payload capability greater than that of aircraft launched with a ski ramp.

China’s third carrier, the Type 003 (Figure 11), is under construction; ONI expects it to enter service by 2024.46 It is expected to be conventionally powered, closer in size to U.S. Navy aircraft carriers, and equipped with catapults rather than a ski ramp for launching aircraft. China’s fourth carrier reportedly may begin construction as early as 2021.47

ONI states that “China has two shipyards expected to be used for aircraft carrier production, though several other large commercial yards could, in theory, also build carriers.” Observers have speculated that China may eventually field a force of four to six (or possibly more than six) aircraft carriers. In late November 2019, it was reported that the Chinese government, while

deciding to proceed with the construction of the fourth carrier, had put on hold plans to build a fifth carrier, known as the Type 004, which was to be nuclear-powered, due to budgetary and technical considerations. Observers expect that it will be some time before China masters carrier-based aircraft operations on a substantial scale.

Figure 10. Shandong (Type 002) Aircraft Carrier

Liaoning (Type 001)

Liaoning is a refurbished ex-Ukrainian aircraft carrier that China purchased from Ukraine in 1998 as an unfinished ship. It is conventionally powered, has an estimated full load displacement of 60,000 to 66,000 tons, and reportedly can accommodate an air wing of 30 or more fixed-wing airplanes and helicopters, including 24 fighters. The Liaoning lacks aircraft catapults and instead launches fixed-wing airplanes off the ship’s bow using an inclined ski ramp.

Some observers have referred to the Liaoning as China’s “starter” carrier. China has been using Liaoning in part for pilot training. In May 2018, China reportedly announced that the aircraft carrier group formed around Liaoning had reached initial operational capability (IOC), although that term might not mean the same as it does when used by DOD in connection with U.S. weapon systems.

Shandong (Type 002)

Shandong is a modified version of the Liaoning design that incorporates some design improvements, including features that reportedly will permit it to embark and operate a larger air

48 Prior to the dissolution of the Soviet Union in December 1991, Ukraine was a part of the Soviet Union and the place where the Soviet Union built its aircraft carriers.

wing of 40 aircraft that includes 36 fighters. Its displacement is estimated at 66,000 to 70,000 tons.

Type 003 Carrier

Press reports have generally stated that China’s Type 003 carrier may have a displacement of 80,000 tons to 85,000 tons. A November 29, 2020, press report, however, states that satellite images of the ship under construction suggest that this estimate may be a bit low, and that the Type 003 carrier will be closer in displacement to U.S. Navy aircraft carriers, which have a displacement of about 100,000 tons. The Type 003 carrier is expected to be equipped with electromagnetic catapults rather than a ski ramp, which will improve the range/payload capability of the fixed-wing aircraft that they operate.

![Figure 11. Type 003 Aircraft Carrier Under Construction](https://chinapower.csis.org/china-carrier-type-002/)

The start of construction of the Type 003 carrier was announced in the Chinese press in November 2018. A July 18, 2020, press report states

51 See, for example, H. I. Sutton, “China’s New Aircraft Carrier Is In Same League As US Navy’s Ford Class,” *Naval News*, April 15, 2021.

China is expected to launch its next-generation aircraft carrier within a year and construction on a sister ship for the new giant vessel has been hastened, two sources close to the projects said.

The Type 002 [now called Type 003] aircraft carrier—the country’s third carrier and the second to be domestically developed—has started the final assembly process, two independent sources told the South China Morning Post.

“Assembly of the new aircraft carrier has begun and is expected to be completed in the first half of next year, because the Covid-19 pandemic slowed down progress,” said the first source, who requested anonymity because of the sensitivity of the issue.

“Workers are also starting the keel-laying for the new carrier’s sister ship. Both ships have been built by the Jiangnan Shipyard outside Shanghai.”

China’s Fourth Carrier

Some sources have stated that China’s fourth aircraft carrier would be built to the Type 003 design. A March 13, 2021, press report, however, states that the ship is likely to be nuclear-powered rather than conventionally powered.

Possible Type 076 Catapult-Equipped Amphibious Assault Ship

See also the discussion of the possible catapult-equipped Type 076 amphibious assault ship (Figure 21 and Figure 22) in the section on China’s amphibious ships.

Commercial Heavy-Lift Ship Reportedly Used in Exercise as Helicopter Carrier

In August 2020, it was reported that China had used a commercial heavy-lift ship in a military exercise as a platform for operating at least two PLA Army helicopters.

Carrier-Based Aircraft

China’s primary carrier-based fighter aircraft is the J-15 or Flying Shark (Figure 12), an aircraft derived from the Russian Su-33 Flanker aircraft design that can operate from carriers equipped

53 The term *launch* means that the ship is put into the water for the final stages of its construction.

with a ski ramp rather than catapults, but which some observers have critiqued for its range/payload limitations in carrier-based operations.57

Figure 12. J-15 Flying Shark Carrier-Capable Fighter

China reportedly plans to develop a carrier-capable variant of its J-20 fifth-generation stealth fighter and/or a carrier-capable variant of its FC-31 fifth-generation stealth fighter (reportedly now designated J-35) to complement or succeed the J-15 on catapult-equipped Chinese carriers.58 China reportedly is also developing a carrier-based airborne early warning (AEW) aircraft, called

the KJ-600, that is similar to the U.S. Navy’s carrier-based E-2 Hawkeye AEW aircraft, and stealth drone aircraft.

Roles and Missions

Although aircraft carriers might have some value for China in Taiwan-related conflict scenarios, they are not considered critical for Chinese operations in such scenarios, because Taiwan is within range of land-based Chinese aircraft. Consequently, most observers believe that China is acquiring carriers primarily for their value in other kinds of operations, and to demonstrate China’s status as a leading regional power and major world power. Chinese aircraft carriers could be used for power-projection operations, particularly in scenarios that do not involve opposing U.S. forces, and to impress or intimidate foreign observers.

Chinese aircraft carriers could also be used for humanitarian assistance and disaster relief (HA/DR) operations, maritime security operations (such as antipiracy operations), and noncombatant evacuation operations (NEOs). Politically, aircraft carriers could be particularly valuable to China for projecting an image of China as a major world power, because aircraft carriers are viewed by many as symbols of major world power status. In a combat situation involving opposing U.S. naval and air forces, Chinese aircraft carriers would be highly vulnerable to attack by U.S. ships and aircraft, but conducting such attacks could divert U.S. ships and aircraft from performing other missions in a conflict situation with China.

Surface Combatants

Overview

China since the early 1990s has put into service numerous new classes of indigenously built surface combatants, including a new cruiser (or large destroyer), several classes of destroyers and frigates, a new class of corvettes (i.e., light frigates), and a new class of missile-armed patrol craft.

These new classes of surface combatants demonstrate a significant modernization of PLA Navy surface combatant technology. DOD states that China’s navy “remains engaged in a robust shipbuilding program for surface combatants, producing new guided-missile cruisers (CGs), guided-missile destroyers (DDGs) and corvettes (FFLs). These assets will significantly upgrade the air defense, anti-ship, and anti-submarine capabilities of China’s navy and will be critical as China’s navy expands its operations beyond the range of the PLA’s shore-based air defense systems.”

DIA states that “the era of past designs has given way to production of modern

60 Minnie Chan, “China to Deploy Sharp Sword Stealth Drone for New Type 001A Aircraft Carrier,” *South China Morning Post*, September 17, 2019.

62 2020 DOD CMSD, pp. 45-46.
multimission destroyer, frigate, and corvette classes as China’s technological advancement in naval design has begun to approach a level commensurate with, and in some cases exceeding, that of other modern navies.63 China is also upgrading its older surface combatants with new weapons and other equipment.64

Type 055 Cruiser/Large Destroyer

China is building a new class of cruiser (or large destroyer), called the Renhai-class or Type 055 (Figure 13 and Figure 14), that reportedly displaces between 12,000 and 13,000 tons.65 A March 7, 2021, press report by a Chinese media outlet states that the ship displaces more than 12,000 tons.66 By way of comparison, the U.S. Navy’s Ticonderoga (CG-47) class cruisers and Arleigh Burke (DDG-51) class destroyers (aka the U.S. Navy’s Aegis cruisers and destroyers) displace about 10,100 tons and 9,300 tons, respectively, while the U.S. Navy’s three Zumwalt (DDG-1000) class destroyers displace about 15,600 tons.

Figure 13. Renhai (Type 055) Cruiser (or Large Destroyer)

ONI states that Type 055 ships are being built by two shipyards, and that multiple ships in the class are currently under construction.67 The first Type 055 ship was reportedly commissioned into service on January 12, 2020, about two and a half years after it was launched (i.e., put into service on January 12, 2020). The first Type 055 ship was reportedly commissioned into service on January 12, 2020, about two and a half years after it was launched (i.e., put into service on January 12, 2020).

63 2019 DIA CMP, p. 70.
65 One article from a Chinese media outlet, for example, states: “According to sources, it has a displacement of more than 12,000 metric tons…” (China Daily, “2nd Type 055 Destroyer Enters Service,” *People’s Daily Online*, March 10, 2021.) For a discussion of the Type 055 design, see Sidharth Kaushal, “The Type 055: A Glimpse into the PLAN’s Developmental Trajectory,” Royal United Services Institute (RUSI), October 19, 2020.
the water for the final stages of its construction). The second and third ships in the class were reportedly commissioned into service in March and April 2021, respectively. The sixth ship in the class was reportedly launched in December 2019. In August 2020, it was reported that the seventh ship in the class was delivered to the navy in May 2020, that the eighth ship in the class was launched on August 30, 2020, and that the eighth ship “will complete the first group of Type 055 destroyers.”

Figure 14. Renhai (Type 055) Cruiser (or Large Destroyer)

69 Kristin Huang, “China Steps Up Warship Building Programme as Navy Looks to Extend Its Global Reach,” South China Morning Post, December 31, 2019. See also Liu Xuanzun, “Chinese Navy Commissions First Type 055 Destroyer,” Global Times, January 12, 2020. Another press report states that eight Type 055 ships are expected to enter service over the next four years, and that more than two dozen such ships might be in service by the late 2020s. (Franz-Stefan Gady, “China’s Navy Commissions First-of-Class Type 055 Guided Missile Destroyer,” Diplomat, January 13, 2020.)

70 Minnie Chan, “Chinese Navy May Launch Eighth Type 055 Stealth Destroyer Later This Year,” South China Morning Post, August 20, 2020.

Type 052 Destroyer

China since the early 1990s has put into service multiple new classes of indigenously built destroyers, the most recent of which is the Luyang III (Type 052D) class (Figure 15), which displaces about 7,500 tons and is equipped with phased-array radars and vertical launch missile systems that outwardly are broadly similar to those on U.S. Navy cruisers and destroyers. Type 052D ships have been in serial production for some time, and the 25th such ship was reportedly launched (i.e., put into the water for the final stages of its construction) on August 30, 2020.73 One observer states that “at present the PLAN fields 20 aegis-type [i.e., Type 052] destroyers in service; however in four to five years it is likely that the PLAN will field 39 aegis-type destroyers in service (or 40, depending on whether a 26th 052D is built or not).”74 Press reports in March 2021 stated that China is now commissioning an upgraded version of the Type 052D, informally called the Type 052DL, that incorporates an extended-length helicopter flight deck and a new radar.75

![Figure 15. Luyang III (Type 052D) Destroyer](image)

Type 054 Frigate

China since the early 1990s has also put into service multiple new classes of indigenously built frigates, the most recent of which is the Jiangkai II (Type 054A) class (Figure 16), which displaces about 4,000 tons. ONI states that 30 Type 054As entered service between 2008 and 2019, and that no additional Type 054As are currently under construction.76

73 Liu Xuanzun, “PLA Launches New Type 055, Type 052D Destroyers After Decommissioning All Type 051 Destroyers: Reports,” Global Times, August 30, 2020.

76 Source: Unclassified ONI information paper prepared for Senate Armed Services Committee, subject “UPDATED
China has also built—in large numbers over a relatively short time period—a new type of corvette (i.e., a light frigate, or FFL) called the Jiangdao class or Type 056 (Figure 17), which reportedly displaces 1,300 tons to 1,500 tons. Type 056 ships were built at a high annual rate in four shipyards—the first was commissioned in 2013, and the 72nd and final ship of the type was reportedly commissioned in early 2021, implying an average commissioning rate of about eight ships per year. DOD states that “by the end of 2019, more than 42 Jiangdao class FFLs had entered service out of an expected production run of at least 70 ships.”

ONI states that as of February 2020, more than 50 had entered service and another 15 were under construction. In February 2021, a Chinese media outlet reported that the final two Type 056 ships—the 71st and 72nd such ships—had been commissioned into service in January and February 2021, and that the completion of Type 056 production could permit a shift to production of greater numbers of larger...
warships.™ As shown in Table 1, the rapid growth in the number of Type 056 corvettes since 2013 accounts for a substantial share of the net increase in the total number of ships in China’s navy since 2013.

Figure 17. Jingdao (Type 056) Corvette

Source: Cropped version of image included at Chinese Military Review, “Random Images of Chinese Type 056 Jiangdao Class Light Corvette,” undated (but with a URL suggesting that it was posted in October 2013), accessed August 29, 2018.

Amphibious Ships®

Type 071 Amphibious Ship

China’s new Yuzhao or Type 071 amphibious ships (Figure 18) have an estimated displacement of more than 19,855 tons,™ compared to about 25,900 tons for the U.S. Navy’s new San Antonio (LPD-17) class amphibious ships. A May 6, 2021, press report states that the eighth Type 0721 ship “recently made its first publicly known maritime exercise appearance.”®

81 Unless otherwise indicated, displacement figures cited in this report are full load displacements. IHS Jane’s Fighting Ships 2017-2018, p. 156, does not provide a full load displacement for the Type 071 class design. Instead, it provides a standard displacement of 19,855 tons. Full load displacement is larger than standard displacement, so the full load displacement of the Type 071 design is more than 19,855 tons.

Figure 18. Yuzhao (Type 071) Amphibious Ship

Source: Cropped version of photograph from Chinese Military Review, “Jinggang Shan (999) Type 071 YUZHAO Class Amphibious Transport Dock,” undated (but with a URL suggesting that it was posted in February 2012), accessed August 29, 2018.

Type 075 Amphibious Assault Ship

On September 25, 2019, China launched (i.e., put into the water for the final stages of its construction) the first of a new type of amphibious assault ship called the Yushen or Type 075 (Figure 19 and Figure 20) that has an estimated displacement of 30,000 to 40,000 tons, compared to 41,000 to 45,000 tons for U.S. Navy LHA/LHD-type amphibious assault ships. On April 11, 2020, it was reported that a fire had occurred on the ship. On August 5, it was reported that the ship had begun its first sea trial, suggesting that some or all of the damage caused by the fire had been repaired. The ship was commissioned into service in April 2021.

83 Amphibious assault ships, also referred to as helicopter carriers or (in British parlance) commando carriers, look like medium-sized aircraft carriers. U.S. Navy amphibious assault ships are designated LHA or LHD.

87 See, for example, Mike Yeo, “China simultaneously commissions three warships on Navy anniversary,” Defense News, April 26, 2021.
China reportedly launched (i.e., put into the water for the final stages of its construction) the second Type 075 ship on April 22, 2020, and the third on January 29, 2021.

Figure 19. Type 075 Amphibious Assault Ship

In July 2020, it was reported that China might be planning to build the first of a new class of amphibious assault ships, called the Type 076 by observers (Figure 21 and Figure 22), that would be equipped with electromagnetic catapults, which would enhance its ability to support operations by fixed-wing aircraft and make it somewhat more like an aircraft carrier.90

Amphibious Ship Roles and Missions

Although larger amphibious ships such as the Type 071 and Type 075 would be of value for conducting amphibious landings in Taiwan-related conflict scenarios, some observers believe that China is building such ships as much for their value in conducting other operations, such as operations for asserting and defending China’s claims in the South and East China Seas, humanitarian assistance/disaster relief (HA/DR) operations, maritime security operations (such as antipiracy operations), and noncombatant evacuation operations (NEOs). Politically, amphibious
ships can also be used for naval diplomacy (i.e., port calls and engagement activities) and for impressing or intimidating foreign observers.91

Operations Away from Home Waters

Although China’s navy operates primarily in China’s home waters, Chinese navy ships are conducting increasing numbers of operations away from China’s home waters, including the broader waters of the Western Pacific, the Indian Ocean, and the waters surrounding Europe, including the Mediterranean Sea and the Baltic Sea. A November 23, 2019, DOD news report quoted Admiral Philip Davidson, the commander of the U.S. Indo-Pacific Command, as stating that China’s navy had conducted more global naval deployments in the past 30 months than it had in the previous 30 years.92

While many of China’s long-distance naval deployments have been for making diplomatic port calls, some of them have been for other purposes, including conducting training exercises and carrying out antipiracy operations in waters off Somalia. China has been conducting antipiracy operations in waters off Somalia since December 2008 via a succession of more than 30 rotationally deployed naval escort task forces. China’s distant naval operations are supported in part by China’s military base in Djibouti, which China officially opened in August 2017 as its first overseas military base.93

U.S. Navy Response

Overview

As mentioned earlier, China’s navy is viewed as posing a major challenge to the U.S. Navy’s ability to achieve and maintain wartime control of blue-water ocean areas in the Western Pacific—the first such challenge the U.S. Navy has faced since the end of the Cold War. China’s navy forms a key element of a Chinese challenge to the long-standing status of the United States as the leading military power in the Western Pacific. Some U.S. observers are expressing concern or alarm regarding the pace of China’s naval shipbuilding effort and resulting trend lines regarding the relative sizes and capabilities of China’s navy and the U.S. Navy.

The U.S. Navy in recent years has taken a number of actions to counter China’s naval modernization effort. Among other things, the U.S. Navy has

- shifted a greater percentage of its fleet to the Pacific;94

91 See, for example, Grant Newsham, “China’s Amphibious Force Emerges,” *Asia Times*, November 5, 2019.
94 Efforts in this regard began at least as far back as 2006: The final report on the 2006 Quadrennial Defense Review (QDR) directed the Navy “to adjust its force posture and basing to provide at least six operationally available and sustainable carriers and 60% of its submarines in the Pacific to support engagement, presence and deterrence.” (U.S.
• assigned its most capable new ships and aircraft and its best personnel to the Pacific;
• maintained or increased general presence operations, training and developmental exercises, and engagement and cooperation with allied and other navies in the Indo-Pacific;
• increased the planned future size of the Navy;
• initiated, increased, or accelerated numerous programs for developing new military technologies and acquiring new ships, aircraft, unmanned vehicles, and weapons;
• begun development of new operational concepts (i.e., new ways to employ Navy and Marine Corps forces) for countering Chinese maritime A2/AD forces; and
• signaled that the Navy in coming years will shift to a more distributed fleet architecture that will feature a smaller portion of larger ships, a larger portion of smaller ships, and a substantially greater use of unmanned vehicles.

Some of the above items are discussed in more detail below.

Cooperation with Naval Forces of Allies and Other Countries

U.S. Navy efforts to increase cooperation with naval forces from allies such as Japan and Australia and other countries such India appear aimed in part at expanding existing bilateral forms of naval cooperation (e.g., U.S.-Japan, U.S.-Australia, U.S.-India) into trilateral (e.g., U.S.-Japan-Australia, U.S.-Australia-India) or quadrilateral (U.S.-Japan-Australia-India) forms that could enhance the ability of the United States and its allies in the Indo-Pacific region to balance against China’s growing military capabilities and deter potential assertive actions by China.

A June 15, 2021, press report stated:

> The Pentagon is considering establishing a permanent naval task force in the Pacific region as a counter to China’s growing military might, according to two people familiar with internal discussions.

> The plan would also involve creating a named military operation for the Pacific that would enable the defense secretary to allocate additional dollars and resources to the China problem, said the people, who requested anonymity to discuss pre-decisional plans.

> The two initiatives, which are not yet finalized, would add muscle to President Joe Biden’s tough talk on China and send a signal that the new U.S. administration is serious about cracking down on Beijing’s military buildup and aggressive behavior in the Pacific region.

> The news comes as NATO leaders are increasingly aligning themselves with Washington’s confrontational stance on Beijing. Four years after former President Donald Trump made countering China a top foreign policy priority, NATO allies this week declared Beijing a security challenge and said the Chinese are working to undermine global order.

> The discussions grew out of work by the Pentagon’s China Task Force, which Biden commissioned in March to examine the department’s China-related policies and processes. The group, led by Ely Ratner, the nominee to serve as the Pentagon’s top Indo-Pacific...
policy official, recently completed its work and presented recommendations to Defense Secretary Lloyd Austin.

A defense official, responding to a request for comment, stressed that none of the plans stemming from the China task force are finalized....

The naval task force would be modeled on a construct NATO launched in Europe leading up to and during the Cold War, the Standing Naval Forces Atlantic, the people familiar with the discussions told POLITICO. The squadron was an immediate reaction force that could rapidly respond to a crisis but spent most of its time steaming around the region, participating in scheduled exercises and making goodwill port calls. Six to 10 ships from multiple NATO nations—destroyers, frigates and auxiliaries—were typically attached to the force for up to six months.

The European task force allowed those nations to “maximize their influence at sea and to specialize their investments simultaneously,” said Jerry Hendrix, an analyst for consulting firm Telemus Group and the author of “To Provide and Maintain a Navy”. He noted that an effective Pacific task force would also include European allies such as Britain and France, who are increasing their Pacific naval presence, as well as Japan and Australia.

The proposed initiative would be a “deterrent because it demonstrates a unity of effort in countering Chinese excessive threats to the concept of a free sea and free trade with their large territorial sea claims,” Hendrix said.

It’s not yet clear whether the task force would involve only U.S. ships, or include other nations’ militaries as well, the people said.96

Size of Navy, Fleet Architecture, and Operational Concepts

As discussed in greater detail in another CRS report,97 the Navy’s existing force-level goal, which the Navy released on December 15, 2016, calls for achieving and maintaining a fleet of 355 ships—an increase of 47 ships over the previous 308-ship force-level goal of March 2015.

The Navy and DOD have been working since 2019 to develop a new force-level goal to replace the 355-ship force-level goal. Remarks from Navy and DOD officials since 2019 have indicated that the Navy’s next force-level goal will introduce a once-in-a-generation change in fleet architecture, meaning basic the types of ships that make up the Navy and how these ships are used in combination with one another to perform Navy missions. This new fleet architecture is to be more distributed than the fleet architecture reflected in the 355-ship goal or previous Navy force-level goals. In particular, the new fleet architecture is expected to feature

- a smaller proportion of larger ships (such as large-deck aircraft carriers, cruisers, destroyers, large amphibious ships, and large resupply ships);
- a larger proportion of smaller ships (such as frigates, corvettes, smaller amphibious ships, smaller resupply ships, and perhaps smaller aircraft carriers); and
- a new third tier of surface vessels about as large as corvettes or large patrol craft that will be either lightly manned, optionally manned, or unmanned, as well as large UUVs.

Navy and DOD leaders believe that shifting to a more distributed fleet architecture is

- **operationally necessary**, to respond effectively to the improving maritime anti-access/area-denial (A2/AD) capabilities of other countries, particularly China;\(^\text{98}\)
- **technically feasible** as a result of advances in technologies for UVs and for networking widely distributed maritime forces that include significant numbers of UVs; and
- **affordable**—no more expensive, and possibly less expensive, than the current fleet architecture for a given level of overall fleet capability, so as to fit within expected future Navy budgets.

Regarding the first point above, shifting to a more distributed force architecture, Navy and Marine Corps officials have indicated, will support implementation of the Navy and Marine Corps’ new overarching operational concept, called Distributed Maritime Operations (DMO), and a supporting Marine Corps operational concept called Expeditionary Advanced Base Operations (EABO).\(^\text{99}\) A key aim of DMO and EABO is to improve the ability of the Navy and Marine Corps to counter China’s improving maritime military capabilities.

Some elements of the Navy’s new, more distributed fleet architecture are reflected in the Navy’s FY2021 and FY2022 budget submissions, including the following:

- procurement of Constellation (FFG-62) class frigates;\(^\text{100}\)
- development of a smaller amphibious warship called the Light Amphibious Warship (LAW);\(^\text{101}\)
- development of a smaller resupply ship called the Next-Generation Medium Logistics Ship;\(^\text{102}\)

98 See, for example, David B. Larter, “With China Gunning for Aircraft Carriers, US Navy Says It Must Change How It Fights,” *Defense News*, December 6, 2019; Arthur H. Barber, “Redesign the Fleet,” *U.S. Naval Institute Proceedings*, January 2019. Some observers have long urged the Navy to shift to a more distributed fleet architecture, on the grounds that the Navy’s current architecture—which concentrates much of the fleet’s capability into a relatively limited number of individually larger and more expensive surface ships—is increasingly vulnerable to attack by the improving A2/AD capabilities (particularly anti-ship missiles and their supporting detection and targeting systems) of potential adversaries, particularly China. Shifting to a more distributed architecture, these observers have argued, would

- complicate an adversary’s targeting challenge by presenting the adversary with a larger number of Navy units to detect, identify, and track;
- reduce the loss in aggregate Navy capability that would result from the destruction of an individual Navy platform;
- give U.S. leaders the option of deploying USVs and UUVs in wartime to sea locations that would be tactically advantageous but too risky for manned ships; and
- increase the modularity and reconfigurability of the fleet for adapting to changing mission needs.

For more on China’s maritime A2/AD capabilities, see CRS Report RL33153, *China Naval Modernization: Implications for U.S. Navy Capabilities—Background and Issues for Congress*, by Ronald O’Rourke.

99 For more on DMO, see, for example, Edward Lundquist, “DMO is Navy’s Operational Approach to Winning the High-End Fight at Sea,” *Seapower*, February 2, 2021. For more on EABO, see CRS Report R46374, *Navy Light Amphibious Warship (LAW) Program: Background and Issues for Congress*, by Ronald O’Rourke.

100 For more on the FFG-62 program, see CRS Report R44972, *Navy Constellation (FFG-62) Class Frigate Program: Background and Issues for Congress*, by Ronald O’Rourke.

101 For more on the LAW program, see CRS Report R46374, *Navy Light Amphibious Warship (LAW) Program: Background and Issues for Congress*, by Ronald O’Rourke.

102 For more on the next-generation Medium Logistics Ship, see, for example, Megan Eckstein, “Navy Researching New Class of Medium Amphibious Ship, New Logistics Ships,” *USNI News*, February 20, 2020; Rich Abott, “FY 2021
China Naval Modernization: Implications for U.S. Navy Capabilities

- development of two types of larger USVs—Large USVs (LUSVs) and Medium USVs (MUSVs);\(^{103}\) and
- procurement of large UUVs called Extra Large UUVs (XLUUVs).\(^{104}\)

On December 9, 2020, the Navy released a long-range Navy shipbuilding document that presented the Trump Administration’s emerging successor to the 355-ship force-level goal. The document called for a Navy with a more distributed fleet architecture, including 382 to 446 manned ships and 143 to 242 large UUVs.\(^{105}\)

On June 17, 2021, the Navy released a long-range Navy shipbuilding document that presents the Biden Administration’s emerging successor to the 355-ship force-level goal. The document calls for a Navy with a more distributed fleet architecture, including 321 to 372 manned ships and 77 to 140 large UUVs.\(^{106}\)

Programs for Acquiring Highly Capable Ships, Aircraft, and Weapons

Many of the Navy’s programs for acquiring highly capable ships, aircraft, and weapon systems can be viewed as intended, at least in part, at improving the U.S. Navy’s ability to counter Chinese maritime A2/AD capabilities. Examples of new technologies being developed by the Navy that might be of value in countering Chinese maritime A2/AD capabilities include large unmanned vehicles\(^ {107}\) and lasers.\(^ {108}\)

Issues for Congress

Overview

The overall issue for Congress is whether the U.S. Navy is responding appropriately to China’s naval modernization effort. Within this overall issue, specific issues include the following:

- the current and potential future U.S.-China balance of naval power in general, and in specific geographic areas, particularly the South China Sea;
- whether the planned size of the Navy will be appropriate for countering China’s naval modernization effort in coming years while also permitting the Navy to

\(^ {103}\) For more on the LUSV and XLUUV programs, see CRS Report R45757, *Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress*, by Ronald O'Rourke.

\(^ {104}\) For more on the XLUUV program, see CRS Report R45757, *Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress*, by Ronald O'Rourke.

\(^ {107}\) For more on these efforts, see CRS Report R45757, *Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress*, by Ronald O'Rourke.

\(^ {108}\) For more on Navy laser programs, see CRS Report R44175, *Navy Lasers, Railgun, and Gun-Launched Guided Projectile: Background and Issues for Congress*, by Ronald O'Rourke.
perform other missions, including countering Russian military forces and defending U.S. interests in the Middle East;

- whether Navy shipbuilding plans and Navy plans for keeping existing Navy ships in service are consistent with the goal of increasing the size of the Navy toward a total of 355 ships or a successor force-level goal;
- whether the Navy should shift to a more-distributed fleet architecture so as to improve the Navy’s ability to avoid and withstand attack from Chinese maritime A2/AD forces—and if so, what that new architecture should look like, and how quickly the Navy should shift to it;
- whether the Navy is doing enough to
 - improve its ability to counter China’s ASBMs or some of China’s other maritime A2/AD weapons, such as its wake-homing torpedoes;
 - develop and procure new ASCMs with ranges that match or exceed those of China’s longer-ranged ASCMs;
 - increase the operating range of Navy carrier air wings, so as to improve the ability of carriers and their air wings to achieve effects while operating at longer distances from Chinese ASBMs and other A2/AD weapons; and
- whether Congress should modify acquisition policies or the metrics for judging the success of acquisition programs so as to facilitate faster development of new technologies and weapons for the Navy—and if so, how those policies or metrics should be modified.

Discussion

Regarding the U.S.-China balance of naval power in general, U.S. and other observers generally assess that while the United States today has more naval capability overall, China’s naval modernization effort since the 1990s has substantially reduced the U.S. advantage, and that if current U.S. and Chinese naval capability trend lines (such as those shown in Table 1 and Table 2) do not change, China might eventually draw even with or surpass the United States in overall naval capability.

Regarding the current U.S.-China naval balance of power specifically in the South China Sea, some observers are concerned that China has already drawn even with or even surpassed the United States. U.S. Navy Admiral Philip Davidson, in responses to advance policy questions from the Senate Armed Services Committee for an April 17, 2018, hearing before the committee to consider nominations, including Davidson’s nomination to become Commander, U.S. Pacific Command (PACOM),109 stated that “China is now capable of controlling the South China Sea in all scenarios short of war with the United States.”110 A January 18, 2020, press report quotes James Kraska of the Naval War College as stating that “the US has lost advantage throughout the spectrum of operations, from low-level interaction against China’s maritime militia to higher-end conflict scenarios,” and that “in other words, China has escalation dominance, because it has the

109 The name of the command has since been changed to the U.S. Indo-Pacific Command (INDOPACOM).
110 Advance Policy Questions for Admiral Philip Davidson, USN Expected Nominee for Commander, U.S. Pacific Command, p. 18. See also pp. 8, 16, 17, 19, and 43.
power to deter any US turn towards escalation. The US is outmatched in all of the scenarios.”

A March 5, 2020, press report stated:

China is on track to overtake the United States as the most powerful military in the Pacific within the decade -- potentially as soon as 2026 -- with the wherewithal sooner than previously expected to establish permanent, regional primacy, the top U.S. military official in the Asia-Pacific region warned March 4.

Adm. Phil Davidson, head of U.S. Indo-Pacific Command, said a potential shift in the balance of military power between Beijing and Washington could come much sooner than U.S. officials have previously said.

A March 6, 2021, press report stated:

China could soon be emboldened to try to “forcibly change” the existing order in the western Pacific, the head of U.S. Indo-Pacific Command said.

As its rapidly advancing military approaches “overmatch” with the United States in the region, and absent a convincing deterrent, China could make a move this decade.

“Make no mistake about it, China seeks a new world order—one with Chinese characteristics as they have often said where Chinese national power is more important than international law,” Adm. Phil Davidson said during an American Enterprise Institute forum Thursday [March 4]....

“The most important thing I'd like you all to take away from the discussions is a fundamental understanding that the period between now and 2026—this decade—is the time horizon in which China is positioned to achieve overmatch in its capability,” the Oahu-based commander said.

That’s when Beijing could—and he emphasized “could”—“choose to forcibly change the status quo in the region.”

Davidson didn’t specify what action China might take, but he said with the growing military imbalance comes greater risk that China could move “before our forces might be able to deliver an effective response.”

Carl Schuster, a retired Navy captain, former director of operations at U.S. Pacific Command’s Joint Intelligence Center and an adjunct professor at Hawaii Pacific University, said he shares Davidson’s concerns.

Chinese President Xi Jinping “has accelerated China’s military buildup, modernization and combat readiness,” Schuster said. “They outnumber us in terms of seaborne missile shooters and, of course, shore-based air power. While I don’t think they will be ready to conduct an amphibious assault on Taiwan itself by 2025, I do think Xi is hoping to establish the power ratio and capability to give us pause if he decides to create an incident.”...

China has conducted circumnavigations of Guam and the Northern Mariana Islands with surface ships and submarines and conducted bomber runs in the Philippine Sea, creating a 360-degree threat from cruise and ballistic missiles, Davidson said....

Schuster said Chinese surface combatant numbers are growing at five times the rate of those of the United States.

"Those ships’ combat capabilities are nearly equal to ours—if not equal to ours—and they are concentrated in the western Pacific, potentially giving them ‘local superiority’ at a moment of their choosing," Schuster said.113

Skeptics of assessments like those above might argue that they do not give adequate weight to relative U.S. strengths (and corresponding Chinese relative weaknesses and limitations) in areas such as undersea warfare; personnel quality, training, and initiative; operational experience (particularly in combat situations); joint operations with other U.S. military services; and potential support from allies and partners, particularly Japan and Australia. A March 5, 2021, press report, for example, states:

While China is expected to field 400 ships by 2025, the goal of the current US Navy shipbuilding plan, a goal with no fixed date, is for a fleet of 355 -- a substantial numerical disadvantage.

That's not to say the US Navy has seen its days as the world’s premier fighting force come to an end.

When counting troops, the US Navy is bigger, with more than 330,000 active duty personnel to China’s 250,000.

Analysts point out several other factors in Washington’s favor.

The US Navy still fields more tonnage—bigger and heavier armed ships like guided-missile destroyers and cruisers—than China. Those ships give the US a significant edge in cruise missile launch capability.

The US has more than 9,000 vertical launch missile cells on its surface ships to China’s 1,000 or so, according to Nick Childs, a defense analyst at the International Institute for Strategic Studies.

Meanwhile, the US attack submarine fleet of 50 boats is entirely nuclear powered, giving it significant range and endurance advantages over a Chinese fleet that has just seven nuclear-powered subs in its fleet of 62.114

As noted earlier, the above-listed issues of the planned size of the Navy and the shift to a more-distributed fleet architecture are discussed in detail in other CRS reports.115 The issue of the Navy’s ability to counter China’s ASBMs is discussed in detail in this report in Appendix B. The issue of the Navy’s ability to counter wake-homing torpedoes may have been made more pressing by the reportedly poor performance of an anti-torpedo torpedo that the Navy was developing as a means for Navy surface ships to counter hard-to-decoy wake-homing torpedoes and other torpedoes. The Navy now reportedly plans to remove the anti-torpedo torpedo system from the ships that were equipped with it.116

116 For additional discussion, see Alex Lockie, “US Navy Admits Failure on $760 Million Weapon to Protect Its Aircraft Carriers from An Age-Old Threat,” Business Insider, February 5, 2019; Joseph Trevithick, “The Navy Is
The Navy in recent years has initiated efforts to develop and procure longer-ranged ASCMs, but some observers have expressed frustration that these efforts are not moving quickly enough. In support of its efforts, the Navy testified in June 2021 that

Strike Weapons

The Department continues to support a wider, more systematic approach towards delivering offensive weapons balance. By preserving the readiness and capacity of our key strike weapons inventories, pursuing strike weapon capability enhancements, and developing next-generation strike missile capabilities, the DON will increase overall force effectiveness to address emerging threats.

Tomahawk

In the FY 2022 budget request, the Department sustains the Tomahawk as the nation’s premier all-weather, long-range, survivable deep strike offensive weapon to include new production and recertification of current inventory. For Maritime Strike Tomahawk (MST), the FY 2022 budget request provides continuation of initial shipboard and shore-side mission planning and funds software builds to support first test of all MST system segments at NSWC in the first quarter of FY 2022. FY 2022 MST Test and Evaluation (T&E) plans include missile functional ground testing and missile test flights from a ground launcher apparatus to assess seeker performance, mature and refine seeker algorithms, and provide verification and validation data for Modeling and Simulation. MST IOC is planned for the FY 2024.

Offensive Anti-Surface Warfare (OASuW) Increment 1/ Long Range Anti-Ship Missile (LRASM)

OASuW Increment 1/LRASM provides Combatant Commander the ability to conduct ASuW operations against near/mid-term high-value surface combatants protected by Integrated Air Defense Systems with long-range Surface-to-Air-Missiles and to deny adversaries sanctuary of maneuver. The program achieved Early Operational Capability on the Air Force B-1B in early FY 2019 and on the Navy’s F/A-18E/F aircraft in early FY 2020. The FY 2022 President’s Budget Continuation of and completion of USN LRASM 1.1 development, which will deliver incremental upgrades to keep pace with emerging threat capability and increase in LRASM quantities through the FYDP.

Advanced Anti-Radiation Guided Missile (AARGM) & AARGM Extended-Range

AARGM procurement completed in FY 2021 with deliveries continuing through FY 2024 in support of the transition to AARGM-ER. AARGM-ER provides the Department of the Navy with a 5th Generation compatible extended range asset to project power and provide Suppression of Enemy Air Defenses, both at-sea and on land. There have been 1218 AARGMs (All Up Rounds, Training Missiles, and Spares) delivered to the Fleet (as of 26 May 2021). Program of record delivery is 1803 missiles. The FY 2022 President’s Budget supports an AARGM-ER ramp in production through FYDP and supports transition into system-level developmental testing and operational testing of production representative hardware.

118 Statement of Frederick J. Stefany, Acting Assistant Secretary of the Navy for Research, Development and Acquisition (ASN (RD&A)) and Vice Admiral James W. Kilby, Deputy Chief of Naval Operations, Warfighting Requirements and Capabilities (OPNAV N9) and Lieutenant General Eric M. Smith, Deputy Commandant, Combat Development and Integration, Commanding General, Marine Corps Combat Development Command, before the
An April 19, 2021, press report stated: “Exposing a new layer of long-range striking power for the U.S. Navy carrier battle group, a photo obtained by Aerospace DAILY shows what appears to be a Raytheon RIM-174 SM-6 missile integrated on a left wing pylon of a Boeing F/A-18F Super Hornet in flight.”

The issue of the operating range of Navy carrier air wings is a key component of an ongoing debate over the future survivability, utility, and cost-effectiveness of aircraft carriers and their air wings, with critics arguing that the current operating range of Navy carrier air wings will force Navy aircraft carriers to operate well within the ranges of Chinese ASBMs or other A2/AD systems, which could put the carriers’ survivability at substantial risk, or alternatively require carriers to operate beyond the range of those Chinese A2/AD systems, in locations that are safer but so far away that the carriers and their air wings will contribute little combat capability.

A key U.S. Navy program for increasing the operating range of Navy carrier air wings is the MQ-25 Stingray program, which is a program to acquire a carrier-based unmanned aerial vehicle (UAV) for use as a tanker for in-flight refueling of manned carrier-based aircraft (with a secondary mission of intelligence, surveillance, and reconnaissance). Some observers, while not necessarily objecting to the MQ-25 program, argue that the Navy should do more to increase the operating range of Navy carrier air wings, such as developing a stealthy, carrier-based UAV capable of penetrating enemy air defenses and striking land targets at very long ranges.

The issue of acquisition policies and the metrics for judging their success is discussed in more detail in another CRS report.

Legislative Activity for FY2022

The Navy’s proposed FY2022 budget was submitted to Congress on May 28, 2021.

Coverage in Related CRS Reports

A variety of CRS reports cover U.S. Navy programs that in varying degrees can be viewed as responses to, at least in part, China’s naval modernization effort. These reports include but are not limited to the following:

- CRS In Focus IF11826, *Navy Next-Generation Attack Submarine (SSN[X]) Program: Background and Issues for Congress*, by Ronald O'Rourke
- CRS Report RS20643, *Navy Ford (CVN-78) Class Aircraft Carrier Program: Background and Issues for Congress*, by Ronald O'Rourke
- CRS Report RL30563, *F-35 Joint Strike Fighter (JSF) Program*, by Jeremiah Gertler (the JSF program is a joint DOD program with Navy participation)

Subcommittee on Seapower of the Senate Armed Services Committee on Department of the Navy Fiscal Year 2022 Budget Request for Seapower, June 8, 2021, pp. 26-27.

- CRS Report RL32109, *Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress*, by Ronald O'Rourke
- CRS In Focus IF11679, *Navy DDG(X) Next-Generation Destroyer Program: Background and Issues for Congress*, by Ronald O'Rourke
- CRS Report R44972, *Navy Constellation (FFG-62) Class Frigate (Previously FFG[X]) Program: Background and Issues for Congress*, by Ronald O'Rourke
- CRS In Focus IF11674, *Navy Next-Generation Logistics Ship (NGLS) Program: Background and Issues for Congress*, by Ronald O'Rourke
- CRS Report R45757, *Navy Large Unmanned Surface and Undersea Vehicles: Background and Issues for Congress*, by Ronald O'Rourke
Appendix A. Comparing U.S. and Chinese Numbers of Ships and Naval Capabilities

This appendix presents some additional discussion of factors involved in comparing U.S. and Chinese numbers of ships and naval capabilities.

U.S. and Chinese naval capabilities are sometimes compared by showing comparative numbers of U.S. and Chinese ships. Although the total number of ships in a navy (or a navy’s aggregate tonnage) is relatively easy to calculate, it is a one-dimensional measure that leaves out numerous other factors that bear on a navy’s capabilities and how those capabilities compare to its assigned missions. One-dimensional comparisons of the total numbers of ships in China’s navy and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to those navies, for the following reasons:

• **A fleet’s total number of ships (or its aggregate tonnage) is only a partial metric of its capability.** Many factors other than ship numbers (or aggregate tonnage) contribute to naval capability, including types of ships, types and numbers of aircraft, the sophistication of sensors, weapons, C4ISR systems, and networking capabilities, supporting maintenance and logistics capabilities, doctrine and tactics, the quality, education, and training of personnel, and the realism and complexity of exercises. In light of this, navies with similar numbers of ships or similar aggregate tonnages can have significantly different capabilities, and navy-to-navy comparisons of numbers of ships or aggregate tonnages can provide a highly inaccurate sense of their relative capabilities. In recent years, the warfighting capabilities of navies have derived increasingly from the sophistication of their internal electronics and software. This factor can vary greatly from one navy to the next, and often cannot be easily assessed by outside observation. As the importance of internal electronics and software has grown, the idea of comparing the warfighting capabilities of navies principally on the basis of easily observed factors such as ship numbers and tonnages has become increasingly less reliable, and today is highly problematic.

• **Total numbers of ships of a given type (such as submarines or surface combatants) can obscure potentially significant differences in the capabilities of those ships, both between navies and within one country’s navy.** Differences in capabilities of ships of a given type can arise from a number of other factors, including sensors, weapons, C4ISR systems, networking capabilities, stealth features, damage-control features, cruising range, maximum speed, and reliability and maintainability (which can affect the amount of time the ship is available for operation).

• **A focus on total ship numbers reinforces the notion that changes in total numbers necessarily translate into corresponding or proportional changes in aggregate capability.** For a Navy like China’s, which is modernizing by replacing older, obsolescent ships with more modern and more capable ships, this is not necessarily the case. As shown in Table 1 and Table 2, for example, China’s attack submarine force today has only a slightly larger number of boats than it had in 2000 or 2005, but it has considerably more aggregate capability than it did in 2000 or 2005, because the force today includes a much larger percentage of relatively modern designs.
Comparisons of total numbers of ships (or aggregate tonnages) do not take into account the differing global responsibilities and homeporting locations of each fleet. The U.S. Navy has substantial worldwide responsibilities, and a substantial fraction of the U.S. fleet is homeported in the Atlantic. As a consequence, only a certain portion of the U.S. Navy might be available for a crisis or conflict scenario in China’s near-seas region, or could reach that area within a certain amount of time. In contrast, China’s navy has more-limited responsibilities outside China’s near-seas region, and its ships are all homeported along China’s coast at locations that face directly onto China’s near-seas region. In a U.S.-China conflict inside the first island chain, U.S. naval and other forces would be operating at the end of generally long supply lines, while Chinese naval and other forces would be operating at the end of generally short supply lines.

Comparisons of numbers of ships (or aggregate tonnages) do not take into account maritime-relevant military capabilities that countries might have outside their navies, such as land-based anti-ship ballistic missiles (ASBMs), land-based anti-ship cruise missiles (ASCMs), and land-based Air Force aircraft armed with ASCMs or other weapons. Given the significant maritime-relevant non-navy forces present in both the U.S. and Chinese militaries, this is a particularly important consideration in comparing U.S. and Chinese military capabilities for influencing events in the Western Pacific. Although a U.S.-China incident at sea might involve only navy units on both sides, a broader U.S.-China military conflict would more likely be a force-on-force engagement involving multiple branches of each country’s military.

The missions to be performed by one country’s navy can differ greatly from the missions to be performed by another country’s navy. Consequently, navies are better measured against their respective missions than against one another. Although Navy A might have less capability than Navy B, Navy A might nevertheless be better able to perform Navy A’s intended missions than Navy B is to perform Navy B’s intended missions. This is another significant consideration in assessing U.S. and Chinese naval capabilities, because the missions of the two navies are quite different.

A 2015 RAND report attempted to take factors like those discussed above more fully into account with the aim of producing a more comprehensive assessment of relative U.S. and Chinese military capabilities for potential conflict scenarios involving Taiwan and the Spratly Islands in the South China Sea. The report stated the following:

Over the past two decades, China’s People’s Liberation Army (PLA) has transformed itself from a large but antiquated force into a capable, modern military. In most areas, its technology and skill levels lag behind those of the United States, but it has narrowed the gap. Moreover, it enjoys the advantage of proximity in most plausible scenarios and has developed capabilities that capitalize on that advantage....

... four broad trends emerge:

• Since 1996, the PLA has made tremendous strides, and, despite improvements to the U.S. military, the net change in capabilities is moving in favor of China. Some aspects of Chinese military modernization, such as improvements to PLA ballistic missiles, fighter aircraft, and attack submarines, have come extraordinarily quickly by any reasonable historical standard.

• The trends vary by mission area, and relative Chinese gains have not been uniform across all areas. In some areas, U.S. improvements have given the United States new options, or
at least mitigated the speed at which Chinese military modernization has shifted the relative balance.

- Distances, even relatively short distances, have a major impact on the two sides’ ability to achieve critical objectives. Chinese power projection capabilities are improving, but present limitations mean that the PLA’s ability to influence events and win battles diminishes rapidly beyond the unrefueled range of jet fighters and diesel submarines. This is likely to change in the years beyond those considered in this report, though operating at greater distances from China will always work, on balance, against China.

- The PLA is not close to catching up to the U.S. military in terms of aggregate capabilities, but it does not need to catch up to the United States to dominate its immediate periphery. The advantages conferred by proximity severely complicate U.S. military tasks while providing major advantages to the PLA. This is the central finding of this study and highlights the value of campaign analysis, rather than more abstract assessments of capabilities.

Over the next five to 15 years, if U.S. and PLA forces remain on roughly current trajectories, Asia will witness a progressively receding frontier of U.S. dominance. The United States would probably still prevail in a protracted war centered in virtually any area, and Beijing should not infer from the above generalization that it stands to gain from conflict. U.S. and Chinese forces would likely face losses on a scale that neither has suffered in recent decades. But PLA forces will become more capable of establishing temporary local air and naval superiority at the outset of a conflict. In certain regional contingencies, this temporal or local superiority might enable the PLA to achieve limited objectives without “defeating” U.S. forces. Perhaps even more worrisome from a military-political perspective, the ability to contest dominance might lead Chinese leaders to believe that they could deter U.S. intervention in a conflict between it and one or more of its neighbors. This, in turn, would undermine U.S. deterrence and could, in a crisis, tip the balance of debate in Beijing as to the advisability of using force.

Although trends in the military balance are running against the United States, there are many actions that the United States could take to reinforce deterrence and continue to serve as the ultimate force for stability in the Western Pacific.

As mentioned earlier, while comparisons of the total numbers of ships in China’s Navy and the U.S. Navy are highly problematic as a means of assessing relative U.S. and Chinese naval capabilities and how those capabilities compare to the missions assigned to those navies, an examination of the trends over time in the relative numbers of ships can shed some light on how the relative balance of U.S. and Chinese naval capabilities might be changing over time.

Appendix B. U.S. Navy’s Ability to Counter Chinese ASBMs

This appendix provides additional discussion of the issue of the U.S. Navy’s ability to counter China’s ASBMs.

Although China’s projected ASBM, as a new type of weapon, might be considered a “game changer,” that does not mean it cannot be countered. There are several potential approaches for countering an ASBM that can be imagined, and these approaches could be used in combination. The ASBM is not the first “game changer” that the Navy has confronted; the Navy in the past has developed counters for other new types of weapons, such as ASCMs, and is likely exploring various approaches for countering ASBMs.

Countering China’s projected ASBMs could involve employing a combination of active (i.e., “hard-kill”) measures, such as shooting down ASBMs with interceptor missiles, and passive (i.e., “soft-kill”) measures, such as those for masking the exact location of Navy ships or confusing ASBM reentry vehicles. Employing a combination of active and passive measures would attack various points in the ASBM “kill chain”—the sequence of events that needs to be completed to carry out a successful ASBM attack. This sequence includes detection, identification, and localization of the target ship, transmission of that data to the ASBM launcher, firing the ASBM, and having the ASBM reentry vehicle find the target ship.

Attacking various points in an opponent’s kill chain is an established method for countering an opponent’s military capability. A September 30, 2011, press report, for example, quotes Lieutenant General Herbert Carlisle, the Air Force’s deputy chief of staff for operations, plans, and requirements, as stating in regard to Air Force planning that “We’ve taken [China’s] kill chains apart to the ‘nth’ degree.”

To attack the ASBM kill chain, Navy surface ships, for example, could operate in ways (such as controlling electromagnetic emissions or using deception emitters) that make it more difficult for China to detect, identify, and track those ships. The Navy could acquire weapons and systems for disabling or jamming China’s long-range maritime surveillance and targeting systems, for attacking ASBM launchers, for destroying ASBMs in various stages of flight, and for decoying and confusing ASBMs as they approach their intended targets. Options for destroying ASBMs in flight include the SM-3 midcourse BMD interceptor missile (including the new Block IIA

version), the SM-6 terminal-defense BMD interceptor missile,124 and accelerating development and deployment of the hypervelocity projectile (HVP), electromagnetic rail gun (EMRG), and solid state lasers (SSLS).125 Options for decoying and confusing ASBMs as they approach their intended targets include equipping ships with systems, such as electronic warfare systems or systems for generating radar-opaque smoke clouds or radar-opaque carbon-fiber clouds, that could confuse an ASBM’s terminal-guidance radar.126

An October 4, 2016, press report states the following:

Several times in the past, [Chief of Naval Operations John] Richardson has stressed that long range weapons developments from adversarial nations like Russia and China aren’t the end-all, be-all of naval conflicts.

Just because China’s “carrier-killer” missile has a greater range than the planes aboard a US aircraft carrier doesn’t mean the US would shy away from deploying a carrier within that range, Richardson has stated on different occasions.

Again, Richardson challenged the notion that a so-called A2/AD zone was “an impenetrable keep out zone that forces can only enter at extreme peril to their existence, let alone their mission.”

Richardson took particular issue with the “denial” aspect of A2/AD, repeating his assertion that this denial is an “aspiration” not a “fait accompli.” The maps so common in representing these threats often mark off the limits of different system’s ranges with “red arcs that extend off coastlines,” with the implication that military forces crossing these lines face “certain destruction.”

But this is all speculation according to Richardson: “The reality is far more complex, it’s actually really hard to achieve a hit. It requires the completion of a really complex chain of events,…these arcs represent danger for sure… but the threats they are based on are not insurmountable, and can be managed, will be managed.”

“We can fight from within these defended areas, and we will… this is nothing new and has been done before,” said Richardson.

So while Russia and China can develop missiles and radars and declare their ranges on paper, things get a lot trickier in the real world, where the US has the most and best experience in operating.

“Potential adversaries actually have different geographic features like choke points, islands, ocean currents, mountains,” said Richardson, who urged against oversimplifying complicated, and always unique circumstances in so-called A2/AD zones.

“Have no doubt, the US navy is prepared to go wherever it needs to go, at any time, and stay there for as long as necessary in response to our leadership’s call to project our strategic influence,” Richardson concluded.

124 For more on the SM-3, including the Block IIA version, and the SM-6, see CRS Report RL33745, \textit{Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress}, by Ronald O'Rourke.

125 For more on HVP, EMRG, and SSLS, see CRS Report R44175, \textit{Navy Lasers, Railgun, and Gun-Launched Guided Projectile: Background and Issues for Congress}, by Ronald O'Rourke.

Similarly, an August 29, 2016, press report states the following:

The United States Navy is absolutely confident in the ability of its aircraft carriers and carrier air wings to fly and fight within zones defended by so-called anti-access/area denial (A2/AD) weapons....

In the view of the U.S. Navy leadership, A2/AD—as it is now called—has existed since the dawn of warfare when primitive man was fighting with rocks and spears. Overtime, A2/AD techniques have evolved as technology has improved with ever-greater range and lethality. Rocks and spears eventually gave way to bows and arrows, muskets and cannons. Thus, the advent of long-range anti-ship cruise and ballistic missiles is simply another technological evolution of A2/AD.

“This is the next play in that,” Adm. John Richardson, chief of naval operations, told The National Interest on Aug. 25 during an interview in his office in the Pentagon. “This A2/AD, well, it’s certainly a goal for some of our competitors, but achieving that goal is much different and much more complicated.”

Indeed, as many U.S. Navy commanders including Richardson and Rear Adm. (Upper Half) DeWolfe Miller, the service’s director of air warfare, have pointed out, anti-access bubbles defended by Chinese DF-21D or DF-26 anti-ship ballistic missile systems or Russian Bastion-P supersonic anti-ship missile systems are not impenetrable ‘Iron Domes.’ Nor do formidable Russian and Chinese air defense systems such as the S-400 or HQ-9 necessarily render the airspace they protect into no-go zones for the carrier air wing.

Asked directly if he was confident in the ability of the aircraft carrier and its air wing to fight inside an A2/AD zone protected by anti-ship cruise and ballistic missiles as well as advanced air defenses, Richardson was unequivocal in his answer. “Yes,” Richardson said—but he would not say how exactly how due to the need for operational security. “It’s really a suite of capabilities, but I actually think we’re talking too much in the open about some of the things we’re doing, so I want to be thoughtful about how we talk about things so we don’t give any of our competitors an advantage.”...

Miller said that there have been threats to the carrier since the dawn of naval aviation. In many ways, the threat to the carrier was arguably much greater during the Cold War when the Soviet Union massed entire regiments of Tupolev Tu-22M3 Backfires and deployed massive cruise missile-armed Oscar-class SSGN submarines to hunt down and destroy the Navy’s flattops. The service developed ways to defeat the Soviet threat—and the carrier will adapt to fight in the current environment.

“We could have had this interview twenty-years-ago and there would have been a threat,” Miller said. “The nature of war and A2/AD is not new—that’s my point. I don’t want to downplay it, but our improvements in information warfare, electronic warfare, payloads, the weapons systems that we’ve previously talked about—plus our ability to train to those capabilities that we have—we will create sanctuaries, we’ll fight in those sanctuaries and we’re a maneuver force.”

An October 18, 2017, blog post states the following:

Assuming the DF-21D is ready for battle, can America defend against China’s mighty missile?

While opinions are clearly mixed—in speaking to many sources over the last several years on this topic—it seems clear there is great nervousness in U.S. defense circles. However, as time has passed, initial fears have turned towards a more optimistic assessment....

In the end, the weapon might not be the great “game-changer” that many point it out to be, but a great complicator. 128

A January 28, 2021, press report states:

The U.S. Navy’s top intelligence officer has said the service is watching closely as China expands its anti-ship missile capabilities, particularly in and around the disputed South China Sea, to include the ongoing development of long-range anti-ship ballistic missiles. At the same time, he said he “hopes” that China's People's Liberation Army will continue to invest significant resources into these efforts, hinting that the U.S. Navy already has extensive measures to counter these threats already in use now or in development.

Navy Vice Admiral Jeffrey Trussler, the Deputy Chief of Naval Operations for Information Warfare, made his remarks about China's anti-ship missile arsenal during an online event put on by the non-profit Intelligence and National Security Alliance on Jan. 27, 2021....

… not only did Vice Admiral Trussler seem less concerned about PLA anti-ship missile capabilities than one would expect, he made clear he was happy with them continuing to pour time and resources into those efforts.

“I hope they just keep pouring money into that type of thing,” he said. “That may not be how we win the next war.”

The clear indication here is that Trussler is aware of countermeasures, whether they be certain systems or tactics, techniques, and procedures, that are either available now or in development. The Vice Admiral did not offer any specific details about what the Navy is doing to go along with these remarks....

We also know that, by 2019, warships assigned to the Navy’s 7th Fleet, which is based in Japan, were fitted with the AN/SLQ-59 Transportable Electronic Warfare Modules (TEWM). TEWM is described as a “counter-terminal threat defensive system,” indicating that it is designed to help defeat incoming anti-ship missiles, or other threats, such as swarms of small drones, in the final phase of their attack on a ship. Based on the information available, The War Zone previously assessed that the AN/SLQ-59 was most likely acquired in response to growing cruise missile threats, and Chinese developments, in particular, given its fielding first on ships forward-deployed in Japan.

The Navy has also been hard at work developing an entire networked electronic warfare “ecosystem,” as part of its shadowy Netted Emulation of Multi-Element Signature against Integrated Sensors program, or NEMESIS. The goal here has been to craft a ‘system of systems’ comprising of various manned and unmanned ships, as well as submarines and aircraft, equipped with electronic warfare systems that can work together cooperatively. One of the key uses of these capabilities would be to generate signals that mimic real fleets of ships and aircraft to distract and confuse opponents, making it difficult for them to effectively spot and target real Navy assets. These networked electronic warfare platforms could also employ other kinds of electronic warfare tactics across a broad area to protect against various kinds of threats. You can read more about NEMESIS in detail in this past War Zone feature.129

129 The article linked at this point is Brett Tingley, “The Navy’s Secretive And Revolutionary Program To Project False Fleets From Drone Swarms,” The Drive, November 7, 2019.
A highly adaptive and deeply networked electronic warfare ecosystem could be particularly useful against long-range anti-ship missile strikes, especially using ballistic missiles, which would require targeting information from offboard platforms and the ability to send updated information to the weapon during the mid-course stage of flight.

The Navy does have Arleigh Burke class destroyers outfitted specifically for ballistic missile defense, including the ability to launch the SM-3 Block IIA interceptor, which is designed to knock down ballistic missiles during the mid-course portion of their flight. Those ships are also slated to get interceptors designed to bring down hypersonic weapons in the future as part of the Regional Glide Phase Weapon System (RGPWS) program.

The Navy, which has been looking to stop deploying Arleigh Burkes on dedicated missile defense missions, could seek to make more widespread use of the SM-3 Block IIA in the future. Those destroyers and other ships could gain additional missile defense capabilities as the improved Block IB variant of the SM-6 missile begins to enter service. Existing Block I and IA versions of the SM-6 already have the ability to intercept ballistic missiles during the terminal phase of their flight, as well as engage various other aerial and surface threats. The SM-6, in particular, potentially provides a potent defense against anti-ship ballistic missiles, especially those that break through mid-course traditional ballistic missile defenses, if mid-course ballistic missile defense assets are available at all.

There’s the possibility that Vice Admiral Trussler is aware of other developments in the classified realm that could further mitigate some or all of these threats, as well. Beyond that, there’s no discounting that his public comments, which are certain to be scrutinized by the PLA itself, are a form of misinformation designed to prompt concerns within the Chinese military that its priorities may be, in some way, seriously off base.

Whatever the case, the threat posed by China’s anti-ship missile arsenal, which continues to grow in capability, including with the development of new anti-ship ballistic missiles, is real. At the same time, while the Navy obviously knows this, the service seems to be strongly hinting that it feels it making very good progress on getting around these challenges, or at least wants to make the Chinese think so.130

Regarding the above-reported remarks by Vice Admiral Trussler, a January 29, 2021, press report stated:

That confident [U.S. Navy] posture caught the attention of the Chinese military establishment. “What Trussler is saying is that the U.S. has sufficient power to handle the anti-ship missile threat from China,” former People’s Liberation Army instructor Song Zhongping told the South China Morning Post on Friday [January 29]. “The U.S. is emphasizing that threat and it will further boost its defenses against Chinese missiles.”131

Author Information

Ronald O'Rourke
Specialist in Naval Affairs

Disclaimer

This document was prepared by the Congressional Research Service (CRS). CRS serves as nonpartisan shared staff to congressional committees and Members of Congress. It operates solely at the behest of and under the direction of Congress. Information in a CRS Report should not be relied upon for purposes other than public understanding of information that has been provided by CRS to Members of Congress in connection with CRS’s institutional role. CRS Reports, as a work of the United States Government, are not subject to copyright protection in the United States. Any CRS Report may be reproduced and distributed in its entirety without permission from CRS. However, as a CRS Report may include copyrighted images or material from a third party, you may need to obtain the permission of the copyright holder if you wish to copy or otherwise use copyrighted material.