The National Institute of Standards and Technology: An Appropriations Overview

Updated February 25, 2020
The National Institute of Standards and Technology: An Appropriations Overview

The National Institute of Standards and Technology (NIST), a laboratory of the Department of Commerce, is mandated to provide technical services to facilitate the competitiveness of U.S. industry. NIST is directed to offer support to the private sector for the development of precompetitive generic technologies and the diffusion of government-developed innovation to users in all segments of the American economy. Laboratory research is to provide measurement, calibration, and quality assurance techniques that underpin U.S. commerce, technological progress, improved product reliability, manufacturing processes, and public safety.

Concerns about the adequacy of federal funding for physical science and engineering research led to efforts by successive Presidents and Congresses to double funding for the NIST laboratory and construction accounts, together with the National Science Foundation and the Department of Energy Office of Science. President Bush’s proposal was to do so over 10 years; the America COMPETES Act (P.L. 110-69) set authorization levels consistent with a seven-year doubling and the America COMPETES Reauthorization Act of 2010 set authorization levels consistent with an 11-year doubling. However, appropriations did not keep pace with authorization levels or presidential requests. In addition, the appropriations authorizations for the accounts targeted for doubling lapsed at the end of FY2013. Appropriations for the targeted NIST accounts increased by 42.3% from FY2006 to FY2016.

Funding for NIST extramural programs directed toward increased private sector commercialization has been a topic of congressional debate. Some Members of Congress have expressed skepticism over a “technology policy” based on providing federal funds to industry for development of precompetitive generic technologies. This approach, coupled with pressures to balance the federal budget, led to significant reductions in funding for NIST. The Advanced Technology Program (ATP) and the Manufacturing Extension Partnership (MEP), which accounted for over 50% of the FY1995 NIST budget, were subsequently proposed for elimination. In 2007, ATP was terminated and replaced by the Technology Innovation Program (TIP). TIP was subsequently defunded in the FY2012 appropriations legislation. President Trump has proposed the elimination of federal funding for the MEP program in fiscal years 2018 to 2021.

In December 2014, Congress enacted the Revitalize American Manufacturing and Innovation Act of 2014 (Title VII of Division B of P.L. 113-235), establishing a Network for Manufacturing Innovation (also referred to as Manufacturing USA). The explanatory statement accompanying the Consolidated Appropriations Act, 2016 (P.L. 114-113) directed NIST to use an open competition to select the technological focus areas of industry-driven manufacturing institutes. Upon completion of its first competition, NIST announced its selection of the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL). In total, 14 NIIMBL institutes have been sponsored by the Department of Defense (DOD, eight institutes), Department of Energy (six institutes), and Department of Commerce (one institute). A new DOD-sponsored institute is being competed in FY2020. A second NIST-sponsored institute has been requested in the President’s budget.

For FY2020, Congress provided $1,034.0 billion for NIST, including $754.0 million for the Scientific and Technical Research and Services (STRS) account, $162.0 million for the Industrial Technology Services (ITS) account, and $118.0 million for the Construction of Research Facilities (CRF) account. Within the ITS account, Congress provided $146.0 million for the Manufacturing Extension Partnership (MEP) program and $16.0 million for Manufacturing USA, including ongoing support for NIST’s first institute, the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), and support for coordination of the Manufacturing USA network.

The President is requesting $737.5 million for NIST in FY2021, a decrease of $296.5 million (28.7%) from the FY2020 enacted appropriation of $1,034.0 million. Included in the FY2021 request is $652 million for the STRS account, a decrease of $102.0 million (13.5%); $25.3 million for the ITS account, down $136.7 million (84.4%); and $60.2 million for the NIST CRF account for FY2020, down $57.8 million (49.0%). Within the ITS account, the request would provide no funding for the Manufacturing Extension Partnership (MEP) program, a reduction of $146.0 million from the FY2020 enacted level. The FY2021 ITS request includes $25.3 million for Manufacturing USA, an increase of $9.3 million (58.1%). Of these funds, $11.2 million would be for continued support of NIST’s first Manufacturing USA institute, the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL); $9.1 million would be for the award of a second Manufacturing USA institute; and $5.0 million would be for coordination of the Manufacturing USA network. All changes are from the FY2020 enacted levels.
Contents

Mission ........................................................................................................................................ 1
History and Selected Statutory Authorities .................................................................................. 1
  Malcolm Baldrige National Quality Improvement Act of 1987 ..................................................... 2
  Omnibus Trade and Competitiveness Act of 1988 ...................................................................... 2
  Hollings Manufacturing Extension Partnership Program ............................................................. 2
  Advanced Technology Program ...................................................................................................... 2
  America COMPETES Act/America COMPETES Reauthorization Act of 2010 ......................... 3
  Technology Innovation Program ..................................................................................................... 3
  NIST Doubling Effort ..................................................................................................................... 3
  Middle Class Tax Relief and Job Creation Act of 2012 ................................................................. 3
  Revitalize American Manufacturing and Innovation Act of 2014 ............................................... 4
  Previous NIST Programs .............................................................................................................. 5
  Advanced Manufacturing Technology Consortia Program ............................................................ 5
  Manufacturing Technology Acceleration Centers Program .......................................................... 5
NIST Appropriations ........................................................................................................................ 6
  Overview of NIST Appropriations Accounts ............................................................................... 6
  NIST Request for FY2021 Appropriations ..................................................................................... 6
  Total NIST Funding Requested for FY2021 ................................................................................ 6
  Scientific and Technical Research and Services ......................................................................... 6
  Industrial Technology Services ...................................................................................................... 6
  Construction of Research Facilities ............................................................................................. 7
Funding Trends for NIST Accounts and Selected Programs ......................................................... 7
  Total NIST Funding ...................................................................................................................... 7
  Scientific and Technical Research and Services Account ............................................................ 8
  Construction of Research Facilities Account ............................................................................... 9
  Industrial Technology Services Account ................................................................................... 11
  Manufacturing Extension Partnership Program ......................................................................... 12
  Advanced Technology Program/Technology Innovation Program ............................................. 12
Concluding Observations ............................................................................................................. 14
  NIST Doubling Effort .................................................................................................................. 14
  NIST Technology Policy ............................................................................................................. 15
  National Network for Manufacturing Innovation ...................................................................... 15

Figures

Figure 1. Total NIST Appropriations ............................................................................................ 8
Figure 2. Scientific and Technical Research and Services Account ............................................... 9
Figure 3. Construction of Research Facilities Account ................................................................. 10
Figure 4. Construction of Research Facilities Account, Excluding Funding for
  Congressionally Directed Projects and the Competitive Construction Grant Program ............ 10
Figure 5. Industrial Technology Services Account .................................................................... 11
Figure 6. Manufacturing Extension Partnership Program ........................................................... 12
Figure 7. Advanced Technology Program and Technology Innovation Program ........................ 13
Tables
Table 1. NIST Appropriations .......................................................... 7
Table A-1. Requested and Enacted Appropriations for NIST Accounts .......... 18
Table B-1. Requested and Enacted Appropriations for Selected NIST Programs .......... 20

Appendixes
Appendix A. Requested and Enacted Discretionary Appropriations for NIST Accounts .......... 18
Appendix B. Requested and Enacted Appropriations for Selected NIST Programs .......... 20

Contacts
Author Information.................................................................................. 21
Mission

The U.S. Department of Commerce (DOC) National Institute of Standards and Technology (NIST) is the “lead national laboratory for providing the measurements, calibrations, and quality assurance techniques which underpin United States commerce, technological progress, improved product reliability and manufacturing processes, and public safety.”

By statute, NIST is “to assist private sector initiatives to capitalize on advanced technology; to advance, through cooperative efforts among industries, universities, and government laboratories, promising research and development projects, which can be optimized by the private sector for commercial and industrial applications; and to promote shared risks, accelerated development, and pooling of skills which will be necessary to strengthen America’s manufacturing industries.”

NIST conducts leading-edge research in its seven research laboratories located in facilities in Gaithersburg, MD, and Boulder, CO. NIST employs approximately 3,000 scientists, engineers, technicians, and support personnel, and hosts about 3,500 guest researchers and associates from academia, industry, and other government agencies, who collaborate with NIST staff and access user facilities. Research is focused on measurement, standards, test methods, and basic “infrastructural technologies” that enable development of advanced technologies. Infrastructural technologies assist industry in characterizing new materials, monitoring production processes, and ensuring the quality of new product lines. Cooperative research with industry to overcome technical barriers to commercialization of emerging technologies is a major component of NIST’s work.

In addition, NIST manages extramural programs such as the Hollings Manufacturing Extension Partnership (MEP) program and the Network for Manufacturing Innovation (NMI, also referred to as Manufacturing USA). Several other extramural programs previously conducted by NIST have been eliminated or integrated into other NIST activities. These programs are discussed in the next section.

History and Selected Statutory Authorities

Unlike most federal laboratories, NIST has a mission specified by statute (15 U.S.C. 271-282a), has a separate authorization and appropriation, and is headed by a Senate-confirmed presidential appointee (the Under Secretary of Commerce for Technology and Standards). NIST was originally created by the NBS Organic Act of 1901 (P.L. 56-177) as the National Bureau of Standards (NBS), at a time when the first centralized industrial labs were being established.

Under the act, NBS was charged with working on “the solution of problems which arise in connection with standards” and to engage in the “determination of physical constants and the properties of materials, when such data are of great importance to scientific or manufacturing

---

1 §5111, Omnibus Trade and Competitiveness Act of 1988 (P.L. 100-418).
2 Ibid.
3 The seven laboratories are the Materials Measurement Laboratory, Physical Measurement Laboratory, Engineering Laboratory, Information Technology Laboratory, Communications Technology Laboratory, Center for Nanoscale Science and Technology, and Center for Neutron Research.
4 General Electric Research Laboratory, widely recognized as the first industrial research facility, was established in 1900 in Schenectady, NY.
interests and are not to be obtained of sufficient accuracy elsewhere.” These objectives remain central to NIST’s laboratory work today.

**Malcolm Baldrige National Quality Improvement Act of 1987**

In 1987, the Malcolm Baldrige National Quality Improvement Act of 1987 (P.L. 100-107) established the Malcolm Baldrige National Quality Award under the management of NBS. The act directs the President or the Secretary of Commerce to “periodically make the award to companies and other organizations which in the judgment of the President or the Secretary have substantially benefited the economic or social well-being of the United States through improvements in the quality of their goods or services resulting from the effective practice of quality management, and which as a consequence are deserving of special recognition.”

**Omnibus Trade and Competitiveness Act of 1988**

The following year, amid widespread concerns about the state of U.S. industrial competitiveness, the Omnibus Trade and Competitiveness Act of 1988 (P.L. 100-418) significantly expanded the role of NIST as the “lead national laboratory for providing the measurements, calibrations, and quality assurance techniques which underpin United States commerce, technological progress, improved product reliability and manufacturing processes, and public safety” by “moderniz[ing] and restructur[ing] that agency to augment its unique ability to enhance the competitiveness of American industry.” The act also changed the name from NBS to the National Institute of Standards and Technology to reflect its expanded mission. In addition to its long-standing work in standards and metrology, NIST was directed to offer support to the private sector for the development of precompetitive generic technologies and the diffusion of government-developed innovation to users in all segments of the U.S. economy. Among its provisions, the act established the Advanced Technology Program (ATP), and a program now known as the Hollings Manufacturing Extension Partnership program.

**Hollings Manufacturing Extension Partnership Program**

The MEP is a program of regional centers that assist smaller, U.S.-based manufacturing companies in identifying and adopting new technologies. Operating under the auspices of NIST, centers in all 50 states and Puerto Rico provide technical and managerial assistance to firms. Federal funding for the centers is matched by nonfederal sources.

**Advanced Technology Program**

The Advanced Technology Program was designed “to serve as a focal point for cooperation between the public and private sectors in the development of industrial technology,” according to the report accompanying the bill, and to help solve “problems of concern to large segments of an industry.” Placed within the National Institute of Standards and Technology in recognition of the laboratory’s ongoing relationship with industry, ATP provided seed funding to single companies or to industry-led consortia of universities, businesses, and/or government laboratories for

---

5 The program is currently managed under NIST’s Baldrige Performance Excellence Program.


7 §5111, P.L. 100-107.

8 Metrology is the science of measurement.

development of generic (broad-based), precompetitive technologies that have many applications across industries. Awards, based on technical and business merit, were for high-risk work past the basic research stage but not yet ready for commercialization. Market potential was an important consideration in project selection. Scientific and technical review generally was performed by federal and academic experts. Business plan assessments were made by individuals from the private sector.

**America COMPETES Act/America COMPETES Reauthorization Act of 2010**

The America COMPETES Act (P.L. 110-69) and the America COMPETES Reauthorization Act of 2010 (P.L. 111-358) authorized NIST appropriations and several programs and activities.

**Technology Innovation Program**

In 2007, the America COMPETES Act replaced ATP with a new program, the Technology Innovation Program (TIP). While similar to ATP in the promotion of R&D expected to be of broad-based economic benefit to the nation, TIP appeared to have been structured to avoid what was seen as government funding of large firms that opponents argued did not necessarily need federal support for research. The committee report to accompany H.R. 1868, part of which was incorporated into P.L. 110-69, stated that TIP replaced ATP in consideration of a changing global innovation environment focusing on small and medium-sized companies. The design of the program also “acknowledges the important role universities play in the innovation cycle by allowing universities to fully participate in the program.”

Appropriations for TIP were provided from FY2008 to FY2011; no appropriations have been provided for TIP since FY2011.

**NIST Doubling Effort**

The America COMPETES Act authorized appropriations for NIST accounts for FY2008-FY2010, and the America COMPETES Reauthorization Act of 2010 authorized appropriations for NIST accounts for FY2011-FY2013. The authorization levels for NIST were part of a larger effort to double funding for selected accounts—all of the National Science Foundation, the Department of Energy Office of Science, and the NIST laboratory and construction accounts—that support physical sciences and engineering research. Congress’s appropriations fell short of the authorizations in these acts, and President Obama’s FY2017 request did not refer to the doubling goal. President Trump has not referenced the doubling goal in his budgets through FY2021.

**Middle Class Tax Relief and Job Creation Act of 2012**

As part of the Public Safety Trust Fund provided for in the Middle Class Tax Relief and Job Creation Act of 2012 (P.L. 112-96), a share of spectrum auction proceeds are to be made available to NIST as part of a Wireless Innovation (WIN) Fund to help develop cutting-edge wireless technologies for public safety users. WIN funds are to be used for developing leading-edge wireless technologies for public safety users, including helping industry and public safety

---

10 For more information on the Technology Innovation Program, see CRS Report RS22815, *The Technology Innovation Program*, by Wendy H. Schacht (available to congressional clients upon request to CRS).

11 For more information on the doubling effort, see CRS Report R41951, *An Analysis of Efforts to Double Federal Funding for Physical Sciences and Engineering Research*, by John F. Sargent Jr.
organizations conduct research and develop new standards, technologies, and applications to advance public safety communications in support of the initiative’s efforts to build an interoperable nationwide broadband network for first responders. The spectrum auction provided NIST with approximately $285.0 million for this purpose; efforts began in FY2015 and are continuing in FY2020.

**Revitalize American Manufacturing and Innovation Act of 2014**

In his FY2013 budget, President Obama proposed the creation of a National Network for Manufacturing Innovation (NNMI) to help accelerate innovation by investing in industrially relevant manufacturing technologies with broad applications, and to support manufacturing technology commercialization by bridging the gap between the laboratory and the market. Congress did not act on this request or a subsequent one made in President Obama’s FY2014 request. President Obama renewed the request in his FY2015 budget. In December 2014, Congress enacted the Revitalize American Manufacturing and Innovation Act of 2014 (RAMI Act) as Title VII of Division B of the Consolidated and Further Continuing Appropriations Act, 2015 (P.L. 113-235), establishing a Network for Manufacturing Innovation (NMI), largely similar to President Obama’s concept for the NNMI. As specified in the act, the purpose of the NMI is to improve the competitiveness of U.S. manufacturing and to increase the production of goods manufactured predominantly within the United States; to stimulate U.S. leadership in advanced manufacturing research, innovation, and technology; to facilitate the transition of innovative technologies into scalable, cost-effective, and high-performing manufacturing capabilities; to facilitate access by manufacturing enterprises to capital-intensive infrastructure, including high-performance electronics and computing, and the supply chains that enable these technologies; to accelerate the development of an advanced manufacturing workforce; to facilitate peer exchange and the documentation of best practices in addressing advanced manufacturing challenges; to leverage nonfederal sources of support to promote a stable and sustainable business model without the need for long-term federal funding; and to create and preserve jobs.\(^\text{13}\)

The act did not appropriate funds specifically for the NMI program but instead authorized NIST to spend up to $5.0 million of its appropriated funds each year from FY2015 to FY2024 to carry out the program. In addition, the act authorizes the Department of Energy (DOE) to transfer up to a total of $250.0 million to NIST between FY2015 and FY2024 to carry out the program. The act also allows existing manufacturing centers to be classified as centers for manufacturing innovation, making them eligible to participate in the network. President Obama initiated the establishment of several such centers prior to enactment of the RAMI Act under the general statutory authority of several agencies, including the Department of Defense and DOE.

While no funding has been transferred from DOE to NIST as authorized by the RAMI Act, in December 2015, the Consolidated Appropriations Act, 2016 (P.L. 114-113) provided specific funding, for the first time, for the establishment and coordination of institutes under the provisions of the RAMI Act. The act provided NIST with $25.0 million for FY2016 for the NNMI, to include funding for establishment of institutes and up to $5.0 million for coordination activities.\(^\text{14}\) The explanatory statement accompanying the act directs NIST to “follow the


\(^{13}\) For more information on the NMI, see CRS Report R43857, *The Network for Manufacturing Innovation*, by John F. Sargent Jr. For more information on the NNMI proposal, see CRS Report R42625, *The Obama Administration’s Proposal to Establish a National Network for Manufacturing Innovation*, by John F. Sargent Jr.

\(^{14}\) The act also directs NIST to merge its Advanced Manufacturing Technology Consortia (AMTech) program into the
direction of the Revitalize American Manufacturing and Innovation Act of 2014 in requiring open
competition to select the technological focus areas of industry-driven manufacturing institutes.\textsuperscript{15}

In September 2016, Commerce Secretary Penny Pritzker announced that “Manufacturing USA”
would be the new brand name for the National Network for Manufacturing Innovation. Congress
continues to use the term National Network for Manufacturing Innovation in appropriations
reports.

On December 16, 2016, NIST awarded the National Institute for Innovation in Manufacturing
Biopharmaceuticals (NIIMBL), led by the University of Delaware, “to advance U.S. leadership in
biopharmaceutical manufacturing.”\textsuperscript{16} Congress has subsequently provided funding to support
NIIMBL and to coordinate the Manufacturing USA network. Congress provided FY2020 funding
to support the establishment of a second NIST-sponsored institute.

Previous NIST Programs

In July 2013, NIST launched the Advanced Manufacturing Technology Consortia (AMTech)
program and the Manufacturing Technology Acceleration Centers (M-TAC) program.

Advanced Manufacturing Technology Consortia Program

Originally included in President Obama’s FY2013 budget request, AMTech makes planning
awards to “establish industry-led consortia to identify and prioritize research projects supporting
long-term industrial research needs.” AMTech seeks to incentivize manufacturers to share
financial and scientific resources with universities, state and local governments, and nonprofit
organizations.\textsuperscript{17} AMTech does not have a statutory authorization; the Consolidated and Further
Continuing Appropriations Act, 2013 (P.L. 113-6) provided first-year funding of $14.5 million.

In December 2015, the Consolidated Appropriations Act, 2016 (P.L. 114-113) directed NIST to
merge the Advanced Manufacturing Technology (AMTech) Consortia program with the NNMI.\textsuperscript{18}

Manufacturing Technology Acceleration Centers Program

The M-TAC program was a pilot effort under MEP that sought to address “the technical and
business challenges encountered by small and mid-sized U.S. manufacturers as they attempt to
adopt, integrate, and execute advanced product and process technologies into their operations.”\textsuperscript{19}
The funded project work on all the MTAC projects has been completed and a final presentation
was made by each awardee to MEP Center directors and staff in May 2016.

\textsuperscript{15} Explanatory Statement, Consolidated Appropriations Act, 2016, Division B (Commerce, Justice, Science and Related

\textsuperscript{16} Advanced Manufacturing National Program Office, NIST, DOC, website, “NIST Manufacturing USA Institutes,”

\textsuperscript{17} NIST, “President’s FY 2013 Budget Request for NIST Targets Advanced Manufacturing, Critical Science and
budget_2013.cfm.


\textsuperscript{19} Advanced Manufacturing National Program Office, NIST, DOC, website, “Explaining AMTech, M-TAC and
Explaining_AMTech_M-TAC_NNMI.pdf.
NIST Appropriations

Overview of NIST Appropriations Accounts

Discretionary funding for NIST is generally provided through three appropriations accounts:

- The Scientific and Technical Research and Services (STRS) account supports NIST in-house laboratory research. The account also provided funding for the Baldrige Performance Excellence Program through FY2011.
- The Industrial Technology Services (ITS) account supports NIST’s extramural programs. In FY2018, the ITS account provides funding for the MEP and NNMI programs. In earlier years, ITS provided funding for the Advanced Technology Program, the Technology Innovation Program, and the AMTech program.
- The Construction of Research Facilities (CRF, also referred to in this report as construction) account supports construction, maintenance, and repair of NIST facilities at its facilities in Gaithersburg, MD, and Boulder, CO. From FY2008 to FY2010, CRF provided funding for a competitive grant program that funded the construction of research facilities at U.S. universities and research institutions.

NIST Request for FY2021 Appropriations

The following sections provide information on NIST’s FY2021 request, in aggregate and for each of its three accounts, as well as the FY2020 enacted appropriations for each. (See Table 1.) This report will be updated to reflect House, Senate, and final action on NIST appropriations.

Total NIST Funding Requested for FY2021

The President is requesting $737.5 million for NIST in FY2021, a decrease of $296.5 million (28.7%) from the FY2020 enacted appropriation of $1,034.0 million.

Scientific and Technical Research and Services

The President’s FY2021 request includes $652 million for R&D, standards coordination, and related services in the STRS account, a decrease of $102.0 million (13.5%) from the FY2020 enacted level.

Industrial Technology Services

The FY2021 request would provide $25.3 million for the ITS account, down $136.7 million (84.4%) from the FY2020 enacted level. Within the ITS account, the request would provide no funding for the Manufacturing Extension Partnership (MEP) program, a reduction of $146.0 million from the FY2020 enacted level; MEP centers in each state would be required to become entirely self-supporting. In his FY2020 and FY2019 requests, President Trump proposed ending federal funding for MEP; in his FY2018 request, the President sought $6.0 million “for an orderly shutdown of the program.” The FY2021 request provides $25.3 million for Manufacturing USA.

---

The National Institute of Standards and Technology: An Appropriations Overview

(also referred to as the National Network for Manufacturing Innovation or NNMI), $9.3 million (58.1%) higher than the FY2020 enacted level of $16.0 million. Of these funds, $11.2 million would be for continued support of NIST’s first Manufacturing USA institute, the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL); $9.1 million would be for the award of a second Manufacturing USA institute; and $5.0 million would be for coordination of the Manufacturing USA network.\(^\text{21}\)

Construction of Research Facilities

The President is requesting $60.2 million for the NIST CRF account for FY2020, down $57.8 million (49.0%) from the FY2020 enacted level.\(^\text{22}\)

![Table 1. NIST Appropriations (budget authority, in millions of dollars)](https://www.commerce.gov/sites/default/files/2020-02/fy2021_nist_ntis_congressional_budget_justification.pdf)


**Note:** Columns may not add to totals due to rounding.

Funding Trends for NIST Accounts and Selected Programs

This section provides an overview of appropriations data for NIST in total and for each of its appropriations accounts, as well as for the Manufacturing Extension Partnership and the Advanced Technology Program (eliminated in 2007) and the Technology Innovation Program (last funded in 2011). Appendix A provides requested and enacted funding levels for NIST and its accounts for FY2003-FY2021. Appendix B provides requested and enacted funding levels for selected NIST programs.

Total NIST Funding

Figure 1 illustrates total requested and enacted NIST funding levels. Total appropriations for NIST grew from $707.5 million in FY2003 to $1,198.5 million in FY2018, a compound annual growth rate (CAGR) of 3.6%. In FY2019, appropriations fell to $985.5 million, a decrease of $213.0 million (17.8%) over FY2018. In FY2020, appropriations grew to $1,034.0 million, an increase of $48.5 million (4.9%) over FY2019. Appropriations exceeded requests through

\(^{21}\) Ibid., p. NIST-87.

\(^{22}\) Ibid., p. NIST-5.
FY2010; from FY2010 to FY2017, requests exceeded appropriations. From FY2018 to FY2020, appropriations once again exceeded the request. President Trump is requesting $737.5 million for FY2021, a decrease of $296.5 million (28.7%) from the FY2020 enacted level.

**Figure 1. Total NIST Appropriations**

Enacted Appropriations, FY2003-FY2020; Requested Appropriations, FY2003-FY2021

(in millions of current dollars)

![Graph showing Total NIST Appropriations](image)

**Sources:** Department of Commerce, NIST budget documents, appropriations acts, and explanatory statements for FY2003-FY2021.

**Note:** ARRA = American Recovery and Reinvestment Act.

### Scientific and Technical Research and Services Account

**Figure 2** illustrates requested and enacted funding levels for the NIST STRS account. This account saw a steady rise in both request and appropriations levels through FY2016. STRS funding requests declined from FY2016 to FY2019. For FY2020, President Trump requested $611.7 million for STRS; Congress appropriated $754.0 million, an increase of $28.5 million (4.1%) above the FY2019 enacted level. The President’s FY2021 request for STRS is $652.0 million, a decrease of $102.0 million (13.5%) from the FY2020 enacted level.
Figure 2. Scientific and Technical Research and Services Account
Enacted Appropriations, FY2003-FY2020; Requested Appropriations, FY2003-FY2021
(in millions of current dollars)

Sources: Department of Commerce, NIST budget documents, appropriations acts, and explanatory statements for FY2003-FY2021.
Note: ARRA = American Recovery and Reinvestment Act.

Construction of Research Facilities Account

Figure 3 illustrates requested and enacted funding levels for the NIST CRF account. Construction account funding has fluctuated. CRF funding jumped from $72.5 million in FY2005 to $173.7 million in FY2006, fell to $58.7 million in FY2007, rose to $160.5 million in FY2008, and then rose to $532.0 million in FY2009 (of which $172.0 million was provided for in regular appropriations and $360 million provided under ARRA).\(^{23}\) Funding fell from FY2010 to FY2012, dropping to $55.4 million, then it remained relatively flat through FY2015 (ranging from $50 million to $56 million per year). In FY2016, CRF appropriations jumped to $119.0 million; $60.0 million of the increase was designated for beginning “the design and renovation of [NIST’s] outdated and unsafe radiation physics infrastructure.” In FY2017, CRF appropriations were $109.0 million, of which $60.0 million was designated for design and renovation of NIST’s radiation physics infrastructure.\(^{24}\) In FY2018, CRF appropriations jumped to $319.0 million, $210.0 million (192.7%) above the FY2017 level. In FY2019, CRS appropriations fell to $106.0 million, a decrease of $213.0 million (66.8%), then rose to $118 million in FY2020. The President is requesting $60.2 million for the NIST CRF account for FY2021, down $57.8 million (49.0%) from the FY2020 enacted level.

In FY2008, FY2009, and FY2010, the CRF account provided funding for a competitive construction grant program that funded the construction of research facilities at U.S. universities and research institutions. Appropriations for CRF have also included funding for congressionally

\(^{23}\) Of the $360 million that ARRA provided this account in FY2009, $180 million was designated for the competitive construction grant program.

\(^{24}\) P.L. 115-31.
designated projects in some years. **Figure 4** illustrates the funding levels for the NIST CRF account excluding congressionally directed projects and the competitive grant program.

**Figure 3. Construction of Research Facilities Account**

Enacted Appropriations, FY2003-FY2020; Requested Appropriations, FY2003-FY2021

(in millions of current dollars)

![Chart](chart.png)

**Sources:** Department of Commerce, NIST budget documents, appropriations acts, and explanatory statements for FY2003-FY2021.

**Note:** ARRA = American Recovery and Reinvestment Act. The level shown for the FY2020 request includes those amounts ($288.0 million) requested by the President as part of a proposed GSA Federal Capital Revolving Fund to be used for NIST renovation. While the Administration requested the revolving funds be established via mandatory funding and repaid through NIST annual discretionary appropriations, the Congressional Budget Office (CBO) estimated this proposal in a manner consistent with current practice that capital expenditures are recorded on a cash basis in the federal budget.

**Figure 4. Construction of Research Facilities Account, Excluding Funding for Congressionally Directed Projects and the Competitive Construction Grant Program**


![Chart](chart.png)

**Sources:** Department of Commerce, NIST budget documents, appropriations acts, and explanatory statements for FY2003-FY2021.
The National Institute of Standards and Technology: An Appropriations Overview

Note: ARRA = American Recovery and Reinvestment Act. The level shown for the FY2020 request includes those amounts ($288.0 million) requested by the President as part of a proposed GSA Federal Capital Revolving Fund to be used for NIST renovation. While the Administration requested the revolving funds be established via mandatory funding and repaid through NIST annual discretionary appropriations, the Congressional Budget Office (CBO) estimated this proposal in a manner consistent with current practice that capital expenditures are recorded on a cash basis in the federal budget.

Industrial Technology Services Account

Figure 5 illustrates requested and enacted funding levels for the NIST ITS account. ITS requests and appropriations during this period have included the MEP, NNMI, AMTech, ATP, TIP, and Baldrige programs in some or all years. Total appropriations for the ITS account fell from $284.8 million in FY2003 to $128.4 million in FY2012, grew to $155.0 million in FY2016 and have since remained flat. Congress appropriated $162.0 million in FY2020. The FY2021 request provides $25.3 million for Manufacturing USA (also referred to as the National Network for Manufacturing Innovation or NNMI), $9.3 million (58.1%) higher than the FY2020 enacted level of $16.0 million. Of these funds, $11.2 million would be for continued support of NIST’s first Manufacturing USA institute, the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL); $9.1 million would be for the award of a second Manufacturing USA institute; and $5.0 million would be for coordination of the Manufacturing USA network. The President’s FY2021 request includes no funding for MEP.

Substantial fluctuations in the levels of funding requested and provided for the MEP, ATP, and TIP programs are reflected in aggregate in Figure 5, and illustrated and discussed in more detail on the following pages.

Figure 5. Industrial Technology Services Account

Enacted Appropriations, FY2003-FY2020; Requested Appropriations, FY2003-FY2021
(in millions of current dollars)

Sources: Department of Commerce, NIST budget documents, appropriations acts, and explanatory statements for FY2003-FY2021.
Manufacturing Extension Partnership Program

Figure 6 illustrates requested and enacted funding levels for the NIST MEP program. FY2003 enacted appropriations of $105.9 million were cut to $38.6 million in FY2004, but returned to near the FY2003 level in FY2005 ($107.5 million) and stayed near that level through FY2007. The MEP funding dipped again in FY2008, to $89.6 million, then rose over the next several years to $140.0 million in FY2018. Requests from FY2003 to FY2009 were substantially lower than appropriations, falling to $2.0 million in FY2009. In FY2010, the Obama Administration requested $124.7 million for MEP. From FY2012 to FY2017, requests were somewhat higher than enacted appropriations. For FY2018, President Trump requested $6.0 million for the MEP program to provide “for the orderly wind down of federal funding for the program”; however, Congress appropriated $140.0 million. For FY2019 and FY2020, President Trump requested no funding for MEP; Congress appropriated $140.0 million and $146.0 million, respectively. For FY2021, President Trump is again requesting no funding for MEP.

**Figure 6. Manufacturing Extension Partnership Program**

Enacted Appropriations, FY2003-FY2020; Requested Appropriations, FY2003-FY2021

(in millions of current dollars)

Sources: Department of Commerce, NIST budget documents, appropriations acts, and explanatory statements for FY2003-FY2021.

Advanced Technology Program/Technology Innovation Program

The Advanced Technology Program saw its requests fall from $107.9 million in FY2003 to zero in FY2005, and its appropriations fall from $178.9 million in FY2003 to zero in FY2008; no funding was requested in FY2005 and subsequent years. The Technology Innovation Program, which succeeded ATP, was first funded at $65.2 million in FY2008 and rose to $69.9 million in FY2010 before falling to $45.0 million in FY2011. The TIP program received no funding in FY2012 or in subsequent years. The $69.9 million requested for TIP in FY2010 was fully funded;

in FY2011 the TIP request was $79.9 million, and in FY2012 it was $75.0 million. No funding has been requested for TIP since FY2012.

**Figure 7. Advanced Technology Program and Technology Innovation Program**

Enacted Appropriations, FY2003-FY2020; Requested Appropriations, FY2003-FY2021

(in millions of current dollars)

Sources: Department of Commerce, NIST budget documents, appropriations acts, and explanatory statements for FY2003-FY2021.
Concluding Observations

When NBS was renamed NIST under the provisions of the Omnibus Trade and Competitiveness Act of 1988, the laboratory was given additional missions and supporting programs. Two of the new programs—the Advanced Technology Program and the Manufacturing Extension Partnership program—were intended to improve U.S. innovation and industrial competitiveness. These programs generated criticism from some policymakers and analysts who objected to them on a variety of grounds, including whether such activities are appropriate for the federal government to undertake; whether they might result in suboptimal choices of technologies, choices better left to market forces; whether certain technologies, companies, or industries might be chosen for support based on criteria other than technical or business merit; and whether tax dollars should be awarded to already-profitable firms.

In contrast, NIST’s historical mission of conducting laboratory research in support of standards and metrics continued to enjoy broad support and faced little controversy. Evidence of this support can be seen in the selection of the STRS account—through which NIST laboratory work is funded—as one of the targeted accounts in the doubling efforts of former Presidents George W. Bush and Barack Obama and successive Congresses. However, even with broad support and the absence of controversy, funding for the NIST STRS account did not grow at the pace its advocates supported in presidential budget requests and successive authorizations of appropriations due to tight overall fiscal constraints on the federal budget.

These issues are discussed in more detail below.

NIST Doubling Effort

In the early 2000s, many industry, academia, and policy leaders expressed growing concern that federal investments in physical sciences and engineering research were not growing fast enough to keep the United States on the leading edge of technological innovation and commercial competitiveness. In his 2006 State of the Union remarks, President Bush announced the American Competitiveness Initiative (ACI), which, among other things, sought to double funding for targeted appropriations accounts that fund physical sciences and engineering research over a 10-year period. Among the targeted accounts were the NIST STRS and construction accounts. Subsequently, Congress passed the America COMPETES Act (P.L. 110-69), which set appropriations authorizations for the targeted accounts for FY2008-FY2010 that represented a compound annual growth rate (CAGR) of 10.1% that would have, if continued, resulted in a doubling over approximately seven years.

In his FY2010 Plan for Science and Innovation, President Obama stated that he (like President Bush) would seek to double funding for basic research over 10 years (FY2006 to FY2016) at the ACI agencies. Actual appropriations, however, did not keep pace with the America COMPETES Act authorization levels. In his FY2011 budget request, President Obama extended the period over which he intended to double these agencies’ budgets to 11 years. In 2010, Congress enacted the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), setting appropriations authorizations for the targeted accounts for FY2008-FY2010 that represented a compound annual growth rate (CAGR) of 6.3% that would have, if continued, resulted in a doubling over approximately seven years.

In his FY2010 Plan for Science and Innovation, President Obama stated that he (like President Bush) would seek to double funding for basic research over 10 years (FY2006 to FY2016) at the ACI agencies. Actual appropriations, however, did not keep pace with the America COMPETES Act authorization levels. In his FY2011 budget request, President Obama extended the period over which he intended to double these agencies’ budgets to 11 years. In 2010, Congress enacted the America COMPETES Reauthorization Act of 2010 (P.L. 111-358), setting appropriations authorizations for the targeted accounts for FY2011-FY2013 at a level that effectively set an 11-year doubling pace (a 6.3% CAGR). However, as with the original act, appropriations did not keep pace with the authorization act levels. While reiterating President Obama’s intention to double funding for the targeted accounts from their FY2006 levels, President Obama’s FY2013 budget request did not specify the length of time over which the doubling was to take place. President Obama’s FY2014 budget expressed a commitment to increasing funding for the targeted accounts, but did not commit to doubling. President Obama’s FY2017 budget did not
address the doubling effort. From FY2006, the base year for the doubling effort, through FY2016, funding for the NIST STRS and construction accounts grew by 42.3% in nominal terms, a compound annual growth rate of 3.6%, a rate that would result in doubling in about 20 years. President Obama’s FY2017 request sought an increase in aggregate funding for these accounts of 2.0%. President Trump’s budget requests for FY2018-FY2021 have not mentioned this doubling goal. The doubling effort appears to no longer be a priority for Congress or the President. It remains to be seen how support for internal R&D at NIST will evolve.

NIST Technology Policy

Some of NIST’s external programs have faced substantial opposition over time. Beginning with the 104th Congress, many Members expressed skepticism over a “technology policy” based on providing federal funds to industry for development of precompetitive generic technologies. This philosophical shift from previous Congresses, coupled with pressures to balance the federal budget, led to significant reductions in funding for NIST’s external programs. The Advanced Technology Program and the Manufacturing Extension Partnership, which accounted for over 50% of the FY1995 NIST budget, were proposed for elimination. Although in the past strong support by the Senate led to their continued financing, funding for ATP remained controversial. Beginning in FY2000, the House-passed appropriations bills did not contain funding for ATP, and many of the budget proposals submitted by former President George W. Bush called for abolishing the program. In the 110th Congress, the America COMPETES Act eliminated ATP and replaced it with the TIP initiative. While TIP received appropriations from FY2008 to FY2011, it has received no appropriations since. In his FY2003 budget proposal, President Bush also recommended suspension of federal support for those MEP centers in operation for more than six years; the following year, funding for the MEP program was significantly reduced. However, the FY2005 Omnibus Appropriations Act brought support for MEP back up to the level necessary to fully fund the existing centers. Since then, funding has grown from $107.5 million in FY2005 to $130.0 million in FY2016. President Obama requested $142.0 million for MEP for FY2017, an increase of $12.0 million (9.2%); Congress provided $130 million, an amount equal to its FY2016 level. For FY2017, Congress provided $140.0 million for MEP. President Trump’s FY2018 budget request sought to end the MEP program, providing $6.0 million in FY2018 to provide “for the orderly wind down of federal funding for the program.” President Trump’s FY2019 request would provide no funding for MEP. For more information on the MEP program, see CRS Report R44308, The Manufacturing Extension Partnership Program, by John F. Sargent Jr.

National Network for Manufacturing Innovation

In his FY2013 budget, President Obama requested $1 billion in mandatory funding for the creation of a National Network for Manufacturing Innovation to help accelerate innovation by investing in industrially relevant manufacturing technologies with broad applications, and to support manufacturing technology commercialization by bridging the gap between the laboratory and the market. Congress did not act on this request or on President Obama’s FY2014 request for the same amount. In FY2015, President Obama requested $2.4 billion for the NNMI as part of his Opportunity, Growth, and Security Initiative. President Obama also requested $5.0 million for

---


27 For more information on President Obama’s proposed National Network for Manufacturing Innovation, see CRS Report R42625, The Obama Administration’s Proposal to Establish a National Network for Manufacturing Innovation, by John F. Sargent Jr.
coordination of manufacturing innovation institutes as part of NIST’s budget request. In December 2014, Congress enacted the Revitalize American Manufacturing and Innovation (RAMI) Act of 2014 as Title VII of Division B of the Consolidated and Further Continuing Appropriations Act, 2015 (P.L. 113-235), establishing a Network for Manufacturing Innovation (NMI). The act does not appropriate funds specifically for the NMI program but instead authorizes NIST to spend up to $5.0 million of funds appropriated to NIST’s ITS account each year from FY2015 to FY2024 to carry out the program. In addition, the act authorizes the Department of Energy (DOE) to transfer up to $250.0 million to NIST for the 10-year period FY2015 to FY2024 to carry out the program. As of the date of this report, DOE has not transferred any funding to NIST for this purpose.

Through the end of calendar year 2015, seven NNMI institutes sponsored by the Department of Defense (DOD) and Department of Energy had been awarded, and two additional institutes were being competed. In December 2015, Congress appropriated specific funding, for the first time, for the establishment and coordination of institutes under the provisions of the RAMI Act. The Consolidated Appropriations Act, 2016 (P.L. 114-113) provided NIST with $25.0 million for FY2016 for the NNMI, to include funding for establishment of institutes and up to $5.0 million for coordination activities. The explanatory statement accompanying the act directed NIST to “follow the direction of the Revitalize American Manufacturing and Innovation Act of 2014 in requiring open competition to select the technological focus areas of industry-driven manufacturing institutes.”

NIST subsequently announced its intention to establish two institutes. On December 16, 2016, NIST awarded the National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), led by the University of Delaware, “to advance U.S. leadership in biopharmaceutical manufacturing.” NIST did not award a second institute due to a lack of funds.

P.L. 116-93 provided $16.0 million for NIST NNMI efforts in FY2020, to include funding for NIIMBL and for network coordination activities.

As of the date of this report, 14 NNMI institutes have been established—eight by DOD, five by DOE, and one by the Department of Commerce. A new DOD-sponsored institute is being competed in FY2020. A second NIST-sponsored institute has been requested in the President’s budget.

As Congress undertakes the FY2021 appropriations process, an overarching issue will be how to respond to the Trump Administration’s FY2021 NIST budget request (expected in February 2020) and its policy implications, how much funding to provide to NIST in aggregate, and how to allocate NIST appropriations among the core standards and measurement functions performed by its laboratories and NIST external programs, such as MEP and Manufacturing USA.

For a broader discussion about the Network for Manufacturing Innovation and associated policy issues, see CRS Report R44371, The National Network for Manufacturing Innovation, by John F. Sargent Jr.

---

28 The act authorizes the Department of Energy to provide the funds only from amounts appropriated for advanced manufacturing research and development within its Energy Efficiency and Renewable Energy account.


Appendix A. Requested and Enacted Discretionary Appropriations for NIST Accounts

**Table A-1. Requested and Enacted Appropriations for NIST Accounts**
Enacted Appropriations, FY2003-FY2020; Requested Appropriations, FY2003-FY2021
(in millions of current dollars)

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>NIST, Total</th>
<th>Scientific and Technical Research and Services (STRS) (^a)</th>
<th>Industrial Technology Services (ITS) (^a)</th>
<th>Construction of Research Facilities (CRF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Request</td>
<td>Enacted</td>
<td>Request</td>
<td>Enacted</td>
</tr>
<tr>
<td>2021</td>
<td>737.5</td>
<td>652.0</td>
<td>25.3</td>
<td>60.2</td>
</tr>
<tr>
<td>2020</td>
<td>974.8</td>
<td>1,034.0</td>
<td>611.7</td>
<td>754.0</td>
</tr>
<tr>
<td>2019</td>
<td>629.1</td>
<td>985.5</td>
<td>573.4</td>
<td>724.5</td>
</tr>
<tr>
<td>2018</td>
<td>725.0</td>
<td>1,198.5</td>
<td>600.0</td>
<td>724.5</td>
</tr>
<tr>
<td>2017</td>
<td>1,014.5</td>
<td>954.0</td>
<td>730.5</td>
<td>690.0</td>
</tr>
<tr>
<td>2016</td>
<td>1,119.7</td>
<td>964.0</td>
<td>754.7</td>
<td>690.0</td>
</tr>
<tr>
<td>2015</td>
<td>900.0</td>
<td>863.9</td>
<td>680.0</td>
<td>675.5</td>
</tr>
<tr>
<td>2014</td>
<td>928.3</td>
<td>850.0</td>
<td>693.7</td>
<td>651.0</td>
</tr>
<tr>
<td>2013(^b)</td>
<td>857.0</td>
<td>769.4</td>
<td>648.0</td>
<td>579.8</td>
</tr>
<tr>
<td>2012</td>
<td>1,001.1</td>
<td>750.8</td>
<td>678.9</td>
<td>567.0</td>
</tr>
<tr>
<td>2011(^c)</td>
<td>918.9</td>
<td>750.1</td>
<td>584.5</td>
<td>507.0</td>
</tr>
<tr>
<td>2010</td>
<td>846.1</td>
<td>856.6</td>
<td>534.6</td>
<td>515.0</td>
</tr>
<tr>
<td>2009(^d)</td>
<td>636.0</td>
<td>819.0</td>
<td>535.0</td>
<td>472.0</td>
</tr>
<tr>
<td>2009 ARRA(^e)</td>
<td>—</td>
<td>580.0</td>
<td>—</td>
<td>220.0</td>
</tr>
<tr>
<td>2008(^f)</td>
<td>640.7</td>
<td>755.8</td>
<td>500.5</td>
<td>440.5</td>
</tr>
<tr>
<td>2007</td>
<td>581.3</td>
<td>676.9</td>
<td>467.0</td>
<td>434.4</td>
</tr>
<tr>
<td>2006(^g)</td>
<td>532.0</td>
<td>752.0</td>
<td>426.3</td>
<td>394.8</td>
</tr>
<tr>
<td>2005(^h)</td>
<td>521.5</td>
<td>699.2</td>
<td>422.9</td>
<td>378.8</td>
</tr>
<tr>
<td>2004(^i)</td>
<td>496.8</td>
<td>608.5</td>
<td>387.6</td>
<td>336.5</td>
</tr>
<tr>
<td>2003</td>
<td>577.5</td>
<td>707.5</td>
<td>402.2</td>
<td>357.1</td>
</tr>
</tbody>
</table>

**Sources:** CRS analysis of Department of Commerce and NIST budget documents, FY2003-FY2018; P.L. 115-141 and accompanying explanatory statement.

**Notes:** Dashes in cells in this table indicate no request or appropriation was made for that year. Accounts may not add to totals due to rounding.

a. Funding for the Baldrige Performance Excellence Program was provided in the STRS account appropriation through FY2011; in FY2012, funding was requested in the ITS account appropriation.

b. Enacted levels reflect the 1.877% rescission, 0.2% rescission, and the 5% sequester applied to 2013 annualized CR level.

c. Enacted levels include 0.2% across-the-board rescission.
The National Institute of Standards and Technology: An Appropriations Overview

d. Enacted levels for STRS appropriation include $3.475 million in congressionally directed projects. The FY2009 amount for CRF appropriation includes $44 million in congressionally directed projects and $30 million for a competitive construction grant program.

e. The American Recovery and Reinvestment Act of 2009 (ARRA) amount for CRF includes $180 million for a competitive construction grant program for research science buildings. Not reflected above, ARRA also included a $20 million transfer from the Department of Health and Human Services for standards-related research on electronic medical records and an expected $10 million from a Department of Energy interagency agreement to help develop a comprehensive framework for a nationwide smart electrical grid.

f. The enacted FY2008 level for STRS appropriations includes $893,000 in congressionally directed projects. The enacted FY2008 level for CRF appropriations includes $51.3 million in congressionally directed projects and $30 million for a new competitive construction grant program that was not requested by President Bush.


h. Enacted levels reflect across-the-board rescissions enacted in P.L. 108-447, FY2005 Consolidated Appropriations Act ($9.5 million). Does not reflect ATP unobligated balances rescission of $3.9 million. The amounts for STRS and for the Construction of Research Facilities appropriation include $8.8 million and $42.9 million for congressionally directed projects, respectively.

i. Enacted levels reflect across-the-board rescissions enacted in the FY2004 Consolidated Appropriations Act, P.L. 108-199 ($6.6 million) and NIST’s share of the Department of Commerce’s unobligated balances rescission ($13.0 million).

j. Enacted levels reflect an across-the-board rescission enacted in P.L. 108-7 ($4.6 million).
Appendix B. Requested and Enacted Appropriations for Selected NIST Programs

Table B-1. Requested and Enacted Appropriations for Selected NIST Programs
Enacted Appropriations, FY2003-FY2020; Requested Appropriations, FY2003-FY2021
(in millions of current dollars)

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Hollings Manufacturing Extension Partnership</th>
<th>Advanced Manufacturing Technology Consortia</th>
<th>Manufacturing Innovation Institutes Coordination</th>
<th>NNMI/Manufacturing USA</th>
<th>Advanced Technology Program</th>
<th>Technology Innovation Program</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Request</td>
<td>Enacted</td>
<td>Request</td>
<td>Enacted</td>
<td>Request</td>
<td>Enacted</td>
</tr>
<tr>
<td>2021</td>
<td>0.0</td>
<td>—</td>
<td>5.0</td>
<td>20.3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2020</td>
<td>$0.0</td>
<td>146.0</td>
<td>—</td>
<td>—</td>
<td>5.2</td>
<td>—</td>
</tr>
<tr>
<td>2019</td>
<td>$0.0</td>
<td>140.0</td>
<td>—</td>
<td>—</td>
<td>5.1</td>
<td>5.0b</td>
</tr>
<tr>
<td>2018</td>
<td>6.0</td>
<td>$140.0</td>
<td>—</td>
<td>—</td>
<td>5.0</td>
<td>5.0c</td>
</tr>
<tr>
<td>2017</td>
<td>142.0</td>
<td>130.0</td>
<td>—</td>
<td>—</td>
<td>5.0a</td>
<td>47.0</td>
</tr>
<tr>
<td>2016</td>
<td>141.0</td>
<td>130.0</td>
<td>$15.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2015</td>
<td>141.0</td>
<td>130.0</td>
<td>15.0</td>
<td>$8.1</td>
<td>$5.0</td>
<td>e</td>
</tr>
<tr>
<td>2014</td>
<td>153.1</td>
<td>128.0</td>
<td>21.4</td>
<td>15.0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2013</td>
<td>128.0</td>
<td>123.0</td>
<td>21.0</td>
<td>10.6</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2012</td>
<td>142.6</td>
<td>128.4</td>
<td>12.3</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2011</td>
<td>129.7</td>
<td>128.4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2010</td>
<td>124.7</td>
<td>124.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2009</td>
<td>2.0</td>
<td>110.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2008</td>
<td>46.3</td>
<td>89.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2007</td>
<td>46.3</td>
<td>104.7</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2006</td>
<td>48.8</td>
<td>104.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2005</td>
<td>39.2</td>
<td>107.5</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2004</td>
<td>12.6</td>
<td>38.6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2003</td>
<td>12.9</td>
<td>105.9</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Sources: CRS analysis of Department of Commerce and NIST budget documents, FY2003-FY2018; P.L. 115-141 and accompanying explanatory statement.

Notes: Empty cells in this table indicate no request or appropriation was made for that year.

a. P.L. 116-93 and the accompanying Explanatory Statement state that $16.0 million is provided for the NNMI, but neither explicitly references funding for coordination activities of the network.

b. H.Rept. 116-9 states that $15.0 million is appropriated for the NNMI, of which $5.0 million may be used for coordination activities of the network.

c. House Print 29-456 states that $15.0 million is appropriated for the NNMI, of which $5.0 million may be used for coordination activities of the network.
The National Institute of Standards and Technology: An Appropriations Overview

d. House Print 25-289 states that $25.0 million is appropriated for the NNMI, of which $5.0 million may be used for coordination activities of the network.

e. P.L. 113-235 states, “To the extent provided for in advance by appropriations Acts, the Secretary may use not to exceed $5,000,000 for each of the fiscal years 2015 through 2024 to carry out this section from amounts appropriated to the Institute for Industrial Technical Services.”

f. President Obama requested $1 billion in mandatory funding for the NNMI for FY2013; $1 billion in mandatory funding for FY2014; and $2.4 billion in mandatory funding for FY2015.

g. Enacted levels reflect the 1.877% rescission, 0.2% rescission, and the 5% sequester applied to 2013 annualized CR level.

h. Enacted levels include 0.2% across-the-board rescission.


Author Information

John F. Sargent Jr.
Specialist in Science and Technology Policy

Disclaimer

This document was prepared by the Congressional Research Service (CRS). CRS serves as nonpartisan shared staff to congressional committees and Members of Congress. It operates solely at the behest of and under the direction of Congress. Information in a CRS Report should not be relied upon for purposes other than public understanding of information that has been provided by CRS to Members of Congress in connection with CRS’s institutional role. CRS Reports, as a work of the United States Government, are not subject to copyright protection in the United States. Any CRS Report may be reproduced and distributed in its entirety without permission from CRS. However, as a CRS Report may include copyrighted images or material from a third party, you may need to obtain the permission of the copyright holder if you wish to copy or otherwise use copyrighted material.