US National Security and Space Weapons

by

Richard L. Garwin

Council on Foreign Relations

rgarwin@cfr.org www.cfr.org www.fas.org/rlg

in the

National Security and Military Space Workshop No. 1

Naval War College, Newport RI

April 30, 2003

R.L.Garwin "US National Security and Space Weapons"
Council on Foreign Relations Team

- Bruce M. Deblois, Adjunct Senior Fellow at CFR. (BAE Systems; formerly National Reconnaissance Office—NRO)
- Richard L. Garwin
- Jeremy C. Marwell, Research Associate
- Scott Kemp, Research Associate
Why Space Weapons?

- Defensive counter-space
 \textit{(active protection of space assets)}

- Offensive counter-space
 \textit{(deny adversaries’ use of space)}

- Global and rapid power projection
 \textit{Less than 90-minutes (QDR)}
Space vs. Conventional Weapons

Directed Energy
KE STEW
KE ASAT
CAVs

VS.
ABL
ICBMs
Direct ascent
Cruise Missiles

R.L. Garwin "US National Security and Space Weapons"
Threats to Space Assets

1) denial & deception
2) electronic warfare
3) ground station attack
4) sensor blinding
5) microsatellites
6) direct-ascent interceptors
7) nuclear detonation in space
Microsatellite Proliferation

A Non-military cooperative development effort of Surrey Satellite Technologies and Thailand
Microsatellites

A space mine trailing behind a satellite

Four “body guard” microsatellites protecting a satellite
Force Projection

The three most promising weapons?

• Long Rods
 Hard and deeply buried targets

• Common Aero Vehicle
 Conventional munitions

• Space-Based Laser
 Very rapid force projection
Finite Strength of Penetrator

.30 cal. bullet impacting hard steel at 2750 ft/sec
Long Rod Penetration vs. Velocity

Typically $\sim 900 \text{ m/sec} = 2700 \text{ ft/sec}$
Common Aero Vehicle

Deployment Configuration

Minot to Holloman

Minot to Eglin

Holloman to Eglin
Space Based Laser
SDI-era approach to laser weapons using ground-based lasers and “fighting mirrors”. Atmospheric compensation is essential (and now routine).
Cruise Missiles from Int’l Waters

Source: GAO/NSIAD-95-116
Net judgments on space-weapon utility (1)

- For offensive counterspace—deny military space to others
 - jam uplinks or downlinks (from ground or space)
 - attack ground stations essential to satellite capability
 - obscure line of sight by screens in space

- For defensive counterspace—preserve US military space capability
 - attack ground systems which might be disabling satellites
 - interdict ASAT in powered flight
 - deter by promise of retaliation—not against satellites, but against military and political assets
Net judgments on space-weapon utility (2)

• For destructive antisatellite (ASAT)
 ◦ the most prompt means of destruction is microsatellite-as-space mine, orbiting earth within 10-100m of its quarry
 ◦ short-range missiles lobbing ton-class payloads of coarse sand to orbital altitude at the right time
 ◦ homing kill vehicles as direct-ascent ASAT

The United States can do it best, but others will soon do it well enough

• Global and prompt force projection
 ◦ kinetic-energy (KE) weapons on ICBMs or shorter-range missiles
 ◦ advanced conventional weapons on ICBMs (CAV?), with observation/designation from space, ground, or UAV
Net judgments on space-weapon utility (3)

- Non-space *weapons* will provide more capability *and* sooner than space weapons.

- Destructive ASAT and space weapons are a serious threat to overall US military capability and its dependence on space.

How can US satellite vulnerability be countered?

- Reduce our dependence on satellites while maintaining the benefits of satellites at reasonable cost. Supplement satellite capabilities in wartime by theater resources:
 - High-power pseudolites (on the ground and on UAVs) in the theater of operations so that the adversary would obtain no benefit in theater conflict by destroying GPS satellites.
UAV and rocket capabilities for imagery. At altitudes of 20-30 km, a 20-cm aperture would have the same resolution as a 2-m diameter mirror at a range of 300 km. Such platforms can provide near-constant presence, as well.

A primary means of reducing vulnerability is to reduce the threat—by agreements not to damage or destroy non-weapon satellites. This should be backed up by US developments to intercept or counter such weapons or ASAT used in violation of such an agreement.

We have found general acceptance of this (conditional) conclusion: *If space weapons and destructive ASAT could be avoided by the United States giving up such capability, it would be in our national security interest to do so.*
Asserting a "might makes right" rule in space and elsewhere leads, again, to the asymmetric use of force—perhaps the destruction of critical US satellites in peacetime rather than holding them at risk for future destruction.

Nothing is forever--perhaps not even the regime we favor--so an aggressive campaign to prevent the deployment of weapons by others might best be implemented as a U.S. commitment:

not to be the first to deploy space weapons or to further test destructive antisatellite weapons\(^1\).

This should be supported by a US initiative to codify such a rule and thus to legitimize the use of force against actions which would imperil satellites of any state.

\(^1\) See also Michael Krepon with Christopher Clary, "Space Assurance or Space Dominance? The Case Against Weaponizing Space," www.stimson.org (2003).