Strengthening and Diversifying the Biomedical Research Workforce Through a National Institutes of Health and Department of Education Collaboration


Our nation’s health and the future of scientific research depend on greater inclusion of underrepresented individuals in the science, technology, engineering, and mathematics (STEM) fields—and in the biomedical sciences in particular. Our nation’s scientists are a homogeneous group: majority white, despite the U.S. population rapidly increasing in diversity. A biomedical science workforce that reflects our nation’s demographics is required to address growing equity gaps and distinct health needs that accompany our diversifying country. This cannot be accomplished without inclusive and practical biomedical educational programs that begin at the PreK–12 level and continue through all levels of higher education, emphasizing Minority Serving Institution (MSI) research programs. 

The lack of diversity in biomedical science is unacceptable, especially for an administration deeply committed to equity across its policy agenda. The Biden-Harris Administration must act to address this issue in the biomedical sciences at all levels: from PreK-12 education to research careers. Using the Department of Energy’s National Nuclear Security Administration’s program Minority Serving Institution Partnership Program (MSIPP) as a model, the National Institutes of Health (NIH) should establish a Biomedical Research Minority Serving Institution Partnership Program (BioMSIPP) to build a sustainable pipeline between NIH’s institutes and centers and biomedical science students at MSIs. 

Educational interventions are also crucial at earlier stages of education than higher education. BioMSIPP would also include a grant program that funds participating MSIs to produce PreK-12 educational resources (i.e. SEPA tools) and to create a high school to undergraduate bridge program to further link educational interventions with biomedical research careers. We also propose that the Department of Education’s White House Initiative for Historically Black Colleges and Universities, Hispanic Serving Institutions (HSIs), and other MSIs, create community-based engagement plans to assess the needs of individual communities and generate data to aid in future programming. Simultaneously, the Department of Education (ED) should launch a Bright Spots campaign to highlight efforts taking place across the country, building examples for policymakers as roadmaps to bolster biomedical science education and excellence.

Challenge and Opportunity

On June 25, 2021, President Biden signed an executive order establishing diversity, equity, inclusion, and accessibility (DEIA) as national priorities. This order authorized the reestablishing of a coordinated government-wide DEIA Initiative and Strategic Plan. From there, over 50 federal agencies, including ED, the National Science Foundation (NSF), and NIH, released equity action plans, which can be strengthened by supporting meaningful partnerships with MSIs.

MSIs offer broad access to higher education for students who would otherwise not have the opportunity, such as underrepresented racial and ethnic minorities, low-income students, first-generation-to-college students, adult learners, and other post-traditional or nontraditional students. Furthermore, these institutions set an example of DEIA through diverse leadership, administration, and faculty, which is not seen at predominately white institutions (PWIs). The federal government should support institutions that foster diverse talent and the pipelines that feed these institutions through MSI-guided programming for PreK–12 students.

Despite a marginal increase in racially diverse doctorate graduates, there is still a substantial gap in the number of historically marginalized groups that enter and stay in the biomedical enterprise. While there are training programs (see Table 1) to diversify the biomedical sciences at federal agencies such as NIH and NSF, these programs have failed to substantially change the national percentage of racially diverse biomedical scientists. This is in part because the structure of these programs often does not support MSIs in building research capacity, an essential aspect in raising the research classification of an institution determined partly by research spending. In addition, current federal programs do not effectively capture the full spectrum of diverse students since they leave out engagement at the PreK–12 years. 

Early exposure to STEM careers is essential to increased STEM participation and success. In fact, getting children involved in STEM-related activities at a young age has been demonstrated to bolster enrollment in STEM degrees and participation in STEM-related careers. Programs focused on STEM education at the PreK–12 level encourage learning in engineering, technology, and computer-based skills. We propose a focused approach in the field of biomedical science. According to the Bureau of Labor Statistics, STEM-related occupations are estimated to grow by 10.8 percent in the next 10 years, and biomedical science is estimated to see exponential growth at 17 percent. A sustainable and diverse STEM ecosystem requires education interventions focused on biomedical sciences at an early age. Currently, interventions primarily focus on undergraduate and graduate students, leaving out formative PreK–12 years (Table 1). ED has programs to immerse PreK–12 students into STEM and to support STEM capacity at MSIs through the Title III Higher Education Act, but none focused specifically on biomedical science. 

Department or AgencyProgramPreK-12 programs in the biomedical sciences? 

National Institutes of Health
Maximizing Access to Research CareersNo
National Institutes of HealthMinority Biomedical Research Support ProgramYes (supplement)
National Institutes of HealthResearch Infrastructure in Minority Institutions No
National Institutes of HealthHigh School Scientific Training and Enrichment Program 2.0Yes (high school seniors in DC, VA, or MD only)
National Science FoundationCenters of Research Excellence in Science and Technology Yes (supplement)
National Science FoundationHBCU Research Infrastructure for Science and EngineeringNo
National Science FoundationHispanic Serving Institutions ProgramNo
National Science FoundationDiscovery Research Pre-KYes
Department of DefenseResearch and Education Program for Historically Black Colleges and Universities / Minority-Serving InstitutionsNo
Department of DefenseHistorically Black Colleges and Universities / Minority Serving Institution Science ProgramNo
Department of DefenseHispanic Serving Institutions ProgramNo
Table 1. Federal Programs that Support STEM at MSIs and the Availability of PreK–12 Biomedical Science Programs

Plan of Action

The U.S. Department of Education and the National Institutes of Health should collaborate to create a program that strengthens the biomedical science pipeline. NIH and ED are committed to diversity and inclusion in their respective strategic plans. Leveraging their combined resources to strengthen and diversify the biomedical sciences would work toward the DEIA goals set in their strategic plans and prioritized by the Biden-Harris Administration at large. More importantly, it would take an essential step toward creating a biomedical workforce that represents and serves the diverse makeup of the U.S. population. 

We propose a new program to address the disparities in the biomedical science education pipeline through NIH and ED collaboration by:

Recommendation 1. Establish a Biomedical Research Minority Serving Institution Partnership Program (BioMSIPP) to serve as a direct pipeline from MSIs to the research capacity resources at the Department of Education and the research laboratories at the National Institutes of Health.

The Department of Energy established the Minority Serving Institution Partnership Program to build a “sustainable pipeline between the Department of Energy’s (DOE) sites/labs and minority-serving institutions in STEM disciplines.” This program is an example of direct measures to invest in university research capacity and workforce development through relationships between the federal government and institutions that serve historically marginalized populations. The program consists of a network of DOE/National Nuclear Security Administration (NNSA) national laboratories, nonprofit organizations, and MSIs through enrichment activities that span from PreK–12 to the postdoctoral level. We recommend that ED and NIH collaboratively fund and implement a similar program that includes a network of highly-funded NIH laboratories, nonprofit organizations, MSIs, and PreK–12 schools that serve historically marginalized communities.

The program should be implemented under ED, with support from NIH’s research resources and laboratories. The Higher Education Act of 2022 requires ED to provide grants for activities such as research capacity building and institutional support. Further, research capacity grants funded through ED allow for hiring administrative staff to support project management. Opening the capability of funding to include staff to support project management circumvents the eligibility requirement where the sponsoring institution must assure support for the proposed program, a possible barrier to entry. 

Recommendation 2. The Department of Education’s White House initiatives for HBCUs, HSIs, and other MSIs should create community-based engagement plans to assess individual community needs and generate data to aid in future programming. 

Diversity in the biomedical sciences is an ever-evolving conversation. Currently, the White House Initiatives for HBCUs and HSIs have working groups that collaborate with other federal agencies to develop best practices to diversify the STEM workforce. First, we charge the White House to expand these working groups to include the entire spectrum of MSIs, as well as to include representation from NIH, providing a crucial biomedical science perspective. Next, the working groups should write a report on best practices to engage with historically marginalized PreK–12 school districts in the biomedical sciences, and in particular, approaches to train teachers in teaching biomedical sciences to historically underrepresented students. 

Recommendation 3. The Department of Education, along with the National Institutes of Health, should launch a Bright Spots campaign to highlight efforts that are taking place across the country to bolster biomedical science education and excellence.

Bright Spots campaigns highlight transformative work done by school districts, nonprofits, and federal agencies in education. NIH and ED both have repositories for science education resources. The NIH funds the Science Education Partnership Award (SEPA) program, which awards grants to create resources that target state and national PreK–12 standards for STEM teaching and learning and are rigorously evaluated for effectiveness. Likewise, ED funds the Minority Science and Engineering Improvement program to aid MSIs in enhancing their STEM education programs.

We propose that ED and NIH launch a campaign similar to the Bright Spots in Hispanic Education Fulfilling America’s Future spearheaded by the White House Initiative on Educational Excellence for Hispanics. Moreover, we charge both agencies with disseminating the campaign via webinars, conference exhibitions, and outreach to educational societies.


ED and NIH are at the forefront of our nation’s biomedical science enterprise and have access to funding, cutting-edge research, and technology that could greatly enhance research and education at every level of the educational spectrum, specifically by increasing diversity. To ensure that the biomedical workforce reflects our nation, we must increase the research capacity and resources available to MSIs, promote collaborative research and technology transfer between investigators from MSIs and NIH, and provide key educational resources for student enrichment and career development. Through these recommendations, we hope to close the achievement gap and propel PreK–12 students into achieving careers in the biomedical sciences.

Frequently Asked Questions
Why Minority Serving Institutions (MSIs)?

Addressing national priorities in innovation demands a larger-scale effort to support incoming students’ education and workforce training. MSIs are an underutilized and underfunded resource for training and strengthening the biomedical research workforce.

How does this proposal differ from existing programs to increase diversity in STEM?

Existing programs at the DoD, NIH, and NSF are limited either to the undergraduate level or to a specific geographic location. Our recommended program is designed for Pre–K to the postdoctoral level, like MSIPP.

How much will this program cost?

We estimate that BioMSIPP will cost about the same as the MSIPP program, which currently costs the Department of Energy $38.8 million.

How does this ensure that students from across the country have access to NIH-funded institutions?

Digital Ethics for All: Implementing a National Digital Framework for K–12 Education


With the growing prominence of technology and social media in our lives, children of all ages should be made aware of and trained on the ethics of responsible technology usage. Creating a National Digital Ethics Framework for PreK–12 students will enable them to think critically, behave responsibly, and maintain mental health wellness in a digitally transforming world.

Technology is at the forefront of spreading information: news is read on mobile devices, teachers use applications and open-source software in classrooms, and social media defines the lives and status of youth. The COVID-19 pandemic has significantly increased technology use among tweens (8–12 years) and teens, with millions of students using digital entertainment such as TikTok, Instagram, and streaming services. But social media is not the only way students are introduced early to technology; online meetings through applications such as Zoom and Webex became the face of communication, and internet access is required for homework, assignments, and learning in all levels of schooling.

We are not adequately preparing our youth to create a positive digital footprint or have basic internet safety awareness. Implementing internet safety and digital ethics curriculum is imperative, and there is no better time to start than now.

A National Digital Ethics Framework would allow students not just to follow protocols and procedures but also to think critically, behave responsibly, and maintain mental health wellness in a digitally transforming world. This can go further to include concepts like leaving a digital footprint, wherein students engage with technology and media to create content, seek information, communicate ideas, and use open-source platforms in a meaningful and safe manner.

Challenge and Opportunity

Children start interfacing with technology as early as 3–4 years old, and they become increasingly dependent on it through their formative years as digital and social media platforms become ever more indispensable tools for navigating the world. Kids aged 8 to 12 spend an average of six hours per day using entertainment media. By the time they’re teenagers, 95 percent of youth in the United States will have their own mobile device and will, on average, spend almost nine hours a day texting, playing games, posting to social media, watching videos, and more. As tweens and teens move into the middle and high school years, they have ongoing, 24/7 access to friends

and peers via apps and mobile devices, with 45 percent of teens saying they’re online “almost constantly.”

On average, parents allow independent internet usage at 8 years old, and the average age that children sign up for social media is 12.6 years old. In 2021, 59 percent of U.S. tween/teenage students had been cyberbullied or threatened online; we cannot expect a 12-year-old to know how to deal with these dangers on their own.

Despite our increasing reliance on technology, it is not reflected in the learning experiences of PreK–12 students. Digital ethics and internet safety need to be heavily emphasized and implemented in the classroom. This can include simple practices like how to distinguish useful information from spam, using reputable and legitimate sites for references, and understanding copyright issues while quoting information and images from the internet. Digital ethics is a critical 21st-century skill that can be taught alongside computer science courses in schools or in conjunction with coursework that requires students to engage with the internet while seeking information.

Students need increased fluency in information literacy, cyberbullying prevention, online safety, digital responsibility, and emotional well-being. There is currently an internet safety requirement for schools under the Children’s Internet Protection Act (CIPA) to “educate minors about appropriate online behavior, including interacting with other individuals on social networking websites, in chat rooms, and cyberbullying awareness.” The requirements state that this education can be held through school assemblies or via presentations provided by Netsmartz. The presentations highlight important topics, but they are not particularly specific or relevant to today’s environment. Simple internet safety such as avoiding clicking on links sent through spam emails, how and when to use the “block” button on social media platforms, and how to create smart passwords are not covered in the current curriculum.

Developing a federal framework will give teachers a clear path to implementation. The vagueness of current internet safety education requirements means that this education is easily overlooked or not presented thoroughly. Integrating this curriculum into CIPA would allow for easier implementation while leveraging existing resources. In order to implement this at the PreK–12 level, teachers will have to be trained on how to deliver this curriculum. Instead of trying to restrict social media usage and heavily monitor or block internet activity, schools should consider this as an opportunity to help students navigate a digitally transforming world in an informed way.

Plan of Action

Recommendation 1. In order to achieve the goal of digital ethics for all learners, the federal government can take a number of steps to keep kids safer in online settings.

At a federal level, CIPA is a great avenue to authorize these standards. The act currently applies its internet safety education requirements to “schools and libraries that receive discounts for Internet access through the E-rate program,” which makes certain communications tools affordable for these institutions. Although this does not cover all schools in the United States, schools with less ability to finance technology have the greatest need for digital literacy and internet safety education. By implementing this curriculum under CIPA’s current education suggestions (which are guidelines, not a specific way to conduct internet safety education), then it is likely to be implemented in schools that qualify for CIPA discounts.

Recommendation 2. As the digital ethics framework rolls out, agencies should work with critical stakeholders.

Efforts should directly engage elementary and middle school students and their teachers in designing frameworks, professional learning, and so on. Other stakeholders include state-level legislators that will be responsible for operationalizing and implementing the framework and school district boards that approve learning in each school district/school. Teachers are also key stakeholders, as they will have to receive and implement the information given to them as listed in the standards and may be subject to training.

Recommendation 3. Allocate federal funding to NIST to develop the Digital Ethics Framework and provide temporary staff through fellows with subject matter expertise on how to develop a digital ethics framework.

It will require approximately $1 million to develop the framework. The other actions as part of Digital Ethics for All utilize existing funds but could be bolstered and more quickly executed with the addition of subject matter experts through fellow placements or other staffing mechanisms. It is estimated that one fellow at NSF and one fellow at the U.S. Department of Education would cost approximately $500,000 annually in addition to the above costs. 


Having access to a curriculum rooted in digital ethics, internet safety, and technology career paths is essential for students growing up in a society where access to technology is introduced earlier than the concept of computer science. Although computer science curriculum is being widely pushed for at the high school level, we must make sure to educate elementary and middle school youth as well. A National Digital Ethics Framework is not just an advantage—it is imperative in order to protect our students and their future.

Frequently Asked Questions
Who are the key members needed to develop this curriculum?

Organizations that are developing curriculums centered around digital tools and computer science, such as Computer Science Teachers Association (CSTA) and CSforAll, could be tapped in order to pull topics or ideas from the standards they have already created. Their standards have been implemented in various states, so leveraging their existing resources will make it easier to develop a national curriculum that is suited for approval and implementation.

Which experts should be tapped to develop appropriate standards that are likely to be approved?

Subject matter experts are crucial for this initiative. Their perspective will be important to determine which standards have the best chance of being approved at the state and local level and how CIPA’s current curriculum can be modified. Subject matter experts will be fellows from the National Science Foundation and the U.S. Department of Education. The National Institute of Standards and Technology will also be consulted.

Would it be easier to implement this at a federal level or a state level?

Due to the incorporation of this curriculum into CIPA’s current standards, it would be quicker to implement at a federal level. However, if digital ethics cannot be incorporated into CIPA, it could also be addressed at a state level, similar to the initiatives run by CSTA and CSforAll, where their independent curriculum and standards are adopted by states that want to implement technology standards.

What qualifies you to develop a guideline to implement this curriculum?

In my own experience as a student and as the CEO and founder of Likeable STEM (an educational technology training company), I have observed that students lack resources to teach them about simple topics such as phishing scams, how to write appropriate emails, cybersecurity/password creation, social media profiles, etc. For the past six years, through Likeable STEM, I have taught these crucial topics to elementary, middle, and high school students and created independent curriculum on digital ethics.

Does this curriculum have bipartisan legislative appeal?

Computer science education has been a bipartisan concern, with both the Democratic and Republican Parties introducing educational principles to support STEM growth and computer science career opportunities. However, one problem area would be the current crackdown on educational topics in states such as Florida. Digital ethics does not have roots in either political party, so it should be likely to be supported by both parties.

The STEMpathy Task Force: Creating a Generation of Culturally Competent STEM Professionals


Science, technology, engineering, and mathematics (STEM) are powerful levers for improving the quality of life for everyone in the United States. The connection between STEM’s transformative potential and its current impact on structural societal problems starts in the high school classroom. 

Teachers play a critical role in fostering student cultural awareness and competency. Research demonstrates that teachers and students alike are eager to affect progress on issues related to diversity, equity, inclusion, and accessibility (DEIA). Educational research also demonstrates that DEIA and empathy enhance student sense of belonging and persistence in professional STEM pathways. However, formal STEM learning experiences lack opportunities for students to practice cultural competency and explore applications of STEM to social justice issues.

Cultural Competency is the ability to understand, empathize, and communicate with others as part of a diverse community.

The Biden-Harris Administration should establish the STEMpathy Task Force to aid high school STEM teachers in establishing cultural competency as an overarching learning goal. Through this action, the Administration would signal the prioritization of STEM equity—reflected in both the classroom and the broader community—across the United States. The program would address two pertinent issues in the STEM pipeline: the lack of momentum in STEM workforce diversification and STEM’s unfulfilled promise to relieve our society of systems of oppression and bias. Students need to be taught not only the scientific method and scientific discourse, but also how to approach their science in a manner that best uplifts all people.

Challenge & Opportunity

In a 2017 survey, over 1,900 U.S. companies listed the ability to work effectively with customers, clients, and businesses from a range of different countries and cultures as a critical skill. Since then, the importance of cultural competency in the U.S. workforce has become increasingly apparent. 

Culturally competent workers are more creative and better equipped to solve tricky problems. For example, foresters have managed wildfires by following the instruction and guidance of tribal nations and traditional ecological knowledges. Engineers have designed infrastructure that lowers the water bills of farmers in drought-stricken areas. Public health representatives have assuaged concerns about COVID-19 vaccines in under-served communities. STEM professionals who improve Americans’ quality of life do so by collaborating and communicating with people from diverse backgrounds. When students can see these intersections between STEM and social change, they understand that STEM is not limited to a classroom, lab, or field activity but is also a tool for community building and societal progress. 

Today’s middle and high school students are increasingly concerned about issues around race/ethnicity, gender, and equity. Recent college graduates also share these interests, and many demonstrate a growing desire to participate in meaningful work and to pursue social careers. When students realize that STEM fields are compatible with their passion for topics related to identity and social inequities, they are more likely to pursue STEM careers—and stick with them. This is the way to create a generation of professionals who act with STEMpathy.

To unite STEM subjects with themes of social progress, cultural competency must become a critical component of STEM education. Under this framework, teachers would use curricula to address systemic social inequities and augment learning by drawing from students’ personal experiences (Box 1). This focus would align with ongoing efforts to promote project-based learning, social-emotional learning, and career and technical education in classrooms across the United States.

American high school STEM students will demonstrate an understanding of and empathy for how people from varied backgrounds are affected by environmental and social issues. An environmental sciences student in California understands the risks posed by solar farms to agricultural production in the Midwest. They seek to design solar panels that do not disrupt soil drainage systems and financially benefit farmers.An astronomy student in Florida empathizes with Indigenous Hawaiians who are fighting against the construction of a massive telescope on their land. The student signs petitions to prevent the telescope from being built.A chemistry student in Texas learns that many immigrants struggle to understand healthcare professionals. They volunteer as a translator in their local clinic.A computer science student in Georgia discovers that many fellow residents do not know when or where to vote. They develop a chatbot that reminds their neighbors of polling place information.
Box 1. Examples of Cultural Competency Outcomes.

With such changes to the STEM lessons, the average U.S. high school graduate would have both a stronger sense of community within STEM classrooms and the capacity to operate at a professional level in intercultural contexts. STEM classroom culture would shift accordingly to empower and amplify diverse perspectives and redefine STEM as a common good in the service of advancing society. 

Plan of Action

Through an executive order, the Biden-Harris Administration should create a STEMpathy Task Force committed to building values of inclusion and public service into the United States’ STEM workforce. The task force would assist U.S. high schools in producing college- and career-ready, culturally competent STEM students. The intended outcome is to observe a 20 percent increase in the likelihood of students of color and female- and nonbinary-identifying students to pursue a college degree in a STEM field and for at least 40 percent of surveyed U.S. high school students to demonstrate awareness and understanding of cultural competence skills. Both outcomes should be measured by National Center for Education Research data 5–10 years after the task force is established. 

The STEMpathy Task Force would be coordinated by the Subcommittee on Federal Coordination in STEM Education (FC-STEM) from the White House Office of Science and Technology Policy (OSTP). The interagency working group would partner with education-focused organizations, research institutions, and philanthropy foundations to achieve their goals (FAQ #6). These partnerships would allow the White House to draw upon expertise within the STEM education sphere to address the following priorities:

Working toward these priorities will equip the next generation of STEM professionals with cultural competence skills. The task force will form effective STEM teaching methods that result in measurable improvement in STEM major diversity and career readiness.

Description automatically generated
Figure 1. Roadmap of STEMpathy Task Force priorities, including reinforcing elements.

This approach meets the objectives of existing federal STEM education efforts without imposing classroom standards on U.S. educators. In the Federal STEM Education Strategic Plan, the Committee on Science, Technology, Engineering, and Math Education (Co-STEM) aims to (1) increase work-based learning and training, (2) lend successful practices from across the learning landscape, and (3) encourage transdisciplinary learning. The Department of Education also prioritizes the professional development of educators to strengthen student learning, as well as meet students’ social, emotional, and academic needs. In these ways, the STEMpathy Task Force furthers the Administration’s education goals.


Current national frameworks for high school STEM learning do not provide students with a strong sense of belonging or an awareness of how STEM can be leveraged to alleviate social inequities. The STEMpathy Task Force would establish a rigorous, adaptable framework to address these challenges head-on and ensure that the United States provides high school students with inclusive, hands-on science classrooms that prepare them to serve the diverse communities of their country. Following the implementation of the STEMpathy Task Force, the Biden-Harris Administration can expect to see (1) an increase in the number and diversity of students pursuing STEM degrees, (2) a reduction in race/ethnicity- and gender-based gaps in the STEM workforce, and (3) an increase in STEM innovations that solve critical challenges for communities across the United States.

Frequently Asked Questions
What cultural competence skills would students learn and apply?

In any team setting, students will function effectively and with empathy. They will interact respectfully with people from varied cultural backgrounds. To achieve these behavioral goals, students will learn three key skills, as outlined by the Nebraska Extension NebGuide:

  1. Increasing cultural and global knowledge. Students understand the historical background of current events, including relevant cultural practices, values, and beliefs. They know how to ask open-minded, open-ended questions to learn more information.

  2. Self-assessment. Students reflect critically on their biases to engage with others. They understand how their life experience may differ from others based on their identity.

  3. Active Listening. Students listen for the total meaning of a person’s message. They avoid mental chatter about how they will respond to a person or question, and they do not jump directly to giving advice or offering solutions. 

Would this task force incentivize, influence, or coerce states into adopting standards or curricula?

No. Although the task force will conduct research on STEM- and cultural-competency-related learning standards and lesson plans, the OSTP will not create incentives or regulations to force states to adopt the standards or curricula. The task force is careful to work within the existing, approved educational systems to advance the goals of the Department of Education and Committee on Science, Technology, Engineering, and Math Education (Co-STEM).

What are the associated risks with teaching cultural competency?

As observed during recent efforts to teach American students about structural racism and systemic inequality, some parents may find topics pertaining to diversity, equity, inclusion, and accessibility sensitive. The STEMpathy Task Force’s cultural competency-focused efforts, however, are primarily related to empathy and public service. These values are upheld by constituents and their representatives regardless of political leaning. As such, the STEMpathy Task Force may be understood as a bipartisan effort to advance innovation and the economic competitiveness of U.S. graduates.

Another associated risk is the burden created for teachers to incorporate new material into their already-packed schedules and lesson plans. Many teachers are leaving their jobs due to the stressful post-pandemic classroom environment, as well as the imbalance between their paychecks and the strain and value of their work. These concerns may be addressed through the STEMpathy Task Force’s objectives of paid training and rewards systems for educators who model effective teaching methods for others. In these ways, teachers may receive just compensation for their efforts in supporting both their students and the country’s STEM workforce.

What would be the outputs and milestones of the STEMpathy Task Force over its first four years?

In its first two years, the STEMpathy Task Force would complete the following:

  • Revise FC-STEM’s “Best Practices For Diversity and Inclusion in Stem Education and Research” guide to include information on evidence-based or emerging practices that promote cultural competence skills in the STEM classroom.

  • Train 500+ teachers across the nation to employ teaching strategies and curricula that improve the cultural competence skills of STEM students.

In the next two years, further progress would be made on the following:

  • Measure the efficacy of the teacher training program by assessing ~10,000 students’ cultural competence skill development, STEM interest retention and performance, and classroom sense of belonging.

  • Reward/recognize 100 schools for high achievement in cultural competency development.

Why approach cultural competency goals through STEM classes?

STEM subjects and professionals have the greatest potential to mitigate inequities in American society. Consider the following examples wherein marginalized communities would benefit from STEM professionals who act with cultural competency while working alongside or separate from decision-makers: 

Furthermore, although the number of STEM jobs in the United States has grown by 7.6 million since 1990, the STEM workforce has been very slow to diversify. Over the past 30 years, the proportion of Black STEM workers increased by only 2 percent and that of Latinx STEM workers by only 3 percent. Women hold only 15 percent of direct science and engineering jobs. LGBTQ male students are 17 percent more likely to leave STEM fields than their heterosexual counterparts.

Hundreds of professional networks, after-school programs, and nonprofit organizations have attempted to tackle these issues by targeting students of color and female-identifying students within STEM. While these commendable efforts have had a profound impact on many individuals’ lives, they are not providing the sweeping, transformative change that could promote not only diversity in the STEM workforce but a generation of STEM professionals who actively participate in helping diverse communities across the United States.

How much funding would the STEMpathy Task Force and its programming require?

Based on the president’s budget for ongoing STEM-related programming, we estimate that the agency task force would require approximately $100 million. This amount will be divided across involved agencies for STEMpathy Task Force programming.

Who are potential experts to include in the STEMpathy Task Force?