## Appendix C Tritium Inventory

In this appendix several estimates using different assumptions are made of the total tritium inventory in weapons and available for weapons The first, which is referred to as the "steady-state estimate," assumes that there was no change in the tritium inventory during the late 1970s In other words, the amount produced equalled the amount lost through radioactive decay during this period The tritium in the US stockpile is produced at the Savannah River Plant The second inventory estimate made assumes that the routine atmospheric releases of tritium from the tritium recovery operations at SRP are proportional to the amount of tritium processed (i e , produced)

In an attempt to place upper and lower bounds on the tritium inventory estimate two additional estimates are also made using tritium release data from SRP

#### Steady-State Estimate

The tritium production rate from FY 1977-FY 1980 is estimated to have averaged  $2.2 \pm 0.7$  kg per year <sup>1</sup> DOE statements<sup>2</sup> indicate that this was designed to offset losses due to radioactive decay. Thus a determination of the steady state tritium inventory in that period is found by setting the production rate equal to the rate of radioactive decay <sup>3</sup> Setting the production rate  $P = 2.2 \pm 0.7$  kg per year yields a steady state tritium inventory  $I = 40 \pm$ 13 kg. The tritium production rate in FY 1981 is estimated to have been 2.6 kg and in FY 1982-84 averaged 10.6 kg per year (see Savannah River Production, Chapter Three). Thus, allowing for radioactive decay, the tritium inventory at the end of FY 1984 based on the steady state assumption is estimated to be 63  $\pm$  20 kg.

#### Estimates Based on Atmospheric Releases of Tritium

The SRP production reactors have been producing tritium in quantity since 1956 A second estimate of tritium production at SRP is made by analyzing the tritium losses from the lithium target processing facility (the 200-H separations area) Tritium is recovered from Li-Al targets by heating the irradiated targets to high temperatures to drive out the tritium gas The combined atmospheric releases of tritium from the F and H separations areas at Savannah River through the year 1983 are presented in column 2 of Table C 1 and Figure C 1 These are routine releases, mainly from tritium processing in the 200-H area An examination of these data indicates that the tritium releases during 1965-70 and 1974-81 were relatively low, and there were few ifany dedicated tritium production runs during these years Also, the tritium releases per megawatt-day of production during these periods are comparable, suggesting that the tritium release fraction from the separations area has remained relatively constant over the lifetime of the facility—at least through 1981

It is assumed that in the years 1960-63 a single reactor was dedicated to tritium production and there was no incidental production of tritium in control rods, as occurred later on Using the average thermal output for SRP reactors (see Table 3 2), the tritium production in this period was 7 92 ± 2 53 kg annually The uncertainty is derived from including the possibility of tritium production in control rods, at a rate of 0 0008 g/Mwd of thermal output Based on these assumptions, the annual tritium production is estimated in Column 3 of Table C 1 The total tritium production (uncorrected for radioactive decay) through 1984 is about 179 kg Tritium has a halflife of 12 33 years; consequently, 5 5 percent of the existing inventory is lost each year through radioactive decay As shown in the table, this quantity would have decayed by the end of 1984 to 79 ± 25 kg

As seen from Table C 1 this method predicts that all reactors were dedicated to tritium production in 1958 that is, an estimated 25 7 kg of tritium was produced in 1958 compared to a maximum production of 26 2 kg, based on a thermal energy production of 2 1 million Mwd <sup>4</sup>

#### Bounding Estimates

In an attempt to bound the estimates of tritium production a low estimate is made by assuming that there were no dedicated tritium runs prior to FY 1982 Here it – is assumed that the production rate per reactor has remained at a constant of 0 002 g/Mwd through 1981,

<sup>1</sup> This is accountable from about equal mass of production in control rade (0.001 g/Mord) and in blackets and dischargeable targets during plotonium production operations

<sup>2</sup> There is a constant supply [of tritium] produced for vectors waspons in the stockpile The tritium sho decays. The quantity that you have in the stockpile has to have makeup to keep a constant quantity. Duane C Sewell ASD? In HASC, FY 1000 DOE p. 20 The vital role of tritium in the U.S. anclear stockpile dowands a minimum of [deleted] reactors be on line and available to meet steady state tritium makeup needs. Duane C Sewell ASDP in HASC FY 1981 DOE p. 133.

Continued production and processing of tritlum is necessary just to staintain the supply need for the stockpile. Long Range Nuclear Weapon Planning Analysis or the Pinel Report of the DODDOE Long Range Resource Planning Group. 15 July 1980. p. 66

<sup>3</sup> Setting  $\frac{dT}{di} = P \quad \lambda I = \left\{ P \cdot \frac{0.00001}{T_{I/2}} \right\} = 0$  where P is the role of production I is the inverse

may  $\lambda$  is the radioactive decay constant and  $T_{1/2}$  is the radioactive half-life  $T_{3/2}=12.33$  years for triffiam

## Appendix C

|                  |                                                                            | Estimated                    | Tritium Pr                   | oduction at                  | SRP               |                              |                   |  |
|------------------|----------------------------------------------------------------------------|------------------------------|------------------------------|------------------------------|-------------------|------------------------------|-------------------|--|
|                  | Routine Release                                                            | Constant<br>Frac             | Constant Release<br>Fraction |                              | Low               |                              | High              |  |
| Calendar<br>Year | from F and H<br>Separations Areas<br>(10 <sup>3</sup> curies) <sup>3</sup> | Annual<br>Production<br>(kg) | inventory<br>(kg)            | Annual<br>Production<br>(kg) | inventory<br>(kg) | Annual<br>Production<br>(kg) | inventory<br>(kg) |  |
| 955              | 20                                                                         | 02                           | 02                           | 1 00                         | 10                | 0 50                         | 05                |  |
| 956              | 420                                                                        | 49                           | 4 9                          | 2 45                         | 33                | 7 35                         | 7 6               |  |
| 957              | 1120                                                                       | 128                          | 17 1                         | 3 65                         | 67                | 15 51                        | 22.3              |  |
| 958              | 2250                                                                       | 25 7                         | 41 2                         | 4 20                         | 10.4              | 28 35                        | 48 6              |  |
| 959              | 820                                                                        | 94                           | 48 0                         | 5 60                         | 15 5              | 10 15                        | 55 8              |  |
| 960              | 645                                                                        | 74                           | 52 6                         | 6 25                         | 207               | 10 94                        | 53 4              |  |
| 961              | 654                                                                        | 75                           | 57 0                         | 6 45                         | 25 8              | 11 29                        | 70.9              |  |
| 962              | 736                                                                        | 84                           | 62 0                         | 6 35                         | 30 6              | 11 11                        | 779               |  |
| 963              | 738                                                                        | 84                           | 66 8                         | 6 30                         | 35 0              | 11 02                        | 84 3              |  |
| 964              | 963                                                                        | 11 D                         | 739                          | 6 45                         | 39 4              | 12 18                        | 916               |  |
| 965              | 311                                                                        | 36                           | 73 3                         | 4 25                         | 414               | 2 13                         | 88 6              |  |
| 966              | 301                                                                        | 34                           | 72 6                         | 4 40                         | 43 4              | 2 20                         | 85 9              |  |
| 967              | 308                                                                        | 35                           | 72 1                         | 5 20                         | 46 1              | 2 80                         | 837               |  |
| 968              | 411                                                                        | 47                           | 72 7                         | 4 95                         | 48 4              | 4 95                         | 64 C              |  |
| 969              | 272                                                                        | 31                           | 718                          | 3 50                         | 49 1              | 3 50                         | 62 8              |  |
| 970              | 246                                                                        | 28                           | 70.6                         | 3.00                         | 49.4              | 3.00                         | 81.2              |  |
| 971              | 379                                                                        | 43                           | 70 9                         | 2 85                         | 49.4              | 2 85                         | 79 5              |  |
| 972              | 530                                                                        | 61                           | 73 0                         | 3 50                         | 50 1              | 10 21                        | 85 1              |  |
| 973              | 312                                                                        | 38                           | 72 4                         | 3 77                         | 51 1              | 3 77                         | 84 1              |  |
| 974              | 189=                                                                       | 55                           | 70 B                         | 3 82                         | 52 0              | 3 82                         | 83 2              |  |
| 975              | 143=                                                                       | 18                           | 68.3                         | 2 82                         | 519               | 2 82                         | 81.4              |  |
| 976              | 125                                                                        | 14                           | 68 0                         | 4 05                         | 53 0              | 4 05                         | 80.9              |  |
| 977              | 192                                                                        | 22                           | 64 5                         | 2 62                         | 52 8              | 2 62                         | 79 0              |  |
| 978              | 192                                                                        | 55                           | 63 1                         | 2 42                         | 52 1              | 2 42                         | 77 0              |  |
| 979              | 180                                                                        | 21                           | 617                          | 5 36                         | 516               | 2 38                         | 75 2              |  |
| 980              | 500                                                                        | 23                           | 80 5                         | 2 90                         | 516               | 2 90                         | 739               |  |
| 981              | 231                                                                        | 26                           | 598                          | 2 76                         | 514               | 278                          | 725               |  |
| 982              | 257                                                                        | 108                          | 870                          | 10 79                        | 59 1              | 10 78                        | 791               |  |
| 983              | 407                                                                        | 102                          | 732                          | 10 21                        | 658               | 10 21                        | 84 /              |  |
| 1864             |                                                                            | 10.2                         | 185                          | 10.21                        | 122               | 10.21                        | 90.0              |  |
| otal Product     | tion                                                                       | 178 6                        |                              | 139 3                        |                   | 208 6                        |                   |  |

diminished by 160 000 curies approximately the evenese release from reactors and the 400-D laboratory for years 1977 and 1978. For 1980 the total atmospheric release assimated from Redirective Weste Monegement at the Sevenneh River.

September 1994

b Excludes accidental releases: 470,000 ouries released 2 May 1974; 182 000 ouries released 31 December 1975

with one half of the tritium produced in control rods, and the other half produced in blankets and dischargeable targets inside driver assemblies 5 The total production under this assumption would be 139 ± 46 kg through 1984 Decayed to the end of 1984, this would be about 72

± 24 kg This surely underestimates the actual production since dedicated tritium production runs very likely were made in the 1950s to meet thermonuclear program needs Also, it is known that there have been other tri-

<sup>4</sup> This comparison essumes trittum produced in FY 1958 is processed in calendar 1958 Maximum tritium production = (0.072) g/Mvd where 0.9 g Pu (equivalent) per MvdL and 1/72 g T = 1 g Pu (equivalent). This assumes no production in control rods

<sup>8</sup> During photonium production sum prior to 1968 SRP reactors were fueled with uniform cores of natural uranism. It is unifiedy, therefore, that dischargeable lithium targets were utilized during plotonium runs prior to 1968

tium campaigns prior to 1980 One is reported to have occurred in 1972 and another probably occurred in 1963-64, when routine atmospheric releases peaked

A high estimate of tritium production is found by first estimating, the number of reactors dedicated to tritium production from the quantity of tritium released annually, and then calculating tritium production from the combined annual thermal output of the Savannah River reactors (from Table 3 2)

Here, it has been assumed that no reactors were dedicated to tritium production during the periods of low tritium release (1955, 1965-71, and 1973-81); one reactor was dedicated to tritium production during 1959-64, 1972, and 1982-84; two reactors in 1956; three in 1957, and five in 1958 In all years 0 001 g of tritium is assumed to have been produced per megawatt-day in control rods Also, in later years, 1968-84, an additional 0 001 g of tritium is assumed to have been produced in blankets and dischargeable targets in those reactors dedicated to plutonium production. As seen by the last two columns in Table C 1, these assumptions give a total production through 1984 of 209  $\pm$  70 kg, and 90  $\pm$  30 kg decayed to the end of 1984

#### Summary

Based upon the calculations in this appendix and assuming no significant quantities of tritium produced since 1956 were burned, released, or sold, the best estimate of the tritium inventory at the end of FY 1984 lies in the range of 70 to 80 kg, with an uncertainty of  $\pm$  25 kg Taking into account the loss of 5 5 percent of the inventory each year this inventory is the result of the cumulative production between FY 1955-84 of some 175 kg of tritium, with an uncertainty  $\pm$  60 kg



Figure C 1 Releases of tritium to the atmosphere at SRP

## Appendix D Inventory of Highly Enriched Uranium Allocated for Warheads

The highly enriched uranium in the nuclear weapons stockpile, including uranium currently available for new weapons, was produced in the gaseous diffusion plants prior to mid-1964<sup>1</sup> "Weapon grade" uranium metal, commonly referred to as oralloy,<sup>2</sup> contains about 93 5 percent U-235 Based on materials balance considerations, the quantity of U-235 available for weapons is limited by AEC purchases of uranium concentrate (U<sub>3</sub>O<sub>8</sub>) between 1943 and the end of FY 1964 (see Table D 1, column 9, and Figure 3 4) and by the separative work production of the enrichment complex during this period (Table D 1, column 2 and Figure 3 5)

Most of the uranium enriched prior to FY 1965 was for warheads If all the separative work performed by the enrichment complex prior to FY 1965 had gone into the production of oralloy, about 751 MT would have been produced (see Table D 1, column 6) From this amount it is necessary to subtract the equivalent oralloy production that did not end up in the warheads and the inventory allocated for warheads The dominant corrections are uranium in process and in working inventory at the enrichment plants at the end of FY 1964, uranium used as fuel through 1964 in US production reactors, naval propulsion reactors, and central station electric power reactors, and uranium used in weapons tests Smaller amounts of uranium were used through FY 1964 in U S research and test reactors and were exported for civilian reactors and under military agreements with the United Kingdom and France

A check on uranium feed requirements as derived from the reported separative work production is provided by the annual and cumulative uranium concentrate purchases (Table D 1, columns 8 and 9) The difference between uranium requirements and purchases provides the inventory of uranium concentrate at the end of FY 1964 <sup>3</sup> Table D 1 indicates that there was an apparent stockpile of about 46,800 tons U<sub>3</sub>O<sub>8</sub> at the end of FY 1964 <sup>4</sup> But as will be seen, most of this was used to fuel the production reactors and additional quantities were in process

#### **Uranium in Process**

The uranium in process at the gaseous diffusion plants at the end of FY 1964 is estimated to be no more than 10 percent of the annual separative work production, equivalent to 7 5 MT of oralloy product.<sup>5</sup> and perhaps as much as several thousand MT equivalent of natural uranium feed <sup>6</sup> In addition, a four month working inventory of enriched UF<sub>6</sub> equivalent to 5 16 million SWU or 25 MT of oralloy product is assumed to have been on hand at the diffusion plants at the end of FY 1964 <sup>7</sup>

#### Production Reactor Fuel

At Hanford, the amount of U-235 allocated to the production reactors through FY 1964 consisted of the U-235 consumed during that period plus the U-235 tied up in various stages of the fuel cycle

Through FY 1964 eight Hanford graphite reactors accumulated 41 million Mwd of operation, producing an estimated 35 MT of plutonium (see Table 3 3) The Hanford production reactors were originally fueled with natural uranium passed once through The plutonium was recovered from the irradiated fuel, but the uranium, containing perhaps 85 percent of the original U-235, was dis-

<sup>1</sup> There has been no production of HEU for weapons since 1964. The Enriched Uranium Communion Facility used to convert UF<sub>0</sub> to UF<sub>0</sub> at the Oak Ridge Y 12 plant received its last material is huly 1964. This was processed prior to August to Sophenber 1984 at the latent at which time the plant was placed on standby R is not expected to be restarted by IOG prior to FY 1960. Since this is the only facility for this purpose DOG (AEC) has lacked the capability to convert highly eachded UF6 to metal in quantity since mid-2004.

<sup>2</sup> Ovailoy was the code word used for U 225 or highly enriched against metal during the Manhatan Project The name derives from Oak Ridge Alloy

<sup>3</sup> In 1934 the AEC set a goal of maintaining sufficient stock feed reserves for 30 months: Lee Bowen A filterary of the Air Force Atomic Energy Program 1943 1953 Vol. IV, p. 29 Bowen cities a measurandum from the MLC to the APC Supplemental Report on Fission able Materials Production Plant Expansion Study. 29 September 1961 (CS 1822/75 This would suggest that some 54 000 fam of U<sub>2</sub>C<sub>2</sub> should have been in stock level reserve at the end of PY 1964, when utaniam earthment for weapons crossed.

<sup>4</sup> In the calculations for Table D 1 it is assumed that tails accumulated class 1944 were stripped in the years FT 1996 and FY 1957 when the tails assays dropped temporarily to 0 183 and 0 196 percent respectively. This action would have been taken shortly after completion of the Padach geneous diffusion plant to increase the feed assays at time of rapidly increasing separative work production. At Padach commentation of 4 plants. [C-31 C-32 c-35 and C-37) occurred during FY 1951-1055. Pathoch was to proceed grant quantities of depleted transition from the "bottom" of the Oak Ridge caveshe, Richard G. Hewlett and Francis Dances. A Water y of the United States Assays Commission in Atomic Sheld (1947-1942) U.S. AEC Report Ne WASEI-1215. 1972. p. 554.

<sup>5</sup> S34 thousand SWII was in process at the end of PY 1999 and 434 thousand SWU at the end of PY 1970 with a production of 6 to 7 MSWU anotally. Howard Huin DOE private communication with Million M Howig September 1083.

<sup>6</sup> At the end of FV 1982 there ware 660 thousand SWU in process in some 8100 MT of initial manium equivalent (0.2 percent toila); ibid

<sup>7</sup> ABC planning estimates include a working inventory equivalent to about 4 months production of corriched measurements for the purpose of meeting fluctuations in demand and of providing a working investory of various assays. This working investory is in addition to the plant's in process inventory: GAO Report to the Joint Consulties on Alornic lineage of the United States. Possible Transfer of the Atronic Energy Constitution a Gaseous Diffusion Plants to Private Ownership. 20 May 1969. p. 58 reproduced in JCAE Selected Materials Concerning Protect Ownership. 20 May 1969. p. 58 reproduced in JCAE Selected Materials Concerning Protect Ownership of the AEC's Gaseous Diffusion Plants. June 1980. p. 233 DOE testified in 1978 that a working inventory of 9.0 MSWU is now required to operate the weichment complex. INCNT, Facel Your 1983 Department of Energy Budget Review (Uranism Enrichment). Vol. VI. p. 197

a At Handord the first three fuel separations is cliftles [T Plant, S Plant, and U Plant) used a bianuth phosphate process for extraction of photosium and unables was not recovered Following startup of the REDOX Plant in August 1051, the U Plant was converted to recover the transition form stoned addition under The B and T plants were shot down in 1952 and 1866, respectively. From 1863, to 1868, the radioactive wasts at Hanlard was mined from the stonage tanks and the U Plant was used for redinactive recovery ERDA PES Waste Management Operations. Handard Reservation ERDA 5530, December 1075, pp. II -10 is 14.

#### Table D 1 Uranium Enrichment Activities FY 1944-FY 1964 Production of HEU Equivalent

| FY   | Enr    | ichment <sup>a</sup><br>oduction | Assay<br>Percent | HEU    | Equivalent <sup>o</sup><br>aduction | Feed <sup>d</sup> R | equirements                       | Uraniun | " Purchases                                   |
|------|--------|----------------------------------|------------------|--------|-------------------------------------|---------------------|-----------------------------------|---------|-----------------------------------------------|
|      |        | ISWU                             |                  |        | мти                                 | Thousan             | d Short Tens<br>U <sub>3</sub> 08 | Thousan | d Short Tans<br>U <sub>3</sub> 0 <sub>8</sub> |
|      | Annual | Cumulative                       |                  | Annual | Cumulative                          | Annual              | Cumulative                        | Annual  | Cumulative                                    |
| 1944 | -      |                                  | -                | -      |                                     |                     | -                                 | 4 81    | 4 81                                          |
| 1945 | 5 0 07 | 0 07                             | 0 529            | 0 58   | 0 58                                | 0 30                | 0 30                              | 0 50    | 5 31                                          |
| 1946 | 0 25   | 0.32                             | 0 529            | 1 59   | 2 17                                | 1 08                | 1 36                              | 4 10    | 9 41                                          |
| 1947 | 0 38   | 0 70                             | 0 488            | 2 32   | 4 49                                | 1 27                | 2 62                              | 1 68    | 11 07                                         |
| 1948 | 0 39   | 1 09                             | 0 515            | 2 45   | 6 94                                | 1 52                | 4 14                              | 2 01    | 13 08                                         |
| 1949 | 0 43   | 1 52                             | 0 506            | 2 87   | 9 61                                | 1 58                | 5 72                              | 2 24    | 15 32                                         |
| 1950 | 0 50   | 2 02                             | 0 495            | 3 07   | 12 68                               | 173                 | 7 45                              | 3 06    | 18 38                                         |
| 1951 | 0 55   | 2 57                             | 0 508            | 3 42   | 16 10                               | 2 03                | 9 48                              | 3 89    | 22 07                                         |
| 1952 | 1 54   | 4 1 1                            | 0 447            | 9 05   | 25 15                               | 4 17                | 13 65                             | 3 66    | 25 73                                         |
| 1953 | 2 25   | 6 36                             | 0 438            | 13 09  | 38 24                               | 5 83                | 19 48                             | 2 89    | 28 81                                         |
| 1954 | 4 53   | 10 89                            | 0 365            | 24 37  | 62 61                               | 8 60                | 28.08                             | 4 69    | 33 30                                         |
| 1955 | 8 05   | 18 94                            | 0278             | 38 53  | 101 14                              | 10.84               | 38 92                             | 5 94    | 39 24                                         |
| 1956 | 13 72  | 32 66                            | 0 163            | 35 47  | 136 61                              | 00                  | 38 92                             | 10 43   | 49 68                                         |
| 1957 | 14.53  | 47 19                            | 0 199            | 52 35  | 186 96                              | 4 56                | 43 49                             | 16 16   | 65 84                                         |
| 1956 | 14 85  | 62 04                            | 0 297            | 73 04  | 262 00                              | 21 49               | 64 88                             | 26 37   | 92 21                                         |
| 1959 | 15 60  | 77 64                            | 0 339            | 81 19  | 343 19                              | 26 57               | 91 55                             | 33 33   | 125 54                                        |
| 1960 | 16 11  | 93 75                            | 0 337            | 83 64  | 426 83                              | 27 23               | 118 77                            | 34 58   | 160 12                                        |
| 1961 | 16 61  | 110 36                           | 0 343            | 86 85  | 513 68                              | 28 73               | 147 51                            | 32 26   | 192 38                                        |
| 1962 | 16 23  | 126 59                           | 0 341            | 84 66  | 599 34                              | 27 86               | 175 36                            | 29 36   | 221 74                                        |
| 1963 | 15 48  | 142 07                           | 0313             | 77 87  | 676 21                              | 23 83               | 189 19                            | 26 98   | 248 72                                        |
| 1964 | 15 48  | 157 55                           | 0 285            | 74 90  | 751 11                              | 21 42               | 220 61                            | 18 68   | 267 40                                        |

James H. Hill and Joe W. Parks. Linksium Enrichment in the United States. CONF-750324-7, Energy Research and Development Administration 5 March 1975 Figune 1 p 13

Tails assays after FY 1964 were: FY 1965. D 197, FY 1965-71. D 200; FY 1972-75. D 300; FY 1976-78, D 250; FY 1979-80, D 200

carded In the early 1950s, the AEC began recovering the

uranium from the fresh and stored processing waste, and

the fuel cycle was closed 8 In order to maintain the reac-

tivity of the plants, it became necessary to slightly enrich

the fresh fuel<sup>9</sup> It is estimated to have taken approxi-

mately two years to recycle the spent uranium fuel-that

is, two years to irradiate, cool, process, recover, and

nium feed and the uranium recovered from spent fuel

was re-enriched to normal assay (0 711 percent U-235)

with enrichment tails assay of 0.32 percent U-235,10

some 12,000 MTU of natural uranium feed (16,000 short

tons U<sub>3</sub>O<sub>8</sub> containing 88 MT U-235) were required to

Assuming the Hanford reactors used natural ura-

 $P(F=\{a_0:x_0)C_{x_0}:x_0)$  The number of separative work units (SWL0 is  $B=1Wat)-V(x_0)F$ . (V(a\_0):-V(x\_0)F where V(a):=(1:-2a)Im ((1:-a))d Assumes tails stripping in FY 1956-1957. FY 1956: strip tails from FY 1945-FY

1953 requiring 13 72 MSWU and producing 35 5 MT HEU; FY 1957; strip tails from FY 1953-FY 1955 requiring 9 96 MSWU and producing 33 2 MT HEU e See Table 3 15

94 percent U-235 Unit is metric tons of unanium metal IMTUE Enrichment of Filip of feed lassey x<sub>4</sub>I produces P kg of product lassay x<sub>6</sub>J and T kg of talks lassay x<sub>4</sub>I with

> operate the reactors to the end of FY 1964 Out of this, about 49 MT of U-235 were consumed in the eight reactors, and an additional 39 MT of U-235 ended up as enrichment tailings A further two-year fuel supply would have tied up an additional 7800 MT of natural uranium (10,000 short tons U2On containing about 55 MT of U-235), since the Hanford reactors produced about 3 MT of plutonium per year, requiring some 1300 MT fresh fuel (9 2 MT U-235) for each metric ton of plutonium

The five Savannah River heavy water reactors accumulated 24.5 million Mwd of operation through FY 1964, producing an estimated 23 7 MT of plutonium equivalent, including an estimated 90 kg of tritium (6 5 MT Pu equivalent) 11 The Savannah River reactors used

refabricate the uranium fuel

<sup>9</sup> Hewlett and Duman Atomic Shield p 62

<sup>(</sup>i) The operating enrichment tails array at the eurichment complex has been reduced from about 0.529 percent in the 1940s to 0.2 percent currently (Table D.1). From Table D.1, the average table assay for FY 1944-FT 1964 was 0.32 percent which was also the average value for the years PY 1950-PY 1964

<sup>11</sup> The tritium production estimate is taken from Table 1 Appendix C for the constant release fraction case (column 3)

HEU driver fuel in dedicated tritium runs 'They used natural uranium or LEU fuel when producing plutonium until 1968 when HEU driver fuel was introduced

Some 5600 MT of natural uranium feed (7300 short tons U<sub>3</sub>O<sub>6</sub> containing 40 MT U-235) are estimated to have been required for operating the reactors during plutonium production to the end of FY 1964, allowing for enrichment of the recovered uranium in the gaseous diffusion plants Of this, 22 MT of U-235 in natural or LEU fuel were consumed by the reactors, and an additional 18 MT of U-235 ended up as enrichment tailings Allocation of a two-year fuel supply for each reactor would tie up an additional 1660 MT of natural uranium (2200 short tons U<sub>3</sub>O<sub>8</sub> containing about 11 8 MT U-235), since in the SRP heavy water reactors some 830 MT of (5 9 MT U-235) natural uranium feed is required for each metric ton of plutonium produced

The production of 90 kg of tritium through FY 1964 would have consumed 8 6 MT of U-235 in HEU driver fuel Assuming a fuel cycle inventory in the reactors and in fresh and spent fuel of five HEU driver charges (8 MT U-235), the total HEU committed to the tritium production at SRP through FY 1964 contained about 16 6 MT U-235 It is assumed here that no HEU recovered by the Idaho Chemical Processing Plant was used for driver charges prior to FY 1965

The N-reactor began operating at Hanford on 31 December 1963 The reactor requires about 800 MT of slightly enriched uranium (approximately 1 percent U-235) per year when operating in the weapon-grade plutonium production mode (6 percent Pu-240) It is assumed that by the end of FY 1964 some two years supply of fuel was committed, requiring about 1500 short tons U<sub>3</sub>O<sub>8</sub> feed

In sum, an estimated 18 MT of HEU (17 MT U-235) and some 41,000 short tons U<sub>3</sub>O<sub>8</sub> were tied up in production reactor fuel requirements

#### Naval Reactors

By the end of 1964, there were sixty-two nuclear powered naval vessels (fifty-eight submarines and four surface ships), driven by seventy-two naval reactors In addition there were six land-based naval prototype reactors Through the end of FY 1964, it is estimated that the Navy had procured 180 reactor cores and performed less than ten refuelings 12

An estimated 185 naval reactor cores were processed at the Idaho Chemical Processing Plant by the end of FY 198413 and approximately 8940 kg HEU containing 6974 kg U-235 was recovered 14 Hence the average naval core processed through FY 1984 yielded 48 kg HEU containing 38 kg U-235 The corresponding average fresh core is estimated to have contained about 90 kg HEU (97 3 percent U-235) 15 Through the end of 1964, the fresh naval cores that were irradiated, discharged, and processed contained an estimated 70 kg HEU (97 3 percent U-235). on the average, assuming that only 40 percent of the original U-235 was destroyed 16

These data suggest that through FY 1964 some 13 MT of HEU (97 3 percent U-235) was required for fresh naval reactor fuel and less than 0.4 MT of U-235 was recovered from spent fuel

#### Domestic Power Reactor Program

Prior to 1967 the Atomic Energy Act provided for Presidential determination as to the quantities of special nuclear materials that were to be available for distribution to licensed users within the United States and to nations having agreements for cooperation with the United States

In 1954 the AEC undertook several actions designed to accelerate the development of civilian power reactors. including initiating construction of the Shippingport Atomic Power Station This 68 Mwe pressurized water reactor achieved criticality in December 1957, becoming the first large-scale civilian nuclear power plant built in the United States 17 Also, in 1954, the AEC began development of several prototype reactors including boiling water, fast breeder, and an experimental sodium graphite reactor 18 Only four of these small experimental civilian power projects went online between 1956 and 1964 19

Early in 1955 the AEC launched the Power Demonstration Reactor Program designed to encourage private investment in larger scale nuclear power plants Under the first two rounds, six power plants were undertaken and came on line between 1960 and 1965 20 This was followed by the AEC's announcement in 1957 of a third round aimed at advanced reactor technologies Four pro-

ish submarine the Dreedworght contained 40 kg of HEII; John Simpson, The Indepen dear Nuclear State: The United States Britain and the Military Atom (New York: St Martin s Press 1583] p 213

19 EBWB #BR-2 SKE and BORAX-5

<sup>12</sup> The processement of new reactor cross as of the end of 1984 is estimated by extrapolated data for 1969 and 1974. On 5 May 1969 Admital Rickover Instilled that the Navy had procured 207 searter corea and conducted 66 rehalings SAC FY 1970 DOE Fart 4 pp 3534-35

On 25 Yebruary 1974 Admiral Richmen testified that the Nevy had procured 409 reactor

On 35 February 1974 Adjammin to compression minimum vary track processes and constructed 154 reducings KAE MNPP 1974 p. 5. On 34 April 1979 Admiral Rickover testified that the Newy had processed 566 aucleus cores and performed 166 refuelings (RC. Economics of Dofense Policy Part 2 p. 449 This estimate is based on 175 refuelings conducted as of 4 March 1981 (HAC FY 1982; EWDA Part 7 p. 546) and 166 refuelings as of 24 April 1979 (IEC Economics of Defense Policy Part 2 p. 449) and as sequered filters membe between referring and chemical memory and the fuel occusing of the fuel

<sup>14</sup> These estimates are taken from the summery of ICPP reprocessing quantities (Volume III. Table 5) where it has been assumed that 2700 kg of HEU containing 2300 kg U-235 recov ared in 1958-59 were SRF production reactor finals

The average humap (U-2.15 finitoned) would be 47 percent, and the average amount of U-15 23% consumed would be 60 percent

As puints of reference in 1988 a highly enriched prototype submarine reactor con-16 taining 40 kg of U-235 was being considered for export to Pance: JCAE Agreements for Couperation for Mutual Defense Purposes June-July 1959 p. 51 The core of the first Brit

A 60 Mw, LWBR core replaced Shippingport a PWR core in 1977 'The reactor was retized 17 in 1982

Experimental Boiling Water Reactor (EBWR) (boiling water: 100 Mw<sub>1</sub>, 4 Mw<sub>2</sub>; 1956-67). 18 Experimental Breeder Reactor 2 (EBR 2) (sodium cooled fast; 62 5 Mw, 20 Mw, April 1062-present(): Sodium Reactor Experiment (SRE) (sodium graphite; 20 May, 5.7 May, 1067-04): Boiling Water Reactor Experiment No. 5 (BORAX 5) theding water, integral nuclear superheat: 20 Mw, 2.6 Mw,; April 1962-64); Experimental Gas Cooked Reactor (BGCR) (gas cooled graphite moderated; 64 3 Mar, 20 Mw, terminated 1966 prior to construction); Experimental Organic Cooled Reactor (EOCR) (organic croited and medicosted; 40 Mw, no electrical: terminated 1962 prior to operation

Yankaa-Rosee (PWR; 110 to 175 Mwg; 1960-present); Enrico Fermi (LMFBR: 60 9 Mwg 20 200 Mwg 1963-67 ratired 1972); Hallara (sodium cooled graphite moderated therapal neachar; 76 Mma; 240 Mw;; 1962 64 retired 1964); Elk River (BWR 22 Mwa; 56 2 Mwa; 1962 as reticed 1968); Pirus Posey Station Invanto-cooled and moderated; 45.5 Mw. 11 4 Mw.; 1953-96 retired 1966); LaCousse (BWR; 105 Mw, 50 Mw,; 1967 present)

|             |        |          |         | Table     | 02          |              |       |          |
|-------------|--------|----------|---------|-----------|-------------|--------------|-------|----------|
| Amount of H | lighly | Enriched | Uranium | (>90%)    | Supplied to | Experimental | Power | Reactors |
|             | 5.5    |          | throu   | gh Fiscal | Year 1964   | 1            |       |          |

| Reactor <sup>®</sup> (MWt) | Startup   | Shutdown   | Enrichment<br>(%) | Yearly U-235<br>Requirement<br>(kg/yr) | Total U-235<br>Requirement<br>(kg) | Reprocessor                 |
|----------------------------|-----------|------------|-------------------|----------------------------------------|------------------------------------|-----------------------------|
| EWBR (100)                 | 1956      | 1967       | 93*               | -                                      | 30ª                                | Stored at SRP*              |
| HWCTR (B1)                 | 1962      | 1964       | 93?               |                                        | 50%                                | Stored at SPIPo             |
| VBW9 (33)                  | 1957      | 1963       | 90                | _                                      | 354                                | INEL                        |
| SRE (20)                   | 1957      | 1964       | 93                | -                                      | 150°                               | Stored at SRP <sup>r</sup>  |
| OMRE (12)                  | 1957      | 1963       | 90                | -                                      | 759                                | INEL                        |
| MSRE (6)                   | 1965      | 1969       | 93                | Bh                                     | 32                                 | 3                           |
| BORAX 1,2,3,5              | 1953      | 1965       | 80-93             |                                        | 50                                 | INEL! but some stored there |
| EBR-1 [1 4]                | 1951      | 1962       | 90                |                                        | 150 4                              | INEL                        |
| HRE-1 (1)                  | 1952      | 1954       | 93                | 11                                     | 5                                  | 2                           |
| HRE-2 (5)                  | 1957      | 1961       | 93                | 5h                                     | 25                                 | ?                           |
| LAPRE 1 (2)                | 1956      | 1857       | 93                | _                                      | 4                                  | ?                           |
| LAPRE 2 (1)                | 1959      | 1959       | 93                |                                        | 41                                 | ?                           |
| EDCR (40)                  | terminate | ed in 1962 | 93                |                                        | 65m                                | INEL                        |
|                            |           |            |                   | TOTAL                                  | 675                                |                             |

The unabbreviated names of the reactors are listed in DOE Nuclear Aleastors Build Being Built or Planned TIC-8200-R annual

Only the second core of the EBWR (inserted in early 1990s) contained HEU; M T Sinned Fuel Element Experience in Nuclear Power Reactors: An AEC Monograph. Bordon and Breach Science Publishers 1971, p. 345 About 27 bilograms of E9WR spent fuel terriched to 92 percent in unonum-235) are stored at SPP: DOE Spent Fuel and Radioactive Waste Inventories Projections and Characteristics RW-0008 September 1984

The core contained 27 kilograms of uranium-235 in driver elements. R R Burn Research, Training, Test and Production Reactor Directory, American Nucle Society 1983 p 777 Two cores were used in this repotor, JCAE FY 1969 AEC p 908

About 32 skipgrade of unanium-235 in spent HWCTR spent fuel is stored at SRP: DOE Sperk Fuel

The first core used HEU; the reactor was modified in 1960 to low enriched unenium; M T Similar Aux/Element p 349 in the early 1900s about 33 kg of U-235 was recovered from VEWR spent HEU at the lablo reprocessing facility, AEC Annual Report to Congress 1964 p 61

Source David Abright private communication

a Only the second core of the SRE reactor contained HEU: M T Simnad Fuel Ele-

went p. 485. The amount is estimated (see footnote f) Spant fuel from the ERE reactor containing 143 kg of U-235 and enriched to 92 percent is stored at SRP: DDE. Spant Fuel it is assumed that this is the entire . core

Tives cores were fabricated for the CMRE reactor, JCAE FY 1985 AEC Each 12 core contained about 25 kg of UA235; M T. Simmad, Fuel Element: p. 437

ħ This is a rough estimate assuming that for each MWt, one kg of U-235 is required each year

Assumes only one core

It is estimated that BORAX 1 and 2 contained about 15 kg of U-235 and BORAX 3 contained a little less than 15 kg of U-235, JEAE. Accelerating Dwillian Reactor Program 1956, p. 54. BORAX 5 is estimated to have required about 20 kg of U-235, most of which is currently stored at INEL: DOE: Seent Fuel

The EBR 1 used three cores each containing about 50 kg of U-235; M T Similar Fuel Element p 516

JEAE, Accelerating Civilian Reactor Program 1966 to 54-57

m R.R. Burn Research Training p 668

jects in the 15 to 60 Mwe range were undertaken and came on line between 1962 and 1964 21

In addition to the AEC and cooperative development programs, seven privately funded reactor projects came on line between 1957 and 1966 22

The fuel, furnished by the AEC for all of these reactors through FY 1964 is estimated in Tables D 2, D 3, and D 4 to have required about 3 MT of U-235 contained in HEU (greater than 90 percent U-235) plus lower enriched uranium requiring about 4000 short tons U<sub>3</sub>O<sub>8</sub> feed and 1 7 million kg SWU These fuel requirements are equivalent to 12 6 MT HEU (93 5 percent U-235) plus 2000 short tons U<sub>2</sub>O<sub>8</sub><sup>23</sup>

**Research and Test Reactors** 

Through 1964 there were nine AEC-owned civilian, and ten AEC-licensed, research and test reactors with rated power levels greater than five Mw<sub>t</sub> (see Tables D 5 and D 6) All of these reactors operated using HEU The fuel requirement through FY 1964 for these together with the smaller reactors (1 to 5 Mw,) is estimated in the tables to be 2.8 MT of U-235, equivalent to 3 MT of HEU (93.5 percent U-235)

There were eight other safety research and test reactors prior to 1965, operating either under transient power conditions or at power levels below one Mw, The fuel requirements for all of these were too small to have con-

Pathfinder (BWR 190 May, 58 5 Mar<sub>2</sub>: 1963 67); Caralinas-Vieginia Tube Reactor (PWR 17 May, 1968 67); Peach Dotton (EUGR: 115 May, 46 May, 1968-1974 entired 1974); Big

Mw., 1993 67, Peace Dotton [11768; 115 Mw., 40 Mw., 1995-1974 settred 1974]; Bur.
 Rock Point [BWR, 240 Mw., 48-75 Mw.; 1962-pensent)
 Velfections BWR [23 Mw., 5 Mw.; 1967 63; Doublen 1 [PWR; 700 Mw., 184 to 220 Mw.; 1950-76 petired 1964]; Sarton (PWR; 23 1 Mw., 3 Mw.; 1962-72); Indian Point 1 (PWR; 615 Mw.; 1962-74, retired 1940); Barnholt Bay 12 (BWR: 242 MM, 48 to 65 MW, 1992-76 retired 1983); ESADA Vallective Superheet Rest tor: 15 Mar.: 1963-673

<sup>23</sup> The 4000 short tens U<sub>2</sub>O<sub>2</sub> and 1.7 million kg SWU neuld have been utilized to produce 8.7 MT HEU (90.5 percent U-235) from 2000 short tens U<sub>2</sub>O<sub>2</sub> operating the enrichment glast at 0.32 percent tails assay with 2000 short tors U<sub>2</sub>O<sub>8</sub> left unsatiched

|                | Amoun<br>(     | t of High<br>Civilian P | ly Enric<br>ower R | Table D<br>hed Uraniu<br>eactors Thr | 3<br>m (>90% U-;<br>rough Fiscal \                 | 235) Supplie<br>(ear 1964            | ed to                                                 |
|----------------|----------------|-------------------------|--------------------|--------------------------------------|----------------------------------------------------|--------------------------------------|-------------------------------------------------------|
| Reactor        | Power<br>(MWc) | Startup                 | Shut<br>Down       | Enrichment<br>(%)                    | Uranium-235<br>Requirement<br>Through 1964<br>(kg) | Total U-235<br>Require-<br>ment (kg) | Reprocessor                                           |
| Shippingport   | 236            | 1957                    | 1982               | 92                                   | 680*                                               | 1020*                                | INEL?4                                                |
| Indian Point 1 | 615            | 1962                    | 1980               | 93                                   | 1100*                                              | 1100                                 | West Valley <sup>o</sup>                              |
| Elk River      | 58             | 1962                    | 1968               | 93                                   | 344 <sup>a</sup>                                   | 344%                                 | Italy, but large amount<br>stored at SRP <sup>1</sup> |
| Pathfinder     | 190            | 1963                    | 1967               | 93                                   | 504                                                | 100*                                 | INEL®                                                 |
| Peach Bottom   | 115            | 1966                    | 1974               | 93                                   | 550,                                               | 440'                                 | Stored at INEL®                                       |
|                | month of the   |                         |                    |                                      | 0.000                                              | 0.000                                |                                                       |

a The first core used four seeds containing 345 kg of U-205 and the second core used two seeds each containing 336 kg of U-205; M T. Simned. Fuel Element Experience in Nuclear Power Relations, An AEC Monograph. Darben and Entaich Experience Publishers 1971 p. 211 and F. Duncen and J M. Hall. Shippingort: The Nation S First Atomic Power Station, Heaton Department of Energy undiated application. Heaton Department of Energy undiated before the end of FY 1984; Chancen and even the second core was not fabricated before the end of FY 1984; Chancen and even the second core was not fabricated before the end of FY 1984; Chancen and even the heaton from the first cort were most lakely represented at INEL. It is unclear what happened to the second core although it can be expected that they will for here been improceeded at INEL.

- b Only the first core of indian Point 1 used HEU fuet M T Simned Fuel Element: pp 298-289
- Almost all of the sport HEU fuel was reprocessed at West Vallay in 1998; G. Rochtin et al., West Vallay: Remanual the AEC. Bulletin of the Atomic Scientists (January 1978), table 2.
- 5 Two cores were fabricated for the Pathfinder reactor although the second core was not fabricated until a few years after FY 1984, JCAE FY 1985 AEC, JCAE FY 1987 AEC Each core contained 50 kg of U-235; M T Simnae Fuel Elements pp 405-6

Source: David Albright, private communication

tributed significantly to the estimate of oralloy production made here

#### **Rocket Propulsion Reactors**

Under Project Rover, a joint NASA-AEC program to develop a nuclear propulsion reactor for space travel, there were seven nuclear rocket reactor experiments conducted between 1960 and 1965 These reactors had power levels ranging between 100 Mw, and 1070 Mw, The combined power of all seven was 4820 Mw, Two additional experiments were conducted after 1965 (1400 Mw, (1967) and 4200 Mw, (1968)) DOE ultimately recovered 2 819 MT U-235 at the ICPP from fuel used in Project Rover <sup>24</sup>

#### Exports for Foreign Civilian Reactors

Through 1964 the United States exported 1 9 MT of HEU to foreign research reactors, containing 1 6 MT of U-235 <sup>25</sup> During this same period only 97 kg of uranium Not all of the HEU fuel from the Pathtinder reactor has been repricessed. About 50
kg of slightly imadebed fuel is currently stored at INEL: DOE ISsent Fuel RW-0006
September 1984

- f Two cores were fabricated for the Peech Bottom mactor: H L. Broy and H G. Dison. Fort St. Vnan Experience. Nuclear Energy 22, 2 (April 1983) 120. Each core cornained about 220 kg of U-235. M T. Simnad. Fuel /Element. p. 115. Because the second obre wels inserted effer 1988. It is assumed that only one core were fabricated by the and of FY 64, Operating History of U.S. Nuclear Power Reactons. Appendix 4, JCAE. FY 1970 AEC. Part 2 p. 1581.
- g At the end of 1983 Peach Bottom spent fuel containing about 330 kg of HEU of which about 220 kg is U-235 is stored at INEL DDE. Spent Fuel
- h Che core was interted into the Elk River reactor and another was being febricated in March 1964, JCAE, FY 1985 AEC p. 781. Each core contained 172 kg of U-235: M T. Biened. Fuel Element, p. 378.
- As the end of 1983 about 190 kg of 83 percent envicted unanium spent fuel from the Elk River reactor were stored at BRP. ODE Spent Fuel in the 1970b a small enough of Elk River fuel was reprocessed at the ITREC feeliky in Rely. B. Cao et al. Italian Experience with Rive Reprocessing Parts. IAEA-CN-35/304, May 1977.

containing 80 kg U-235 were returned to the United States 25

#### Consumption in Nuclear Weapons Tests<sup>27</sup>

The United States conducted 374 nuclear tests through 1964 plus three joint U S -UK tests (see Appendix B) These tests correspond to about 1 4 percent of the current nuclear weapons stockpile of about 26,000 warheads Thus the total HEU expended in tests conducted prior to the end of 1964 was about 10 MT (about 20 kg HEU per warhead)

#### Weapon Grade Uranium Inventory in 1964

The inventory of weapon grade uranium (93 5% U-235) at the end of FY 1964, when oralloy production ceased, can now be estimated by subtracting the uranium used in other activities from the purchases before FY 1965 According to Table D 7 a stockpile of some 657 MT (93 5 percent U-235) was available for weapons at the

<sup>24</sup> ICPP, private contrastication to David Albright 1965. See also Nuclear Foel (27 August 1984): 13 Eaclier it was reported that there ware 2800 kg of unprocessed Rover fael; SASC PY 1979 DOE p. 66

<sup>25</sup> Donald P. Hodel. Secretary of Energy Yearly Expect Totels: and Summary of Totals: Expects of Loss Earlanded Umanium. High Explosed Unanitum Umanium-203. Platinuism and Reavy Woter January 1: 1954. Through February 28: 1983. Enclosures 1 and 2 in a letter to Expressibilities Richard Ottinge: 10 May 1983.

<sup>36</sup> DOE NMMSS Report U.S. Origin Imports. (computer priorical) exclosion in letter from Robert A. O.Brien. Jr. to Thomas B. Cockenn. 13 December 1964.

<sup>27</sup> Perhaps a duent nuclear wapons were lost in accidents. See U.S. Nacher Wapons Accidents: Danger in Our Midst. The Defense Monitor Volume X. Number 5, 1981.

|                                | Table D 4                                   |                                |                                 |                   |               |
|--------------------------------|---------------------------------------------|--------------------------------|---------------------------------|-------------------|---------------|
| LEU-Fueled Powe<br>Requirement | er Reactors: Domest<br>ts (SWU) Through Fis | ic Separat<br>scal Year 1      | ive Work<br>1964                |                   |               |
| Reactor"                       | Fuel Charge <sup>b</sup><br>(kg Uranium)    | Enrichment <sup>5</sup><br>(%) | Number of<br>Cores<br>Produced= | Total<br>(kg SWU) | Feed<br>(MTU) |
| Indian Pt 1                    | 20.000                                      | 34                             | 1                               | 79,960            | 158           |
| Yankee-Bowe                    | 20,800                                      | 34                             | 2                               | 166.320           | 328           |
|                                | 20,800                                      | 40                             | 3                               | 317,310           | 588           |
| Big Rock Pt                    | 11,700                                      | 32                             | 30                              | 127,860           | 259           |
| Dresden 1                      | 51,500                                      | 20                             | 2                               | 162,120           | 442           |
| Humboldt Bay                   | 13,840                                      | 26                             | 1                               | 36,040            | 78            |
|                                | 13,840                                      | 22                             | D 5ª                            | 13,425            | 34            |
| La Crosse                      | 8.600                                       | 3 63                           | 1                               | 37,940            | 73            |
| Bonus Boiler                   | 2,810                                       | 24                             | 1                               | 6,380             | 15            |
| Superheater                    | 1,790                                       | 3 25                           | 1                               | 6,680             | 13            |
| Hailem                         | 29,200                                      | 38                             | 1                               | 127,230           | 245           |
|                                | 29,200                                      | 49                             | 1                               | 197,400           | 342           |
| Piqua                          | 6,550                                       | 18                             | 1                               | 9.610             | 26            |
| Carolina-Virginia Tube Reactor | 3,290                                       | 1 75                           | 2                               | 8,120             | 24            |
| Pathfinder Boller              | 6,560                                       | 22                             | 1                               | 12,740            | 32            |
| EBR-2                          | 350                                         | 49 0                           | 2                               | 68,840            | 88            |
| Fermi                          | 2,000                                       | 25 B                           | 2                               | 195,410           | 258           |
| EBWR                           | 5,600                                       | 1 44                           | 1                               | 4,440             | 16            |
| EVESR                          | 2,200°                                      | 5.4*                           | 21                              | 34,040            | 58            |
| EBOR                           | 1609                                        | 62 5#                          | 1                               | 20,430            | 26            |
| EGCR                           | 9,860*                                      | 2 55 <sup>n</sup>              | 1                               | 24,840            | 56            |
| Saxton                         | 1,270                                       | 57                             | 15                              | 15,780            | 26            |
| SRE                            | 3,000                                       | 28                             | 1                               | 8,830             | 19            |
|                                | 3,000                                       | 5,2                            | 1                               | 21,980            | 37            |
| VBWR                           | 800                                         | 30                             | 1                               | 2,630             | 6             |
| NS Savannah                    | ?                                           | ?                              | 1                               | ?                 | ?             |
|                                |                                             |                                | TOTAL                           | 1.705.365         | 3,247         |

The unabbreviated names of the reactors are contained in DOE. Nuclear Reactors, 4

Built Britis of Particle Transact DDE/TIC-8200 annual Unless otherwise roted the source is M T Similar Fuel Element Experience in Nuclear Power Reactors an AEC Monograph Gordon and Breach Science Publish-÷. ers 1971

Unless otherwise noted, the number of cores whose unanium was enriched prior to the end of FY 1984 is based on AEC tables listing power needan fush elements fabricated through various years that are in the hearings of the JCAE authorizing AEC legislation or reporting on the development of the atomic energy industry

Source: David Albright private communication

end of FY 1964

This estimate, 657 MT, is judged to have an error of about 10 percent and should be taken as an upper limit on oralloy production It is consistent with a previous report that "more than half a million kilograms [500 MT] of weapon-grade uranium were produced in the United States since 1945 "28

#### **Removals 1964-90**

Since FY 1964, the inventory of HEU available for weapons has been further reduced by fuel requirements d Partial reloads of the core

9.9. Barn Research, Training, Test and Production Reactor Directory American н.

Nuclear Society 1983 p 645 Appendix 4. Openating History of U.S. Nuclear Power Program In JCAE FY 1970 Ŧ AEC Part 2

g P.R. Burn Research Training p 887 h AEC Costs of Nuclear Power TID-8531 January 1981

of the Savannah River production reactors, fuel needs for research and test reactors, uranium exports to Britain and France for military purposes, and nuclear tests

Presently highly enriched uranium metal is provided from the current DOE inventory at the Y-12 plant for nuclear weapons components and for fuels for the Savannah River production reactors, and DOE research and test reactors It is assumed this has been the practice ever since the AEC placed its Enriched Uranium Conversion Facility (for conversion of UFs to UFs) on standby in early FY 1965 and will continue until 1988-90 when the facility is scheduled to be reactivated

<sup>28</sup> John McPase, The Curve of Binding Energy (New York: Farmer Straum & Giroux 1974) p

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                 | ind lest h                                                                                                                                                                                                                                                                                | eactors l>                                                                                                                                                                                                                                              | 1 MWG                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactor* (MWt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Startup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shutdown                                                                                                                                                                                                                                                                          | Enrichment<br>(%)                                                                                                                                                                                                                                                                         | Yearly U-235<br>Requirement<br>(kg/yr)=                                                                                                                                                                                                                 | U-235<br>Requirement<br>Through 1964<br>(kg)                                                                                                                                                                                                                                                                                             | Total U-235<br>Requirement<br>Through 1984<br>(kg)                                                                                                                                                                                                                                                                                                                                                      | Reprocessor                                                                                                                                                                                                                                                                                                                                                                                |
| ATR (250/1254)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                        | 175 D <sup>4</sup>                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                        | 39004                                                                                                                                                                                                                                                                                                                                                                                                   | INEL                                                                                                                                                                                                                                                                                                                                                                                       |
| HFIR (100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                 | 93                                                                                                                                                                                                                                                                                        | 140 D*                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                        | 2800                                                                                                                                                                                                                                                                                                                                                                                                    | SRP                                                                                                                                                                                                                                                                                                                                                                                        |
| 1401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1982                                                                                                                                                                                                                                                                              | 99                                                                                                                                                                                                                                                                                        | 40.01                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                          | 720                                                                                                                                                                                                                                                                                                                                                                                                     | SRP and INEL®                                                                                                                                                                                                                                                                                                                                                                              |
| (60)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1982                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TOOL                                                                                                                                                                                                                                                                              | 93                                                                                                                                                                                                                                                                                        | 59.0                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                          | 120                                                                                                                                                                                                                                                                                                                                                                                                     | SBP and INELS                                                                                                                                                                                                                                                                                                                                                                              |
| 000/000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   | 93                                                                                                                                                                                                                                                                                        | 18.0                                                                                                                                                                                                                                                    | 130                                                                                                                                                                                                                                                                                                                                      | 490                                                                                                                                                                                                                                                                                                                                                                                                     | SSP and INFL®                                                                                                                                                                                                                                                                                                                                                                              |
| OWE (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   | 93                                                                                                                                                                                                                                                                                        | 54                                                                                                                                                                                                                                                      | 49                                                                                                                                                                                                                                                                                                                                       | 160                                                                                                                                                                                                                                                                                                                                                                                                     | INEL                                                                                                                                                                                                                                                                                                                                                                                       |
| BMBB (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                 | 90-93                                                                                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                          |
| BSD (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   | 93                                                                                                                                                                                                                                                                                        | 0.5                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          | 18                                                                                                                                                                                                                                                                                                                                                                                                      | SBP and INFI                                                                                                                                                                                                                                                                                                                                                                               |
| TSB-2 (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   | 93                                                                                                                                                                                                                                                                                        | 0.2                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                       | SBP and INEL                                                                                                                                                                                                                                                                                                                                                                               |
| ETP (175)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1957                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1972                                                                                                                                                                                                                                                                              | 93                                                                                                                                                                                                                                                                                        | 190.0                                                                                                                                                                                                                                                   | 1440                                                                                                                                                                                                                                                                                                                                     | 2700                                                                                                                                                                                                                                                                                                                                                                                                    | INEL                                                                                                                                                                                                                                                                                                                                                                                       |
| MTR (ACI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1970                                                                                                                                                                                                                                                                              | 02                                                                                                                                                                                                                                                                                        | 40.0                                                                                                                                                                                                                                                    | 520                                                                                                                                                                                                                                                                                                                                      | 790                                                                                                                                                                                                                                                                                                                                                                                                     | INEL                                                                                                                                                                                                                                                                                                                                                                                       |
| AL 88 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1977                                                                                                                                                                                                                                                                              | 93                                                                                                                                                                                                                                                                                        | 5.01                                                                                                                                                                                                                                                    | DEG                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                                                                                                                                                                                                                                                                                      | SPP                                                                                                                                                                                                                                                                                                                                                                                        |
| CD 5 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1070                                                                                                                                                                                                                                                                              | 03                                                                                                                                                                                                                                                                                        | 5 Cf                                                                                                                                                                                                                                                    | 55                                                                                                                                                                                                                                                                                                                                       | 125                                                                                                                                                                                                                                                                                                                                                                                                     | Some at SDD                                                                                                                                                                                                                                                                                                                                                                                |
| CED (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1970                                                                                                                                                                                                                                                                              | 03                                                                                                                                                                                                                                                                                        | 5.01                                                                                                                                                                                                                                                    | 20                                                                                                                                                                                                                                                                                                                                       | 45                                                                                                                                                                                                                                                                                                                                                                                                      | INFI                                                                                                                                                                                                                                                                                                                                                                                       |
| Baticad Basstors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1370                                                                                                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                                                      | 20                                                                                                                                                                                                                                                                                                                                       | 120                                                                                                                                                                                                                                                                                                                                                                                                     | INFL and SBP2                                                                                                                                                                                                                                                                                                                                                                              |
| (1 to 5 Mut)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           | 183                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           | TOTAL                                                                                                                                                                                                                                                   | 0.004                                                                                                                                                                                                                                                                                                                                    | 11.000                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                           | TOTAL                                                                                                                                                                                                                                                   | 2,234                                                                                                                                                                                                                                                                                                                                    | 11,300                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>The unabbreviated name<br/>Austicer Reaccore Bult</li> <li>Liviets otherwise noted<br/>of E Matos Argenre Ne<br/>many—September 1988</li> <li>The ATR only name to 200<br/>chat the power was not<br/>personal communication</li> <li>Each year the ATR regult<br/>1 075 kg of U-235 UM<br/>power of the ATR regult<br/>power of the ATR is 122<br/>year</li> <li>Using the information in<br/>from 1968 until 1975 to<br/>U-HRR search Oak Ridge T<br/>dent estimate was denty</li> </ul> | es of the reacto<br>Being Eule or P<br>the source of the<br>source | rs are lissed in U 8<br>Venned, DOE/TIC4<br>is data is lister to<br>y Subject. RERT<br>or 1982<br>in 1988 is ran at a<br>to about 1920 or 1<br>to 175 new fuel a<br>communication. Me<br>to 175 kg U-235<br>1 o and resuming is<br>ined about 3900 relation<br>range amount of sp | S Department of En<br>2000;447 August 1<br>K L Mastern DDE<br>R Program Reactor<br>dout 220 MWt and<br>30 MWt by 1875 0<br>letterits, each conta<br>y 1964) If the ave<br>its required per MW<br>lineer decrease in p<br>of U-235 through 1<br>m May 1994 Am hild<br>cent fuel cent to SR | engy Nuclear<br>983 ment of<br>from Since at<br>Sum- convert<br>U-235<br>after f This is a<br>NEL that on<br>Mistos<br>ining g Due to a<br>ringe off-cita<br>to SPP<br>ower h Starting<br>984 carty 15<br>500 to SPP<br>ower h Starting<br>984 carty 15 | Society 1983) This but<br>about 95 percent U-23<br>bout 95 percent U-23<br>bout 90 percent of the a<br>rough estimate of the a<br>kilogram of unanium-3<br>ben on shipments of sy<br>from 1976 uncil 1985<br>Previous to 1975 or 19<br>in 1982 OPR spent fue<br>85 shipments of SPP to<br>per 15 kg of spent HEU<br>2 ETR was shutdown 1 | mup corresponds to the<br>5 or containing on even<br>ariginal U-235 is burner<br>alineed for firesh U-236<br>mount of U-235 require<br>235 is needed each ye<br>entitues through New Y<br>The spent fuel from to<br>dispert fuel from to<br>dispert fuel is sent to<br>277 the spent fuel was<br>(was sent to INEL for re<br>hould resume From 18<br>per year to SHP for re<br>to install a sodium loop | spent fuel having an enri-<br>age about 300 kg of U-20<br>d up tabler it is fissioned<br>i for HFIR is about 140 kg<br>d yearly based on assum<br>an per MWit for the HFI<br>ork day no fuel was shipp<br>his reactor is being sent<br>NEL. It will probably be a<br>most likely sent to SRP<br>processing During 1985<br>78 shrough 1991 CRR at<br>processing<br>to for fast breeder read |
| reprocessing From 187<br>12D kg of HEU. The ave<br>Burn Research Train<br>Source: Devid Abriats, priv                                                                                                                                                                                                                                                                                                                                                                                               | NB shrough 1964<br>prege burnup of t<br>log Test and<br>rate communicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 the average amo<br>the U-235 in the f<br>Production Asacs<br>tion                                                                                                                                                                                                               | unt of HEU returned<br>uel was 3D percent i<br>tor Directory Ame                                                                                                                                                                                                                          | fwaa restard<br>RR fuel Th<br>nicen j INEL p                                                                                                                                                                                                            | h After 1972 until the n<br>ETR may be restarted<br>ensinal communication                                                                                                                                                                                                                                                                | sector was shutdown in<br>and will require about 1<br>May 1985                                                                                                                                                                                                                                                                                                                                          | 1902 it used very little H<br>80 kg of U-235 per year                                                                                                                                                                                                                                                                                                                                      |

The SRP reactors, as noted previously, were converted to HEU driver fuel for plutonium production in 1968 No dedicated tritium runs occurred between 1965 and 1972 From FY 1969 through FY 1984 the SRP production reactors operated 25 5 million Mwd; an additional 13 5 million Mwd are projected to accumulate between FY 1985 and FY 1990 Of the total 39 million Mwd, an estimated 7 million Mwd is generated in reactors dedicated to tritium production and "high flux" operation and the remaining 32 million Mwd is in reactors producing plutonium, where the power distribution is about 75 percent in the highly enriched drivers and 25 percent in the depleted uranium targets Consequently, highly enriched driver fuel contributes some 31 million Mwd of operation between FY 1965 and FY 1990, consuming an estimated 38 MT U-235 (41 MT weapon-grade HEU equivalent)

An additional 19 MT U-235 (20 MT weapon grade HEU equivalent) are probably tied up in the fuel cycle (in and out of reactor inventories) However, this must be reduced by 8 MT, the amount of U-235 assumed to be in the fuel cycle pipeline in FY 1964 <sup>29</sup>

A considerable portion of the HEU needed to fuel the SRP production reactors since FY 1964 has come from

<sup>29</sup> Assumes a three-year pipeline. An SEP reactor charge contains up to 1.6 MT of U-235 and some 2.6 MT of HEU was scheduled for recovery in PY 1960; HASC. FY 1960 DOE: p. 752

|                                  |         |          | React              | ors (<1 M                                           | Wt)                                          |                                                    |                           |
|----------------------------------|---------|----------|--------------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------|
| Reactor" (MWt)                   | Startup | Shutdown | Enrichment.<br>(%) | Yearly U-235<br>Requirement<br>(kg/yr) <sup>o</sup> | U-235<br>Requirement<br>Through 1964<br>(kg) | Tetal U-235<br>Requirement<br>Through 1984<br>(kg) | Reprocessor               |
| NBSR (20)                        | 1967    | -        | 93                 | 13 0                                                |                                              | 230                                                | SRP                       |
| MURR                             |         |          |                    |                                                     |                                              |                                                    |                           |
| (5)                              | 1966    | 1974     | 83                 | 9 Oc                                                | -                                            | 80                                                 | 2                         |
| (10)                             | 1974    |          | 93                 | 190                                                 | -                                            | 190                                                | SAP                       |
| MITR (5)                         | 1958    | -        | 93                 | 54                                                  | 38                                           | 148                                                | SRP or INEL               |
| JCNR (5)                         | 1961    | -        | 93                 | 54                                                  | 25                                           | 130                                                | SRP                       |
| 3TAR (5)                         | 1954    |          | 93                 | 19                                                  | 2                                            | 40                                                 | SRP?                      |
| FNA (2)                          | 1957    | -        | 93                 | 33                                                  | 26                                           | 804                                                | SRP                       |
| RINSC (2)                        | 1964    | _        | 93                 | 25                                                  | з                                            | 53                                                 | SRP                       |
| JVAR (2)                         | 1960    | _        | 83                 | 13                                                  | 7                                            | 33                                                 | SRP                       |
| JLR (1)                          | 1974    | -        | 93                 | 02                                                  |                                              | 2                                                  | not applicable            |
| NASA-TR (60)                     | 1963    | 1974     | 93                 | 30 O*                                               | 60                                           | 330                                                | INEL and SRPI             |
| WTR (60)                         | 1959    | 1962     | 93                 |                                                     | 809                                          | 809                                                | INEL                      |
| GETR                             |         |          |                    |                                                     |                                              |                                                    |                           |
| (30)                             | 1958    | 1968     | 83                 | 30 Ch                                               | 210                                          | 270                                                | INEL.                     |
| 50)                              | 1965    | 1977     | 93                 | 50 Ch                                               | _                                            | 550                                                | INEL                      |
| BAWTR (6)                        | 1964    | 1971     | 93                 | 6 Oh                                                | 6                                            | 42                                                 | ?                         |
| Retired Reactors<br>(1 to 5 Mwt) |         |          |                    | -                                                   | 50                                           | 150                                                | INEL <sup>1</sup> and SRP |
|                                  |         |          | TOTAL              |                                                     | 504                                          | 2406                                               |                           |

- The unablereviated names of the reactors are listed in DOE. Nuclear Reactors Built Being Built or Plenned DDE/TIC-8200-R47 August 1983 Unlesis otherwave nobed the source is letter to K1. Mattern DDE from J E
- a Unless otherwise noted the source is letter to K L. Mattern DDE from J E. Metor Argonne National Laboratory Subject: REFTR Program Reactor Summary—September 1982 22 September 1982
- b Unless otherwise noted the source is R R Burn Research, Training Test and Production Reactor Directory American Nuclear Society 1983
- o Sceled
- d The Ford reactor converted to low enriched uranium fuel in the early 1990s
- This estimate of the yearly requirements of unanium-235 for the NASA-TR is derived from the average annual amount of unanium-235 recovered from its spent fuel at.

SRP and INEL and the enviciment of the recovered HEU (Annual Report to Congress of the Atomic Energy Commission for the years 1984–1985 and 1987 and Major Activities in the Atomic Energy Programs January-December 1985 January 19871

- 1 Annual Report op oit After 1967 it is assumed that half of the U-235 was recovered at SPP and half at INEL.
- g. Annual Report to Congress of the Atomic Energy Commission for 1964 p. 61 h. Rough estimate based on assuming 1 kg U-235 per year per MWt (Maton, REFTR, Program.).
- I Some of the spent fuel from the IRL reactor was reprocessed at INEL (Annual Report op oit 1964 1966)

Source: David Albright private communication

uranium recovered from naval (and research) reactor spent fuel, primarily in Idaho Through FY 1984 28 8 MT of uranium containing 22 8 MT U-235 were recovered at ICPP, and perhaps as much as 25 MT U-235 (27 MT weapon grade HEU equivalent) will be recovered through 1987 An additional 4 MT HEU will be recovered at SRP from research reactor fuel This suggests that possibly a total of some 21 MT of U-235 will be withdrawn from the HEU inventory to meet SRP reactor driver fuel requirements between FY 1965 and FY 1990

About 15 to 20 MT of uranium from the HEU stockpile will be needed to supply domestic and foreign research and test reactors between FY 1965 and FY 1990 (see Table D 7)

Finally, some additional 370 nuclear tests (includ-

32 U.S. Department of State memorandrum to the American Emboory Paris 7 May 1959

The United States has supplied approximately 9 (or 5) MT<sup>30</sup> of HEU to the United Kingdom for submarine reactors and weapons under the U S /UK Defense Agreement signed in 1958 If the HEU was supplied in metal form it would have come from pre-1964 production HEU stocks If it was supplied as UF6, it could have been from HEU enriched after 1964 In addition, the United States committed itself in May 1959 to supply France with up to 0 44 MT of enriched uranium "for use in the development and operation of a land-based prototype submarine nuclear propulsion plant "<sup>31</sup> Up to 0 3 MT was to be enriched to 90 percent in the isotope U-235, with the remainder enriched up to 20 percent <sup>32</sup>

Nine MT is based on the assumption that the U.S /UK baster assumests called for the exchange of 176 kg HRU for each kg of platratium. S MT assumes an exchange ratio of one
 ICAE Agreements for Gooperation for Mutual Defense Purposes June July 1959 pp. 12 72-73

| Activity                                          | HEU (93 5% U-235)<br>Equivalent (MTU) | U <sub>3</sub> O <sub>8</sub> (thousands short<br>tons) |
|---------------------------------------------------|---------------------------------------|---------------------------------------------------------|
| Through FY 1964                                   | St                                    |                                                         |
| Uranium Purchases (FY 1943-FY 1964)               |                                       | 266 6                                                   |
| Enrichment Plant Production (FY 1943-mid-FY 1984) | 751 1                                 | -220 6                                                  |
| In Process                                        | -75                                   | -                                                       |
| Working Inventory                                 | -25-0                                 |                                                         |
| Production Reactors                               | -18 0                                 | -41 0                                                   |
| Naval Reactors                                    | -13 0                                 |                                                         |
| Domestic Power Reactor Program                    | -12 6                                 | -30                                                     |
| Research and Test Reactors                        | -3.0                                  |                                                         |
| Rocket Propulation Reactors                       | -30                                   |                                                         |
| Exports for Foreign Civilian Reactors             | -16                                   |                                                         |
| Weapone Teets                                     | -10.0                                 |                                                         |
| Subtotal - End FY 1964                            | approx 657 O                          | approx 2 O                                              |
| FY 1965-90                                        |                                       |                                                         |
| SRP Driver Fuel Consumed in Reactors              | -41 0                                 |                                                         |
| Additional Fuel Cycle Inventory                   | -120                                  |                                                         |
| U-235 Recovered at ICPP & SRP                     | 27.0                                  |                                                         |
| SRP Subtotal                                      | -26-0                                 |                                                         |
| Domestic and Foreign Research and Test Reactors   | -15 0 to -20 0                        |                                                         |
| Weepons Tests                                     | -10 D                                 |                                                         |
| Exports Under Military Agreements                 | -0.4 to -8.4                          |                                                         |
| Publicity ACCE BO                                 | 51 4 to 65 4                          |                                                         |

ing 14 joint U S /UK tests) were announced during the 1965 through FY 1984 period, requiring an estimated 10 MT of HEU

In sum, the additional drawdowns of the HEU stockpile through FY 1990 total some 51 to 65 MT weapongrade HEU (93 5 percent U-235) equivalent, as indicated in Table D 7, leaving the estimated HEU inventory available for weapons at the end of FY 1984 at about 600 MT

This 600 MT estimate is an upper limit on the HEU inventory available for weapons There are surely additional inventories and drawdowns which have not been taken into account The authors believe a better estimate of the HEU inventory reserved for weapons is 500 MT





# **Glossary of Terms**

| Actinides                                 | The series of heavy radioactive<br>metallic elements of increasing<br>atomic number from actinium<br>(89) through hahnium (105)                                                          |                                     | weapon systems, including<br>country of origin and location,<br>weapon and payload identifica-<br>tion, and event type                                                                                                               |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advanced Gas<br>Centrifuge (AGC)          | High speed, high-efficiency gas<br>centrifuge for enriching uranium<br>hexafluoride                                                                                                      | ATMX                                | The designation assigned to a<br>special railcar used to transport<br>nuclear weapons. Only series                                                                                                                                   |
| Advanced Isotope<br>Separation (AIS)      | Processes under development for<br>enriching uranium, including<br>Molecular Laser Isotope Separa-                                                                                       |                                     | 500 and 600 ATMX cars are nu-<br>clear weapons transporting rail-<br>cars                                                                                                                                                            |
|                                           | tion (MLIS), Atomic Vapor Laser<br>Isotope Separation (AVLIS), the<br>Plasma Separation Process<br>(PSP), and the Advanced Gas<br>Centrifuge (AGC)                                       | Atomic bomb                         | An explosive device whose ener-<br>gy comes from the fissioning of<br>uranium or plutonium A fission<br>bomb, as distinguised from a hy-<br>drogen bomb                                                                              |
| Airburst                                  | The explosion of a nuclear weap-<br>on in the air at height greater<br>than the maximum radius of the<br>fireball                                                                        | Atomic demolition<br>munition (ADM) | Nuclear device designed to be<br>detonated on or below the sur-<br>face, or under water, to block, de-<br>ny, and/or canalize enemy                                                                                                  |
| Alpha particle                            | A positively charged particle,                                                                                                                                                           |                                     | forces                                                                                                                                                                                                                               |
|                                           | made up of two neutrons and<br>two protons, emitted by certain<br>radioactive nuclei The nucleus<br>of He-4 atom                                                                         | Atomic number                       | The number of protons in an atomic nucleus                                                                                                                                                                                           |
| Anti-submarine<br>warfare (ASW)           | Methods of warfare utilizing spe-<br>cialized sensors, data processing<br>techniques, weapons platforms,<br>and weapons intended to search<br>for, identify, and destroy subma-<br>rines | Atomic weight                       | The mass of an atom expressed<br>in atomic mass units (amu), usu-<br>ally relative to carbon-12, which<br>is defined to have a mass of 12<br>amu Approximately, the sum of<br>the number of neutrons and pro-<br>tons in the nucleus |
| Anti-ballistic<br>missile (ABM)           | A defense missile used to inter-<br>cept and destroy an attacking<br>strategic ballistic missile                                                                                         | Ballistic missile                   | A missile that follows a ballistic trajectory, relying only on gravi-                                                                                                                                                                |
| Aqueous phase                             | In solvent extraction, the water-<br>containing layer, as differentiat-<br>ed from the organic phase                                                                                     | D. H. et al.                        | its thrust is terminated                                                                                                                                                                                                             |
| Arming                                    | As applied to weapons and am-<br>munition, the changing from a<br>safe condition to a state of readi-<br>ness for initiation                                                             | defense (BMD)                       | A defensive system designed to<br>destroy incoming ballistic mis-<br>siles or their warheads Usually<br>conceived as structured in sever-<br>al different layers that attack mis-<br>siles in any of their trajectory                |
| Arms control                              | The process of limiting or reduc-<br>ing arms to lessen the risk of con-<br>flict and to reduce the conse-<br>quences of a conflict should it                                            |                                     | phases: boost phase, post-boost<br>phase, midcourse phase, and ter-<br>minal (or reentry) phase                                                                                                                                      |
|                                           | occur                                                                                                                                                                                    | Beryllium                           | Element with atomic number 4                                                                                                                                                                                                         |
| Arms control<br>agreement<br>verification | The collection, processing, and<br>reporting of data indicating test-<br>ing or employment of proscribed                                                                                 |                                     | and atomic weights between 6<br>and 11 Used in nuclear weapons<br>as a neutron reflector and a neu-<br>tron source                                                                                                                   |

-

| Beta particle             | An electron or positron emitted<br>by an atomic nucleus during ra-<br>dioactive decay                                                                                                                                                 |                   | tion, design, or material used in<br>the manufacture or utilization of<br>a nuclear weapon, nuclear explo-<br>sive device, or nuclear weapon                                                                                                                                                                                   |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Blanket                   | A layer of assemblies containing<br>fertile material, such as uranium-<br>238 or thorium-232, surrounding<br>the core of a nuclear reactor, for<br>the purpose of absorbing escap-<br>ing neutrons                                    | Control rods      | Rods of neutron absorbing mate-<br>rial that are inserted into the core<br>of a nuclear reactor to control its<br>operation                                                                                                                                                                                                    |
| Blast                     | The pressure pulse (shock wave)<br>in air initiated by the expansion<br>of the hot gases produced by an<br>explosion                                                                                                                  | Conversion ratio  | The ratio of the number of atoms<br>of new fissile materials produced<br>in a reactor to the number of at-<br>oms of fissile material con-                                                                                                                                                                                     |
| Blast yield               | That portion of the total energy<br>of a nuclear explosion that is<br>manifested as a blast (or shock)                                                                                                                                |                   | sumed This ratio is usually less<br>than unity                                                                                                                                                                                                                                                                                 |
| Boosted fission<br>weapon | wave<br>A nuclear weapon in which neu-<br>trons produced by thermonucle-<br>ar reactions serve to enhance the<br>fission process The thermonu-<br>clear energy represents only a<br>small fraction of the total explo-<br>sion energy | Crater            | The pit, depression, or cavity<br>formed in the surface of the earth<br>by a surface or underground ex-<br>plosion Crater formation can oc-<br>cur by vaporization of the surface<br>material, by the scouring effect of<br>air blast, by throwout of dis-<br>turbed material, or by subsi-<br>dence. In general, changes from |
| Burnup                    | The precentage of fuel atoms fis-<br>sioned during operation of a nu-<br>clear reactor Also, the energy<br>produced by a nuclear reactor,<br>usually expressed as Mwd per<br>MT of fuel                                               |                   | one process to the next occur<br>with increasing depth of burst<br>The apparent crater is the de-<br>pression which is seen after the<br>burst; it is smaller than the true<br>crater, which is covered with a                                                                                                                 |
| Byproduct material        | Any radioactive material (except<br>special nuclear material) yielded<br>in or made radioactive by expo-<br>sure to the radiation incident to<br>the production or utilization of<br>special nuclear material                         |                   | layer of loose earth, rock, etcet-<br>era In a deep underground burst<br>when there is no rupture of the<br>surface, the resulting cavity (a<br>sealed pocked of smoke and gas)<br>is called a comouflet                                                                                                                       |
| Chain reaction            | A series of reactions in fission-<br>able material in which neutrons<br>that are the product of fission re-<br>actions induce subsequent fis-<br>sions                                                                                | Critical facility | A research facility that contains<br>nuclear material and can sustain<br>a chain reaction but produces no<br>power and requires no cooling<br>Its core is designed for great flex-                                                                                                                                             |
| Cladding                  | The material forming the outer<br>layer of a nuclear fuel element<br>May be aluminum, steel, or Zir-<br>calloy, an alloy of zirconium                                                                                                 |                   | ibility and uses fuel that can be<br>repositioned and varied to inves-<br>tigate different reactor concepts<br>and core configurations                                                                                                                                                                                         |
| Command disable<br>system | A system incorporating com-<br>mand and control features that<br>destroys a weapon's ability to<br>achieve a significant nuclear<br>yield                                                                                             | Critical mass     | The least mass of fissionable ma-<br>terial that will allow a self-sus-<br>taining nuclear chain reactor<br>The critical mass depends on the<br>type of fissionable isotope, its                                                                                                                                               |
| Component                 | Any operational, experimental,<br>or research-related part, subsec-                                                                                                                                                                   |                   | chemical form, geometrical ar-<br>rangement, and density                                                                                                                                                                                                                                                                       |

| Critical nuclear<br>weapons design<br>information<br>(CNWDI) | That TOP SECRET Restricted<br>Data or SECRET Restricted Data<br>revealing the theory of operation<br>or design of the components of a<br>thermonuclear or implosion-<br>type fission bomb, warhead,<br>demolition munition, or test de-                                                                                          | Deuterium                      | A hydrogen isotope (atomic<br>weight 2) with one proton and<br>one neutron in the nucleus Rep-<br>resented by letter D or by H-2<br>Used as a thermonuclear fuel<br>constituent and as a neutron<br>moderator (in the form of heavy<br>underly in nuclear spectrum)                                   |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                              | mation concerning arming, fuz<br>ing, and firing systems; limited<br>life components; and total con-<br>tained quantity of fissionable, fu-<br>sionable, and high explosive ma-<br>terials by type Among these<br>excluded items are the compo-<br>nents which Service personnel<br>set, maintain, operate, test or re-<br>place | Disablement                    | The rendering of a nuclear weap-<br>on incapable of achieving a nu-<br>clear yield for some specified pe-<br>riod of time Not included in<br>disablement are the prevention<br>of the recovery of active nuclear<br>material and preventing the ob-<br>tainment of classified design in-<br>formation |  |
| Cruise missile                                               | A low-flying, air-breathing, guid-<br>ed missile that, like an aircraft,<br>relies on propulsion to balance<br>drag and aerodynamic lift to bal-<br>ance gravity                                                                                                                                                                 | Electromagnetic<br>pulse (EMP) | A sharp pulse of radio-frequency<br>(long wavelength) electromag-<br>netic radiation produced when a<br>nuclear explosion occurs in an                                                                                                                                                                |  |
| Cryogenic                                                    | Relating to the production of<br>very low temperatures                                                                                                                                                                                                                                                                           |                                | pecially at or near the earth's sur-<br>face or at high altitudes It is                                                                                                                                                                                                                               |  |
| Curie (Ci)                                                   | A unit of radioactivity; the activi-<br>ty of a quantity of any radioactive<br>nuclide undergoing 37 thousand<br>million disintegrations per sec-<br>ond                                                                                                                                                                         |                                | caused by Compton-recoil electrons and by photoelectrons Th<br>intense electric and magneti<br>fields can damage unprotecte<br>electrical and electronic equip<br>ment over a large area                                                                                                              |  |
| Custody                                                      | 1 As defined in the AEC-DOD<br>Stockpile Agreement, custody is<br>the responsibility for the control<br>of transfer and movement of and                                                                                                                                                                                          | Electron-volt                  | A unit of energy 22 5 billion tril-<br>lion electron-volts equal one kil-<br>owatt-hour                                                                                                                                                                                                               |  |
|                                                              | access to, weapons and compo-<br>nents Custody also includes the<br>maintenance of accountability<br>for weapons and components                                                                                                                                                                                                  | Enhanced radiation<br>weapon   | A nuclear explosive device<br>designed to maximize nuclear ra-<br>diation effects and reduce blast<br>and thermal effects                                                                                                                                                                             |  |
|                                                              | 2 As used within the individual<br>Military Services, custody is the<br>guardianship and safekeeping of<br>nuclear weapons and their com-<br>ponents and of source and spe-<br>cial nuclear material Custody<br>may or may not include account-                                                                                  | Enrichment                     | Increasing the concentration of<br>one isotope of an element rela-<br>tive to the other isotopes For ex-<br>ample, uranium-235 relative to<br>uranium-238 or plutonium-239<br>relative to plutonium-240                                                                                               |  |
|                                                              | ability                                                                                                                                                                                                                                                                                                                          | Feed material                  | A nuclear material introduced at<br>the start of a process or operation                                                                                                                                                                                                                               |  |
| Depleted uranium                                             | Uranium having a concentration<br>of U-235 smaller than found in<br>nature (0 711 percent)                                                                                                                                                                                                                                       |                                | (e g, uranium hexafluoride (UF <sub>6</sub> )<br>as the feed to an enrichment pro-<br>cess or uranium metal as the feed<br>to a fuel fabrication process)                                                                                                                                             |  |
| Detonator                                                    | A device containing a sensitive<br>explosive intended to produce a<br>detonation wave for detonating a<br>high explosive element                                                                                                                                                                                                 | Fertile isotope                | An isotope that is converted into<br>a fissile isotope, either directly or<br>after a brief decay process, by ab-<br>sorbing a neutron For example,                                                                                                                                                   |  |

|                      | fertile U-238 captures a neutron                                                                                                                                                                                                                                                                                                                                                          |                                   | monly known as atomic bomb                                                                                                                                                                                                                                                                                               |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | quently decays to fissile Pu-239                                                                                                                                                                                                                                                                                                                                                          | Fission yield                     | The amount of energy released<br>by fission in a thermonuclear (fu-                                                                                                                                                                                                                                                      |
| Fireball             | The luminous sphere of hot gases<br>produced by a nuclear explo-<br>sion                                                                                                                                                                                                                                                                                                                  |                                   | sion) explosion as distinct from<br>that released by fusion                                                                                                                                                                                                                                                              |
| Firing system        | The system of components in a<br>nuclear weapon that converts (if<br>necessary), stores, and releases<br>electrical energy to detonate the<br>weapon when commanded by<br>the fuzing system                                                                                                                                                                                               | Formerly Restricted<br>Data (FRD) | Information removed from the<br>Restricted Data category upon a<br>joint determination by the De-<br>partment of Energy (or antece-<br>dent agencies) and Department<br>of Defense that such information<br>relates primarily to the military                                                                            |
| Fissile material     | An isotope that readily fissions<br>after absorbing a slow neutron,<br>emitting 2 to 3 neutrons Fissile<br>materials are U-235, U-233, Pu-<br>239, and Pu-241                                                                                                                                                                                                                             |                                   | utilization of atomic weapons<br>and that such information can be<br>adequately safeguarded as classi-<br>fied defense information (Sec-<br>tion 142d, Atomic Energy Act of<br>1954, as amended )                                                                                                                        |
| Fission              | The splitting of the nucleus of a<br>heavy atom following absorption<br>of a neutron into two lighter nu-<br>clei, accompanied by the release<br>of neutrons, X-rays, gamma rays,<br>and kinetic energy of the fission<br>products                                                                                                                                                        | Fuel cycle                        | The set of chemical and physical<br>operations needed to prepare nu-<br>clear material for use in reactors<br>and to dispose of or recycle the<br>material after its removal from<br>the reactor                                                                                                                         |
| Fissionable material | A material that will undergo nu-<br>clear fission Includes fissile ma-<br>terials, but also isotopes such as<br>U-238 that are fissioned only by                                                                                                                                                                                                                                          | Fuel element                      | A rod, tube, or other form into<br>which nuclear fuel is fabricated<br>for use in a reactor                                                                                                                                                                                                                              |
| Fission products     | fast neutrons<br>The product nuclei resulting<br>from the fission of a heavy nucle-                                                                                                                                                                                                                                                                                                       | Fuel tabrication<br>plant         | A facility where the nuclear ma-<br>terial (eg, enriched or natural<br>uranium) is fabricated into fuel<br>elements for a reactor                                                                                                                                                                                        |
|                      | um-239) These are distin-<br>guished from the direct fission<br>products or fission fragments<br>that are formed by the actual                                                                                                                                                                                                                                                            | Fuel processing<br>plant          | A plant where irradiated fuel ele-<br>ments are dissolved, waste mate-<br>rials removed, and reusable ma-<br>terials are recovered                                                                                                                                                                                       |
|                      | splitting of the heavy-element<br>nucleus The fission fragments<br>are radioactive and decay into<br>daughter products The complex<br>mixture of fission products thus<br>formed contains about 200 dif-<br>ferent isotopes of over thirty ele-<br>ments                                                                                                                                  | Fusion                            | The process in which two light<br>nuclei atoms, especially isotopes<br>of hydrogen, combine to form a<br>heavier nucleus with the release<br>of a substantial amount of ener-<br>gy Extremely high temperatures,<br>resulting in highly energetic,<br>fast-moving nuclei, are required                                   |
| Fission weapon       | A nuclear warhead whose mate-<br>rial is uranium or plutonium that<br>is brought to a critical mass<br>under pressure from a chemical<br>explosive detonation to create an<br>explosion that produces blast,<br>thermal radiation, and nuclear<br>radiation The complete fission<br>of one pound of fissionable mate-<br>rial would have a yield equiva-<br>lent to 8000 tons of TNT Com- | Fusion weapon                     | Nuclear warhead containing fu-<br>sion materials (e.g. deuterium<br>and tritium) that are brought to<br>critical density and temperature<br>conditions by use of a primary<br>fission reaction (thermonuclear)<br>in order to initiate and sustain a<br>rapid fusion process, which in<br>turn creates an explosion that |

| 20 Th 01 D        |                                                                                                                                                                                |                                         |                                                                                                                                                                                            |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | produces blast, thermal radia-<br>tion, and nuclear radiation Com-                                                                                                             |                                         | um, with atomic numbers of 90<br>and above                                                                                                                                                 |
| Fuze              | Monly known as hydrogen bomb<br>or thermonuclear weapon<br>A union of one or more subas-<br>semblies or major components                                                       | Heavy water                             | Water containing significantly<br>more than the natural proportion<br>(1 part in 6500) of deuterium at-<br>oms (as D <sub>2</sub> O) to ordinary hydro-<br>gen atoms (as H <sub>2</sub> O) |
|                   | that, when combined with other<br>major assemblies as required<br>(such as bomb, power supply,<br>etc.), is capable either in itself or                                        | Heavy water reactor                     | A nuclear reactor that uses heavy<br>water as moderator and/or cool-<br>ant                                                                                                                |
|                   | in conjunction with a firing set of<br>controlling the electrical or<br>mechanical arming and firing of<br>a weapon                                                            | Helium                                  | Element (symbol He) with atom-<br>ic number 2 and atomic weights<br>between 3 and 8                                                                                                        |
| Fuzing system     | The system of components in a nuclear weapon that determines the time and place to determine                                                                                   | Highly enriched<br>uranium (HEU)        | Uranium that is enriched in U-<br>235 to above 20 percent, usually<br>90 percent or greater                                                                                                |
| Gamma ray         | the weapon<br>High-energy electromagnetic ra-                                                                                                                                  | High-level waste<br>(HLW)               | The highly radioactive waste<br>containing fission products that<br>is discharged from a nuclear fuel                                                                                      |
| Gumina Tay        | diation emitted by nuclei during<br>nuclear reactions or radioactive<br>decay                                                                                                  | Homogenous core                         | A reactor core composed of only<br>one type of fuel assembly                                                                                                                               |
| Gaseous diffusion | An isotope separation process<br>used for enriching uranium in<br>uranium-235 based on the fact<br>that the lighter isotopes of a cas                                          | Igloo                                   | An earth-covered structure of<br>concrete and/or steel designed<br>for the storage of ammunition<br>and explosives                                                                         |
|                   | diffuse through a porous barrier<br>at a greater rate than the heavier<br>isotopes                                                                                             | Implosion weapon                        | A weapon in which a quantity of<br>fissionable material, less than a<br>critical mass at ordinary pres-<br>sure, has its volume suddenly re-                                               |
| Gas centrifuge    | A rotating cylinder that can be<br>used for enrichment of uranium<br>hexafluoride gas The heavier<br>uranium isotope U-238 tends to<br>concentrate at the walls of the ro-     |                                         | duced by compression (a step ac-<br>complished by using chemical<br>explosives) so that it becomes<br>supercritical, producing a nucle-<br>ar explosion                                    |
|                   | tating centrifuge, leaving urani-<br>um enriched in U-235 near the<br>center                                                                                                   | Inertial confinement<br>fusion (ICF)    | A concept for attaining the densi-<br>ty and temperature condition<br>that will produce nuclear fusion<br>by use of lasers or particle beams                                               |
| Gun-type weapon   | A device in which two or more<br>pieces of fissionable material,<br>each less than a critical mass, are<br>brought together very rapidly so<br>as to form a supercritical mass |                                         | to compress and heat small pel-<br>lets of fusion fuel The energy re-<br>leased is in the form of fast neu-<br>trons, X-rays, charged particles,<br>and debris                             |
|                   | that can explode as the result of a<br>rapidly expanding fission chain                                                                                                         | Initial operational<br>capability (IOC) | The date when the first combat<br>missile unit is equipped and<br>trained, and logistic support es-                                                                                        |
| Half-life         | The time in which one half of a<br>quantity of identical radioactive<br>atoms decays                                                                                           |                                         | tablished to permit performance<br>of combat missions in the field<br>An initial operational capability                                                                                    |
| Heavy metal       | The fuel materials, including<br>uranium, plutonium and thori-                                                                                                                 |                                         | missile system as a target date for<br>delivery of combat equipment,                                                                                                                       |
|                   |                                                                                                                                                                                |                                         |                                                                                                                                                                                            |

198 Nuclear Weapons Databook, Volume II

|                                                   | repair parts, maintenance equip-<br>ment, and publications, plus<br>supply of trained personnel                                                                                                                                                                                      |                                      | Joint test assembly, rebuild<br>Weapons randomly selected<br>from War Reserve stockpile in<br>which the pupper explosive                                                                                       |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intercontinental<br>ballistic missile<br>(ICBM)   | A land-based rocket-propelled<br>vehicle capable of delivering a<br>warhead over intercontinental<br>distances Once rocket propul-                                                                                                                                                   |                                      | package is removed and instru-<br>mentation substituted prior to<br>evaluation                                                                                                                                 |
|                                                   | sion is terminated an ICBM trav-<br>els on a ballistic trajectory                                                                                                                                                                                                                    | Joint test<br>subassembly (JTS)      | The instrumented package sub-<br>stituted for the nuclear explosive<br>package                                                                                                                                 |
| Intermediate-range<br>ballistic missile<br>(IRBM) | A ballistic missile, with a range<br>capability from about 1500 to<br>3000 nautical miles                                                                                                                                                                                            | Kiloton (Kt)                         | The energy of a nuclear ex-<br>plositon that is equivalent to the                                                                                                                                              |
| Ion exchange                                      | Chemical methods of recovering<br>products or removing impurities                                                                                                                                                                                                                    |                                      | explosion of 1000 tons of trini-<br>trotoluene (TNT) high explosive                                                                                                                                            |
|                                                   | from solutions involving the ex-<br>change of ions between the solu-<br>tion and an insoluble resin Used<br>in uranium milling to recover<br>uranium from acid leach liquors<br>and in fuel processing for final<br>product decontamination and<br>the separation of certain fission | Laser                                | A device that produces a coher-<br>ent, intense, and collimated<br>beam of electromagnetic radia-<br>tion of well-determined wave-<br>length, through a physical pro-<br>cess known as stimulated<br>emission  |
|                                                   | products from high level waste<br>For the separation of metals, ion<br>exchange is preferable over sol-<br>vent extraction for small quanti-<br>ties or low concentrations                                                                                                           | Laser isotope<br>separation (LIS)    | An enrichment process in which<br>desired isotopes are separated by<br>differentially exciting a vapor or<br>gas with a finely tuned laser<br>Used to separate U-235 from U-<br>238 and Pu-240 and Pu-244 from |
| Irradiation                                       | Exposure to neutrons in a nucle-<br>ar reactor More generally, expo-                                                                                                                                                                                                                 |                                      | Pu-239                                                                                                                                                                                                         |
| Isotopes                                          | Atoms of the same chemical ele-                                                                                                                                                                                                                                                      | Light-water reactor                  | A nuclear reactor that uses ordi-<br>nary water as moderator and<br>coolant                                                                                                                                    |
|                                                   | ment having different numbers<br>of neutrons in their nucleus An<br>isotope is specified by its atomic<br>number and a symbol denoting<br>the chemical element (e.g., U-<br>235 for uranium with 235 neu-<br>trons and protons)                                                      | Liquid-metal fast<br>breeder reactor | A nuclear reactor that uses a liq-<br>uid metal (e g, sodium) for cool-<br>ing, operates with high-energy<br>(fast) neutrons, and produces<br>more fissionable material than it<br>consumes                    |
| Joint test assembly<br>(JTA)                      | Warheads and bombs employed<br>in test projects JTAs are non-nu-<br>clear test configurations with ap-<br>propriate instrumentation in-<br>stalled                                                                                                                                   | Lithium                              | Element with atomic number 3<br>and atomic weight between 5<br>and 9 As thermonuclear fuel<br>constituent, it is usually com-<br>pounded with deuterium                                                        |
|                                                   | Joint test assembly, pre-build In-<br>strumented warheads on bombs<br>assembled alongside war reserve                                                                                                                                                                                | Low-enriched<br>uranium              | Uranium enriched in U-235 to<br>less than 20 percent, usually 2 to<br>4 percent                                                                                                                                |
|                                                   | weapons The nuclear explosive<br>package is excluded, with instru-<br>mentation substituted that will<br>allow subsystem evaluation at a<br>later time during weapon evalua-<br>tion                                                                                                 | Mean free path                       | The average path distance a par-<br>ticle (neutron or photon) travels<br>before undergoing a specified re-<br>action (with a nucleus or elec<br>tron) in matter                                                |
|                                                   |                                                                                                                                                                                                                                                                                      |                                      |                                                                                                                                                                                                                |

| Megaton (Mt)                                                      | A measure of the explosive yield<br>of a nuclear weapon equivalent<br>to one million tons of trinitrotol-<br>uene (TNT) high explosive                                                                                                                                                                              |                                  | dies out and the reactor is "sub-<br>critical"; for k greater than unity<br>the reaction grows and is "super-<br>critical "                                                                                                                            |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                   | Equal approximately to one<br>thousand million calories or 4 2<br>thousand million million joules                                                                                                                                                                                                                   | National Security<br>Information | A category of information classi-<br>fied under Executive Order<br>12356, "National Security Infor-<br>mation "                                                                                                                                        |
| Megawatt thermal<br>(Mw <sub>t</sub> )                            | A measure of the rate of heat pro-<br>duction (power output) in a nu-<br>clear reactor equal to one million<br>watts                                                                                                                                                                                                | Natural uranium                  | Uranium as found in nature, con-<br>taining about 0 7 11 percent of U-<br>235, 99 3 percent of U-238, and a<br>trace of U-234                                                                                                                          |
| Megawatt-day<br>(Mwd)                                             | A measure of thermal energy pro-<br>duction in a nuclear reactor One<br>Mwd is equal to 864 thousand<br>million joules                                                                                                                                                                                              | Neutron flux                     | A measure of the intensity of<br>neutron radiation equal to the<br>product of neutron density and<br>velocity Expressed as the<br>number of neutrons per square                                                                                        |
| Military                                                          | Those characteristics of equip-                                                                                                                                                                                                                                                                                     |                                  | centimeter per second                                                                                                                                                                                                                                  |
| characteristics                                                   | ment upon which depend its<br>ability to perform desired mili-<br>tary functions Military charac-<br>teristics include physical and<br>operational characteristics but<br>not technical characteristics                                                                                                             | Neutron generator                | A high-voltage vacuum tube<br>used in contemporary nuclear<br>weapons to furnish neutrons at a<br>precise instant to begin fission<br>reactions in fissile cores                                                                                       |
| "Mod" designator<br>number                                        | Modifications made to the major<br>assembly design of a weapon sys-                                                                                                                                                                                                                                                 | Nuclear component                | A part of a nuclear weapon that<br>contains fissionable or fusion-<br>able material                                                                                                                                                                    |
|                                                                   | tem Mod-0 is the first version of<br>a weapon design, with subse-<br>quent modifications of the weap-<br>on design numbered consecu-<br>tively                                                                                                                                                                      | Nuclear device                   | Nuclear fission or fission and fu-<br>sion materials, together with the<br>arming, fuzing, firing, chemical<br>explosive, canister, and diagnos-<br>tic measurement equipment, that                                                                    |
| Moderator                                                         | A material (e g, water, heavy<br>water, or graphite) in the core of<br>a nuclear reactor that slows neu-                                                                                                                                                                                                            |                                  | have not reached the develop-<br>ment status of an operational<br>weapon                                                                                                                                                                               |
|                                                                   | trons by elastic collision, thus in-<br>creasing their chance of absorp-<br>tion by a fissile nucleus                                                                                                                                                                                                               | Nuclear radiation                | Particle and electromagnetic ra-<br>diation emitted from atomic nu-<br>clei in various nuclear processes                                                                                                                                               |
| Metric Ton (MT)                                                   | 1000 kilograms, or 2205 pounds                                                                                                                                                                                                                                                                                      |                                  | The important nuclear radia-                                                                                                                                                                                                                           |
| Multiple<br>independently<br>targetable reentry<br>vehicle (MIRV) | Multiple reentry vehicles carried<br>by a ballistic missile, each of<br>which can be directed to a sepa-<br>rate and arbitrarily located tar-<br>get                                                                                                                                                                |                                  | standpoint, are alpha and be<br>particles, gamma rays, and ne<br>trons X-rays are not nuclear<br>diations since they do not originate in atomic nuclei                                                                                                 |
| Multiplication<br>Factor (k)                                      | A quantity that describes the de-<br>gree to which a chain reacting<br>system can sustain operation k<br>is equal to the ratio of the<br>number of neutrons in a given<br>generation to the number in the<br>preceding generation When k is<br>equal to unity, the fission chain<br>reaction is self-sustaining and | Nuclear reactor                  | A device in which a controlled,<br>self-sustaining nuclear reaction<br>can be maintained with provi-<br>sions for cooling to remove gen-<br>erated heat Types include pow-<br>er reactors, research and test<br>reactors, and production reac-<br>tors |
|                                                                   | the reactor is "critical"; for k less<br>than unity, the chain reaction                                                                                                                                                                                                                                             | Nuclear waste                    | The radioactive by-products<br>formed by fission and other nu-                                                                                                                                                                                         |

|                                 | clear processes in a reactor Sep-<br>arated from spent fuel in a pro-<br>cessing plant                                                                                           | Pipeline           | Refers to the quantity of an item<br>required in the supply system to<br>maintain an uninterrupted re-<br>placement flow                                                                                           |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclear weapon                  | A device that releases nuclear<br>energy in an explosive matter as<br>the result of nuclear reactions in-<br>volving the fission or fusion of<br>atomic nuclei, or both          | Pit                | The components of a warhead lo-<br>cated within the inner boundary<br>of the high explosive assembly<br>but not including safing materi-<br>als                                                                    |
| Nuclear weapons<br>effects      | Effects associated with the ex-<br>plosion of a nuclear weapon, in-<br>cluding blast, heat, X-rays,<br>prompt nuclear radiation, and<br>electromagnetic pulse                    | Plutonium          | A heavy, man-made, radioactive<br>metallic element (symbol Pu)<br>The most important isotopes are<br>Pu-238 and Pu-239                                                                                             |
| <br>Nuclear winter              | Global effects of nuclear war re-<br>sulting in the lowering of land<br>surface temperatures to near<br>freezing or below due to the<br>spread of massive amounts of             | Plutonium-239      | A fissile isotope produced by<br>neutron capture in uranium-238<br>It is used in the core of nuclear<br>weapons                                                                                                    |
|                                 | smoke from fires and dust<br>through the atmosphere screen-                                                                                                                      | Plutonium-240      | An isotope of plutonium, pro-<br>duced in reactors by neutron                                                                                                                                                      |
| One-point<br>detonation         | A detonation of high explosive<br>which is initiated at a single<br>point This type of detonation<br>may be intentionally initiated in<br>certain self-destruct systems          |                    | capture in Pu-239 Because of its<br>high rate of spontaneous fission,<br>its presence increases the chance<br>of preinitiation and affects the<br>design and operation of nuclear<br>explosive devices             |
| One-point safe                  | The probability that the detona-<br>tion of the high explosive of a nu-<br>clear weapon by initiation at any<br>one point has a chance of no<br>greater than one in a million of | Preinitiation      | The initiation of the fission chain<br>reaction in the active material of<br>a nuclear weapon at any time<br>earlier than at which either the<br>designed or the maximum com-<br>pression or degree of assembly is |
|                                 | cess of 4-pounds TNT equiva-<br>lent It is a term to describe the<br>degree of safety in a nuclear<br>weapon                                                                     | Primary            | attained<br>The fission trigger or first stage of<br>a multistage thermonuclear<br>weapon or device                                                                                                                |
| Oralloy                         | loy Highly enriched uranium<br>metal, typically 93 5 percent U-<br>235, used in nuclear weapons                                                                                  | Production         | The conversion of raw materials<br>into products and/or compo-<br>nents through a series of manu-<br>facturing processes. It includes                                                                              |
| <br>Organic phase               | In solvent extraction processes<br>(e g , PUREX) for fuel processing,<br>the solvent (organic) containing<br>layer, as differentiated from the                                   |                    | functions of production engi-<br>neering, controlling, quality as-<br>surance, and the determination<br>of resources requirements                                                                                  |
| Permissive action<br>link (PAL) | A device included in or attached<br>to a nuclear weapon system to<br>preclude arming and/or launch-<br>ing until the insertion of a pre-                                         | Production reactor | A nuclear reactor that is<br>designed primarily for the pro-<br>duction of plutonium, tritium,<br>and other isotopes by neutron ir-                                                                                |
|                                 | scribed discrete code or combi-<br>nation                                                                                                                                        |                    | radiation of selected target mate-<br>rials                                                                                                                                                                        |

| PUREX                | Abbreviation for Plutonium            |                      | sion products and from each          |
|----------------------|---------------------------------------|----------------------|--------------------------------------|
| 10000 BAR 10         | U[R]anium E[X]traction A sol-         |                      | other                                |
|                      | vent extraction process common-       | Pagaarch and         | The phases through which RED         |
|                      | - Iy used in fuel processing that in- | development (R&D)    | effort passes in its evolution from  |
|                      | dividually separates the              | nhases               | initial inception to mature tech-    |
|                      | nium from the accompanying fig.       | Fritaboa             | nology are: (1) basic research, (2)  |
|                      | sion products contained in the in-    |                      | applied research, (3) exploratory    |
|                      | and products contained in the n-      |                      | development, (4) advanced de-        |
|                      | Tadiateo Tuer                         |                      | velopment, and (5) engineering       |
| Quality assurance    | A continuing program of test and      |                      | development                          |
| (QC)                 | evaluation to determine whether       | B                    | A number reactor that is             |
|                      | weapons materiel is of satisfacto-    | Research reactor     | A nuclear reactor that is            |
|                      | ry quality, to determine the de-      |                      | and meansch                          |
|                      | gree of conformance to design in-     |                      | and research                         |
|                      | tent, and to determine the status     | Resonance capture    | An inelastic nuclear collision       |
|                      | of functional stockpile readiness     |                      | that occurs because of the strong    |
|                      | through the use of periodic in-       |                      | tendency for a nucleus to capture    |
|                      | spection reports and other            |                      | incident particles or photons of     |
|                      | CHOCKS                                |                      | electromagnetic radiation having     |
| Radioactivity        | The spontaneous disintegration        |                      | particular (resonant) energies       |
|                      | of an unstable atomic nucleus re-     | Restricted Data (RD) | All data (information) concern-      |
|                      | sulting in the emission of either     | surviva sam (ras)    | ing: (a) design, manufacture, or     |
|                      | alpha or beta particles, gamma        |                      | utilization of atomic weapons;       |
|                      | rays, or neutrons                     |                      | (b) the production of special nu-    |
| Reactor core         | The central portion of a nuclear      |                      | clear material; or (c) the use of    |
| Reactor core         | reactor containing the fuel ele-      |                      | special nuclear material in the      |
|                      | ments                                 |                      | production of energy, but shall      |
|                      | 6667-03 UP                            |                      | not include data declassified or     |
| Reclama              | A request to duly constituted au-     |                      | removed from the restricted data     |
|                      | thority to reconsider its decision    |                      | of the Atomic Energy Act (Sec.       |
|                      | or its proposed action                |                      | tion 11w. Atomic Energy Act of       |
| Recycle              | The reuse of unburned uranium         |                      | 1954, as amended )                   |
| ive yere             | and plutonium in fresh fuel after     | 2022                 |                                      |
|                      | separation from fission products      | Safing               | As applied to weapons and am-        |
|                      | in spent fuel at a reprocessing       |                      | munition, the changing from a        |
|                      | plant                                 |                      | state of readiness for initiation to |
|                      | mit a star for this star at           |                      | a sale condition                     |
| Reentry vehicle (RV) | I hat portion of a ballistic missile  | Salt cake            | The damp solid formed when the       |
|                      | head It is called a monthy wahi       |                      | liquid fraction of the high-level    |
|                      | cla because it reenters the earth's   |                      | waste is removed through the use     |
|                      | atmosphere in the terminal por-       |                      | of an evaporation crystallizer       |
|                      | tion of the missile trajectory        | Scrap                | Rejected nuclear material re-        |
|                      | con or my mostly impressing           | - and P              | moved from the process stream        |
| Reflector            | A layer of material immediately       |                      | Often requires separation from       |
|                      | surrounding a reactor core which      |                      | contaminants or chemical treat-      |
|                      | scatters back or deflects into the    |                      | ment to return the material to a     |
|                      | core many neutrons that would         |                      | state acceptable for subsequent      |
|                      | otherwise escape Also, in nucle-      |                      | processing                           |
|                      | ar warneads Lommon reflector          | Separative work      | A measure of the effort required     |
|                      | um and natural uranium                | Solution to the set  | in an enrichment plant or unit to    |
|                      | um, aug naturat uranfum               |                      | separate uranium of a given U-       |
| Reprocessing         | The chemical treatment of spent       |                      | 235 content into two fractions,      |
|                      | reactor fuel to separate the pluto-   |                      | one having a higher percentage       |
|                      | nium and uranium from the fis-        |                      | and one having a lower percent-      |

|                                              | age of U-235 The unit of separa-<br>tive work is the kilogram separa-<br>tive work unit (kg SWU)                                                                                                                                                    |                                      | related physical environments<br>involved in the delivery of a nu-<br>clear weapon from the stockpile<br>to the target It may also define                                                                                                                      |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Solvent extraction                           | Chemical methods of recovering<br>metals based on their preferen-<br>tial solubility in solvents immis-<br>cible in water Used in uranium<br>milling to separate uranium from<br>leach liquor and in fuel process-<br>ing to separate plutonium and |                                      | the logistical flow involved in<br>moving nuclear weapons to and<br>from the stockpile for quality as-<br>surance testing, modification<br>and retrofit, and the recycling of<br>limited life components                                                       |
| Source material                              | As defined under the Atomic En-<br>ergy Act, ores containing urani-<br>um or thorium                                                                                                                                                                | Strategic forces                     | Nuclear weapons and delivery<br>systems designed for nuclear at-<br>tack against strategic targets or<br>for active defense agains such an<br>attack Bombers, missile sys-<br>tems, and strategic interceptors                                                 |
| Special isotope<br>separation (SIS)<br>plant | DOE facility using the atomic va-<br>por laser isotope separation (AV-<br>LIS) process (or molecular laser<br>isotope separation (MLIS) pro-<br>cess) to enrich plutonium in the<br>isotope Pu-239                                                  |                                      | Commonly refers to offensive<br>weapons in the United States<br>and Soviet Union that can deliv-<br>er a nuclear strike on each other<br>or a third party                                                                                                      |
| Special nuclear<br>material (SNM)            | As defined under the Atomic En-<br>ergy Act, plutonium, uranium-<br>233, and uranium enriched in<br>the isotope U-233 or the isotope<br>U-235 SNM does not include<br>source material such as natural<br>uranium or thorium                         | Stripping                            | In uranium enrichment, the pro-<br>cess of enriching the tails of an<br>enrichment plant or previous en-<br>richment stage In the PUREX<br>solvent extraction process, the<br>transfer of product from the or-<br>ganic phase back into the aque-<br>ous phase |
| Spent fuel                                   | Fuel elements that have been re-<br>moved from the reactor because<br>they contain too little fissile ma-<br>terial and too high a concentra-<br>tion of radioactive fission prod-                                                                  | Subcritical<br>Submarine-            | An assembly containing an in-<br>sufficient quantity of fissile fuel<br>to sustain a fission reaction<br>A ballistic missile carried in and                                                                                                                    |
|                                              | ucts They are highly radioactive                                                                                                                                                                                                                    | launched ballistic<br>missile (SLBM) | capable of being launched from a submarine                                                                                                                                                                                                                     |
| Stimulated emission                          | Physical process by which an ex-<br>cited molecule is induced by in-<br>cident radiation to emit radiation<br>at an identical frequency and in<br>phase with the incident radia-<br>tion                                                            | Tactical nuclear<br>weapons          | Nuclear capable devices as-<br>signed to support the conduct of<br>battles and deployed close to<br>likely areas of military engage-<br>ment                                                                                                                   |
| Stockpile                                    | Nuclear storage Also, the total<br>number of nuclear weapons<br>which a nation maintains in stor-<br>age at all locations and potential-                                                                                                            | Tails                                | The depleted stream of an en-<br>richment plant or stage after the<br>enriched product is removed<br>Expressed as percent of U-235<br>content Also, applies to the de-                                                                                         |
| Stockpile to target sequence                 | 1 The order of events involved<br>in removing a nuclear weapon<br>from storage, and assembling,<br>testing, transporting, and deliv-<br>ering it on the target 2 A docu-<br>ment that defines the logistical                                        | Tamper                               | pleted stream from uranium<br>milling<br>A heavy, dense material sur-<br>rounding the fissionable material<br>in an atomic weapon, for the pur-<br>pose of holding the supercritical                                                                           |
|                                              | and employment concepts and                                                                                                                                                                                                                         |                                      | assembly together longer by its                                                                                                                                                                                                                                |

|                               | inertia, and also for the purpose<br>of reflecting neutrons, thus in-<br>creasing the fission rate of the ac-                                                                                                  | Uranium-233                        | A fissile isotope bred by neutron<br>capture in thorium-232 It is sim-<br>ilar in weapons use to Pu-239                                                                                                                                   |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target                        | Material irradiated with neu-<br>trons in a production reactor in<br>order to produce plutonium-239,<br>tritium, uranium-236, plutoni-<br>um-238, or other desired iso-<br>topes                               | Uranium-235                        | The only naturally occurring fis-<br>sile isotope Natural uranium has<br>0 7 percent of U-235 Reactors<br>use natural or enriched uranium<br>as fuel Weapons use uranium<br>enriched to about 93 5 percent U-<br>235                      |
| Thermal neutrons              | Low-energy, low-speed neutrons<br>in thermal equilibrium with<br>their surroundings Frequently                                                                                                                 | Uranium-238                        | A fertile isotope from wich Pu-<br>239 can be bred It comprises<br>99 3 percent of natural uranium                                                                                                                                        |
|                               | neutrons with speed of 2200 m/s                                                                                                                                                                                | Uranium<br>hexafluoride            | A volatile compound of uranium<br>and fluorine that is a white crys-                                                                                                                                                                      |
| Thermal reactor               | A reactor in which the fission<br>chain reaction is sustained by<br>low-energy (thermal) neutrons<br>which have been moderated to<br>thermal energy in order to in-<br>crease reaction probabilities           |                                    | talline solid at room temperature<br>and atmospheric pressure but va-<br>porizes upon heating, at 56 6 de-<br>grees C Feedstock in gaseous dif-<br>fusion, gas centrifuge, and other<br>enrichment processes                              |
| Thermonuclear<br>weapon       | A nuclear weapon (also referred<br>to as hydrogen weapon) in which<br>the main contribution to the ex-<br>plosive energy results from fu-<br>sion of light nuclei, such as deu-<br>terium and tritium The high | Uranium milling                    | The process by which uranium<br>ore containing only a very small<br>percentage of uranium oxide<br>$(U_3O_8)$ is converted into material<br>containing a high percentage (80<br>percent) of $U_3O_8$ , often referred<br>to as yellowcake |
|                               | temperatures required for such<br>fusion reactions are obtained by<br>means of an initial fission explo-                                                                                                       | Uranium ore<br>concentrate         | U <sub>3</sub> O <sub>8</sub> , often referred to as yellow-<br>cake                                                                                                                                                                      |
|                               | sion                                                                                                                                                                                                           | Vitrification                      | The solidification process in<br>which high level waste is melted                                                                                                                                                                         |
| Thorium-232                   | from which the fissile isotope U-<br>233 can be bred by neutron cap-<br>ture                                                                                                                                   | Warhead                            | with a frit to form a glass<br>That part of a missile, projectile,<br>torpedo, rocket, or other muni-<br>tion which contains either the                                                                                                   |
| Transuranic (TRU)<br>elements | Elements with atomic number<br>greater than uranium fatomic                                                                                                                                                    |                                    | nuclear or the thermonuclear<br>system, high explosive system,                                                                                                                                                                            |
|                               | number 92) They include neptu-<br>nium, plutonium, americium,<br>and curium                                                                                                                                    |                                    | chemical or biological agents, or<br>inert materials, intended to in-<br>flict damage                                                                                                                                                     |
| Tritium                       | An isotope of hydrogen, with an atomic number 1, atomic weight of 3, and a nucleus composed of                                                                                                                 | War reserve<br>(nuclear)           | Nuclear weapons materiel stock-<br>piled in the custody of the De-<br>partment of Energy or transferred                                                                                                                                   |
|                               | one proton and two neutrons<br>Tritium decays by beta decay,<br>with a half-life of 12 3 years It                                                                                                              |                                    | of Defense and intended for em-<br>ployment in the event of war                                                                                                                                                                           |
|                               | can be produced by lithium-6<br>bombardment in nuclear reactors<br>or in the fusion fuel of thermonu-                                                                                                          | Weapons grade (or<br>weapon-grade) | Nuclear material considered<br>most suitable for a nuclear weap-<br>on Uranium enriched to about                                                                                                                                          |
|                               | clear weapons Represented by T<br>or H-3                                                                                                                                                                       |                                    | 93% U-235 (Oralloy) or plutoni-<br>um with greater than about 93%                                                                                                                                                                         |

|                          | Pu-239 Weapons can be<br>fabricated from lower grade ma-<br>terial                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Wooden bomb              | A concept which pictures a<br>weapon as being completely reli-<br>able and having an infinite shelf<br>life while at the same time re-<br>quiring no special handling, stor-<br>age, or surveillance                                                                                                                                                                                                          |  |  |  |
| X-rays                   | Intermediate energy electromag-<br>netic radiation, typically emitted<br>during atomic transitions, hav-<br>ing wavelength shorter than 10<br>billionths of a meter Differenti-<br>ated from more energetic and<br>shorter wavelength gamma rays,<br>which originate in the nucleus                                                                                                                           |  |  |  |
| X-ray laser              | A laser producing a beam of co-<br>herent x-rays A device driven by<br>a nuclear explosion to produce a<br>burst of coherent X-ray radiation<br>before the device is vaporized by<br>the fireball                                                                                                                                                                                                             |  |  |  |
| Yellowcake               | The product of the uranium mill-<br>ing process, containing about 80<br>percent U <sub>3</sub> O <sub>8</sub> Loosely, U <sub>3</sub> O <sub>8</sub> it-<br>self                                                                                                                                                                                                                                              |  |  |  |
| Yield                    | The energy released in a nuclear<br>explosion, expressed usually as<br>the number of tons of TNT re-<br>leasing the same amount of ener-<br>gy The total yield is manifested<br>as nuclear radiation, thermal ra-<br>diation, and blast energy, the ac-<br>tual distribution being depend-<br>ent upon the medium in which<br>the explosion occurs, the type of<br>weapon, and the time after deto-<br>nation |  |  |  |
| Yield-to-weight ratio    | o The ratio of the yield to the mass<br>of a nuclear warhead Expressed<br>as Kt per kg or Mt per kg                                                                                                                                                                                                                                                                                                           |  |  |  |
| Yield-to-volume<br>ratio | The ratio of the yield to the vol-<br>ume of a nuclear warhead                                                                                                                                                                                                                                                                                                                                                |  |  |  |

| A                                       |                                                   | ASD           | Aeronautical Systems Division                      |
|-----------------------------------------|---------------------------------------------------|---------------|----------------------------------------------------|
| AASM                                    | Advanced Air-Surface Missile<br>System            | ASDP          | Assistant Secretary for Defense<br>Programs        |
| AAU                                     | Argonne Associated Universities                   | ASN (R,E & S) | Assistant Secretary of the Navy                    |
| ABM                                     | Anti-Ballistic Missile                            |               | (Research, Engineering, and Sys-<br>tems)          |
| ADM                                     | Atomic Demolition Munition                        | ASROC         | Anti-Submarine R/OClket                            |
| AEC                                     | Atomic Energy Commission                          | ASTD (AE)     | Assistant to the Secretary of De-                  |
| AF                                      | Air Force                                         |               | fense (Atomic Energy)                              |
| AFB                                     | Air Force Base                                    | ASW           | Anti-Submarine Warfare                             |
| AFGL                                    | Air Force Geophysics Laboratory                   | ATB           | Advanced Technology Bomber                         |
| AFS                                     | Air Force Station                                 | A7717 A       | ("Stealth")                                        |
| AFSC                                    | Air Force Systems Command                         | AIF-1         | Advanced Toroidal Facility-1                       |
| AFRRI                                   | Armed Forces Radiobiology Re-<br>search Institute | AVLIS         | Atomic Vapor Laser Isotope Sep-<br>aration         |
| AFWL                                    | Air Force Weapons Laboratory                      | AWST          | Aviation Week and Space Tech-<br>nology (magazine) |
| AGC                                     | Advanced Gas Centrifuge                           |               |                                                    |
| AIS                                     | Advanced Isotope Separation                       | В             |                                                    |
| Al                                      | Aluminum                                          | в             | Bomb                                               |
| ALO                                     | Albuquerque Operations Office                     | BCSR          | Boeing Computer Services, Rich-                    |
| Am                                      | Americium                                         | 120           | land, Inc                                          |
| AMAC                                    | Aircraft Monitor and Control                      | Be            | Beryllium                                          |
| AMC                                     | Army Materiel Command                             | BeO           | Beryllium Oxide                                    |
| AMCCOM                                  | Army armament Munitions and                       | BMD           | Ballistic Missile Defense                          |
|                                         | Chemical C[O]mmand                                | BNL           | Brookhaven National Laboratory                     |
| AMU                                     | Atomic Mass Unit                                  | BOAR          | Bureau of Ordnance Atomic                          |
| ANCA                                    | Army Nuclear and Chemical<br>Agency               | BPET          | Rocket<br>Breeder Processing Engineering           |
| ANL                                     | Argonne National Laboratory                       |               | Test                                               |
| Ar                                      | Argon                                             | BWIP          | Basalt Waste Isolation Project                     |
| ARES                                    | Advanced Research EMP Simu-<br>lator              | BWR           | Boiling Water Reactor                              |
| ARHCO                                   | Atlantic Richfield Hanford                        | С             |                                                    |
| 000000000000000000000000000000000000000 | C[O]mpany                                         | CARL          | Comparative Animal Research                        |
| ARSTAF                                  | A[R]my S[TAF]f                                    |               | Laboratory                                         |

| <u>.</u>  |                                                      | Glossar | y of Abbreviations and Acronyms                      |
|-----------|------------------------------------------------------|---------|------------------------------------------------------|
| CCD       | Counter[C]urrent Decantation                         | DNA     | Defense Nuclear Agency                               |
| Cf        | Californium                                          | DOD     | Department of Defense                                |
| CFMO      | Central Scrap Management Of-                         | DOE     | Department of Energy                                 |
|           | fice                                                 | DPS     | Decision Package Sets                                |
| CFX<br>CG | Californium Multiplia<br>Consolidated Guidance       | DRAAG   | Design Review And Acceptance<br>Group                |
| CGN       | Nuclear powered cruiser                              | DRP     | Defense Review Panel                                 |
| Ci        | Curie                                                | DSARC   | Defense Systems Acquisition Re-                      |
| Cm        | Carium                                               |         | view Council                                         |
| CND       | Campaign for Nuclear Disarma-<br>ment                | DSCS    | Defense Satellite Communica-<br>tions System         |
| CNO       | Chief of Naval Operations                            | D-T     | Deuterium-Tritium                                    |
| CO.       | Carbon Dioxide                                       | DU      | Depleted Uranium                                     |
| COE       | Chief Of Engineers                                   | DWPF    | Defense Waste Processing Facili-                     |
| CPDF      | Centrifuge Plant Demonstration<br>Facility           | Е       | ty                                                   |
| CSA       | Chief of Staff of the Army                           | EBR     | Experimental Breeder Reactor                         |
| CUP       | Cascade Upgrade Program                              | EBT-B   | Elmo Bumpy Torus-B                                   |
| CVN       | Nuclear-powered aircraft carrier                     | ECF     | Expended Core Facility                               |
| СҮ        | Calendar Year                                        | EG&G    | (Formerly) Edgerton,<br>Germeshausen, and Grier, Inc |
| D         |                                                      | EMP     | Electro[M]agnetic Pulse                              |
| D         | Deuterium                                            | EMPSAC  | EMP Simulator for Aircraft                           |
| D-0       | Deuterium Oxide ("heavy                              | ENICO   | Exxon Nuclear Idaho C[O]mpany                        |
| 520       | water")                                              | EOD     | Explosive Ordnance Disposal                          |
| DARCOM    | Army Material Development<br>And Readiness C[OM]mand | EPA     | Environmental Protection<br>Agency                   |
| DARPA     | Defense Advanced Research Pro-                       | ER      | Enhanced Radiation                                   |
| 5.010     | jects Agency                                         | ERAB    | Energy Research Advisory Board                       |
| DCNO      | Deputy Chief of Naval Opera-<br>tions                | ERDA    | Energy Research and Develop-                         |
| DCP       | Development Concept Paper                            | FOD     | Electronic Systems Division                          |
| DCSLOG    | Deputy Chief of Staff for<br>LIOClistics             | ESD     | Electronic Systems Division                          |
| DCSOPS    | Deputy Chief of Staff for Opera-                     | -N      | Eastern Test Kange                                   |
| DCSOFS    | tions and Plans; or in the Air                       | ev      | Electron volt                                        |
|           | Force Deputy Chief of Staff, Op-                     | EWD     | Energy and water Development                         |
| DCSRDA    | Deputy Chief of Staff, Research.                     | EWDA    | Appropriation Subcommittee                           |
| DEIS      | Draft Environmental Impact<br>Statement              | F       | Fuel-grade; or Fluorine                              |
| DG        | Defense Guidance                                     | FBM     | Fleet Ballistic Missile                              |
| DG        | merense outoance                                     | 1 DIVI  | r icor ballistic Missile                             |

\_

\_

#### Nuclear Weapons Databook, Volume II 207

| Glossary of | Abbreviations | and Acronyms |
|-------------|---------------|--------------|
|-------------|---------------|--------------|

| FCDNA            | Field Command Defense Nuclear<br>Agency                           | HEHF   | Hanford Environmental Health<br>Foundation     |
|------------------|-------------------------------------------------------------------|--------|------------------------------------------------|
| FE1S             | Final Environmental Impact                                        | HEU    | Highly Enriched Uranium                        |
|                  | Statement                                                         | HLOS   | Horizontal Line Of Sight                       |
| FEMA             | Federal Emergency Management<br>Agency                            | HLW    | High Level Waste                               |
| FFTF             | Fast Flux Test Facility                                           | HP     | Horse[P]ower                                   |
| FMEF             | Fuels and Materials Examination                                   | HPD    | Horizontal Polarized Dipole                    |
|                  | Facility                                                          | HQ     | Head[Q]uarters                                 |
| FMPC             | Feed Materials Production                                         | HQMC   | Head[Q]uarters, Marine Corps                   |
|                  | Center                                                            | HSTC   | House Science and Technology                   |
| FPU              | First Production Unit                                             | TRACTO | Committee                                      |
| FRD              | Formerly Restricted Data                                          | HIGR   | High Temberature Gas Reactor                   |
| FTE              | Full-Time Equivalents                                             | HIKE   | Heat Transfer Reactor Experi-<br>ment          |
| FY               | Fiscal Year                                                       | HUMINT | H[UM]an I[NT]elligence                         |
| G                |                                                                   | HWR    | Heavy Water Reactor                            |
| g                | Gram                                                              |        |                                                |
| GAO              | General Accounting Office                                         | I      |                                                |
| GCEP             | Gas Centrifuge Enrichment Plant                                   | ICBM   | Intercontinental Ballistic Missile             |
| GDP              | Gaseous Diffusion Plant                                           | ICPP   | Idaho Chemical Processing Plant                |
| GE               | General Electric Company                                          | Ю      | Inside Diameter                                |
| GLCM             | Ground-Launched Cruise Mis-<br>sile                               | IFPF   | Idaho Fuels Processing Facility<br>(Now ICPP)  |
| GOCO             | Government Owned-Contractor<br>Operated                           | IG     | Inspector General                              |
| 0000             |                                                                   | IHE    | Insensitive High Explosive                     |
| GS               | Dual-Temperature Water-Hydro-                                     | INC    | Insertable Nuclear Component                   |
| GSA              | gen Sunde Exchange<br>General Services Administration             | INEL   | Idaho National Engineering Lab-<br>oratory     |
| н                |                                                                   | INFCE  | International Nuclear Fuel Cycle<br>Evaluation |
| н                | Hydrogen                                                          | IOC    | Initial Operational Capability                 |
| H <sub>2</sub> O | Hydrogen Oxide ("Water")                                          | IPNS   | Intense Pulsed Neutron Source                  |
| HAC              | House Appropriations Commit-<br>tee (see Chapter One, footnote 9) | IRBM   | Intermediate-Range Ballistic<br>Missile        |
| HASC             | House Armed Services Commit-                                      | ISPM   | International Solar Polar Mission              |
|                  | tee (see Chapter One, footnote 9)                                 | ISX-B  | Impurity Studies Experiment-B                  |
| HEAF             | High Explosive Application Fa-<br>cility                          |        |                                                |
| He               | Helium                                                            | LATEC  | Joint Atomic Information Pro-                  |
| HE               | High Explosive                                                    | JAIRA  | change Group                                   |
| HEDL             | Hanford Engineering Develop-<br>ment Laboratory                   | јај    | J A Jones Construction Service<br>Company      |

| JCAE   | Joint Committee on Atomic Ener-<br>gy           | LMFBR       | Liquid Metal Fast Breeder Reac-<br>tor                      |
|--------|-------------------------------------------------|-------------|-------------------------------------------------------------|
| JCS    | Joint Chiefs of Staff                           | LoADS       | Low Altitude Defense System                                 |
| JEC    | Joint Economic Committee                        | LSI         | Large Scale Integrated                                      |
| JLRSA  | Joint Long-Range Strategic Ap-<br>praisal       | LWBR        | Light Water Breeder Reactor                                 |
| JNACC  | Joint Nuclear Accident Coordi-<br>nating Center | M<br>M      | Meter: million (106)                                        |
| JPAM   | Joint Program Assessment Mem-<br>orandum        | MC          | Military Characteristics                                    |
| JSAM   | Joint Strategic Assessment Mem-<br>orandum      | MED<br>MENS | Manhattan Engineer District<br>Mission Element Needs State- |
| JSCP   | Joint Strategic Capability Plan                 | Max         | ment<br>Million Fleeteen Volte                              |
| JSPD   | Joint Strategic Planning Docu-                  | MFTF-B      | Mirror Fusion Test Facility-B                               |
| ICDC   | Inint Strategic Planning System                 | MIR         | Major Impact Report                                         |
| JTA    | Joint Test Assembly                             | MIRV        | Multiple Independently target-<br>able Reentry Vehicle      |
| JTCAMS | Joint Ta[C]tic[A]l Missile System               | Mk          | Mark                                                        |
| к      |                                                 | MLC         | Military Liaison Committee                                  |
| к      | Kilo- (1000)                                    | MLIS        | Molecular Laser Isotope Separa-                             |
| KEH    | Kaiser Engineers Hanford Com-<br>pany           | MM          | Minute[M]an                                                 |
| Kg     | Kilogram                                        | MMP         | Materials Management Plan                                   |
| KJ     | Kilo[J]oule                                     | MRS         | Monitored Retrieval Storage                                 |
| KMR    | Kwajalein Missile Range                         | MSWU        | Million Separative Work Units                               |
| Kt     | Kilotons                                        | Mt          | Megaton                                                     |
| Kwh    | Kilowatt-hour                                   | MT          | Metric Ton                                                  |
|        |                                                 | MTU         | Metric Ton Uranium                                          |
| L      |                                                 | Mw          | Megawatt                                                    |
| LAMPF  | Los Alamos Meson Physics Fa-                    | Mwd         | Megawatt-day                                                |
|        | Meson Physics Facility)                         | Mwe         | Megawatt (electric)                                         |
| LANL   | Los Alamos National Laboratory                  | Mw,         | Megawatt (thermal)                                          |
| LBL    | Lawrence Berkeley Laboratory                    | N           |                                                             |
| LCTF   | Large Coil Test Facility                        | N           | Neutron                                                     |
| Li     | Lithium                                         | NASAP       | Nonproliferation Alternative                                |
| Lithco | Lithium Corporation of America                  |             | Systems Assessment Program                                  |
| LIS    | Laser Isotope Separation                        | NATO        | North Atlantic Treaty Organiza-<br>tion                     |
| LLNL   | Lawrence Livermore National<br>Laboratory       | NAVMAT      | N[AV]al M[AT]eriel                                          |
| LLW    | Low Level Waste                                 | NBC         | Nuclear Biological and Chemical                             |

| NDB         | Nuclear Depth Bomb                                        | OD      | Outside Diameter                                                   |
|-------------|-----------------------------------------------------------|---------|--------------------------------------------------------------------|
| NDEW        | Nuclear-Driven Directed Energy<br>Weapons                 | ODCSOPS | Office of the Deputy Chief of<br>Staff for Operation[S] and Plans  |
| NDRC        | National Defense Research                                 | OJCS    | Office of the Joint Chiefs of Staff                                |
|             | Council                                                   | OMA     | Office of Military Application                                     |
| NDT<br>NERP | Non[D]estructive Testing<br>(Oak Ridge) National Environ- | OMB     | Office of Management and<br>Budget                                 |
| NES         | mental Research Park                                      | ONEST   | Overseas Nuclear Emergency<br>Search Team                          |
| nm          | Nanometer (10-9 meter)                                    | ORAU    | Oak Ridge Associated Universi-                                     |
| NMC         | Naval Material Command                                    | Giulo   | ties                                                               |
| NMMSS       | Nuclear Materials Management                              | ORGDC   | Oak Ridge Gaseous Diffusion<br>Complex                             |
| NNPP        | Naval Nuclear Propulsion Pro-                             | ORGDP   | Oak Ridge Gaseous Diffusion<br>Plant                               |
| Mo          | Nontunium                                                 | ORNL    | Oak Ridge National Laboratory                                      |
| NPP         | New Production Postor                                     | OSD     | Office of the Secretary of Defense                                 |
| NR          | Nuclear powered Research sub-                             | OSRD    | Office of Scientific Research and<br>Development                   |
| NRC         | marine<br>Nuclear Regulatory Commission                   | OUSDRE  | Office of the Under Secretary of<br>Defense for Research and Engi- |
| NRDC        | Natural Resources Defense<br>Council, Inc                 |         | neering                                                            |
| NRL         | Naval Research Laboratory                                 | P       |                                                                    |
| NSC         | National Security Council                                 | PAT     | Permissive Action Link                                             |
| NSDD        | National Security Decision Di-<br>rective                 | PBFA    | Particle Beam Fusion Accelera-<br>tor                              |
| NSDM        | National Security Decision<br>Memorandum                  | PD      | Presidential Directive                                             |
| NTRS        | National Reactor Testing Station                          | PDM     | Program Decision Memorandum                                        |
|             | (Now INEL)                                                | PFM     | Process Facility Modification                                      |
| NTS         | Nevada Test Site                                          | PHOTINT | P[HO]tographic I[NT]elligence                                      |
| NUMEC       | Nuclear Materials Equipment                               | PNL     | Pacific Northwest Laboratory                                       |
|             | Corporation                                               | POG     | Program Officers Group                                             |
| NVO         | Nevada Operations Office                                  | PPBS    | Planning, Programming, and                                         |
| NWCF        | Nuclear Weapone Development                               | DCD     | Bloom Constitute Province                                          |
| NWDG        | Guidance                                                  | PSP     | Plasma Separation Process                                          |
| NWEF        | Naval Weapons Evaluation Fa-                              | PSR     | Proton Storage Kin                                                 |
|             | cility                                                    | Pu      | Plutonium                                                          |
| NWSM        | Nuclear Weapons Stockpile<br>Memorandum                   | PuLIS   | Plutonium Laser Isotope Separa-<br>tion                            |
| 0           |                                                           | PUREX   | Plutonium U[R]anium<br>E[X]traction                                |
| 0           | Oxygen                                                    | PWR     | Pressurized Water Reactor                                          |

210 Nuclear Weapons Databook, Volume II

| R         |                                                                                                 | SOW                           | Stand[O]ff Weapon                                                                                |
|-----------|-------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------|
| R         | Republican                                                                                      | SR                            | Savannah River                                                                                   |
| R&D       | Research and Development                                                                        | SRAM                          | Short-Range Attack Missile                                                                       |
| RBOF      | Receiving Basin for Offsite Fuel                                                                | SRL                           | Savannah River Laboratory                                                                        |
| RD&T      | Research, Development and<br>Testing                                                            | SRO                           | Savannah River Operations of-<br>fice                                                            |
| RDT&E     | DT&E Research, Development, Testing<br>and Evaluation                                           | SRP                           | Savannah River Plant                                                                             |
|           |                                                                                                 | SSBN                          | Nuclear-powered ballistic mis-                                                                   |
| REEC      | Reynolds Electrical and Engi-<br>neering Company                                                | SSN                           | sile submarine<br>Nuclear-powered attack subma-                                                  |
| RHO       | <b>Rockwell Hanford Operations</b>                                                              | 10000                         | rine                                                                                             |
| RMI       | Reactive Metals, Inc                                                                            | STL                           | Simulation Technology Labora-<br>tory                                                            |
| RRR       | Reduced-Residual-Radioactivity                                                                  | STS                           | Stockpile-to-Target Sequence                                                                     |
| RTG       | Thermoelectric Generator                                                                        | SUBROC                        | SIUBImarine RIOCIket                                                                             |
| RV        | Reentry Vehicle                                                                                 | SWU                           | Separative Work Unit                                                                             |
| s         |                                                                                                 | т                             |                                                                                                  |
| S         | Second                                                                                          | т                             | Tritium; Tera- (10 <sup>12</sup> )                                                               |
| SAC       | Strategic Air Command; or Sen-<br>ate Appropriations Committee<br>(see Chapter One, footnote 9) | TAN                           | Test Area North                                                                                  |
|           |                                                                                                 | TASM                          | Tactical Air-to-Surface Missile,<br>or Tomahawk Anti-Ship Missile                                |
| SADM      | Special Atomic Demolition Mu-<br>nition                                                         | твр                           | Tri[B]utyl Phosphate                                                                             |
| SAF       | Secure Automated Fabrication                                                                    | TFTR                          | Tokamak Fusion Test Reactor                                                                      |
| SAGA      | Studies, Analysis and Gaming<br>Agency                                                          | TRADOC                        | T[RA]ning And D[O]ctrine Com-<br>mand                                                            |
| SAMTO     | Space And Missile Test Organi                                                                   | TREAT                         | Transient Reactor Test Facility                                                                  |
|           | zation                                                                                          | TRU                           | T[R]ans[U]ranic waste                                                                            |
| SASC      | Senate Armed Services Commit-                                                                   | TTR                           | Tonopah Test Range                                                                               |
| ·         | tee (see Chapter One, footnote 9)                                                               | Tw                            | Terawatt (10 <sup>12</sup> watts)                                                                |
| SECDEF    | S[EC]retary of D[EF]ense                                                                        | U                             |                                                                                                  |
| SEU       | Slightly Enriched Uranium                                                                       | U                             | Uranium                                                                                          |
| SICBM     | Small ICBM                                                                                      | UCCND                         | Union Carbide Corporation, Nu-                                                                   |
| SIGINT    | S[IG]nals I[NT]elligence                                                                        | 00010                         | clear Division                                                                                   |
| SIS       | Special Isotope Separation                                                                      | UF4                           | Uranium tetra[F]luoride                                                                          |
| SLBM      | Submarine-Launched Ballistic                                                                    | UF <sub>8</sub>               | Uranium hexa[F]luoride                                                                           |
| SNL       | Sandia National Laboratories                                                                    | $UO_2$                        | Uranium Dioxide                                                                                  |
| SNLA      | Sandia National Laboratories at<br>Albuquerque                                                  | UO3                           | Uranium Trioxide                                                                                 |
| UTILITY . |                                                                                                 | U <sub>3</sub> O <sub>6</sub> | Uranium Oxide ("yellowcake")                                                                     |
| SNLL      | Sandia National Laboratories at                                                                 | UK                            | United Kingdom                                                                                   |
| SNM       | Livermore<br>Special Nuclear Material                                                           | UNH                           | Uranyl Nitrate Hexahydrate,<br>UO <sub>2</sub> (NO <sub>3</sub> ) <sub>2</sub> 6H <sub>2</sub> O |

Nuclear Weapons Databook, Volume II 211

| UNI    | United Nuclear Industries, Inc                             | WCF       | Waste Calcining Facility                   |
|--------|------------------------------------------------------------|-----------|--------------------------------------------|
| US     | United States                                              | WEC       | Westinghouse Electric Corpora-             |
| USACDA | United States Arms Control and                             |           | tion                                       |
|        | Disarmament Agency                                         | WHC       | Westinghouse Hanford Compa-                |
| USD(P) | Under Secretary of Defense, Poli-                          | 2012/2012 | ny                                         |
|        | cy                                                         | WIPP      | Waste Isolation Pilot Plant                |
| USDRE  | Under Secretary of Defense for<br>Research and Engineering | WPPSS     | Washington Public Power Sup-<br>ply System |
| USSR   | Union of Soviet Socialist Repub-<br>lics                   | WSCR      | Weapon Design and Cost Report              |
|        |                                                            | WTR       | Western Test Range                         |
| v      |                                                            | Y         |                                            |
| VLA    | Vertical-Launch ASROC                                      | v.        | Vear                                       |
| VLSI   | Very Large Scale Integrated                                |           | 1 Cut                                      |
| VPD    | Vertical Polarized Dipole                                  | Z         |                                            |
|        | turten i chimine espere                                    | ZPPR      | Zero Power Plutonium Reactor               |
| w      |                                                            | ZPR       | Zero Power Reactor                         |
| W      | Warhead, or Weapon-grade                                   | 60 - C    |                                            |



## Index

Aberdeen Proving Ground, MD, 54, 56, 113 Acid-leach process, 123 Advanced gas contrifuge (AGC), 130. 132 Advanced Research EMP Simulator (ARES), 52 Advanced Technology Bomber (ATB), 111 Aerodynamic processes, uranium enrichment, 125 Helikon, 135 Jet nozzle, 134-35 Aeronautical Systems Division (ASD), 110-11 **AESOPS** simulator, 53 AFWL/Los Angeles Electromagnetic Calibration and Instrumentation System (ALECS), 52 Agreement Between the AEC and the DOD for the Development, Production and Standardization of Atomic Weapons, 104-06 Air defense infrastructure, 19 Air Force Ballistic missile program, 17, 18 Control of atomic force, 15 Custody of nuclear warheads, 2 EMP simulators, 52 Nuclear weapons acquisition responsibilities, 110-11 Nuclear weapons laboratory, 32-33 Research laboratories, 5 Simulated bomb-drop tests, 31 Test facilities, 56 Warheads used by, 5 Air Force Flight Test Center, Edwards Air Force Base, CA, 56 Air Force Geophysics Laboratory, MA, 54 Air Force Logistics Command, Kelly Air Force Base, TX, 111 Air Force Systems Command (AFSC), 110 Air Force Weapons Laboratory (AFWL), 110, 111 Functions, 32-33 Nuclear weapons effects simulation, 52, 53 Air-to-air missiles, 19 Albuquerque Operations Office (ALO), 119 Aldridge, Jack P., 133n Alkaline-leach process, 123 Allen, Thomas B , 70n Allender, J S. 60n, 67n, 71n, 94n Allied General Nuclear Service, Barnwell, SC, 139 Amarillo, TX, nuclear warhead assembly plant, 13 American Potash, 91 Ames Laboratory, Iowa State University, 31 Anderson, Oscar E , Jr , 4n, 26n, 82n, 100n Anti-Submarine Rocket (ASROC), 43, 113 Anti-Submarine Warfare (ASW), 15, 19, 56 Anvil, Operation, 171 Arbor, Operation, 170 Argonne National Laboratory (ANL), IL, 31, 78n, 139 Argus, Operation, 158 Arkin, William M , 40n, 58n, 100n Armed Forces Radiobiology Research Institute (AFRRI), 52 Armed Forces Special Weapons Project, 2, 13 Arms Control and Disarmament Agency, 106 Army ADM deployment, 19 Artillery firing tests, 31 Ballistic missile development, 17 Nuclear weapons acquisition responsibilities, 111-13 Nuclear weapons laboratory, 33, 35 Research laboratories, 5

Short-range missiles, 15 Warheads used by, 5 Army Armament Munitions and Chemical Command (AMCCOM), 112 Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 113 Army Material Command [AMC], 112-13 Army Missile Command, Redstone Arsenal, Huntsville, AL, 113 Army Nuclear and Chemical Agency (ANCA), 33, 35, 112 Army Pulse Radiation Facility, Ballistic Research Laboratory, Aberdeen, MD, 54 Army Waterways Experiment Station, Vicksburg, MS, 54 Arnold Engineering Development Center, TN, 56 Artillery-fired atomic projectiles, 86 Ashtabula, OH, uranium processing facility, 13, 37, 69, 93 Assistant Secretary for Defense Programs (ASDP), DOE, 115-16 Assistant Secretary for Nuclear Energy (ASNE), DOE, 118-19 Assistant to the Secretary of Defense, Atomic Energy (ASTD-AE), 107, 108-09 Atkinson, Rick, 46n Atlantic Undersea Test and Evaluation Center, Bahamas, 56 ATLAS D. E. and F ICBMs, 18 Atmospheric conditions, simulation of, 54 Atomic Demolition Munition (ADM), 15, 19 Atomic Energy Act of 1946, 13, 79, 100, 101 Atomic Energy Act of 1954, 13, 101, 146 Atomic Energy Commission (AEC), 50 Agreement with DOD for atomic weapons development and production, 13 Ballistic missiles development, 17 Custodial responsibilities for nuclear warheads, 2, 3 Establishment, 101 Military Llaison Committee (MLC), 101 Rebuilding the W47 stockpile, 49 Uranium production, 78 Uranium ore purchases, 79-80 Atomic Energy Defense Activities, DOE budget, 21 Atomic Energy of Canada, Ltd (AECL), 90 Atomic Vapor Laser Isotope Separation (AVLIS) process Described, 96, 131-32 MLIS process versus, 82, 97, 133 AURORA facility, White Oak, MD, 53 AUTOVON communication switches, 53 B-36 bomber, 15, 16 B-47 bomber, 15 B-52 bomber, 15 Babcock, D F, 60n Babcock and Wilcox, 71, 146 Bacher, Robert F, 101n Bailey, Charles W , III, 26n Ball, Desmond, 19n Ballistic missile defense (BMD), 55, 111 **Ballistic missiles** Development, 17 MIRVing of, 19 Baneberry, shot, 45n Barksdale Air Force Base, LA, 111 Battlefield delivery system, 23 Beams, I W, 130

Beary, M M., 97n Bodrock, Operation, 170-71 Belvoir R&D Center, Fort Belvoir, VA, 113 Benedict, Manson, 122n, 133n, 134n, 139n, 142n Benjamin, Milton R , 76n Benjamin, R W, 62n, 88n, 90n Bernstein, Barton J. 16n Bertrandite ore, source of beryllium, 92 Bertsch, Kenneth A , 5n Beryl, 92 Beryllium, 38 Described, 91 Inventories, 92 Processing and manufacture of, 38, 40, 91 Bethe, Hans, 16n, 131n Bettis Atomic Power Laboratory, Pittsburgh, PA, 71, 119 Bikini Atoll, 42, 43 Bismuth phosphate process, 70, 139 Bodash, Lawrence, 26n BOMARC surface-to-air missile, 19 Bomber gap. 19 Boskma, Peter, 134n Bowe, Hartley, 101n Bowen, Lce, 16n, 60n, 90n, 183n Bowline, Operation, 168 Bravo shot, 16, 42, 60n Brickedde, F G, 86n Broad, William J., 24n, 30n Broider, Herbert P. 26n Brookhaven National Laboratory (BNL), Long Island, NY, 31, 32, 146 Brown, Anthony Cave, 26n Brush Beryllium Company, 91-92 Budget Atomic Energy Defense Activities, 1978-89, 21 Warhead production and modification, 1986, 12 Bundy, McGeorge, 16n Bureau of Ordnance Atomic Rocket (BOAR), 15 Burlington, IA, warhead assembly plant, 13, 19 Buster-Jangle, Operation, 152 Cabot Corporation, 92 Calutron isotope separator, 81, 125 Campbell, Bob, 41n Ganada, heavy water production, 90, 142 CANDU, 78, 142 Carter administration Creation of DOE, 104 Nuclear weapons program, 20, 21 NWSMs, 21, 92, 104 CASINO facility, White Oaks, MD, 53 Castle, Operation, 16, 60n, 154 Category D PAL, 41 Caudle, Ralph E , 74n Charioteer, Operation, 175-76 Chemex process, 134 CHEVALINE, 55 Chicago Pile (CP-1), 59, 135 Chief of Naval Operations (CNO), 113 Clarksville Center gaseous diffusion plant, TN, 19 Clinton Pile (1 Mw), 59, 135 Cochran, Thomas B , 40n, 58n, 75n Cohen, Samuel T, 23 Cold War, 13

Communication and control systems, 21 Conant, James B , 101n Congress See House of Representatives; Senate Congressional Joint Committee on Atomic Energy, 13 Consolidated Guidance (CG), 103 Contractors operating nuclear weapons facilities, 35, 146-50 CORPORAL short-range missile, 15 Countercurrent decantation (CCD) circuit, 123-24 Cresset, Operation, 171 Crossroads, Operation, 42, 44, 151 Crosstie, Operation, 167-68 Cryogenic equipment, 58 Dana Plant, Newport, IN, heavy water production, 88 David W Taylor Naval Ships Research and Development Center, Carderock, MD, 54, 114 Decisionmaking structure, nuclear worhcads Congressional, 119-20 Documents relating to, 102-04 DOD, 107-15 DOE, 115-19 National Security Council, 106 Office of Management and Budget, 106 Office of Science and Technology Policy, 106 Predecessor organizations, 100-02 State Department, 106 Defense Guidance (DG), 103 Defense Nuclear Agency (DNA) Nuclear weapons decisionmaking responsibilities, 109-10 Weapons effects simulation, 51-52, 54 Weapons offects tests, 44, 46 de Hoffman, Federic, 16n Department of Defense (DOD) Agreement with AEC for atomic weapons development and production, 13 Expenditures on nuclear delivery systems, 2 Nuclear warhead responsibilities, 2, 3-4 Nuclear weapons acquisition decisionmaking, 107; Assistant to the Secretary of Defense (ASTD), 108-09; Defense Nuclear Agency, 109–10; Joint Chiefs of Staff, 109: Military Liaison Committee, 109: Office of the Secretary of Defense (OSD), 107-08 Nuclear weapons decisionmaking documents, 102-04 Nuclear Weapons Effects Program, 52 Nuclear weapons requirements, 13 Organization for nuclear weapons responsibilities, 114, 115: Assistant Secretary Defense Program (ASDP), 115-16; Assistant Secretary for Nuclear Energy (ASNE), 118-19; Deputy Assistant Secretary for Intelligence, 118; Deputy Assistant Secretary for Nuclear Materials, 116-17; Deputy Assistant Secretary for Security Affairs, 117; Operations Offices, 119 Test sites, 12 Warhead laboratories, 26, 32-33 See also Air Force; Army: Marine Corps; Navy Department of Defense/Department of Energy, joint nuclear warhead planning procedures, 102 Agreements, 104-06 Documents, 102-04 Studies, 32 Department of Energy (DOE) Atomic Energy Defense Activities budget, 21

Budget, FY86, for nuclear warhead production and modifications, 12 Civilian breeder reactor research and development program, 75, 76 Contracts with corporations for GOCO facilities, 146 Defense Program, 75, 92 Expenditures on nuclear delivery systems, 2 Five-year plan for warhead production, 20 Fusion R&D program, 77 Nuclear warhead responsibilities, 3-4 Nuclear weapons decisionmaking documents, 102-04 Operating production reactors for plutonium and tritium. 58 Research and test reactors, 72 Research for NDEW, 24 Spent fuel processing, 71 Studies on extending N-Reactor lifetime, 59 Uranium enrichment plants, 84-85 Uranium inventories, 84 Warhead production facilities: for components, 37-38; laboratories, 26-32 Department of Energy Organization Act, 102 Deputy Assistant Secretary for Intelligence, DOE, 118 Deputy Assistant Secretary for Military Applications, DOE, 116 Deputy Assistant Secretary for Nuclear Materials, DOE, 116-17 Deputy Assistant Secretary for Security Affairs, DOE, 117 Deputy Chief of Staff for Logistics (DCSLOG), Army, 112 Deputy Chief of Staff, Operations, Plans and Readiness (DCSOPS), Air Force, 110, 111, 112 Deputy Chief of Staff, Research, Development, and Acquisition (DCSRDA), Air Force, 110, 112 Deputy Chiefs of Naval Operations (DCNOs), 113 Design Review and Acceptance Group (DRAAG), Air Force. 110, 112 Deuterium (D), 5, 58, 136 Combined with lithium, 91 Described, 86 For fission weapons, 16 For fusion reactors, 142 Thermonuclear fuel, 16 Deuterium-tritlum (D-T) mixture, 16 Development Concept Paper (DCP), DOE, 105 Diamond Sculls shot, 54 Dominic I, Operation, 160-62 Dominic II, Operation, 162-64 DOVE, ER concept, 23 Dry rooms, for lithium-6 deuteride production, 91 Dual-Temperature Water-Hydrogen Sulfide Exchange Process, 142 DuBridge, Lee A , 101n Dugway Proving Ground, UT, 56 Dukes, E D , 62n, 88n, 90n Duncan, Francis, 4n, 16n, 27n, 70n, 183n, 184n DuPont de Nemours, E I & Co , 88n, 147 Dynamic Isotope Power System program, 119 Eagle Picher Industries, 91n Eastern Test Range (ETR), FL, 12, 55 Eisenhower, Dwight D , 3, 17, 23 Electromagnetic pulse (EMP), 23 Effects simulation, 52-53

Elzen, Boelie, 134n Emery, Operation, 169 Employment, nuclear warhead production AEC, 13, 14 DOE total facilities, 1974-85, 38, 40 Nuclear materials facilities, 93 EMP Radiation Environment Simulator for Ships (EMPRESS). 52, 53 EMP Simulator for Aircraft (EMPSAC), 52-53 Energy Research and Development Administration (ERDA), 2, 102 Energy Reorganization Act of 1974, 101 Enewetak Atoll, 16, 26, 42 Enhanced radiation (ER) weapons, 21, 23, 86 Enriched Uranium Conversion Facility, 78n, 79n, 84-85, 188 Environmental effects, nuclear detonation testing, 52 EXCALIBUR x-ray laser device, 23 Expenditures, nuclcar warhead, 2, 3, 13 Experimental breeder reactor (EBR), 59n Experimental Gas Cooled Reactor (EGCR), 185n Experimental Organic Cooled Reactor (EOCR), 185n Explosive ordnance disposal (EOD), Indian Head, MD, 115 Facility Restoration program, nuclear materials production, 93 FALCON air-to-air missile, 19 Fast Flux Test Facility (FFTF), Hanford Reservation Depository for fuel-grade plutonium, 86 Fuel for, 76, 97 FAT MAN warhead, 14, 42 FB-111 bomber, 31, 34 Feed Materials Production Center (FMPC), Fernald, OH, 37, 69, 93, 125 Fermi, Enrico, 59, 101n Fernald, OH Feed Materials Production Center, 37, 69, 93, 125 Uranium processing facility, 13 Ferrel, John E , 91n Fieldhouse, Richard, 100n First Production Unit (FPU), warhead life cycle, 12, 105 Fissile materials, 15, 138 Concern over shortage of, 20 Corrosion, 47-48, 50 See also Fissionable materials Fissionable materials, 58, 138 See olso Fissile materials Fission warheads, 16, 26, 38 Five Year Defense Program (FYDP), 103 Fleet Ballistic Missile submarine, 18 Flintlock, Operation, 165-66 Foote Chemical Company, Exton, PA, 91 Formerly Restricted Data (FRD), 101 Foster, John S , Jr , 20n France Chemical enrichment technology, 134 Production reactors, 135 US exports of uranium to, 183, 190 Frook, John, 41n Fuel cycles, 58 Basic steps in, 67 Hanford, 70 Naval, 68, 70-74 Savannah River, 67-70 Fuel processing, 70

Acid Thorex method, 140

Electronic Systems Division (ESD), 111

Bismuth phosphate method, 139 PUREX method, 138, 139-40 Redox method, 139 Steps in, 141 Fulcrum, Operation, 171 Fusileer, Operation, 174-75 Fusion materials, 5 See also Deuterium; Lithium; Tritium Fusion power reactors, 77, 142 Fusion weapons See Thermonuclear weapons Gas centrifuge process, 130-31 Gas diffusion process, 128-30 Gaseous diffusion plants (GDPs), 13 Output, 19, 82 Power consumption, 128 "Uranium Enrichment Complex," 36 General Electric Company, 71, 118, 139, 148 General Services Administration, lithium hydroxide stock, 91 GENIE air-to-air rocket, 19, 41 Geophysics, research and advanced development in, 111 Gilbert, F C , 75n, 76n, 90n, 96n Girdler-Suifite (GS) process, 140-41, 142 Glennon, T Keith, 95n Glennon Report, 95 Glines, Carl, 41n Gold, 92 Government owned-contractor operated (GOCO) complex Activities, 5 Corporations providing support, 146-50 DOE contracts for operations with, 146 Facilities, 12 Land area, 5 "Gravel Gertie" warhead assembly cell, 40-41 Green, Harold P , 101n Greenhouse, Operation, 16, 152 Grenadier, Operation, 175 Grommet, Operation, 169-70 Groves, Leslie M , 13n, 14n, 26n, 100 Guam, 2 Guardian, Operation, 172-73 Hanford Engineering Development Laboratory (HEDL), WA. 31 B, D, and F-Reactors, 59, 135 N-Reactor: operations history, 59, 60, 61; power output, 66; production history, 65; uranium for, 70, 184 Plutonium production, 3, 36; fuel-grade, 65, 66, 76; weapon-grade, 75, 76, 93 Projected termination of, 24 Proposed SIS plant at, 24 Tritium production, 36 See also PUREX plant Hardtack I, Operation, 157-58 Hardtack II, Operation, 159 Harry Diamond Laboratories (HDL), Adelphi, MD, 53, 113 Hawkins, David, 26n Heap-leaching process, 124-25 Heavy water, 58, 86 Exports and imports, 90 For fusion yield warheads, 90 lsotope separation process for concentrating, 86 Production, 89, 90, 141-43 Production reactors, 88 Sales and inventories, 89, 90

See also Savannah River Plant Heavy water reactor (HWR), 58, 95 Hewlett, Richard G , 4n, 16n, 26n, 27n, 70n, 82n, 100n, 183n, 184n High explosive (HE) warhead components, 40 High-level waste (HLW), 70 Highly enriched uranium (HEU), 5, 31 Demand for, 78-79 Exports, 72-73, 187 Gas centrifuges for, 82 Inventories, 70, 74, 83-84, 86, 187; reduced by fuel requirements, 188-91 Processing operations, aerodynamic, 134-35; AVLIS, 131-32; capacity, 124; cascade, 126-28; chemical enrichment, 134; gas centrifuge, 130-31; gaseous diffusion, 128-30; materials balance, 125; MLIS, 133-34; plasma separation, 133-34; separation factor, 126; separation work, 126, 183; stage, 126, 128 Production, 36, 58, 82, 85 Purification, 94 Recovery, 67, 69, 71 Required for SRP reactor operations, 69 Sources, 72-73 SWU measure for, 82, 85 Transportation, 41, 69 Uses, 36; by naval reactor, 71; for nuclear tests, 187, 191 Weapons-grade, 83-86, 187-91 High Productivity Cores, 94 High temperature gas reactor (HTGR), 95 Hill. James H , 82n Hiroshima, 14, 15, 26 Hirschfelder, Joseph O , 26n Hodel, Donald Paul, 23n, 76n, 95n, 96n, 187n Hoenig, Milton M , 40n, 58n, 183n Hogerton, John F , 78n, 88n, 90n HONEST JOHN short-range missile, 15, 111, 113 Hortizontal line of sight (HLOS) pipe, 46 Horizontal Polarized Dipole (HPD), 52 House of Representatives Appropriations Committee, 120 Armed Services Committee, 20, 120 Human Intelligence (HUMINT), 118 Huron King shot, 55 Hydrogen bomb, 13, 15, 27 Idaho Chemical Processing Plant (ICPP), 31 Restoration program for, 71, 93 Uranium processing, 37, 67, 69, 71 Uranium recovery from spent fuel, 69, 185 Idaho National Engineering Laboratory (INEL), 31, 69, 93 Initial operational capability (IOC), DOE, 105 Insertable nuclear components (INC), 24 Integrated Production Complex, DOE, 38, 40 Intelligence operations, 19, 118 Intercontinental Ballistic Missile (ICBM), 17, 18, 55 Intermediate Range Ballistic Missile, 18 Isotopes Non-fissile, 96 Separation processes, 86, 125 See also Laser Isotope Separation; Special Isotope Separation Ivy, Operation, 16, 153

Jicha, John J., 76n Johnson, Lyndon B. 19, 78n Joint Chiefs of Staff (JCS), 2, 102 Functions, 109 Publication of Joint Program Assessment Memorandum. 103 Joint Committee on Atomic Energy (JCAE), 101 Joint (DOD/DOE) Atomic Information Exchange Group, 116 Joint Program Assessment Memorandum (JPAM), 103 Joint Strategic Planning Document (JSPD), 102 Joint Strategic Planning System (JSPS), 102 Joint Tactical Missile System (JTACMS), 112, 113 Joint Test Aseembly, 41 Jones, Vincent C , 26n **[UPITER missile, 18**] Kalkstein, Marvin 1, 74n Kansas City Plant, MO, manufacture of non-nuclear components, 5, 13, 40, 41 Kennedy administration, reduction in nuclear warhead production, 19 Kerr-McGee Corporation, 76, 91 Khrushchev, Nikita, 78n King shot, 16 Kirtland Air Force Base, Albuquerque, NM, 32, 33, 52, 111 Kistiakowsky, George B , 23n Klaproth, H M. 78 KMS Fusion, Inc., 32, 148 Knebel, Fietcher, 26n Knolis Atomic Power Laboratory, Schenectady, NY, 71, 118 Knopf, Jeffrey W. 5n K-Reactor, 94 Krass, Alian S , 134n Krypton, 72 Kunetka, James W., 26n Kwajalein Missile Range (KMR), Marshall Islands, 55 Laboratories, nuclear weapons, 5, 12, 13, 26-32 See also Lawrence Livermore National Laboratory; Los Alamos National Laboratory; Sandia National Laboratory Lamarsh, John R . 58n LANCE missile, 23, 55, 111, 113 Lapp, Ralph E , 20n, 101n Laser Isotope Separation (LIS) technology, 95-96, 125 Lasers Turnable dye, 132 X-ray, 23-24, 30 Lotchkey, Operation, 166-67 Lawrence, Ernest O , 27, 81 Lawrence Berkeley Laboratory (LBL), 31 Lawrence Livermore National Laboratory (LLNL), CA, 5, 13 AVLIS process, 96-97 Defense program, 27-28 Directors, 27, 31 Enhanced Radiation weapons development, 23 Establishment, 27 Exploration of advanced weapon concepts, 30 Nuclear materials production activities, 37 Organization, 29-30 Warhead design and tests, 49-52 Weapons programs, 29 X-ray laser development, 23-24 Levi, Hans Wolfgang, 122n Lilienthal, David E , 101n

Limited Test Ban Treaty, 42, 51 Lithium (Li), 5, 90 Lithium-6, 35, 59 Nuclear weapon application, 90 Processes for enriching, 90 Special enrichment facilities for separating, 58 Lithium-6 deuteride, 90-91 Lithium-7, 90 Lithium Corporation of America (Lithco), NC, 91 Lithium hydroxide, 91 Little, R D. 15n LITTLE BOY warhead, 14, 86n LITTLE JOHN short-range surface-to-surface missile, 49 Los Alamos National Laboratory (LANL), NM, 5, 13, 77n AVLIS process, 132 Enhanced Radiation weapons development, 23 Establishment, 26 Exploration of advanced weapon concepts, 30 MLIS process, 96 Nuclear materials production activities, 37 Organization, 26-27 Plutonium facility, 76 Warhead design and testing, 26, 50 Low-level waste (LLW), 70 L-Reactor, 94 LX-09, 50, 51 LX-10, 50, 51 Macafee, I M. 60n, 67n, 71n MacDonald, Charles B . 26n McMahon, Brien, 100 McNamara, Robert S , 18 McPhee, John, 188n Magnetic Fusion Engineering Act of 1980, 77 Major Impact Report (MIR), DOE, 105 Mandrel, Operation, 168-69 Manhattan Engineer District (MED), 2, 12, 13, 35 History, 100-01 Source of uranium ore for, 79 Uranium enrichment development, 81, 82 Uranium material production for, 37, 59 Manhattan Project See Manhattan Engineer District Mansfield, Mike, 20n Marc Island Naval Shipyard, Vallejo, CA, 71 Marine Corps, 5, 113 See also Navy Mark, Carson, 16n MARK III warhead, 14, 15 MARK IV warhead, 15 MARK 5 warhead, 15 MARK 7 warhead, 15 MARK 9 atomic artillery shell, 15 Mark 15 fuel assembly program, 94 Materials Management Plan (MMP), DOE, 104 Medina Center, TX, 19 Medium Atomic Demolition Munition (MADM), 49 Meigs. Montgomery Cunningham, 26n Meinhardt, John L. 66n Mike shot, 16 Military bases, atomic weapon consideration in acquisition of foreign, 2n Military characteristics (MC), 32, 105, 113, 120 Military Liaison Committee (MLC), DOD and AEC, 13, 103, 105 Composition, 101

Functions, 109 Organization, 119 Military test ranges, 55-56 Miller, Bryon S . 100n Miller, Judith, 22n, 24n, 30n MINUTEMAN ICBMs MIRV tests, 20 Tests and evaluation launches, 55, 56 MINUTEMAN I, 18, 49 MINUTEMAN II, 18, 49, 110 MINUTEMAN III, 20, 26, 29, 41, 110 Missile testing, 55-56 MK-12 reentry vehicle, 20 MK-17 reentry vehicle, 20 Molecular Laser Isotope Separation (MLIS), 96-97, 133 Morland, Howard, 91n Mound Facility, Miamisburg, OH, manufacture of nonnuclear warhead components, 5, 13, 40 Multiple Independently Targeted Reentry Vehicle (MIRV). 19-20 Murphy, G M, 86n Mutual Defense Agreement of 1958, 76, 96 MX missiles, 21, 56, 110, 111 Nagasaki, 14, 15, 26 National Defense Research Council (NDRC), 100 National Defense Stockpile, 92 National Intelligence Estimate panels, 118 National Security Act of 1947, 13, 106 National Security Council, 102, 103, 104 Decisions on nuclear weapons acquisition, 106 On nuclear materials capacity, 20 Nautilus, 70 Facilities for refueling, 71 Naval Explosive Ordnance Disposal Facility, 115 Naval Nuclear Propulsion Program, 67, 118 Function, 70 Fuel cycle, 70-74 Naval Ocean Systems Center, San Dicgo, CA, 114 Naval reactors, 67 Builders, 71 Enriched uranium for, 83 Fuel, 71 Inventory, 185 Research, 71-72 Spent fuel from, 71-72 Naval Research Laboratory, DC, 32 Naval Space and Warfare Systems Command, 33, 114-15 Naval Surface Weapons Center, Dahlgren, VA, 114 Naval Surface Weapons Center, White Oak, MD, 53 Naval Undersea Warfare Engineering Station, Keyport, WA, 114 - 15Naval Underwater Systems Center, Newport, RJ, 115 Naval Weapons Center, China Lake, CA, 56, 115 Naval Weapons Evaluation Facility (NWEF), 33, 113 Navy Anti-submarine depth bomb, 15 EMP simulators, 52 JUPITER program, 18 MIRVing of submarine fleet, 20 Nuclear anti-submarine weapons development, 19 Nuclear fleet, 70-71 Nuclear weapons acquisition responsibilities, 113-15 **Research** laboratories, 5

Warheads, 5 Neill, J S. 60n Nellis Air Force Base, NV, 111 Neutron bomb See Enhanced radiation weapons Neutrons Capture, 59 Flux, 137 Production, 59, 138 In reactor operations, 136-38 Nevada Test Site (NTS), 12, 29, 42 Distribution of explosive yields at, 43 Frenchman Flat facility, 44 Mercury facility, 44 Types of tests, 44-46 W47 test, 48 New Brunswick Laboratory, 31 Newport News Shipbuilding and Dry Dock Company, VA, 71 New Production Reactor (NPR), for plutonium or tritium, 24, 95 New Production Reactor Concept and Site Selection Panel, 95 Niblick, Operation, 164 NIKE-HERCULES surface-to-air missile, 19, 111, 113 Nougat, Operation, 159-60 N-Reactor See Hanford Reservation Nuclear artillery, 15 Nuclear Driven Directed Energy Woapons (NDEW), 24 Nuclear fuel See Deuterium; Oralloy; Plutonium; Tritium; Uranium Nuclear Fuel Service (NFS), TN, 71, 118 Nuclear materials Facility restoration, 93 Inventories, 58, 74, 75 Production, 5; budget for, 93; concern over capacity for, 20: efforts to insure future, 24, 92-93: facilities for, 12.35-37 From retired weapons, 58 Nuclear Powered Ballistic Missile Submarine (SSBN), 18-19 Nuclear reactors, 58 Civilian power, 185-86, 187 Enrichment, 67-69 Research and test, 70-71, 72, 186-87 Rocket propulsion, 187 See also Naval reactors; Production reactors Nuclear Regulatory Commission, 72, 101 Nuclear tests, 41 Atmospheric, 42 Cost, 46 HEU used in, 187, 191 Joint United Kingdom-United States, 187, 191 Number, 42, 187, 191 By purpose, 142 By type, 178 Underwater, 42, 43 Weapons effects, 46, 47, 51-54 Weapons related, 44-46, 48, 49 X-ray laser device in, 23-24 By year, 178 Yield, 42, 43, 178 Nuclear test sites, 177 Bikini Atoll, 42, 43 Enewetak Atoll, 16, 26, 42 Nevada Test Site, 12, 42 Pahute Mesa, 44 Rainier Mesa, 44

Tonopah Test Range, 12, 31 White Sands Missile Range, 12 Yucca Flat, 44 Nuclear warheads Agencies involved in, 2 Aircraft-delivered, 15 Air defense, 19 Component production, 38; contractors, 39; facilities for, 5, 13, 38, 40; non-nuclear, 40; nuclear, 38, 40 Documents relating to, 100, 102-04 Early history, 13-15 Efforts to improve safety of, 24 Final assembly, 40-41 Maintaining and modifying, 41 Phases in life cyclc of, 12, 13, 29, 32-33 Predecessor organizations for, 100-02 Production, 5, 6-11, 106; assembly-line, 15-16; capacity for, 12; employment on, 13, 14; expenditures on 2, 3, 4, 13; full-scale, 1985-90, 22, 23; non-nuclear materials, 40; peak, 1950s and 1960s, 19; Reagan goals for, 22 Production facilities for, 12, 13; contractor-manufacture relationships, 39; current, 37, 38; employment, 13, 14, 38, 40; former government-owned, 38 "Pure radiation" tactical, 23 Reliability evaluation, 41 Retirement, 5, 6-11, 41, 105; disassembly for, 41 Research and development for, 22, 23, 104-05 Smaller volume, 19 Storage, 41 Technological innovations: fissile cores and plutonium and uranium, 15: insertable nuclear components, 24; levitated cores, 15; safety improvements, 24; yieldto-volume ratios, 24 Transportation, 41, 42 Variable vield, 20 See also Decisionmaking structure, nuclear warheads Nuclear war plans, targeting requirements, 19n Nuclear Weapon Deployment Plan, 106 Nuclear Weapon Employment Policy, 106 Nuclear weapons Effects simulation, 51-54 Executive branch responsibility for, 13 Research on effects on humans, 52 Services rivalry over, 16 Stockpiles, 18, 92 Nuclear Weapons Development Guidance (NWDG), 102, 104 Nuclear Weapons Effects Program, 52 Nuclear Weapons Stockpile Memorandum (NWSM) Acquisition policy document, 106 Carter and Reagan administration, 104 Dedicated to tritium production, 60, 77 Described, 103 Function, 13 Proposed warhead production levels, 21, 92 Requirements for nuclear weapons materials, 58n Nuclear Weapon Test Program, 106 Oak Ridge National Laboratory (ORNL), 31, 77 Oak Ridge gaseous diffusion plant, 36, 82 Oak Ridge Y-12 Plant Bonding of deuterium and lithium-6, 90 Cessation of deuterium production, 5 Deuterium gas processing, 90

Enriched Uranium Conversion Facility, 78n, 79n, 84-85 Lithium deuteride production, 90 Lithium Enrichment Facility, 90, 91 Manufacture of uranium components, 5 Nuclear materials production, 38, 40, 41 Nuclear materials production missions, 36 Uranium enrichment program, 13, 81-82, 84-85 O'Brien, Robert A , Jr , 187n Office of Defense Waste and Byproducts Management, DOE, 117 Office of Management and Budget (OMB), 96, 104 Office of Military Applications (OMA), DOE, 38, 116, 117 Office of Naval Material, project offices, 114 Office of Science and Technology (OSTP), 97 Office of Scientific Research and Development (OSRD), 100 Office of Secretary of the Defense (OSD), 107 Office of Special Weapons Development, 35 Office of Uranium Enrichment and Assessment, 104 O'Keefe, Bernard J., 14n Ontario Hydro, Canada, 78, 90 Oppenheimer, J Robert, 101n Orallov Defined, 78n Inventory, 5, 78, 80, 83-84, 183, 187-91 Plans for resuming production, 24, 79, 85 Projected production, 84 Owens, Gwin, 16n Pacific Missile Test Center, Point Mugu, CA, 56 Pacific Northwest Laboratory (PNL), Richland, WA, 31 Paducah, KY, gaseous diffusion plant, 13, 36, 82, 125 HEU inventory, 84 Uranium processing, 183n Pantex Plant, TX, 19 Assembly of warheads, 38 Modification of warbeads, 41 Operation, 5, 12 PEACEKEEPER MX, 86 Perlman, David, 24n Permissive Action Links (PALS), 24 PERSHING 1a, 41, 56, 111, 113 PERSHING II, 21, 55, 56, 111, 113 PERSHING, W86, 31 Pethof, Benjamin, 92n Phalanx, Operation, 174 Photographic Intelligence (PHOTINT), 118 Pigford, Thomas H , 122n Pike, Sumner T, 101n Pincus, Walter, 14n, 23n, 43 Pinellas Plant, FL, 5, 40, 41 Plasma Separation Process (PSP), 94-95, 125, 133-34 Plumbob, Operation, 156-57 Plutonium, 3, 35 Categories, 135-36 Enrichment processes, 95-97 Equivalence, 136 Fuel-grade: blending process for supergrade plutonium and, 93; conversion to weapon-grade, 67, 77; inventory, 74; production, 66, 67; in R&D facilities, 76 High Productivity Cores, 94 Inventories, 5; fuel-grade, 74, 75-76; reactor-grade, 75-76; weapon-grade, 74, 75 Laser isotope separation, 132

Post-World War II needs, 13 Production, 5, 19: by-products from, 69-70; plans to improve efficiency of, 24: plants for, 36; rates, 59, See also Production reactors Reactor-grade, 75-76 Required reserve of, 92 Supergrade, 66, 67, 93 Transportation, 4 Weapon-grade: classified inventories, 74; conversion process to increase, 93; for non-defense R&D, 76; production, 63, 66, 67 Plutonium oxide, 70 Polaris program, 18 A1, 18, 19, 47 A2, 19, 47 A3, 19 Polmar, Norman, 70n Portsmouth, OH, gaseous diffusion plant, 13, 36, 82 Portsmouth Naval Shipyard, Kittery, ME, 71 POSEIDON missile system, 20, 41, 55, 113 Power Demonstration Reactor Program, 185 Power plants, nuclear, 78n, 185-86 Prados, John, 19n Proetorion, Operation, 173-74 Pressurized water reactor (PWR), 95 Production reactors Dual-purpose N-, 58, 65 Fundamentals, 137-38 Graphite-moderated water-cooled, 58, 59, 64, 65, 183 Heavy-water-moderated, 58, 184-85 History of operations, 59-60, 61 New, 24, 95 Operations, 136-37 Rates of production, 62 U-235 allocated to, 183, 184 Program Decision Memoranda (PDMs), 103 Program Objective Memorandum (POM), 103 Project 56, nuclear test, 155 Project 57, nuclear test, 156 Project 58, nuclear test, 157 Project 58A, nuclear test, 157 Project Officers Groups (POGs), DOD/DOE, 32, 105 PUREX (Plutonium-URanium-EXtraction) plant, 65, 66 Fuel processed by, 70, 138, 139-40 Plutonium and uranium recovery, 70 Process Facility Modification at, 96, 97 Reactivation of, 93 Quicksilver, Operation, 172 Rabi, Isador I., 101n Radar Target Backscatter Facility Division, Holloman Air Force Base, NM, 56 Radars, 19 Space-based system, 119 Radioactive wastes, 70 Ranger, Operation, 44, 152 Reactive Metals, Inc. 37 Reagan administration Enhanced radiation weapons production, 21, 92

Enhanced radiation weapons production, 21, 92 Five-part strategic weapons modernization program, 21, 92 NWSMs, 22–23, 92, 104 Rearden, Steven L, 2n, 13n Redox process, 70, 139 **REDSTONE** missile, 17 Reduced-residual-radioactivity weapon (RRR), 30 Redwing, Operation, 155-56 Reentry vehicles (RVs), 19-20 Register, Mahlon E , 41n Required Operational Capabilities, 32 Research Facilities for nuclear warhead, 5, 12, 31 Reactor, 71-72, 186-87 Weapons effects, 52 Resonance capture, 138 Restricted Data, 101, 146 Rickover, Hyman, 185n Rock Island Arsenal, 13 Rocky Flats Plant, Golden, CO Beryllium components production, 91 Nuclear materials production, 38 Plutonium processing, 5, 13, 38 Rome Air Development Center, Griffiss Air Force Base, NY. 54 Romeo shot, 16, 60n Rosengren, Jack W. 47n Rosenthal, Alan, 101n Roser, Herman E , 62n, 64n, 94n Rover, Project, nuclear propulsion reactor development, 187 Safe Secure Railcars, 41, 42 Safe Secure Trailers, 41, 42 Sandia National Laboratories (SNL), 5, 13 Described, 31 Organization, 33 Sandstone, Operation, 15, 151 Savannah River Laboratory (SRL), 31 Savannah River Operations Office (SRO), 119 Savannah River Plant (SRP), 31, 93 Building of, 13 Development of Plasma Separation Process, 94-95 Innage, 62 Fuel cycle, 67 Heavy Water Plant, 88, 90, 142, 143 Nuclear materials production, 60, 63 Plutonium and uranium recovery, 36 Plutonium production, 5, 24, 36, 60, 67, 75 Production history, 60-62 Proposed L-Reactor for, 94 Radioactive wastes, 70 Reactors, 94, 135, 188; estimated production, 62, 63; history, 60, 61, 62; use of HEU driven fuel, 184-85, 189-90 Tritium production, 5, 67, 77, 179, 180 Tritium recovery, 40, 41, 69 Savannah River Tritium Facility, 69 Sawyer-Kjellgren process, 92 Scheer, Robert, 24n, 30n Seaborg, Glenn T. 101n SEA LANCE ASW, 113 Scarle, James P. 91n Secretary of Defense (SECDEF), 107, 108, 109, 110 Senate Appropriations Committee, 120 Armed Services Committee, 20, 120 Sewell, Duane C , 179n Shaw, Linda S. 5n

Sherwin, Martin J , 26n

Shippingport Atomic Power Station, 185 Short-Range Missile (SRAM), 15, 29, 55, 56, 110 Signals Intelligence (SIGINT), 118 SM-2 missile, 56 Small ICBM (SICBM), 55, 110, 111 Smit, Will A. 134n Smith, Alice Kimball, 26n Smith, Cyril S, 101n Smith, J A , 60n, 62n, 94n Smith, Jeffrey, 24n, 30n Smith, Ralph Carlisle, 26n Smyth, Henry DeWolf, 26n Soble, Ronald L , 46n Soviet Union, 19, 20 Production reactor, 135 Proposed cessation of plutonium production, 78n Space Development of nuclear propulsion rocket for travel in, 187 Generation of electricity for, 70 Radars based in, 119 Space and Missile Test Organization (SAMTO), 111 Special Isotope Separation (SIS), 24, 95-97 Planned Hanford plant for, 132-33 Special nuclear materials (SNM), 92, 102 SPRINT anti-ballistic missile, 23, 56 SPRINT/LOADS anti-ballistic missile, 56 STANDARD surface-to-air missile, 2, 113 Standard Oil Company, 82 Standard Oil of New Jersey, 130 Stanford Positron-Electron Accelerator Ring (SPEAR), 32 Stanford Synchotron Radiation Laboratory (SSRL), 32 STARFIRE power plant, 78n STARLING ER concept, 23 State Department, responsibility for nuclear weapons foreign policy implications, 106 Stephens, Richard A , 41n Stimson, H L, 14n Stockpile Improvement Program, 41 Stockpiles Fission bombs, 16 Nuclear warheads, 2; changing, 12-13; design flaws in, 46-47; evaluation and reliability management, 114; growth, 1945-50, 13; international tensions affecting, 20; number, 5 Nuclear weapons, 18, 92 Plutonium, 5, 74, 75-76 Strategic materials, 92 Targeting requirements effect on, 19n Themonuclear warheads, 3, 13, 17 Tritium, 5, 77, 78, 179-81 Uranium, 70, 73, 84, 87, 88 See also Nuclear Weapons Stockpile Memorandum Stockpile-to-Target Sequence (STS), 32, 105, 110, 120 Storax, Operation, 162 Strategic Air Command (SAC), 18, 19 Atomic weapons and, 2n Bombs on alert, 17 Control of atomic forces, 15 Training launches of ICBMs, 55 Strategic bombs, 15 Strategic Defense Initiative, 119 Strategic materials, 92 Strategic weapons, modernization program for, 21, 92

Strauss, Lewis L , 101n Submarine-launched ballistic missile (SLBM), 18, 19, 55, 56 SUBROC anti-submarine rocket, 113 Sullivan, Walter, 78n Sulphuric-acid leaching, 123, 124 SUPER EXCALIBUR x-ray laser device, 23 Surface-to-air missiles, 19, 111, 113 Swordfish shot, 43 SWU measure, 82, 85, 126 Szasz, Ferenc, 14n, 26n, 41n TALOS surface-to-air missile, 19 Targeting, 19 Teupot, Operation, 154-55 Teller, Edward, 16, 23, 27 Teller-Ulam approach to thermonuclear devices, 16 TEMPS simulator, 53 TERRIER surface-to-air missile, 19, 49, 113 Thermal effects, simulation of nuclear weapons, 52, 54 Thermonuclear materials, 58 See also Deuterium; Lithium-6; Tritium Thermonuclear weapons, 3, 15, 16, 26 Third generation weapons, 23-24 THOR missile, 18 Threshold Test Ban Treaty, 42 Tinderbox, Operation, 172 TITAN I ICBM, 18 TITAN II ICBM, 18, 110 Toggle, Operation, 170 Tokamak Fusion Test Reactor (TFTR), 77 TOMOHAWK sea-launched cruise missile, 113 Tonopoh Test Range, NV, 12, 31 Training and Doctrine Command (TRADOC), 113 Transportation Safeguards Division, 41 Transuranic waste (TRU), 70 Trestle EMP simulator, 52 Tributyl phosphate (TBP), 139, 140 TRIDENT submarines, 21, 26, 113 TRIDENT I. 51, 113 Systems Project Office, 114 Tests of, 55, 56 Trinity site, 15, 26 Tri-Service Thermal Facility, Wright Patterson Air Force Base, OH, 54 Tritium, 35, 58 Commercial demand for, 78 For fission weapons, 16 Inventory, 5, 77, 78; based on atmospheric release, 179, 181; bounding estimates of, 179-80; steady-state estimates of, 179 Nonweapon uses and sources, 77-78 Production, 5, 13, 36, 67, 179-81, 184; enriched lithium control rods for, 62; facilities for, 40; reactors dedicated to, 60: from secondary sources, 62 Post World War II needs, 13 Projected demand for, 24, 60 Recovery, 36, 40, 41, 69 Truman, Harry, 2, 13, 27, 31, 100 Truslow, Edith C . 26n TRW Inc., 94, 95, 134, 149 Tumbler-Snapper, Operation, 152-53 Tyler, Patrick E , 24n

Ulam, Stanislaw, 16

| UNC Nuclear Industries 84, 149                             | W80.0 1 26                                             |   |
|------------------------------------------------------------|--------------------------------------------------------|---|
| Under Secretary of Defense Research and Engineering        | W84 79                                                 |   |
| (USDRE) 105 107                                            | W87 20                                                 |   |
| United Kingdom 76                                          | Warhends ratired                                       |   |
| loint ouclear tests with U.S. 182, 191                     | FY'14 18 17                                            |   |
| Plutenium production reactor 125                           | Dis 16 17                                              |   |
| THOR minile deployment 19                                  | B10, 10-17                                             |   |
| THOR missue deployment, 16                                 | EC16, 16, 17                                           |   |
| U S supply of HEU to, 190                                  | EL17, 16, 17                                           |   |
| United Nuclear Corporation, 71, 72, 149                    | 517, 16                                                |   |
| University of Kochester, 32, 149                           | <b>B24</b> , 16                                        |   |
| Upshot-Knothole, Operation, 153                            | W25, 41                                                |   |
| Urenco, gas centrifugo plant, 126, 130                     | W45, 41, 49-50                                         | _ |
| Urey, H C, 86                                              | W47, 29, 47–49                                         |   |
| USS George Washington, 18                                  | W50, 41                                                |   |
| Uranium (U)                                                | W52, 50                                                |   |
| Chemical conversion, 125                                   | W53, 41                                                |   |
| Described, 78                                              | W58, 29                                                |   |
| Enrichment, 13, 19, 36, 58; requirements for, 83, 86       | W62, 41                                                |   |
| Exploration for, 13                                        | W63, 23                                                |   |
| Inventories, 70, 73, 84, 87, 88                            | W64, 23                                                |   |
| Low-enriched (LEU), 82; used by heavy water reactors,      | W65, 23                                                |   |
| 184-85, 188                                                | W66, 23                                                |   |
| Metal ingots, 70                                           | W68, 41                                                |   |
| Milling: costs, 79-81, 83; ore removal leaching processes. | W86, 23                                                |   |
| 123-25                                                     | Warhcads, under development                            |   |
| Mining, 79, 122                                            | W82, 29                                                |   |
| Orc reserves, 1983, 81                                     | Warbeads See also Nuclear warbeads                     | _ |
| Processing and production facilities, 13, 35, 36, 38, 40   | Washington Public Power Supply System (WPPSS), 67      |   |
| Recovery, 122, 123                                         | Water distillation process, 143                        |   |
| Slightly enriched (SEU), 83                                | Waymack, William W. 101n                               |   |
| See also Highly enriched uranium: Oralloy                  | Weapon Design and Cost Report (WDCR), DOE, 105         |   |
| 1/-236, 94                                                 | Weinberger, Casnar W. 23n                              |   |
| U-238, 35, 59, 128, 138                                    | Welden Springs feed processing facility, 19            |   |
| Uranium concentrate (U.O.), 78                             | Werner, Charles, 25n                                   | _ |
| Production, 80, 82, 84                                     | Western Snace and Missile Center, Vandenherg Air Force |   |
| Purchases, 79, 80, 81, 183, 184                            | Base CA 55                                             |   |
| Tied up in production reactors 185                         | Western Test Range (WTR) (CA 12 55                     |   |
| Uranium fluorides 70, 125, 130, 133                        | Westinghouse Electric Corporation 71, 118, 130, 149    |   |
| Uranium oxide, 79-80, 82-83, 122                           | Whatstone Operation 164-65                             |   |
| Uranium trioxide 125                                       | White Sands Bombing Pange NM 41                        |   |
| Chandan (100,100, 120                                      | White Sands Missila Banao NM 12 54 56                  |   |
| Vaughan William A 94n                                      | White Sanda Solar Furnace, NM, 54                      |   |
| Vartically Polarized Dinola (VPD ID 52                     | Whitley Stepley 120p 121p                              |   |
| vertically rolarized inpole (vrb n), 52                    | Windey, Statley, 1560, 1510                            |   |
| Word D A 62n                                               | Williaman Canual P. In 12a                             |   |
| Warback active                                             | Wilson Jaco 26c                                        |   |
| Pag 17 41 110                                              | Walf Dam 44                                            |   |
| D40, 17, 41, 110                                           | Woll, Ron, 41<br>Westhinston, Head T. 1015             |   |
| Dro, 41, 110                                               | Weight Batterren Ais Kassa Barn Old E4 414             | _ |
| B53, 17, 110                                               | Wright-Patterson Air Force Base, OH, 54, 111           |   |
| B57, 110                                                   |                                                        |   |
| D61, 38, 110                                               | X-ray laser, 23-24, 30                                 |   |
| B61-0, 1, 41                                               | X-rays                                                 |   |
| B83, 31, 34, 110                                           | Simulation of effects, 53                              |   |
| W33, 86                                                    | In weapons effects research, 32                        |   |
| W45, 49-50                                                 |                                                        | _ |
| W33, 1/                                                    | Yield-to-weight ratio, 24                              |   |
| W50,49                                                     | Yield-to-volume ratio, 24                              |   |
| W62, 20, 29                                                | York Herbert F 27                                      |   |
| W68, 20, 29, 50–51                                         | Yuma Proving Ground AZ 55                              |   |
| W70-0, 23                                                  | r waa r toving Ground, rich bo                         |   |
| W70-3, 23                                                  |                                                        |   |
| W76, 26, 51                                                | Zero electric power heavy water reactor (ZEPHWR), 95   |   |
| W78, 26                                                    | Zero Power Plutonium Reactor (ZPPR), 76, 96            |   |
| W79, 23                                                    | Zippe, G , 130                                         |   |
|                                                            |                                                        |   |

1

