The New Encyclopædia Britannica

Volume 29

Macropædia

Knowledge in Depth

Founded 1768
15th Edition

Encyclopædia Britannica, Inc.
Robert P. Gwinn, Chairman, Board of Directors
Peter B. Norton, President
Philip W. Goetz, Editor in Chief

Chicago
Auckland/Geneva/London/Madrid/Manila/Paris
Rome/Seoul/Sydney/Tokyo/Toronto
"Let knowledge grow from more to more and thus be human life enriched."

The *Encyclopedia Britannica* is published with the editorial advice of the faculties of the University of Chicago.

Additional advice is given by committees of members drawn from the faculties of the Australian National University, the universities of British Columbia (Can.), Cambridge (Eng.), Copenhagen (Den.), Edinburgh (Scot.), Florence (Italy), London (Eng.), Marburg (W. Ger.), Oxford (Eng.), the Ruhr (W. Ger.), Sussex (Eng.), Toronto (Can.), Victoria (Can.), and Waterloo (Can.); the Complutensian University of Madrid (Spain); the Max Planck Institute for Biophysical Chemistry (W. Ger.); the New University of Lisbon (Port.); the School of Higher Studies in Social Sciences (Fr.); Simon Fraser University (Can.); and the State University of Leiden (Neth.).

First Edition 1768–1771
Second Edition 1777–1784
Third Edition 1788–1797
Supplement 1801
Fourth Edition 1801–1809
Fifth Edition 1815
Sixth Edition 1820–1823
Supplement 1835–1824
Seventh Edition 1830–1842
Eighth Edition 1852–1860
Ninth Edition 1871–1889
Tenth Edition 1902–1903

Eleventh Edition C 1911
By *Encyclopedia Britannica*, Inc.

Twelfth Edition C 1922
By *Encyclopedia Britannica*, Inc.

Thirteenth Edition C 1926
By *Encyclopedia Britannica*, Inc.

By *Encyclopedia Britannica*, Inc.

By *Encyclopedia Britannica*, Inc.

C 1990
By *Encyclopedia Britannica*, Inc.

Copyright under International Copyright Union
All rights reserved under Pan-American and Universal Copyright Conventions
by *Encyclopedia Britannica*, Inc.

No part of this work may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Printed in U.S.A.

Library of Congress Catalog Card Number: 88-83263
International Standard Book Number: 0-85229-511-1
Nuclear weapons

Nuclear weapons derive their enormous explosive force from either the fission or fusion of atomic nuclei. Their destructive potential may be best appreciated by the counting of the words kiloton (10,000 tons) and megaton (one million tons) to describe their blast effect in equivalent weights of TNT. For example, the first nuclear fission bomb, the one dropped on Hiroshima, Japan, in 1945, released energy equaling 15,000 tons (13 kilotons) of chemical explosive from less than 130 pounds (60 kilograms) of uranium.

Fusion and cruise missiles also include smaller tactical nuclear weapons that include artillery projectiles, demolition munitions (land mines), anti-surface ships, and short-range marine depth bombs, torpedoes, and short-range cruise missiles. However, have become by far the most important nuclear weapons (see above Strategic missiles). There are also smaller tactical nuclear weapons that include artillery projectiles, demolition munitions (land mines), anti-surface ships, and short-range cruise missiles. The U.S. stockpile of nuclear weapons reached its peak in 1967 with more than 32,000 warheads of 30 different types; the Soviet stockpile reached its peak of about 33,000 warheads in 1988.

The basic principle of nuclear fission weapons (also called atomic bombs) involves the assembly of a sufficient amount of fissile material (e.g., the uranium isotope uranium-235 or the plutonium isotope plutonium-239) to "go supercritical"—that is, for neutrons (which cause fission and are in turn released during fission) to be produced at a much faster rate than they can escape from the assembly. There are two ways in which a subcritical assembly of fissionable material can be rendered supercritical and made to explode. The subcritical assembly may consist of two parts, each of which is too small to have a positive multiplication rate; the two parts can be shot together by a gun-type device. Alternatively, a subcritical assembly surrounded by a chemical high explosive may be compressed into a supercritical one by detonating the explosive.

The basic principle of the fusion weapon (also called the thermonuclear or hydrogen bomb) is to produce ignition conditions in a thermonuclear fuel such as deuterium, an isotope of hydrogen with double the weight of normal hydrogen, or lithium deuteride. The Sun may be considered a thermonuclear device: its main fuel is deuterium, which it consumes in its core at temperatures of 10^{-6} F ($10,000,000^\circ F$ to $20,000,000^\circ C$). To achieve comparable temperatures in a weapon, a fission triggering device is used.

The Development of Fission Weapons

Following the discovery of artificial radioactivity in the 1930s, the Italian physicist Enrico Fermi performed a series of experiments in which he exposed many elements to low-velocity neutrons. When he exposed thorium and uranium, chemically different radioactive products resulted, indicating that new elements had been formed, rather than merely isotopes of the original elements. Fermi concluded that this had produced elements beyond uranium (element 92), then the last element in the periodic table; he called them transuranic elements and named two of them: Americium (element 93) and Plutonium (element 94). During the autumn of 1938, however, when Fermi was suggesting the Nobel Prize for his work, Otto Hahn and Fritz Strassmann of Germany discovered that one of the new elements was not Americium (element 93) as Fermi had expected, but Plutonium (element 94) had been formed.

The Danish scientist Niels Bohr visited the United States in January 1939, carrying with him an explanation, derived by the Austrian refugee scientist Lise Meitner and her nephew Otto Frisch, of the process behind Hahn's surprising data. Low-velocity neutrons caused the uranium nucleus to fission, or break apart, into two smaller pieces; the combined atomic numbers of the two pieces—
The Manhattan Project

The triggering methods

...carbon. At Berkeley, the cyclotron, converted into a mass spectrometer (later called a calutron), was exceeding expectations in separating uranium-235, and it was enlarged to a 10-calutron system capable of producing one-tenth of an ounce (about three grams) of uranium-235 per day.

The U.S. entry into World War II in December 1941 was decisive in providing funds for a massive research and production effort for obtaining fissile materials. And in May 1942 the momentum decision was made to proceed simultaneously on all promising production methods. Bush decided that the army should be brought into the production plant construction activities. The Corps of Engineers opened an office in New York City and named it the Manhattan Engineer District Office. After considerable argument over priorities, a workable arrangement was achieved with the formation of a three-man policy board chaired by Bush and the appointment on September 17 of Colonel Leslie Groves as head of the Manhattan Engineer District. Groves arranged contracts for a gaseous diffusion separation plant, a plutonium production facility, and a calutron pilot plant, which might be expanded later. The day before the success of Fermi's chain-reaction experiment at the University of Chicago on Dec. 2, 1942, Groves (now a brigadier general) signed the construction contract for the plutonium production reactors. Many problems were still unsolved, however. First, the gaseous diffusion barrier had not yet been demonstrated as practical. Second, Berkeley had been successful with its empirically designed calutron, but the Oak Ridge pilot plant contractors were understandably uneasy about the rough specifications available for the massive separation of uranium-235, which the Y-12 effort was to follow. Third, plutonium chemistry was almost unknown; in fact, it was not known whether or not plutonium gave off neutrons during fission, or, if so, how many.

Meantime, as part of the June 1942 reorganization, J. Robert Oppenheimer became, in October, the director of Project Y, the group that was to design the actual weapon. This effort was spread over several locations. On November 16 Groves and Oppenheimer visited the former Los Alamos Ranch School, some 60 miles (100 kilometres) north of Albuquerque, N.M., and on November 25 Groves approved it as the site for the Los Alamos Scientific Laboratory. It was composed of two essential pieces of experimental data had been obtained—plutonium did give off neutrons in fission, more than uranium-235; and the neutrons were emitted in a short time compared to that needed to bring the weapon materials into a supercritical assembly. The theorists contributed one discouraging note: their estimate of the critical mass for uranium-235 had risen over threefold, to something between 50 and 100 pounds.

The emphasis during the summer and fall of 1943 was on the gun method of assembly, in which the projectile, a subcritical piece of uranium-235 (or plutonium-239), would be placed in a gun barrel and fired into the target, another subcritical piece of uranium-235. After the mass was expanded, it would be considered to be a subcritical assembly and cause it to begin multiplying as soon as it went critical, before it reaches criticality; it would then explode prematurely and produce comparatively little energy. The gun designers tried to beat this problem by achieving higher projectile speeds, but they lost out in the end to a better idea—the implosion method.

In April 1943 a Project Y physicist, Seth Neddermeyer, proposed to assemble a supercritical mass from many directions, instead of just two as in the gun. In particular, a number of shaped charges placed on the surface of a sphere would fire many subcritical pieces into one common point at the center of the sphere. John von Neumann, mathematician who had had experience in shaped-charge, armour-piercing work, supported the implosion method enthusiastically and pointed out that the greater speed of assembly might solve the plutonium-240 problem. The physicist Edward Teller suggested that the converging material might also become compressed, offering the possibility that less material would be needed. By late 1943 the implosion method was being given an increasingly higher priority; by July 1944 it had become clear that the plutonium gun could not be built. The only way to use plutonium in a weapon was by the implosion method.

By 1944 the Manhattan Project was spending money at a rate of more than $1 billion per year. The situation was likened to a nightmare horse race: no one could say which of the horses (the calutrons, the gaseous diffusion plant, or the plutonium reactors) was likely to win or whether any of them would even finish the race. In July 1944 the first Y-12 calutrons had been running for three months, but they were operating at less than 50 percent efficiency; the main problem was that the large amounts of plutonium were going into the boxes and, thus, had to be returned through the system. The gaseous diffusion plant was far from completion, the production of satisfactory barriers remaining the major problem. And the first plutonium reactor at Hanford, Wash., had been turned on in September, but it had promptly turned itself off. Solving this problem, which proved to be a neutron escape rate, was a high priority. Some reactors, took several months. These delays meant almost certainly that the war in Europe would be over before the weapon could be ready. The ultimate target was slowly changing from Germany to Japan.

Within 24 hours of Roosevelt's death on April 12, 1945, President Harry S. Truman was told by the Secretary of War, James F. Byrnes, that an atomic bomb by Secretary of War Henry Stimson. On April 25 Stimson, with Groves's assistance, gave Truman a more extensive briefing on the status of the project. The first plutonium-239 gun design had been frozen, but sufficient uranium-235 would not be accumulated until August 3. Enough plutonium-239 would be available for an implosion assembly to be tested in early July, a second one would be ready in August. Several B-29s had been modified to carry the weapons, and support construction was under way at Tinian, in the Marianas Islands, 1,500 miles south of Japan.

The test of the plutonium weapon was named Trinity: it was fired at 5:29:45 AM (local time) on July 16, 1945, at the Alamogordo Bombing Range in south central New Mexico. The theorists' predictions of the energy release ranged from the equivalent of less than 10,000 tons of TNT to 45,000 tons. The test produced an energy, or yield, equivalent to 21,000 tons of TNT. A single B-29 bomber, named the Enola Gay, flew over Hiroshima, Japan, on Monday, Aug. 6, 1945, at 8:15 in the morning, local time. The untested uranium-235 gun-assembly bomb, nicknamed Little Boy, was air-burst 1,900 feet (680 metres) above the city to maximize destruction. Two-thirds of the city area was destroyed. The population actually present at the time was estimated at 350,000; of these, 140,000 died by the end of the year. The second weapon, a duplicate of the plutonium-239 implosion assembly tested in Trinity and nicknamed Fat Man, was to be dropped on Kokura on August 9; a third was being prepared in the United States for possible use in late August or early September. To avoid bad weather the schedule was moved up two days to August 8. B-29, named Bock's Car, spent 10 minutes over Kokura without sighting its aim point; it then proceeded to the secondary target of Nagasaki, where, at 11:02 AM local time, the weapon was air-burst at 1,650 feet with a force later estimated at 21 kilotons. About half the city was destroyed, and, of the estimated 270,000 people present at the time, about 70,000 died by the end of the year.

The spread of atomic weapons. Scientists in several countries performed experiments in connection with nuclear reactors and fission weapons during World War II, but no country other than the United States carried its projects as far as separating uranium-235 or manufacturing...
application of nuclear fission: chain-reaction experiments with uranium and carbon were being planned, and ways of separating the isotope were under study. Some measurements on carbon, later shown to be in error, led the physicist Werner Heisenberg to recommend that heavy water be used, instead, for the moderator. This dependence on scarce heavy water was a major reason the German experiments never reached a successful conclusion. The isotope separation studies were oriented toward low enriched uranium-235 for the chain reaction experiments; they never got past the laboratory apparatus stage, and several times these prototypes were destroyed in bombing attacks. As for the fission weapon itself, it was a rather distant goal, and practically nothing but "back-of-the-envelope" studies were done on it.

Like their counterparts elsewhere, Japanese scientists initiated work on an atomic bomb. In December 1945, Japan's leading scientist, Nishina Yoshio, undertook a small-scale research effort supported by the armed forces. It did not progress beyond the laboratory owing to lack of government support, resources, and uranium.

Great Britain. The British weapon project started informally, as in the United States, among university physicists. In April 1940 a short paper by Otto Frisch and Rudolf Peierls, expanding on the idea of critical mass, estimated that a superweapon could be built using several pounds of pure uranium-235 and that this amount of material might be obtainable from a chain of diffusion tubes. This three-page memorandum was the first report to foresee with scientific precision the practical possibility of a bomb and the horrors it would bring. A group of scientists known as the MAUD committee was set up in the Ministry of Aircraft Production in April 1940 to decide if a uranium bomb could be made. The committee approved a report on July 15, 1941, concluding that the scheme for a uranium bomb was practicable, that work should continue on the highest priority, and that collaboration with the Americans should be continued and expanded. As the war took its toll on the economy, the British position evolved through 1942 and 1943 to one of full support for the American project with the realization that Britain's major effort would come after the war. While the British program was sharply reduced at home, approximately 50 scientists and engineers went to the United States at the end of 1943 and during 1944 to work on various aspects of the Manhattan Project. The valuable knowledge and experience they acquired speeded the development of the British bomb after 1945.

The formal postwar decision to manufacture a British atomic bomb was made by Prime Minister Clement Attlee's government during a meeting of the Defence Sub-committee of the Cabinet in early January 1947. The construction of a first reactor to produce fissile material and associated facilities had been under way for a year. William Penney, a member of the British team at Los Alamos during the war, was placed in charge of fabricating and testing the bomb, which was to be of a plutonium type similar to the one dropped on Nagasaki. That Britain was developing nuclear weapons was not made public until Prime Minister Winston Churchill announced on May 17, 1952, plans for the first British-built atomic bomb at the Monte Bello Islands off the northwest coast of Australia. There, on Oct. 3, 1952, the first British atomic weapons test, called Hurricane, was successfully conducted aboard the frigate HMS Pym. By early 1954 Royal Air Force Canberra bombers were armed with atomic bombs.

The Soviet Union. In the decade before the war, Soviet physicists were actively engaged in nuclear and atomic research. By 1939 they had established that, once uranium has been fissioned, each nucleus emits neutrons and can therefore, at least in theory, begin a chain reaction. The following year, physicists concluded that such a chain reaction could be started in either of the two isotopes of uranium, uranium-235, and that this reaction could be sustained and controlled with a moderator such as heavy water. In June 1940 the Soviet Academy of Sciences established the Uranium Commission to study the "uranium problem."

In February 1939, news had reached Soviet physicists of the discovery of nuclear fission in the West. The military implications of such a discovery were immediately apparent, but Sovyet research was brought to a halt by the German invasion in June 1941. In early 1942, the physicist Georgy N. Flerov noticed that articles on nuclear fission were no longer appearing in western journals. This indicated that research on the subject had become secret. In response, Flerov wrote to, among others, Premier Joseph Stalin, insisting that "we must build the uranium bomb without delay." In 1943 Stalin ordered the commencement of a research project under the supervision of Igor V. Kurchatov, who had been director of the nuclear physics laboratory at the Physico-Technical Institute in Leningrad. Kurchatov initiated work on three fronts: achieving a chain reaction in a uranium pile, designing a plutonium bomb, and separating isotopes from these materials.

By the end of 1944, 100 scientists were working under Kurchatov, and by the time of the Potsdam Conference, which brought the Allied leaders together the day after the Trinity test, the project on the atomic bomb was seriously under way. During one session at the conference, Truman remarked to Stalin that the United States had built a "new weapon of destructive force." Stalin replied that he would like to see the United States make "good use of it against the Japanese."

Upon his return from Potsdam, Stalin ordered that work on the fission bomb proceed at a faster pace. On Aug. 7, 1949, a group of scientists, including Lavrenty P. Beria, the chief of secret police, in charge of the Soviet version of the Manhattan Project. The first Soviet chain reaction took place in Moscow on Dec. 25, 1946, using an experimental graphite-moderated natural uranium pile, and the first plutonium production reactor became operational at Kyshtym, in the Ural Mountains, on June 19, 1948. The first Soviet weapon test occurred on Aug. 29, 1949, using plutonium: it had a yield of 10 to 20 kilotons.

France. French scientists, such as Henri Becquerel, Marie and Pierre Curie, and Frédéric and Irène Joliot-Curie, made important contributions to 20th-century atomic physics. During World War II several French scientists participated in an Anglo-Canadian project in Canada, where eventually a heavy water reactor was built at Chalk River, Ont., in 1945.

On Oct. 18, 1945, the Atomic Energy Commission (Commissariat à l'Energie Atomique, CEA) was established by General Charles de Gaulle with the objective of exploiting the scientific, industrial, and military potential of atomic energy. The military application of atomic energy did not begin until 1951. In July 1952 the National Assembly adopted a five-year plan, a primary goal of which was to build plutonium production reactors. Work began on a reactor at Marcoule in the summer of 1954 and on a plutonium separating plant the following year.

On Dec. 26, 1954, the issue of proceeding with a French bomb was raised at Cabinet level. The outcome was that Prime Minister Pierre Mendès-France launched a secret program to develop a bomb. On Nov. 30, 1956, a protocol was signed specifying tasks the CEA and the Defense Ministry would perform. These included providing the plutonium, assembling a device, and preparing a test site. On July 22, 1958, de Gaulle, who had resumed power the previous year, set the date for the first atomic explosion to occur within the first three months of 1960. On Feb. 13, 1960, the French detonated their first atomic bomb at a 330-foot tower in the Sahara in what was then French Algeria.

China. On Jan. 15, 1955, Mao Zedong (Mao Tse-tung) and the Chinese leadership decided to obtain their own nuclear arsenal. From 1955 to 1958 the Chinese were partially dependent upon the Soviet Union for scientific and technological assistance, but from 1958 until the breakdown in relations in 1960 they became more and more self-sufficient. Facilities were built to produce and process uranium and plutonium at the Lan-chou Gaseous Diffusion Plant and the Ch'u-ch'uan Atomic Energy Complex, both in the northwestern province of Kansu. A design laboratory
proliferation

called the Ninth Academy) was established at Har-ken, east of the Koko Nor in Tanghai province. A test site at Log Nor, in far northwestern China, was established in October 1959. Overall leadership and direction was provided by Nie Rongzhen (Nieh Jung-chen), director of the Defense Science and Technology Commission.

Unlike the initial U.S. or Soviet tests, the first Chinese detonation—on Oct. 16, 1964—used uranium-235 in an implosion-type configuration. Plutonium was not used until the eighth explosion, on Dec. 27, 1968.

Other countries. On May 18, 1947. India detonated a nuclear device in the Rajasthani desert near Pokaran with a reported yield of 15 kilotons. India characterized the test as being for peaceful purposes and apparently did not stockpile weapons. Pakistan declared its nuclear program to be solely for peaceful purposes. but it acquired the capability to produce a nuclear bomb should it want to. The United States, the U.S.S.R., and Great Britain were believed to be capable of assembling them on short notice. Israel was believed to be capable of producing and deploying nuclear weapons, though it never tested or declared itself as a nuclear weapon state.

Several other countries were believed to have built nuclear weapons or to have acquired the capability of assembling them on short notice. Israel was believed to have built several nuclear weapons and had the capability to produce a nuclear bomb. It was believed that a fission weapon could be used to ignite one end of a cylinder of liquid deuterium and that the resulting thermonuclear reaction would self-propagate to the other end. This conceptual design was known as the "classical Supper." One of the two central design problems was how to ignite the thermonuclear fuel. It was recognized early on that a mixture of deuterium and tritium theoretically could be ignited at lower temperatures and would have a faster reaction time than deuterium alone, but the question of how to achieve ignition remained unresolved. The other problem, equally difficult, was whether and under what conditions burning might proceed in thermonuclear fuel once ignition had taken place. An exploding thermonuclear weapon involves many extremely complicated interacting physical and nuclear processes. The speeds of the exploding materials can be up to millions of feet per second, temperatures and pressures are greater than those at the centre of the Sun, and time scales are billions of a second. To resolve whether the "classical Supper" or any other design would work required accurate numerical models of these processes—a formidable task, since the computers that would be needed to perform the calculations were still under development. Also, the requisite fusion triggers were not yet ready, and the limited resources of Los Alamos could not support an extensive program.

On Sept. 23, 1949, Truman announced that "we have evidence that within recent weeks an atomic explosion occurred in the U.S.S.R." This first Soviet test stimulated an intense, four-month secret debate about whether to proceed with the hydrogen bomb project. One of the strongest statements of opposition against proceeding with a hydrogen bomb program came from the General Advisory Committee (GAC) of the AEC, chaired by Oppenheimer. In their report of Oct. 30, 1949, the majority recommended "strongly against" initiating an all-out effort, believing that "extreme dangers to mankind inherent in the proposal wholly outweigh any military advantage that could come from this development." A super bomb, they went on to say, "might become a weapon of genocide." They believed that a "super bomb should never be produced." Nevertheless, the Joint Chiefs of Staff, the State and Defense departments, the Joint Committee on Atomic Energy, and a special subcommittee of the National Security Council all recommended proceeding with the hydrogen bomb. Truman announced on Jan. 31, 1950, that he had directed the AEC to continue its work on all forms of atomic weapons, including hydrogen bombs. In March, Los Alamos went on a six-day workweek.
In the months that followed Truman's decision, the prospect of actually being able to build a hydrogen bomb became less and less likely. The mathematician Stanislaw M. Ulam, in the assistance of Morton B. Corsell and the mathematician, had undertaken calculations of the amount of tritium that would be needed for ignition of the classical Super. Their results were spectacular and, to Teller, discouraging: the amount needed was estimated to be enormous. In the summer of 1950 more detailed and thorough calculations by other members of the Los Alamos Theoretical Division confirmed Ulam's estimates. This meant that the cost of the Super program would be prohibitive.

Also in the summer of 1950, Fermi and Ulam calculated that liquid deuterium probably would not burn—that is, there would probably be no self-sustaining and propagating reaction. Barring surprises, therefore, the theoretical work to 1950 indicated that every important assumption regarding the viability of the classical Super was wrong. If success was to come, it would have to be accomplished by other means.

The other means became apparent between February and April 1951, following breakthroughs achieved at Los Alamos. One breakthrough was the recognition that the burning of thermonuclear fuel would be more efficient if a high density was achieved throughout the fuel prior to raising its temperature, rather than the classical Super approach of just raising the temperature in one area and then relying on the propagation of thermonuclear reactions to heat the remaining fuel. A second breakthrough was the recognition that these conditions—high compression and high temperature throughout the fuel—could be achieved by converting and containing the radiation from an exploding fission weapon and then using this energy to compress a separate component containing the thermonuclear fuel.

The major figures in these breakthroughs were Ulam and Teller. In December 1950 Ulam had proposed a new fission weapon design, using the mechanical shock of an ordinary fission bomb to compress to a very high density a second fissile core. (This two-stage fission device was conceived entirely independently of the thermonuclear program; its aim was to use fissionable materials more economically.) Early in 1951 Ulam went to see Teller and proposed that the two-stage approach be used to compress and ignite a thermonuclear secondary. Teller suggested radiation implosion, rather than mechanical shock, as the mechanism for compressing the thermonuclear fuel in the second stage. On March 9, 1951, Teller and Ulam presented the idea to a continuing bomb design subcommittee, "Heterocatalytic Detonations I. Hydrodynamic Lenses and Radiation Mirrors." A second report, dated April 4, by Teller, included some extensive calculations by Frederic de Hoffmann and elaborated on how a thermonuclear bomb could be constructed. The two-stage radiation implosion design proposed by these reports, which led to the modern concept of thermonuclear weapons, became known as the Teller-Ulam configuration.

It was immediately clear to all scientists concerned that these new ideas—achieving a high density in the thermonuclear fuel by compression using a fission primary—provided for the first time a firm basis for a fusion weapon. Within a month, Los Alamos adopted this new program. Gordon Dean, chairman of the AEC, convened a meeting at the Institute for Advanced Study in Princeton, hosted by Oppenheimer, on June 16–18, 1951, where the new idea was discussed. In attendance were the GAC members, AEC commissioners, and key scientists and consultants from Los Alamos. The participants were unanimous in favor of active and rapid pursuit of the Teller-Ulam principle.

Just prior to the conference, on May 8 at Eniwetok atoll in the western Pacific, a test explosion called George had successfully used a fission bomb to ignite a small quantity of deuterium and tritium. The original purpose of George had been to confirm the burning of these thermonuclear fuels (about which there had never been any doubt), but with the new conceptual understanding contributed by Teller and Ulam, the test provided the bonus of successfully demonstrating radiation implosion.

In September 1951, Los Alamos proposed a test of the Teller-Ulam concept for November 1952. Engineering of the device, nicknamed Mike, began in October 1951, but unforeseen difficulties required a major redesign of the equipment in March 1952. The Mike device weighed 82 tons, owing in part to cryogenic (low-temperature) refrigeration equipment necessary to keep the deuterium in liquid form. It was successfully detonated during Operation Ivy on Nov. 1, 1952 (local time), at Eniwetok. The explosion achieved a yield of 10.4 million tons of TNT, or 500 times larger than the Nagasaki bomb, and it produced a crater 6,240 feet in diameter and 164 feet deep.

With the Teller-Ulam configuration proved, deliverable thermonuclear weapons were designed and initially tested during Operation Castle in 1954. The first test of the series, conducted on March 1, 1954 (local time), was called Bravo. It used solid lithium deuteride rather than liquid deuterium and produced a yield of 15 megatons (times as large as the Hiroshima bomb). Here the principal thermonuclear reaction was the fusion of deuterium and tritium. The tritium was produced in the weapon itself by neutron bombardment of the lithium-6 isotope in the course of the fusion reaction. Using lithium deutide, the United States eliminated the need for cumbersome cryogenic equipment.

With completion of Castle, the feasibility of lightweight, solid-fuel thermonuclear weapons was proved. Vast quantities of tritium would not be needed after all. New possibilities for adaptation of thermonuclear weapons to various kinds of missions began to be explored.

The Soviet Union. In 1948 Kurchatov organized a theoretical group, under the supervision of physicist Igor Y. Tamm, to begin work on a fusion bomb. (This group included Andrei Sakharov, who, after contributing several important ideas to the effort, later became known as the "father of the Soviet H-bomb.") In general, the Soviet program was two to three years behind that of the United States. The test that took place on Aug. 12, 1953, produced a fusion reaction in lithium deuteride and had a yield of 200 to 400 kilotons. This test, however, was not of a high-yield hydrogen bomb based on the Teller-Ulam configuration or something like it. The first such Soviet test, with a yield in the megaton range, took place on Nov. 22, 1955. On Oct. 30, 1961, the Soviet Union tested the largest known nuclear device, with an explosive force of 58 megatons.

Great Britain. Minister of Defence Harold Macmillan announced in his Statement of Defence, on Feb. 17, 1955, that the United Kingdom planned to develop thermonuclear weapons. The formal decision to proceed had been made earlier in secret by a small Defence subcommittee on June 16, 1954, and put to the Cabinet in July. The decision was unaccompanied by the official debate that characterized the American experience five years earlier. It remained unclear exactly when the first British thermonuclear test occurred. Three high-yield tests in May and June 1957 near Malden Island in the Pacific Ocean were probably of boosted fission designs (see below). The most likely date for the first two-stage thermonuclear test, using the Teller-Ulam configuration or a variant, was Nov. 8, 1957. This test and three others that followed it were probably of modern thermonuclear designs.

France. Well before their first atomic test, the French assumed they would eventually have to become a thermonuclear power as well. The first French thermonuclear test was conducted on Aug. 24, 1968.

China. Plans to proceed toward a Chinese hydrogen bomb were begun in 1960, with the formation of a group by the Institute of Atomic Energy to do research on thermonuclear materials and reactions. In late 1963, after the design of the fission bomb was complete, the Theoretical Department of the Ninth Academy, under the direction of Deng Xiaoxian (Teng Chia-Hsien), was ordered to shift to thermonuclear work. By the end of 1965 the theoretical work for a multistage bomb had been accomplished. After testing two boosted fission devices in 1966, the first Chinese multistage fusion device was detonated on June 17, 1967.
Refinements in design
From the late 1940s, U.S. nuclear weapon designers developed and tested warheads to improve their ballistics, to standardize designs for mass production, to increase yields, to improve yield-to-weight and yield-to-volume ratios, and to study their effects. These improvements resulted in the creation of nuclear warheads for a wide variety of strategic and tactical delivery systems.

Fission. The first advances came through the test series Operation Sandstone, conducted in the spring of 1948. These three tests used implosion designs of a second generation, which incorporated composite and levitated cores. A composite core consisted of concentric shells of both uranium-235 and plutonium-239, permitting more efficient use of these fissile materials. Higher compression of the fissile material was achieved by levitating the core—that is, introducing an air gap into the weapon to obtain a higher yield for the same amount of fissile material.

Tests during Operation Ranger in early 1951 included implosion devices with cores containing a fraction of a critical mass—a concept originated in 1944 during the Manhattan Project. Unlike the original Fat Man design, these “fractional core” weapons relied on compressing the fissile core to a higher density in order to achieve a supercritical mass. These refinements could achieve appreciable yields with less material.

One technique for enhancing the yield of a fission explosion was called “boosting.” Boosting referred to a process whereby thermonuclear reactions were used as a source of neutrons for inducing fissions at a much higher rate than could be achieved with neutrons from fission chain reactions alone. The concept was invented by Teller by the middle of 1943. By incorporating deuterium and tritium into the core of the fissile material, a higher yield could be obtained from a given quantity of fissile material or, alternatively, the same yield could be achieved with a smaller amount. The fourth test of Operation Greenhouse, on May 24, 1951, was the first proof test of a booster design. In subsequent decades approximately 90 percent of nuclear weapons in the U.S. stockpile relied on boosting.

Fusion. Refinements of the basic two-stage Teller-Ulam configuration resulted in thermonuclear weapons with a wide variety of characteristics and applications. Some high-yield deliverable weapons incorporated additional thermonuclear fuel (lithium deuteride and fissionable material (uranium-235 and uranium-238) in a third stage. While there was no theoretical limit to the yield that could be achieved from a thermonuclear bomb (for example, by adding more stages), there were practical limits on the size and weight of weapons that could be carried by aircraft and missiles. The largest U.S. bombs had yields of from 10 to 20 megatons and weighed up to 20 tons. Beginning in the early 1960s, however, the United States built a variety of smaller, lighter weapons that exhibited steadily improving yield-to-weight and yield-to-volume ratios.

A nuclear explosion releases energy in a variety of forms, including blast, heat, and radiation (X-rays, gamma rays, and neutrons). By varying a weapon’s design, these effects could be tailored for a specific military purpose. In an enhanced-radiation weapon, more commonly called a neutron bomb, the objective was to minimize the blast by reducing the fissile yield and to enhance the neutron radiation it would generate to kill soldiers and troops without. It was hoped, destroying the defending country’s towns and countryside. It was actually a small fraction of the order of one kiloton, two-stage thermonuclear weapon that utilized deuterium and tritium, rather than lithium deuteride, to maximize the release of fast neutrons. The first U.S. application of this principle was an antiballistic missile warhead in the mid-1970s. Enhanced-radiation warheads were produced for the Lance short-range ballistic missile and for an eight-inch artillery shell.

Chemical and biological weapons
Chemical warfare agents are substances, whether gaseous, liquid, or solid, intended for use in warfare because of their direct toxic effects on people, animals, or plants. Worldwide revulsion toward chemical weapons is embossed in the Geneva Protocol of 1925, prohibiting “the use in war of asphyxiating, poisonous or other gases, and of all analogous liquids, materials or devices.” More than 120 states, including all major nations, are parties to the Protocol of 1925.

History of use. Toxic smoke agents and other toxic substances were used occasionally in war from ancient times, but the earliest large-scale use of chemical warfare agents was in World War I. Preceded by sporadic use of various tear gases in artillery and other projectiles during the World Wars, it was the German attack with chlorine on April 22, 1915, that initiated the wide-scale use of chemicals in that conflict. The wind-driven clouds of chlorine gas totally broke the lines of the unprepared French, Belgian, and Belgian-German units in its path. But the attackers failed to exploit the opportunity. Although numerous chlorine gas-cloud attacks were subsequently carried out by both sides, they accomplished little, owing to the introduction of gas masks and other protective measures.

As other gases and more effective delivery methods were introduced, so too were improved defenses. Notable among offensive improvements was the production of more poisonous than chlorine gas, such as phosgene, which blistered the skin and attacked the eyes, especially mustard gas. The defense kept pace with the introduction of better gas masks, protective clothing, and defoliative tactics for minimizing exposure. More than 100,000 tons of various chemical warfare agents were stockpiled by both sides during World War II, but gas was an unimportant weapon in overall military terms. It was in general because of the effectiveness of defenses against it.

In World War II, chemical weapons were stockpiled by both sides, but they were not used and were not integrated into military planning. Records indicated various reasons for this: (1) military opinion that chemical weapons would be less effective than conventional weapons and would complicate and delay operations, (2) fear of retaliation, especially against civilian centres, and (3) aversion to gas warfare by political and military leaders, reflecting the proscriptions of the Geneva Protocol.

Chemical weapons were used in only a few of the more than 200 wars fought after World War II. In each case as in Ethiopia (1935–36), China (1938–42), the Yemen (1966–67), and Iraq–Iran (1980–88)—chemical weapons were used for the first time. They were aimed at enemy troops and caused incalculable damage. Their use was a distinct violation of the Geneva Protocol, not surprising given the times, as the world was a very different place then. In addition to agents, both non-chemical and non-chemical, these weapons were used to intimidate and to force compliance.

The use of chemical and biological weapons is a serious threat to national security and to the security of the United States. The United States must be prepared to counter chemical and biological attacks and to protect its citizens from such attacks. The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities.

Chemical warfare agents are generally classified as either nerve agents or blister agents. Nerve agents are compounds that inhibit the enzyme acetylcholinesterase, leading to excessive release of neurotransmitters and death. Blister agents are compounds that cause skin irritation, swelling, and blistering.

The most commonly used nerve agents are sarin, VX, and sarin. Sarin is a colorless, non-irritating gas that can be produced from the gas-phase reaction of dimethyl methylphosphonate with hydrogen. It is highly toxic, with a lung irritant concentration of 10 parts per million and a lethal concentration of 1 part per billion. VX is a colorless, non-irritating gas that can be produced from the gas-phase reaction of dimethyl methylphosphonate with hydrogen. It is highly toxic, with a lung irritant concentration of 10 parts per million and a lethal concentration of 1 part per billion.

Blister agents include mustard gas, lewisite, and phosgene. Mustard gas is a colorless, non-irritating gas that can be produced from the gas-phase reaction of dimethyl methylphosphonate with hydrogen. It is highly toxic, with a lung irritant concentration of 10 parts per million and a lethal concentration of 1 part per billion. Lewisite is a colorless, non-irritating gas that can be produced from the gas-phase reaction of dimethyl methylphosphonate with hydrogen. It is highly toxic, with a lung irritant concentration of 10 parts per million and a lethal concentration of 1 part per billion. Phosgene is a colorless, non-irritating gas that can be produced from the gas-phase reaction of dimethyl methylphosphonate with hydrogen. It is highly toxic, with a lung irritant concentration of 10 parts per million and a lethal concentration of 1 part per billion.

The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities. The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities. The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities.

In addition to nerve agents, both non-chemical and non-chemical, these weapons were used to intimidate and to force compliance.

The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities. The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities.

In addition to nerve agents, both non-chemical and non-chemical, these weapons were used to intimidate and to force compliance.

The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities. The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities.

In addition to nerve agents, both non-chemical and non-chemical, these weapons were used to intimidate and to force compliance.

The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities. The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities.

In addition to nerve agents, both non-chemical and non-chemical, these weapons were used to intimidate and to force compliance.

The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities. The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities.

In addition to nerve agents, both non-chemical and non-chemical, these weapons were used to intimidate and to force compliance.

The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities. The United States has a comprehensive system of defense against chemical and biological weapons, including detection, warning, and response capabilities.

In addition to nerve agents, both non-chemical and non-chemical, these weapons were used to intimidate and to force compliance.
& Management, with a Treatise on the Ballista and Catapult of the Ancients; and an Appendix on the Catapult. Ballista & the Catapult, 2nd ed. (1938, reprinted 1981), remains the basic text on the crossbow. ROBERT HARDY, Longbow & Social and Military History, (1976, reissued 1986), is a definitive treatment by a famous archer, with appendices on design and ballistics. The above-mentioned 'Aims' series includes DOUGLAS MILLER, The Landsknechts (1976), and The Swiss at War, 1300-1500 (1979); DAVID G. NICOLLE, The Art of the Ottoman Turks, 1400-1700 (1983), and S. R. TERRY, The Armies of the Armoured Hussars, 1570-1615 (1978). Though not specifically concerned with warfare or military technology, NORMAN EYKOWITZ, Ottoman Empire and Islamic Tradition (1972, reprinted 1980), and PETER DULC, Feudalism in Japan, 2nd ed. (1961), provide the historical and cultural context for military developments.

