Chapter Seven
Nuclear Capable Aircraft and Bombs

According to the Department of Defense, "any airplane that is designed to carry an ordinary bomb can, with the proper wiring and certification, also carry a nuclear bomb." However, not every airplane or even tactical fighter is so certified. "Most dual capable aircraft have not been optimized for the nuclear strike mission and have deficiencies that limit their effectiveness in this role."

Nuclear bombs are designed for delivery by aircraft either in a bomb bay (internal) or under the wing (external). Aircraft configured for nuclear weapons delivery have an Aircraft Monitoring and Control (AMAC) system installed to monitor and control fuzing, arming, and safing functions of the nuclear bombs. A permissive action link (PAL) or Nuclear Consent Switch is installed in the cockpit to release the weapon for detonation.

Fifteen tactical aircraft are currently modified to carry nuclear weapons (see Table 7.2). Four different kinds of bombs are used in the tactical air forces. These bombs, B28, B43, B57, and B61 (see Chapter Three), vary in yield from approximately 5 kilotons to over 1 megaton. The newest can be delivered at low altitudes at supersonic speeds. Currently there are no nuclear missiles deployed with tactical aircraft.

Nuclear Bombs

All deployed nuclear bombs can be delivered with a variety of options, including ground ("laydown") and airburst detonations. Four delivery and fuzing modes are most common: airburst/retarded, groundburst/retarded, air/full fuzing and ground/full fuzing (see Glossary). Table 7.1 describes the six nuclear bombs deployed or under development. Nuclear bombs must usually be dropped directly over their targets to assure accuracy. In order to achieve optimum heights of air burst with all nuclear bombs to avoid detonation too close to the ground, the delivery aircraft must fly at an altitude that is vulnerable to enemy air defenses. The newer bombs, the deployed B61 and the not yet deployed B83, allow the pilot to release the weapon at as low as 50 feet, activating a parachute-type (drogue) retard and a time-delay fuze. When used at low altitudes, the laydown delivery method is extremely accurate. The accuracy of the B61 and B83 bombs delivered in the laydown mode is reportedly averaging 600 ft CEP. The older bombs, like the B28, B43, and B57, have a minimum delivery altitude of 300-600 feet. They can be delivered "over the shoulder and at low or medium angle loft."

The B83 "Modern Strategic Bomb" is the major new nuclear weapon under development for aircraft delivery. The bomb will replace the older B28, B43, and B53 bombs. It is entering production in FY 1983 and is planned for deployment starting in 1984-1985 after a long and difficult development period. The B83's roots are in the B77, a very expensive strategic bomb under development in the 1970s. The B77 included improved safety features, but also included a capability for delivery at high speeds at extremely low altitudes. The cost of the B77 grew so excessive that in FY 1979 the program was cancelled, and a modified B43 model took its place. Congress, however, directed that FY 1978 and 1979 funds not be expended on a modified B43 and instead allocated funds for development of a cheaper new strategic bomb. The B83, initiated in FY 1980, is a modern strategic bomb which contains most of the essential features of the B77, but at reduced cost.

The B83 is intended to "enhance the effectiveness of the strategic nuclear gravity bomb stockpile."

The primary reason for developing the B83 is to enable tactical and strategic aircraft to deliver their weapons while flying low level. With a 150 foot high-level high speed delivery capability and a megaton range, the B83 will be capable of destroying "hardened Soviet ICBM silo and launch complexes, command, control and communication installations, and nuclear storage sites."

The B83 is the first megaton yield bomb specifically designed for groundburst retarded ("laydown") delivery against hard targets. The production schedule of the B83 is being increased to meet larger strategic bomber force requirements with deployment of the B-1B.
Table 7.1
Nuclear Bombs

<table>
<thead>
<tr>
<th>Type</th>
<th>Weight (lb)</th>
<th>Yield (Kt)</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>B28</td>
<td>2027-2540</td>
<td>70-1450</td>
<td>A-7, F-4, F-100, F-104, B-52</td>
</tr>
<tr>
<td>B43</td>
<td>2060-2330</td>
<td>1000</td>
<td>A-4, A-6, A-7, B-52, F-4, F-100, F-104, F-111, FB-111</td>
</tr>
<tr>
<td>B53</td>
<td>8850</td>
<td>9000</td>
<td>B-52</td>
</tr>
<tr>
<td>B61</td>
<td>less than 840</td>
<td>10-500</td>
<td>A-4, A-6, A-7, B-52, F-4, F-16, F-18, F-104, F-111, FB-111</td>
</tr>
<tr>
<td>B83</td>
<td>2408</td>
<td>1000+</td>
<td>A-4, A-6, A-7, B-18, B-52, F-4, F-16, F-111, FB-111</td>
</tr>
</tbody>
</table>

Table 7.2
Nuclear Capable Tactical Aircraft

<table>
<thead>
<tr>
<th>Type</th>
<th>Function</th>
<th>Service</th>
<th>Nuclear Weapons</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-4</td>
<td>Short-range attack</td>
<td>MC</td>
<td>B43, B57, B61</td>
</tr>
<tr>
<td>A-6</td>
<td>Long-range attack</td>
<td>N</td>
<td>B43, B57, B61</td>
</tr>
<tr>
<td>A-7</td>
<td>Medium-range attack</td>
<td>ANG, N</td>
<td>B43, B57, B61</td>
</tr>
<tr>
<td>AV-8B</td>
<td>Medium-range fighter</td>
<td>MC</td>
<td>B57, B61</td>
</tr>
<tr>
<td>CF-101</td>
<td>Interceptor</td>
<td>Canada</td>
<td>GENIE</td>
</tr>
<tr>
<td>F-4</td>
<td>Medium-range fighter</td>
<td>AF</td>
<td>GENIE, bombs</td>
</tr>
<tr>
<td>F-15</td>
<td>Interceptor/fighter</td>
<td>AF</td>
<td>GENIE</td>
</tr>
<tr>
<td>F-16</td>
<td>Medium-range fighter</td>
<td>AF, NATO</td>
<td>B43, B61</td>
</tr>
<tr>
<td>F-16/A-18</td>
<td>Medium-range fighter/attack</td>
<td>MC, N</td>
<td>B57, B61</td>
</tr>
<tr>
<td>F-100</td>
<td>Medium-range fighter</td>
<td>NATO</td>
<td>B28, B43, B57, B61</td>
</tr>
<tr>
<td>F-104</td>
<td>Medium-range fighter</td>
<td>NATO</td>
<td>B28, B43, B57, B61</td>
</tr>
<tr>
<td>F-106</td>
<td>Interceptor</td>
<td>AF</td>
<td>GENIE</td>
</tr>
<tr>
<td>F-111</td>
<td>Long-range fighter</td>
<td>AF</td>
<td>B43, B57, B61</td>
</tr>
<tr>
<td>P-3</td>
<td>Long-range Maritime Patrol</td>
<td>N</td>
<td>B57</td>
</tr>
<tr>
<td>S-3</td>
<td>Long-range Maritime Patrol</td>
<td>N</td>
<td>B57</td>
</tr>
<tr>
<td>SH-3</td>
<td>Short-range ASW Helicopter</td>
<td>N</td>
<td>B57</td>
</tr>
<tr>
<td>SH-60F</td>
<td>Short-range ASW Helicopter</td>
<td>N</td>
<td>B57</td>
</tr>
<tr>
<td>TORNADO</td>
<td>Medium-range fighter</td>
<td>NATO</td>
<td>B57, B61</td>
</tr>
</tbody>
</table>

1. Nuclear capable versions.
2. Belgium, Netherlands.
3. Turkey.
4. Belgium, Greece, Italy, Netherlands, West Germany.
5. Italy, West Germany.
B83

Figure 7.1 F-111 delivering B83 bomb prototype.

FUNCTION: Modern high-yield strategic bomb, with improved low level delivery capability.¹

WARHEAD MODIFICATIONS: none known

SPECIFICATIONS:

Yield: probably 1000+ Kt, “high yield,”² “megaton class”³

Weight: 2408 lb⁴

Dimensions:
Length: 12 ft
Diameter: unknown

Materials: probably plutonium/oralloy mixed weapon; IHE (probably PBX-9502)⁵

SAFEGUARDS AND ARMING FEATURES: Category D PAL, nonviolent command disable;² weak link/strong link, one-point safe by the present criterion⁷

FUZING AND DELIVERY MODE: improved low-level, high speed delivery capabilities;² airburst, groundburst, full fuzing; new parachute design permits the B83 to be dropped at transonic and supersonic speeds (up to Mach 2), slowing down the bomb to 60 mph to withstand the shock of delivery at high speeds from altitudes as low as 150 feet and as high as 50,000 feet⁸

DEVELOPMENT:
Laboratory: LLNL

History:
IOC: 1984
Jan 1979 Lab assignment (Phase 3)¹⁰ (through FY 1983)¹¹
1981 B83 enters Phase 4¹²
1984 initial deployment (Phase 5)

Production Period: 1983-

DEPLOYMENT:
Number Planned: approximately 2500 (1983)

Delivery System: primarily carried by the B-1B, B-52, and FB-111 strategic bombers; F-4, F-111, A-4, A-6, A-7, and F-16 will be secondary carriers.¹³ It will be the major gravity weapon for the B-1B.¹⁴

Service: Air Force, Navy

Allied User: none planned

² Nuclear Weapons Databook, Volume I
B83 is scheduled as a replacement for the older high-yield bombs, the B28, B53, and B43. Because of the development of the B83, the production and development of the B77 was never executed. The B77 was cancelled in 1978 and development was shifted to a variant of the B43Y1, then the B83. The B83 is still one of the more complicated and expensive bombs.

1 HASC, FY 1982 DOE, p. 136.
7 "One point safe means that the probability of achieving a nuclear yield greater than four pounds of TNT equivalent shall not exceed one in one million in the event of a detonation initiated at a single point in the high explosive system."
14 GAO, Draft Study for B-1.
16 HASC, FY 1981 EWDA, p. 305.
17 SASC, FY 1981 DOE, p. 52.
Future Nuclear Capable Aircraft

Tactical Nuclear Air-Launched Missiles

While the nuclear capability of tactical aircraft consists entirely of gravity bombs, missiles with standoff capabilities and improved accuracies are under development. The BULLPUP (W-45) and the WALLEYE (W-72), both retired in 1978-1979, were the last nuclear armed air-to-surface missiles to be deployed with tactical air forces. Although the WALLEYE missile resulted from air-delivered standoff weapons using terminal guidance developed during the Vietnam War, nuclear armed versions were never adopted in large numbers. Improved modifications of the B61 bomb (and development of the B83) were pursued instead.

In 1972, a research program—Tactical Air-to-Surface Munition (TASM)—began to investigate the possibility of an accurate standoff capability with nuclear bombs. In May 1974, the program was redirected toward the development of an Extended Range Bomb (ERB) which called for a single weapon with all-weather inertial guidance, terminal guidance, and return-to-target capability against mobile battlefield targets. The TASM/ERB program consists of two separate tracks: one to develop a new standoff weapon with new warhead and greatly increased accuracy, and the other to develop modification kits to provide presently stockpiled bombs with a standoff and return-to-target airburst delivery capability. This conversion would require the addition of canards and tail surfaces, a rocket propulsion system, inertial navigation system, flight computer, radar altimeter, and weapon control panel for preflight insertion of target data. The TASM/ERB would be compatible with the A-4, A-6, A-7, F-4, F-16, F-18, F-104, F-111, and TORNADO.

One candidate for the TASM is TIGER (Terminal Guided and Extended Range Missile), a guided nuclear bomb under development since 1972 at Sandia National laboratories. This weapon would allow for delivery of nuclear weapons at low altitudes, either outside of concentrated defense around fixed targets or against mobile targets, with one low level pass. TIGER would have extended range and a return-to-target capability by flying a circular trajectory, minimizing the delivery aircraft’s exposure to air defenses. TIGER II is the present model being tested by Sandia as a candidate for the TASM/ERB. TIGER II will use field retrofit kits for the B61 bomb to demonstrate a standoff 90 meter CEP accuracy when delivered from low flying aircraft.

Three nuclear warheads are currently under development for TASM and other future air-delivered weapons. The TASM warhead was reported in Phase 1 during 1982 at DOE, with a yield of 10 Kt against both battlefield and fixed targets. Also reported in Phase 1 during 1982 was the Advanced Tactical Air Delivered Weapon. A feasibility study to design a nuclear warhead for the PHOENIX air-to-air missile was reported in FY 1983.

Future Nuclear Capable Delivery Aircraft

A major expansion of tactical air forces with an increase in nuclear capability is scheduled for this decade. The Air Force tactical fighter force will have 40 full tactical fighter wings (26 active and 14 reserve) by 1985 and will build to full strength of 72 aircraft per wing, or 2880 aircraft. This is equivalent to an increase of some four wings between 1983-1988. By FY 1990, 44 tactical fighter wings are planned, an addition of some 288 aircraft over FY 1982 levels. A fourteenth aircraft carrier (USS Roosevelt) will join the Naval air fleet in 1988, which will add another air wing to the Navy’s 13 wings. By the early 1990s, the Navy’s 600 ship objective, built around 15 aircraft carrier battle groups, will add a 15th air wing.

New aircraft will continue to enter the tactical inventory and replace older models. The tactical air forces will eventually stabilize with F-14, F-15, F-16, F/A-18, and AV-8B high performance aircraft. During the next 10 years, the A-4, A-7, F-4, F-100, F-104, and F-106 will be removed from the active inventory. Allied forces equipped with U.S. nuclear weapons will also undergo a major upgrade by the mid-1980s. The Canadian CF-101s will be replaced by CF-18s, and NATO nuclear armed F-104 aircraft will be replaced with F-16s and European-built TORNADOs.

Rather than developing more high performance aircraft that have either air-to-air or air-to-surface roles, future tactical fighters will be dual role. The aircraft inventory was once composed solely of single role, highly specialized designs that were not capable of freely operating in other modes. In fact, some aircraft were specifically designed as nuclear weapons fighter bombers or interceptors with an internal weapons bay to carry only nuclear bombs or rockets. Only two aircraft of this type are still operational—the Marine Corps A-4M and the Air Force F-106. A third model (F-105) was retired in 1982.

1 Most of the information in this section is taken from Sandia, "TIGER: A Technology to Improve the Delivery Capability of Nuclear Bombs and the Survivability of the Delivery Aircraft," n.d.
3 Information provided by Sandia.
4 HAC, FY 1980 DOE, p. 86.
5 DOD, FY 1980 RDA, p. 179.
6 SASC, FY 1983 DOD, Part 4, p. 146.
7 HAC, FY 1983 DOD, Part 4, p. 146.
8 HAC, FY 1983 DOD, Part 5, p. 179.
As nuclear weapons became lighter and aircraft and air-to-air missile technology improved, allowing for greater versatility and payloads without sacrificing performance, air-to-surface ground attack aircraft were no longer designed only for bombing, but also for a variety of other roles. A portion of today's aircraft inventory, the so-called workhorses, is comprised of these versatile aircraft: F-111, A-6, A-7, and F-4. The new high performance aircraft first deployed in the 1970s—F-14, F-15, F-16, F/A-18, and AV-8A—largely concentrate on air-to-air or air-to-surface roles. The inclusion of nuclear weapons delivery neither influences design nor complicates other operations. Each of the new planes, with the exception of the F-14, is certified for nuclear weapons delivery.

As the older strike aircraft—specifically the F-4 and F-111—reach the end of their useful life because of attrition through accidents and old age, they will be replaced by a long-range dual role strike fighter which will augment the air-to-surface specialists. The Navy will introduce the F-18 for this role, and the Marine Corps plans the AV-8B. The Air Force, which has recently introduced the F-15 and F-16, has no plans to build another new aircraft until the early 1990s. Instead, the Air Force has established a new program—Tactical Fighter Derivative—to develop a modified F-16 designed to augment the aging F-111 and meet the F-4’s requirements until the 1990s when the next generation of fighters is developed.

Tactical Fighter Derivative
The Tactical Fighter Derivative program, started in FY 1983, will examine upgraded dual role ground attack variants of two aircraft, designated the F-15E and the F-16E, which will incorporate improvements in range, payload, all-weather, and nighttime operations. According to the Air Force, the new aircraft will “double the target coverage of the [present] F-4” in Europe and make up for “critical deficiencies in night/ adverse weather operations.” Either the F-15 or F-16 candidate airplanes will be selected in FY 1983-1984, and 400 aircraft will be procured for the dual role.

The F-15E derivative fighter will provide a full air-to-ground bombing capability with its greatly increased range and an upgraded and “missionized” rear cockpit for a weapons officer. An early prototype has been flying since 1980 under a McDonnell Douglas program, “STRIKE EAGLE”. A new terrain following/terrain avoidance capability with greater ground target resolution and blind weapons delivery capability will be added to the F-15 radars. Nuclear capability would include control mechanisms added to five external weapons stations for nuclear weapons delivery. Cost to develop the F-15E is estimated at $300-350 million. Procurement of 400 of these aircraft would cost $16 billion.

The F-16E derivative fighter would use aerodynamic enhancements to improve the F-16’s air-to-air characteristics and range. The new F-16E would employ a new “cranked arrow” (double delta) wing design in place of the current standard wing and horizontal tail. This would result in increased range and payload with more fuel capacity and greater lift. The new wing would also allow weapons to be carried “conformally” (close to the wing), which would reduce drag and give better fuel consumption. A section would be added to the fuselage for a second crew member and additional avionics. A computerized flight control system would be added. Finally, a new engine would be added, either a Pratt & Whitney F100 or General Electric F101 (the derivative fighter engine). Cost to develop the F-16E is estimated at $776.1 million. Procurement of 400 aircraft would cost $12 billion.

Advanced Tactical Fighter
A completely new airplane that is lightweight, reliable, easily maintained, and has increased combat radius and payload is now in development for the 1990s. The Air Force development program promises a “revolutionary change” in capabilities through the incorporation of improved operating efficiencies and lower manufacturing costs, derived from new technology advances. For example, composite structures would be used to achieve a very light weight. Very high speed integrated circuits (VHSIC) would also be used, as well as a new engine design and greater efficiency derived from the cruise missile program. The advanced tactical fighter would incorporate three new major features:

- Stealth technology: “significantly reduced radar and infrared detectability.”
- Supersonic Cruise: increased practical (sustained) operating speeds at both high and low altitudes, without penalties in maneuverability, and
- Nuclear Weapons Delivery: improved delivery of nuclear weapons.

References:
16 HAC, FY 1983 DOD, Part 5, p. 656.
17 SAC, FY 1983 DOD, Part 4, p. 130.
19 Ibid.
Future Nuclear Capable Aircraft

- Short Take Off and Landing: greatly increased flexibility with ability to operate from runways of less than 2000 ft.

The research and development program for the Advanced Tactical Fighter began in FY 1983. Full scale engineering development is planned for 1987. The earliest possible IOC is 1993, and full scale operations are planned for the mid-1990s.

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Fighter Technology</td>
<td>Future fighter aircraft testbed using modified F-16A [1978-present]</td>
</tr>
<tr>
<td>Integration (AFTI-1B)</td>
<td></td>
</tr>
<tr>
<td>Advanced Tactical Fighter</td>
<td>Next generation tactical fighter planned for 1990s with stealth technology, new engine,</td>
</tr>
<tr>
<td></td>
<td>upgraded avionics [1980-present]</td>
</tr>
<tr>
<td>F/A-18L:</td>
<td>Northrop version of F-18 for land-based future lightweight fighter with increased payload</td>
</tr>
<tr>
<td></td>
<td>[1980-present]</td>
</tr>
<tr>
<td>F-16X/101:</td>
<td>Test version of F-16 powered by F100 (B-1) engine to determine its suitability as engine for</td>
</tr>
<tr>
<td></td>
<td>1980-1981</td>
</tr>
<tr>
<td>F-16E/F-16 SCAMP/</td>
<td>Advanced versions of F-16 with new wing design, simplified flying controls, upgraded weapons load,</td>
</tr>
<tr>
<td>F-16XL:</td>
<td>additional fuel and storage space for future avionics and sensors,</td>
</tr>
<tr>
<td></td>
<td>derivative fighter candidate [1978-present]</td>
</tr>
<tr>
<td>Forward Swept Wing</td>
<td>DARPA sponsored Grumman tests of smaller, lighter weight,</td>
</tr>
<tr>
<td></td>
<td>more efficient fighter designs [1980-present]</td>
</tr>
<tr>
<td>F-15E/STRIKE EAGLE:</td>
<td>Upgraded all-weather strike and interdiction model of F-15,</td>
</tr>
<tr>
<td></td>
<td>designed for air-to-surface roles, derivative fighter</td>
</tr>
<tr>
<td></td>
<td>candidate [1978-present]</td>
</tr>
</tbody>
</table>
Nuclear Capable Aircraft

A-4 SKYHAWK

DESCRIPTION: Light, single-seat, single-engine, carrier-based, attack aircraft used by the Marine Corps.

Nuclear Capable Versions: A-4D/E/M

CONTRACTORS: McDonnell-Douglas Corp.
Long Beach, CA (prime/airframe)
Pratt & Whitney Aircraft
East Hartford, CT (engine)
Hughes Aircraft Co.
Canoga Park, CA (angle rate bombing system)

SPECIFICATIONS:

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>(A-4M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>40 ft 3 in</td>
</tr>
<tr>
<td>Height</td>
<td>15 ft</td>
</tr>
<tr>
<td>Wingspan</td>
<td>27 ft 6 in</td>
</tr>
<tr>
<td>Takeoff Weight</td>
<td>25,500 lb (max):</td>
</tr>
<tr>
<td>Powerplant</td>
<td>1 P&W J-52-P-408A turbojet</td>
</tr>
<tr>
<td>Ceiling</td>
<td>57,570 ft; 40,800 ft</td>
</tr>
</tbody>
</table>

IBM Corp. Federal Systems
Oswego, NY (bombaro computer)

Nuclear Weapons Databook, Volume I 205
A-4 SKYHAWK

<table>
<thead>
<tr>
<th>Property</th>
<th>Value/Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed:</td>
<td>(max) 650 mph (Mach 0.94) at</td>
</tr>
<tr>
<td></td>
<td>25,000 ft; 700 mph at sea level</td>
</tr>
<tr>
<td>Range:</td>
<td>341 mi (550 km) (combat radius); 403 mi (648 km) (combat radius)<sup>1</sup></td>
</tr>
<tr>
<td></td>
<td>Nov 1970</td>
</tr>
<tr>
<td>Aerial Refueling:</td>
<td>yes</td>
</tr>
<tr>
<td>Crew:</td>
<td>1</td>
</tr>
<tr>
<td>NUCLEAR WEAPONS:</td>
<td>one nuclear weapon: B28<sup>+</sup>, B43, B57<sup>+</sup>, B61<sup>+</sup>; five weapons stations</td>
</tr>
<tr>
<td>DEPLOYMENT:</td>
<td>158 built (A-4M)</td>
</tr>
<tr>
<td>Locations:</td>
<td>MCAS El Toro, CA; MCAS Cherry Point, NC; MCAS Iwakuni, Japan</td>
</tr>
<tr>
<td>HISTORY:</td>
<td>1952 (precursor)</td>
</tr>
<tr>
<td>IOC:</td>
<td>1956 (A-4A); 1970 (A-4M)</td>
</tr>
<tr>
<td>Number Deployed:</td>
<td>158 built (A-4M)</td>
</tr>
<tr>
<td>Number per Squadron:</td>
<td>16 (UE)</td>
</tr>
<tr>
<td>First Flight:</td>
<td>Jun 1954</td>
</tr>
<tr>
<td>Total Appropriation</td>
<td>FY 1977</td>
</tr>
<tr>
<td>COST:</td>
<td>$2.8 m (program) (TY)<sup>9</sup></td>
</tr>
<tr>
<td></td>
<td>$5.6 m (flyaway) (FY 1979)<sup>9</sup></td>
</tr>
<tr>
<td>COMMENTS:</td>
<td>Originally built as a daylight-only nuclear strike aircraft for use in large numbers from aircraft carriers, the A-4 has been updated for visual reference day or night attack. It has been retired from U.S. Navy use. AV-8B will replace A-4M in Marines starting in 1985.<sup>12</sup> 2960 A-4 and TA-4 SKYHAWKS were built between 1953 and 1979.</td>
</tr>
</tbody>
</table>

1. JCS, FY 1982, p. 76.
3. A-4M has an improved engine and weapons delivery capability.
4. Added power of new engine greatly enhanced short field (4000 ft runway) take-off capability.
6. Ibid.
8. Ibid.
10. Ibid.
11. Ibid.
A-6 INTRUDER

DESCRIPTION: Long-range, two-seat, twin-engine, carrier-based, all-weather attack aircraft used by the Navy and Marine Corps.

Nuclear capable versions: A-6E

CONTRACTORS: Grumman Aerospace Bethpage, NY (prime) Pratt and Whitney Hartford, CT (engine)

SPECIFICATIONS: (A-6E)

Dimensions:
- Length: 54 ft 7 in
- Height: 16 ft 2 in
- Wingspan: 53 ft (25 ft 4 in folded)

Takeoff Weight (max): 60,450 lb

Powerplant: 2 P&W J52-P-8A/B turbojets

Ceiling: 42,400 ft

Speed: (max) 655 mph (Mach-0.86)
A-6 INTRUDER

Range: 370-1125 mi (595-1810 km) (combat radius) (with carrier-based aerial refueling);\(^3\) 1924 mi (combat range)\(^4\) Feb 1970 A-6E first flight 1975 final delivery of initial buy 1981 HARPOON capability added to A-6\(^6\)

Aerial Refueling Capability: yes 1984 production of A-6E completed

Crew: 2 (pilot, bombardier/navigator)

NUCLEAR WEAPONS: three nuclear weapons: B28,\(^5\) B43, B57,\(^6\) B61; five weapons stations under wings with total capacity of 18,000 lb; HARPOON is also carried on A-6E TRAM

DEPLOYMENT:

Number deployed: 332 A-6E;\(^7\) 256 A-6;\(^8\) 608 A-6 aircraft produced (1960-1980): 318 operational A-6Es planned 1979 & prior 123 1351.9\(^1\)

1980 6 159.8

1981 12 270.7

1982 12 293.1

1983 8 249.0

1984 6 239.0

Locations: MCAS El Toro, CA; MCAS Iwakuni, Japan; MCAS Cherry Point, NC; NAS Oceana, VA; NAS Whidbey Island, WA

Number per Squadron: 10 (UE)\(^9\)

HISTORY:

IOC: 1963 (A-6); 1972 (A-6E)

Apr 1960 first flight

1969 development begins on A-6E

COMMENTS: A-6 has low-level navigation and weapons delivery capability at night and in adverse weather.\(^10\) Aircraft in Mediterranean are "dedicated" to SACEUR's Selective Strike Plan.\(^11\) Aircraft also provide nuclear anti-surface ship capability with tactical bombs.\(^12\)

<table>
<thead>
<tr>
<th>Total Appropriation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY</td>
</tr>
<tr>
<td>1979 & prior</td>
</tr>
<tr>
<td>1980</td>
</tr>
<tr>
<td>1981</td>
</tr>
<tr>
<td>1982</td>
</tr>
<tr>
<td>1983</td>
</tr>
<tr>
<td>1984</td>
</tr>
</tbody>
</table>

1 Information provided by Grumman Aerospace Corporation, Bethpage, NY.
2 JCS, FY 1982, p. 77.
4 Adelphi, No. 118, p. 32.
5 Ships and Aircraft of the U.S. Fleet, 11th Ed., p. 266.
6 Ibid.
8 Number reduced from 12 to 10 due to depleted inventory of aircraft; HAC, FY 1980 DOD, Part 7, p. 435.
11 Information provided by Grumman Aerospace Corporation, Bethpage, NY.
13 Ibid.
14 Ibid., p. 249.
16 Ibid., p. 78.
18 Ibid., p. 49.
A-7 CORSAIR II

DESCRIPTION: Lightweight, single-seat, single-engine, carrier and land based, visual attack aircraft with forward looking infrared, all-weather, and night capability used by the Navy (A-7E) and Air National Guard (A-7D/K).

SPECIFICATIONS: (A-7E)

<table>
<thead>
<tr>
<th>Dimensions:</th>
<th>Length: 46 ft, 1.5 in</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height: 16 ft, 2 in</td>
</tr>
<tr>
<td></td>
<td>Wingspan: 38 ft 8.5 in</td>
</tr>
<tr>
<td>Takeoff Weight:</td>
<td>42,000 lb</td>
</tr>
</tbody>
</table>

CONTRACTORS:

- Nuclear capable versions: A-7A/B/D/E
- Vought Corporation (LTV, Inc.) (prime/airframe)
- Detroit Diesel, Allison Division (engine)
- Indianapolis, IN

Powerplant: 1 TA-41-A-2 turbofan

Ceiling: 52,500 ft; 35,500 ft

Speed: (max) 693 mph at sea level
A-7 CORSAIR II

Range: 1123 mi (max) (combat radius clean); 236 mi (loaded with one hour loiter); 1000+ km (with carrier-based aerial refueling)*

Aerial Refueling: Yes

Crew: 1; 2 (A-7K)

Nuclear Weapons: B28, B43, B57, B61; reportedly capable of carrying 4 nuclear weapons; eight weapons stations, six wing pylons and two missile stations; maximum capacity of wing pylons is 3500 lb.

DEPLOYMENT:

Number deployed: more than 1500 built; approximately 370 (A-7E) (Navy); 375 (A-7D) (Air National Guard); (A-7B) (Naval Reserve)

Locations: NAS Cecil Field, FL; NAS Lemoore, CA; NAS Atsugi, Japan; other reserve bases.

Number per Squadron:

(A-7A) (Navy): 12 (UE)

(A-7E) (Air National Guard): 24 (UE)

(A-7E) (Naval Reserve)

HISTORY:

IOC: 1965 (A-7A); 1969 (A-7E)

Sep 1965 first flight (A-7A)

Nov 1967 development of A-7E for Navy started

Feb 1968 first flight of A-7B

Apr 1968 first flight of A-7D

Nov 1968 A-7E first flight

Sep 1980 procurement of A-7E completed

Apr 1981 Air National Guard begins delivery of new two-seat A-7Ks

COST:

FY 1970 & prior 596 (A-7E) $2530.31

1980 + 14.5

1981 + 31.2

1982 + 16.0

Total Appropriation $5.3 m (flyaway) (FY 1977)?

$4.4 m (program) (FY 1977)?

COMMENTS:

Replaced the A-4 SKYHAWK and A-1 SKYRAIDER in the Navy. A-18 will replace A-7 starting in early 1983. Naval aircraft in Mediterranean are "dedicated" to SACEUR'S Selective Strike Plan.12 Naval aircraft also provide nuclear anti-surface ship capability with tactical bombs.13 A-7 is also flown by Portugal (A-7P) and Greece (A-7H).
AV-8B HARRIER II

Figure 7.5 AV-8B HARRIER.

DESCRIPTION:
Vertical or short take-off and landing (V/STOL) close air support attack aircraft planned for the Marine Corps.

CONTRACTORS:
- McDonnell-Douglas Corp.
 - St Louis, MO (prime)
- Rolls Royce Ltd.
 - Bristol, U.K. (engine)

SPECIFICATIONS:

<table>
<thead>
<tr>
<th>Dimensions:</th>
<th>Takeoff Weight (max):</th>
<th>Powerplant:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length:</td>
<td>46 ft 3 in</td>
<td>1 Rolls-Royce Pegasus II (F402-RR-404) turbofan</td>
</tr>
<tr>
<td>Height:</td>
<td>11 ft 6 in</td>
<td></td>
</tr>
<tr>
<td>Wingspan:</td>
<td>30 ft 3 in</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ceiling:</th>
<th>Speed: (max) 684 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>50,000 ft</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Takeoff Distance:</th>
<th>Range:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1200 ft</td>
<td>163 mi (combat radius); 75-890 mi (combat radius)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aerial Refueling Capability:</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crew:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
AV-8B HARRIER II

<table>
<thead>
<tr>
<th>NUCLEAR WEAPONS:</th>
<th>one nuclear weapon: B61, seven weapons stations, three for heavy weapons, 9000 lb capacity</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>DEPLOYMENT:</th>
<th>FY</th>
<th>Number Procured</th>
<th>Total Appropriation ($ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number Planned:</td>
<td>1981 & prior</td>
<td>-</td>
<td>785.64</td>
</tr>
<tr>
<td>Locations:</td>
<td>1982</td>
<td>12</td>
<td>898.7</td>
</tr>
<tr>
<td></td>
<td>1983</td>
<td>21</td>
<td>1033.8</td>
</tr>
<tr>
<td></td>
<td>1984</td>
<td>32</td>
<td>1165.8</td>
</tr>
</tbody>
</table>

LOCATIONS:
- MCAS El Toro, CA
- MCAS Cherry Point, NC

HISTORY:
- IOC: September 1985
- First flight of YAV-8B

COST:
- Program Cost: $10,111.2 m (Dec 1982)
- Unit Cost: $46 m (FY 1982) (flyaway)

COMMENTS: AV-8B will replace 8 squadrons worth of A-4M and AV-8A aircraft. The AV-8B has twice the range and payload of the current AV-8A. The AV-8B upgrade includes modified engine and airframe and a new graphite wing. The AV-8A is not nuclear certified.
CF-101B VOODOO

DESCRIPTION: Long-range, nuclear armed, strategic interceptor used by Canada (F-101F).

CONTRACTORS: McDonnell-Douglas (prime/airframe)

SPECIFICATIONS: (F-101B)

<table>
<thead>
<tr>
<th>Dimensions:</th>
<th>Powerplant: 2 J57-PW-55 turbojets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length:</td>
<td>67 ft 4 in</td>
</tr>
<tr>
<td>Height:</td>
<td>18 ft</td>
</tr>
<tr>
<td>Wingspan:</td>
<td>39 ft 7 in</td>
</tr>
<tr>
<td>Takeoff Weight (max):</td>
<td>46,700 lb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ceiling:</th>
<th>52,000 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed:</td>
<td>Mach 1.85 (max)</td>
</tr>
<tr>
<td>Range:</td>
<td>1550 nm</td>
</tr>
<tr>
<td>Aerial Refueling Capability:</td>
<td>no</td>
</tr>
<tr>
<td>Crew:</td>
<td>2</td>
</tr>
<tr>
<td>NUCLEAR WEAPONS:</td>
<td>two GENIE (AIR-2A)</td>
</tr>
</tbody>
</table>

NUCLEAR WEAPONS Databook, Volume I 213
CF-101B VooDoo

DEPLOYMENT:

<table>
<thead>
<tr>
<th>Year</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961</td>
<td>F-101B interceptor deployed</td>
</tr>
<tr>
<td>1971</td>
<td>Canada receives new F-101Fs with new electronics</td>
</tr>
</tbody>
</table>

Locations:

- Nuclear armed versions at Bagotville and Comox bases, Canada (1981)

HISTORY:

<table>
<thead>
<tr>
<th>Year</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1952</td>
<td>SAC develops requirement for long-range bomber escort</td>
</tr>
<tr>
<td>1953</td>
<td>TAC and ADCOM take delivery of F-101</td>
</tr>
<tr>
<td>1961</td>
<td>Canada chooses F-18 HORNET to replace CF-101s</td>
</tr>
<tr>
<td>1981</td>
<td>Canada receives new F-101Fs with new electronics</td>
</tr>
</tbody>
</table>

Comments:

- Remained in U.S. active service until 1974, and then with interceptor units in the Air National Guard until 1981

1. AFR 0-2, p. 46.

214. Nuclear Weapons Databook, Volume 1
F-4 PHANTOM II

DESCRIPTION: Two-seat, twin-engine, all-weather, supersonic, multi-mission fighter, used by the Air Force, Marine Corps, and Navy.

Nuclear capable versions: F-4C/D/E

CONTRACTORS: McDonnell Douglas St. Louis, MO (prime) General Electric (engines)

SPECIFICATIONS: (F-4E)

Dimensions:
- Length: 62 ft 11.75 in
- Height: 16 ft 3 in
- Wingspan: 38 ft 5 in

Takeoff Weight (max): 60,630 lb

Powerplant:
- 2 GE J79-GE-15 (F-4 C/D) turbojets; 2 J79-GE-17 turbojets (F-4 E/G)

Ceiling: 64,630 ft, 71,000 ft²

Speed: (max) 1500 mph (Mach 2.27) at 40,000 ft

Figure 7.7 F-4D PHANTOM II.
F-4 PHANTOM II

Range:	660 mi (1060 km) (combat radius); 1000 mi (1610 km) ground attack\(^3\)
IOC:	1961
Aerial Refueling Capability:	yes
Crew:	2
NUCLEAR WEAPONS:	three pylons (centerline and wings) can carry nuclear weapons (one each) weighing up to 2170 lb; \(^4\) B28RE, B43, B57, \(^5\) B61, B83; \(^6\) possibly GENIE in strategic interceptor force
DEPLOYMENT:	Number deployed: 954 (Air Force); 144 (Marine Corps, Navy)
Locations:	NAS Miramar, CA; NAS Oceana, VA; Clark AB, Philippines; Elmendorf AFB, AK; Spangdahlem AB, West Germany; Ramstein AB, West Germany; Osan AB, Korea; Taegu AB, Korea; Homestead AFB, FL; Seymour Johnson AFB, NC; Moody AFB, GA; Torrejon AB, Spain

HISTORY:

- May 1958: first flight
- Jun 1967: F-4E first flight
- production completed of all F-4 versions

COMMENTS:

- 5057 F-4s produced, with last U.S. delivery in October 1979.
- It is probable that NATO nuclear capable F-4s are limited to Greek and Turkish forces.\(^7\)
- F-4 is being replaced by F-18 and F-14 in the Navy and Marine Corps, and F-16 and F-15 in the Air Force. Two F-106 air defense National Guard units will receive F-4Ds in FY 1983-1984.\(^10\)

\(^1\) Marine Corps F-4 versions (F-4J/S) are not nuclear capable; JCS, FY 1981, p. 48.
\(^3\) Ibid.
\(^7\) JCS, FY 1981 DOE, p. 37.
\(^8\) There are approximately 120 training F-4 aircraft assigned to NORAD for strategic defense in a contingency; SASC, FY 1980 DOD, Part 2, p. 440.
\(^9\) ACDA, FY 1979 ACIS, p. 144.
F-15 EAGLE

DESCRIPTION: Long-range, high performance, twin engine interceptor used by the Air Force.

Nuclear Capable Versions:

F-15A/C, F-15E (derivative fighter)

CONTRACTORS:

McDonnell Douglas (prime/airframe)
Pratt & Whitney Aircraft (engines)

SPECIFICATIONS:

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>63 ft 8 in</td>
</tr>
<tr>
<td>Height</td>
<td>18 ft 6 in</td>
</tr>
<tr>
<td>Wingspan</td>
<td>42 ft 8 in</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takeoff Weight (max)</td>
<td>56,000 lb (F-15A/B); 68,000 lb (F-15C/D)</td>
</tr>
<tr>
<td>Powerplant</td>
<td>2 F100-PW-100 turbofan</td>
</tr>
<tr>
<td>Ceiling</td>
<td>65,000 ft</td>
</tr>
<tr>
<td>Speed (max)</td>
<td>1900 mph</td>
</tr>
<tr>
<td>Range</td>
<td>1681 mi (combat range)</td>
</tr>
<tr>
<td>Aerial Refueling Capability</td>
<td>yes</td>
</tr>
<tr>
<td>Crew</td>
<td>1 (F-15A/C); 2 (F-15B/D trainers)</td>
</tr>
</tbody>
</table>
F-15 EAGLE

Figure 7.9 F-15 EAGLE underside.

NUCLEAR WEAPONS: possibly GENIE (W25), five weapons stations capable of carrying more than 16,000 lb

DEPLOYMENT:
Number Deployed: 620; 383 F-15A, 60 F-15B produced; 1400+ F-15 planned through 1990

Locations: Elmendorf AFB, AK; Kadena AB, Japan; Langley AFB, VA; Bitburg AB, Germany; Eglin AFB, FL; Holloman AFB, NM; Soesterberg AB, Netherlands; First strategic interceptor unit at Langley AFB, VA; Langley and McChord AFB, WA earmarked for F-15 ASAT operations

HISTORY:
IOC: 1975
decision of F-15 started
Jul 1972 first flight of F-15A
Mar 1973 production started
Feb 1979 first flight of F-15C
Jun 1979 F-15C/D production began

COST:
Program Cost: $41,500.8 m (Dec 1982)
Unit Cost: $13.7 m (flyaway) (TY)

<table>
<thead>
<tr>
<th>FY</th>
<th>Number Procured</th>
<th>Total Appropriation ($ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980 & prior</td>
<td>638</td>
<td>11,754.3¹</td>
</tr>
<tr>
<td>1981</td>
<td>42</td>
<td>967.6²</td>
</tr>
<tr>
<td>1982</td>
<td>36</td>
<td>1187.7</td>
</tr>
<tr>
<td>1983</td>
<td>39</td>
<td>1553.9</td>
</tr>
<tr>
<td>1984</td>
<td>48</td>
<td>2266.8</td>
</tr>
</tbody>
</table>

Nuclear Weapons Databook, Volume I
Although F-15 is not primarily for nuclear weapons use, it is nuclear certified and would be highly capable in the nuclear delivery mode. The F-15 is the only Air Force fighter able to carry and deliver air-to-surface weapons at supersonic speeds. It takes less than an hour to convert the air-to-air F-15 into air-to-surface role. Six squadrons of active force F-106s will be replaced by F-15s for strategic defensive forces. In addition, in the event of a crisis, F-15s dedicated to peacetime training could be used for strategic interception. F-15E STRIKE EAGLE, originally a company funded upgraded air-to-surface model, has been chosen as candidate in the derivative tactical fighter to augment and then replace F-111 and F-4 pending introduction of Advanced Tactical Fighter in the 1990s (see Introduction). The enhanced F-15E air-to-ground capability would be specifically to give the F-15 a nuclear weapons strike mission.
F-16 FIGHTING FALCON

DESCRIPTION: Lightweight, single-seat, single-engine, supersonic, multi-mission, air-to-air and air-to-ground fighter used by the Air Force and NATO Air Forces.

Nuclear capable versions: F-16A/B, F-16C/D (after 1984), F-16E (derivative fighter)

CONTRACTORS: General Dynamics (prime/airframe), Pratt & Whitney Aircraft (engine), Westinghouse Electric, Inc. (radar), Marconi-Elliott (flight control)

SPECIFICATIONS:

- Dimensions:
 - Length: 49 ft 6 in
 - Height: 16 ft 3 in
 - Wingspan: 32 ft
- Takeoff Weight: 33,000 lb*
- Powerplant: 1 F-100-PW-100 turbofan

1 F-100-PW-100 turbofan

(*Note: The takeoff weight specification is marked with an asterisk and includes a note on nuclear weapons capability."

Nuclear Weapons Databook, Volume I
F-16 FALCON

Figure 7.11 F-16 FALCON.

Ceiling: 50,000 ft

Speed: 1400 mph (max); 1520 mph

Range: 575 mi (combat radius)

Aerial Refueling: yes

Crew: 1

NUCLEAR WEAPONS:

B43, B61; reported capable of delivering up to five nuclear bombs on five of nine hardpoints; later report indicates 3rd, 5th, and 7th stations used for nuclear bombs; standard weapons configuration is one or two nuclear weapons; general profile is one B61; the B57 is prohibited from use on F-16A/B aircraft

DEPLOYMENT:

Number Deployed: 365; 1388 planned (1982); 1445+ planned (1983); including 204 F-16B two-seaters; 348 produced initially for NATO; air-to-surface improvements incorporated into aircraft no. 786 and on.

Locations: Kunsan AB, Korea; Shaw AFB, SC; Hill AFB, UT; Hahn AB, West Germany (first U.S. base in Europe).

Number per Squadron: 24 (UE)

HISTORY:

IOC: 1979

Apr 1972 development of F-16 begins

Jan 1974 first flight

Jun 1975 four NATO counties announce joint program to procure F-16

Dec 1976 full scale testing began

Sep 1977 production started

Aug 1978 first production aircraft accepted

Jan 1979 delivery of first European manufactured F-16

Jan 1979 first F-16 delivered to Hill AFB, UT

1982-1983 F-16s arrive at Hahn AB, West Germany to take up nuclear roles in replacement of F-4s

COST:

Program Cost: $43,494.2 m (Dec 1982)

Unit Cost: $11.9 m (TY) (flyaway)

<table>
<thead>
<tr>
<th>FY</th>
<th>Number Procured</th>
<th>Total Appropriation (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977 & prior</td>
<td></td>
<td>751.3</td>
</tr>
<tr>
<td>1978</td>
<td>105</td>
<td>1655.9</td>
</tr>
<tr>
<td>1979</td>
<td>145</td>
<td>1554.2</td>
</tr>
<tr>
<td>1980</td>
<td>175</td>
<td>1684.3</td>
</tr>
<tr>
<td>1981</td>
<td>180</td>
<td>2035.4</td>
</tr>
<tr>
<td>1981 & prior</td>
<td>605</td>
<td>7052.6</td>
</tr>
<tr>
<td>1982</td>
<td>120</td>
<td>2294.5</td>
</tr>
<tr>
<td>1983</td>
<td>120</td>
<td>2334.1</td>
</tr>
<tr>
<td>1984</td>
<td>120</td>
<td>2279.5</td>
</tr>
</tbody>
</table>

Nuclear Weapons Databook, Volume I 221
F-16 FALCON

COMMENTS:

F-16 will complement the F-15 in air superiority role and replace F-4 in air-to-surface mode. F-16 will replace 5 squadrons of F-106 in Air National Guard fighter interceptor units starting in FY 1986-1987. Nuclear capable versions are also being produced for Belgium and the Netherlands. Although Denmark and Norway are receiving new F-16s, these will most likely not be nuclear certified. In the nuclear bombing role the weapon's delivery accuracy has been better than F-111. F-16 could reach the western Soviet Union from bases in West Germany with a single nuclear weapon and aerial refueling. Advanced versions of the F-16 (F-16E) are being considered for a derivative tactical fighter to augment and then replace F-111 and F-4 pending introduction of Advanced Tactical Fighter in 1990s (see introduction to this chapter).

1. Detailed background information on the F-16 is contained in Jay Miller, General Dynamics F-16 Fighting Falcon (Austin, TX: Aerofax, Inc., 1982).
3. Consortium of 5 primary international companies assembling aircraft and producing components: Fokker (Netherlands); SABCA (Belgium); Potez (Belgium); Per Norden (Denmark), and General Dynamics. An additional 52 European subcontractors are involved in component production.
4. ACDA, FY 1979 ACIS, p. 141.
10. ACDA, FY 1979 ACIS, p. 141.
14. HAC, FY 1983 DOD, Part 3, p. 545; the current DOD plan is to build 1,445 F-16s through FY 1987, with more to follow on in later years.
20. ACDA, FY 1979 ACIS, p. 141.
DESCRIPTION: Single-seat, twin-engine, supersonic carrier and land based all-weather fighter and attack aircraft used by the Marine Corps and Navy. Attack configuration (A-18) also capable of delivering nuclear weapons.

Nuclear capable versions: F-18A, A-18, CF-18

CONTRACTORS: McDonnell-Douglas St. Louis, MO (prime/airframe) Northrop Aircraft Hawthorne, CA (40 percent subcontracting)

SPECIFICATIONS:

Dimensions:
- Length: 55 ft 7 in
- Height: 15 ft 2 in
- Wingspan: 40 ft 7 in
- Takeoff Weight (max): 44,000 + lb

Powerplant: 2 F-404-GE-400 turbofans

Ceiling: 50,000 ft
F/A-18 HORNET

![Image of F/A-18 HORNET](image)

Figure 7.13 F-18 HORNET.

Speed: (max) 1368 mph

Range:
- 400+ mi (645 km) (combat radius); 840 mi (1350 km); 550 nm (interdiction); 460 mi (combat radius)

Aerial Refueling Capability: yes

Crew: 1 (2 in trainer version)

NUCLEAR WEAPONS:
- two B57 or B61; two of nine external weapons points on outboard wing stations capable of carrying nuclear bombs;
- BDU-11/12, BDU-20, BDU-36 nuclear practice bombs

DEPLOYMENT:
- (see Table 7.4)
- 27 F/A-18s planned for U.S.; Canada is planning to buy 138 F-18s, partly to replace CF-101s, currently flying a nuclear-armed air defense mission.

Table 7.4 F/A-18 Deployments

<table>
<thead>
<tr>
<th>Unit</th>
<th>Number of Squadr.</th>
<th>Aircraft</th>
<th>Total Procured</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Corps Fighter</td>
<td>12</td>
<td>144</td>
<td>258</td>
</tr>
<tr>
<td>Marine Corps Attack</td>
<td>8</td>
<td>160</td>
<td>276</td>
</tr>
<tr>
<td>Navy Fighter Squadron</td>
<td>6</td>
<td>72</td>
<td>161</td>
</tr>
<tr>
<td>Navy Attack Squadron</td>
<td>24</td>
<td>288</td>
<td>513</td>
</tr>
<tr>
<td>Navy Reconnaissance</td>
<td>1</td>
<td>36</td>
<td>74</td>
</tr>
<tr>
<td>Marine Corps Reconnaissance</td>
<td>1</td>
<td>21</td>
<td>38</td>
</tr>
<tr>
<td>Marine Corps TACA</td>
<td>1</td>
<td>30</td>
<td>44</td>
</tr>
<tr>
<td>Squadron Authorized Aircraft</td>
<td></td>
<td></td>
<td>1366</td>
</tr>
<tr>
<td>Number per 12 (UE) Squadron:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number per 12 (UE) Squadron:

HISTORY:
- IOC: Dec 1982
- 1st flight (F-18)
- full production approved
- carrier deployment
- production completed

Locations:
- NAS Lemoore, CA (training);
- MCAS El Toro, CA (initial base)

F/A-18 HORNET

COST:
Program Cost: $39,827.2 m (Dec 1982) (F-18 program, not counting YF-17 prototype costs)
Unit Cost: $22.5 m (FY 1982) (flyaway)

Unit Cost: $25.1 m (FY 1983) (flyaway)

COMMENTS:
F/A-18 will replace Navy's F-4, and A-7; Marine Corps' F-4. All-digital weapon control system provides greater bombing accuracy over the F-4.

Total Appropriation

<table>
<thead>
<tr>
<th>FY</th>
<th>Number Procured</th>
<th>Total Appropriation ($ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1977 & prior</td>
<td>-</td>
<td>491.8</td>
</tr>
<tr>
<td>1978</td>
<td>-</td>
<td>654.4</td>
</tr>
<tr>
<td>1979</td>
<td>9</td>
<td>1038.5</td>
</tr>
<tr>
<td>1980</td>
<td>25</td>
<td>1463.3</td>
</tr>
<tr>
<td>1981</td>
<td>60</td>
<td>2190.6</td>
</tr>
<tr>
<td>1982</td>
<td>63</td>
<td>2629.1</td>
</tr>
<tr>
<td>1983</td>
<td>84</td>
<td>2598.2</td>
</tr>
<tr>
<td>1984</td>
<td>84</td>
<td>2762.8</td>
</tr>
</tbody>
</table>

1 JCS, FY 1982, p. 77; fighter and attack versions virtually identical in performance and characteristics, with common internal wiring and only external configuration adjustments; ACDA, FY 1979 ACIS, p. 130; A-18 will be equipped with five rather than three weapons store pylons; it will take 30 minutes to convert from attack to fighter versions and vice versa; information provided by McDonnell Douglas.
3 Norman Polmar, World Combat Aircraft Directory, op. cit.
5 U.S. Military Aircraft Data Book, op. cit.
7 General Accounting Office, "F/A-18 Naval Strike Fighter: Its Effectiveness is Uncertain" (PSAD-80-24), 14 February 1980.
8 As of 1 January 1982; HAC, FY 1983 DOD, Part 5, p. 257.
9 HAC, FY 1983 DOD, Part 5, p. 262.
F-100 SUPERSABRE

DESCRIPTION: Single-seat, single-engine, supersonic fighter bomber in use with the Turkish Air Force.

Nuclear capable versions: F-100D/F

CONTRACTORS: North American (prime) Pratt & Whitney (engine)

SPECIFICATIONS: (F-100D)

Dimensions: Length: 54 ft 3 in²
 Height: 16 ft 2.5 in
 Wingspan: 38 ft 9 in³

Takeoff Weight (max): 34,831 lb

Powerplant: 1 P&W J57-P-21A turbojet

Ceiling: 50,000 ft

Speed: 862 mph (max) (Mach 1.3) at 35,000 ft

Range: 550 mi (885 km) (combat radius)

Aerial Refueling Capability: yes

Crew: 1
NUCLEAR WEAPONS:

one nuclear weapon; B28, B43, B57

HISTORY:

IOC: 1954

May 1953 first flight

Jan 1956 F-100D first flight

COMMENTS:

1274 F-100D, 476 F-100C, built
1953-1959

1 F-100D (LW1), F-100D(1)/F(1)/F(1l) are designated as nuclear certified; USAF, "Safety Rules for the Non-U.S. NATO F-100D (LW1) and F-100D(1)/F(1)/F(1l) B28/B43/B57 Weapon Systems"; AFR 322-71, 9 January 1979.

3 Ibid.

4 Ibid.
F-104 STARFIGHTER

DESCRIPTION: Single-seat, single-engine, daylight fighter-interceptor in wide use within Belgian, Dutch, Greek, Italian, and West German air forces for strike missions.

Nuclear capable versions: F-104G/S² (F-104C, F-104D?)

CONTRACTORS: Lockheed (prime)
General Electric (engines)

SPECIFICATIONS: (F-104G)

Dimensions:
- Length: 54 ft 9 in
- Height: 13 ft 6 in
- Wingspan: 21 ft 11 in

Takeoff Weight (max): 28,770 lb

Powerplant: 1 GE J79-11A turbojet

Ceiling: 58,000 + ft

Speed: 913 mph (max) (Mach 1.2) at sea level; 1324 mph (Mach 2) at 39,375 ft

Figure 7.15 F-104G STARFIGHTER in West German Air Force.
F-104 STARFIGHTER

Range: 808 mi (1300 km) (combat radius); 745 mi

Aerial Refueling Capability: unknown

Crew: 1

NUCLEAR WEAPONS:
one nuclear bomb; B28, B43, B57, B61-2, -3, -4, and -5

DEPLOYMENT:
Locations: Memmingen, West Germany; Buchel, West Germany; Norvenich, West Germany; Kleine Brogel, Belgium; Volkel, Netherlands; Rimini, Italy; Ghedi-Torre, Italy

HISTORY:
IOC: 1958

Feb 1954 first flight
Oct 1960 F-104G first flight

COMMENTS: Being replaced by TORNADO in West German and Italian forces, and by F-16 in Belgian and Dutch forces.

1 JCS, FY 1982, p. 76.
3 Norman Polmar, World Combat Aircraft Directory, p. 162.
4 USAF, AFR 122-71, op. cit.
5 Krivinyi, op. cit. p. 168.
6 USAF, AFR 122-71, op. cit.
7 Bases with USAF nuclear weapons.
F-106 DELTA DART

DESCRIPTION: Single-seat, single-engine, all-weather, supersonic strategic interceptor used by the Air Force and Air National Guard.

Nuclear capable versions: F-106A²

CONTRACTORS: General Dynamics/Convair (prime)
Pratt & Whitney (engine)
Hughes (fire control)

SPECIFICATIONS: (F-106A)
Dimensions:
Length: 60 ft 8.75 in
Height: 20 ft 3 in
Wingspan: 38 ft 3.5 in
Takeoff Weight (max): 34,510 lb
Powerplant: 1 J75-P-17 turbojet
Ceiling: 57,000 ft
Speed: 1525 mph (max) (Mach 2.3)
Range: 365 mi (587 km) (combat radius)

Figure 7.16 F-106 DELTA DART after firing a training version of the GENIE rocket.

230 Nuclear Weapons Databook, Volume I
F-106 DELTA DART

Aerial Refueling: no

Crew: 1

NUCLEAR WEAPONS: one GENIE (AIR-2A) (W25 warhead) air-to-air missile carried in an internal weapons bay

DEPLOYMENT:
Number Deployed: 277 F-106A; 63 F-106B

Locations: See Table 4.6

HISTORY:
IOC: 1959

Dec 1956 first flight

Jul 1959-Jul 1960 production delivery

1988 last F-106 unit deactivated

COMMENTS: 337 aircraft produced, replacing the F-102. Under current DOD plans, five squadrons of active force F-106s will be replaced with F-15s assigned strategic defensive missions. Air National Guard F-106s will also be modernized with F-4s and F-16s, the first units receiving F-4Ds in late 1983.

See Table 4.6

1 JCS, FY 1979, p. 38.
2 F-106B is operational trainer.
Figure 7.17 F-111.

DESCRIPTION: Long-range, two-seat, twin-engine, all-weather supersonic strike fighter used by the Air Force.

Nuclear capable versions: F-111A/D/E/F

CONTRACTORS: General Dynamics
Fort Worth, TX (prime)
Pratt & Whitney (engine)

SPECIFICATIONS:
Dimensions:
Length: 73 ft 6 in
Height: 17 ft 1.5 in
Wingspan: 63 ft (spread), 31 ft 11.5 in (swept)

Takeoff Weight (max): 91,501 lb
Powerplant: 2 TF-30-P/-3 turbofans
Ceiling: 60,000 + ft
Speed: 1650 mph (max) (Mach 2.5) at 49,000 ft; 915 mph (Mach 1.2) at sea level
Range: 1500 mi (2400 km) (combat radius)
Aerial Refueling Capability: yes
Crew: 2

232 Nuclear Weapons Databook, Volume I
NUCLEAR WEAPONS: up to 3 nuclear bombs; B43, B57, B61, B83; 2 nuclear weapons on underwing pylons; also has internal bomb bay

DEPLOYMENT:
Number Deployed: 240; 455 built
Locations: Cannon AFB, NM; Mountain Home AFB, ID; RAF Lakenheath, U.K.; RAF Upper Heyford, U.K.

HISTORY:
IOC: Dec 1964
1976 production completed

COMMENTS:
F-111s are on nuclear armed quick reaction alert (QRA) at all times at two bases in the U.K.: Upper Heyford and Lakenheath. They have onboard radar for all-weather nuclear attack, including terrain following and ground mapping. Its low level navigation and weapons delivery capability allows bombing at night and in adverse weather. It can conduct "direct" and "offset" bombing. Area targets for F-111 include: lines of communication, airfields, transportation terminals, bivouac areas, attack helicopter forward operating locations, supply depots, staging areas, choke points, and POL storage.

1 All models of the F-111 are nuclear capable; SASC, FY 1982 DOD, Part 7, p. 3891.
4 All models of the F-111 are nuclear capable; SASC, FY 1982 DOD, Part 7, p. 3892.
8 JCS, FY 1982, p. 78.
DESCRIPTION: Long range, land-based four-engine, all-weather anti-submarine, and maritime patrol plane used by the U.S. and Dutch navies for nuclear weapons delivery.

Nuclear capable versions: P-3A/B/C

CONTRACTORS: Lockheed Aircraft Burbank, CA Detroit Diesel, Allison Division Indianapolis, IN (prime/airframe)

SPECIFICATIONS: (P-3C)

Dimensions:
- Length: 116 ft 10 in
- Height: 33 ft 8.5 in
- Wingspan: 99 ft 8 in
- Takeoff Weight: 142,000 lb (max)
- Powerplant: 4 T56-A-14 turboprop
- Ceiling: 28,300 ft
P-3 ORION

- **Speed:** 473 mph (max) at 15,000 ft; 237 mph at 1500 ft (patrol speed)
 - Sep 1968: first flight (P-3C)
 - 1969: production of P-3 begins

- **Range:** 1550 mi (2500 km) (radius), 3 hours on station at 1500 ft
 - Nov 1981: Dutch Navy receives first of 13 P-3Cs

- **Aerial Refueling:** no

- **Crew:** 10 (normal complement)

- **NUCLEAR WEAPONS:**
 - two B57 nuclear depth charges; also carries HARPOON; ten underwing stations, one station in bomb bay

- **DEPLOYMENT:**
 - 24 active, 13 reserve squadrons stationed in the U.S., with overseas deployment sites
 - Number deployed: 200 P-3C; 343 total (18 of 24 active squadrons with P-3C)
 - Locations: NAS Moffett Field, CA; NAS Barbers Point, HI; NAS Brunswick, ME; NAS Jacksonville, FL; numerous deployment sites worldwide

- **HISTORY:**
 - IOC: 1961 (P-3); 1969 (P-3C)
 - First flight (prototype): Aug 1958
 - First flight (P-3A): Apr 1961
 - Development of P-3C begins

- **Cost:**
 - FY 1979 & prior: 195 (P-3C)
 - FY 1980: 12
 - FY 1981: 12
 - FY 1982: 12
 - FY 1983: 6
 - FY 1984: 5

<table>
<thead>
<tr>
<th>FY</th>
<th>Number Procured</th>
<th>Total Appropriation ($ million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979 & prior</td>
<td>195 (P-3C)</td>
<td>2964.4</td>
</tr>
<tr>
<td>1980</td>
<td>12</td>
<td>408.3</td>
</tr>
<tr>
<td>1981</td>
<td>12</td>
<td>459.8</td>
</tr>
<tr>
<td>1982</td>
<td>12</td>
<td>454.8</td>
</tr>
<tr>
<td>1983</td>
<td>6</td>
<td>317.7</td>
</tr>
<tr>
<td>1984</td>
<td>5</td>
<td>309.5</td>
</tr>
</tbody>
</table>

COMMENTS:

- 17 of 24 active squadrons equipped with P-3C, remainder converted by FY 1991.
- Present P-3 modification programs include improved sensor systems, HARPOON launch system, and navigation improvements. Patrol endurance of the ORION is up to 17 hours.
- Latest modification is P-3C Update III which will enter the Navy in May 1984.

1. The P-3C began introduction in Dutch Navy in 1982, equipping one squadron. It assumed a nuclear role pending further governmental decision on future nuclear mission of Dutch forces.
2. Krivinyi, op. cit. p. 195
3. As of 1 January 1980; HAC, FY 1980 DOD, Part 5, p. 256; as of 1 January 1981, there were 207; HASC, FY 1983 DOD, Part 5, p. 660.
5. As of 1 January 1982; HAC, FY 1982 DOD, Part 5, p. 264; as of 1 January 1983, there were 187; HASC, FY 1983 DOD, Part 5, p. 993.
8. Ibid.
S-3 VIKING

DESCRIPTION: Medium-range, twin-engine, carrier-based, maritime patrol and anti-submarine warfare aircraft used by the Navy. Nuclear capable S-3A versions:

CONTRACTORS: Lockheed California Co. Burbank, CA (prime/airframe) General Electric West Lynn, MA (engines)

SPECIFICATIONS: (S-3A)

- **Dimensions:**
 - Length: 53 ft 4 in
 - Height: 22 ft 9 in
 - Wingspan: 69 ft 8 in (29 ft 6 in folded)

- **Powerplant:** 2 TF-34-400B-GE-2 turbofans

- **Ceiling:** 40,000 ft

- **Speed:** 184 mph (296 kmh) (patrol loiter); 507 mph (816 kmh) at sea level

- **Range:** 2300 mi (3700 km) (radius)
S-3 VIKING

Aerial Refueling Capability: yes

Crew: 4 (pilot, copilot, sensor operator, tactical coordinator)

NUCLEAR WEAPONS:
- one B57 nuclear depth charge,
- three wing stations for weapons; future provisions for HARPOON

DEPLOYMENT:
- Number Deployed: 187 produced
- Locations: NAS Cecil Field, FL; NAS North Island, CA
- Number per Squadron: 10 (UE)
- IOC: 1974

Number per Squadron: 10 (UE)

HISTORY:
- IOC: Dec 1967
- 1971 production begins
- May 1972 full production begins
- Jan 1972 first flight
- Mar 1978 production completed
- 1983-1985 aircraft upgraded under weapon system improvement program and redesignated S-3B
- 1971 production begins
- May 1972 full production begins
- Jan 1972 first flight
- Mar 1978 production completed
- 1983-1985 aircraft upgraded under weapon system improvement program and redesignated S-3B

COST:
<table>
<thead>
<tr>
<th>FY</th>
<th>Total Appropriation</th>
<th>Number Procured</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981 & prior</td>
<td>3428.2$</td>
<td>179</td>
</tr>
<tr>
<td>1982</td>
<td>31.3$</td>
<td>-</td>
</tr>
</tbody>
</table>

COMMENTS: The VIKING's patrol endurance is over nine hours.

2 Ibid.

Nuclear Weapons Databook, Volume I 237
Figure 7.20 SH-3H SEA KING.

DESCRIPTION: Heavy helicopter, used for aircraft carrier-based anti-submarine warfare by the Navy.

Nuclear capable versions: 1

CONTRACTORS: Sikorsky (prime)

SPECIFICATIONS:
- Length: 54 ft 9 in (fuselage)
- Height: 15 ft 6 in
- Wingspan: 62 ft (rotor diameter)
- Takeoff Weight (max): 20,500 lb
- Powerplant: 2 GE T58-GE-10 turboshafts
- Ceiling: 14,700 ft
- Speed: (max) 166 mph (267 kph) at sea level
- Range: 625 nm
- Aerial Refueling Capability: no
- Crew: 4 (2 pilots, 2 systems operators)

NUCLEAR WEAPONS:
- one B57 nuclear depth bomb

DEPLOYMENT:
- Number Deployed: 104 (SH-3H)²
- Locations: NAS North Island, CA; NAS Jacksonville, FL

HISTORY:
- IOC: 1961 (SH-3); 1966 (SH-3D)
- Mar 1959 first flight of SH-3A

COMMENTS: SH-3 will be replaced by variant of SH-60 (SH-60F) in 1988.³

¹ 1 CANTRAC, p. Ctn 2 HAC, FY 1983 DOD, Part 5, p. 314
² HAC, FY 1983 DOD, Part 5, pp. 312-314
³ 238 Nuclear Weapons Databook, Volume I
SH-60 SEAHAWK

Figure 7.21 SH-60 SEAHAWK.

DESCRIPTION: Carrier-based, active sensor, inner zone anti-submarine helicopter to protect aircraft carriers; planned for the Navy.

Nuclear Capable Versions: SH-60F

CONTRACTORS: Sikorsky Aircraft Division, United Technologies Corp. (prime)
General Electric, Lynn, MA (engine)

SPECIFICATIONS: (SH-60B)

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>64 ft 10 in</td>
</tr>
<tr>
<td>Height</td>
<td>17 ft 2 in</td>
</tr>
<tr>
<td>Wingspan</td>
<td>53 ft 8 in (rotor diameter)</td>
</tr>
<tr>
<td>Takeoff Weight</td>
<td>21,844 lb</td>
</tr>
<tr>
<td>Powerplant</td>
<td>2 GE T700-GE-401 turboshafts</td>
</tr>
<tr>
<td>Ceiling</td>
<td>22,000 ft</td>
</tr>
<tr>
<td>Speed</td>
<td>155 mph (max cruise)</td>
</tr>
<tr>
<td>Range</td>
<td>50 nm (radius) with 3 hours on station</td>
</tr>
</tbody>
</table>
SH-60 SEAHAWK

Aerial Refueling Capability: no

Crew: 4 (pilot, copilot, tactical officer, sensor operator)

NUCLEAR WEAPONS: B57 nuclear depth charge

DEPLOYMENT:
Number Planned: 175¹ (1983)
Location: NAS North Island, CA; NAS Jacksonville, FL

HISTORY:
IOC: 1988²
Dec 1979 first flight of prototype SH-60B
1983 SH-60F program started to develop replacement for SH-3³

1986 first procurement of SH-60F planned

COST:
Total Planned Cost: $3759.8 m⁴
SH-60F variant R&D costs estimated at $87.7 m⁵

FY Number Procured Total Appropriation
1982 & prior 23 2063.9⁶

COMMENTS: SH-60F is planned replacement for current SH-3H. SH-60F is modification of SH-60B Light Airborne Multipurpose System (LAMPS) Mk-III, planned for deployment aboard surface ships.

¹ Program cost for SH-60B; HAC, FY 1983 DOD, Part 5, p. 282.
² Ibid., p. 314.
³ Ibid., p. 313.
⁴ Ibid., p. 316.
⁵ Ibid.
⁶ Ibid., p. 262.

240 Nuclear Weapons Databook, Volume I
TORNADO

![Image of Tornado aircraft being refueled by tanker aircraft](image)

DESCRIPTION: Multinationally developed (British, German, Italian) all-weather, low-level penetration fighter bomber.

CONTRACTORS:
- Panavia (British Aerospace, Messerschmitt-Bolkow-Blohm, Aeritalia consortium) (prime)
- Turbo-Union (Rolls Royce, Motoren, Fiat consortium) (engine)
- Avionica (Elliott, Elektronik System Gesellschaft, SIA consortium) (components)

SPECIFICATIONS:
- **Dimensions:**
 - Length: 16.7 m
 - Height: 5.71 m
 - Wingspan: 8.61 m (minimum); 13.92 m (maximum)
- **Takeoff Weight (max):** 26,300 kg
- **Powerplant:** Turbo-Union RB-199
- **Ceiling:** unknown
- **Speed:** Mach 1.1 (low flight); Mach 2.2 (high profile)
- **Range:** 370-1250 km (combat radius)

Figure 7.22 TORNADOs being refueled by tanker aircraft.

Nuclear Weapons Databook, Volume I 241
TORNADO

Aerial Refueling: yes

Crew: 2

NUCLEAR WEAPONS:
B28, B43, B57, B61

DEPLOYMENT:
Number Planned: 647

HISTORY:
IOC: 1981

COMMENTS: TORNADO uses improved attack sensors and has significantly greater nuclear strike radius than the present F-104. Operating combat radius, however, appears similar to the F-104.

2 JCS, FY 1982, p. 78.
3 See Alfred Mechtersheimer, Rustung und Politik in der Bundesrepublik, MRCA Tornado (Honnef: Osang Verlag, 1977), pp. 100-108.