The Efficient Utilization of Open Source Information

Samuel R. Baty
A-2, Intelligence & Systems Analysis

August 11, 2016
Primary Considerations

• Open source information consists of a vast set of information from a variety of sources.
 - World news
 - Unclassified documents and reports
 - Maps and Satellite imagery
 - Patents, scientific papers etc.

• Not only does the quantity of open source information pose a problem, the quality of such information can hinder efforts.
 - Usually difficult to verify
The Method of Solving Problems

- In many cases, limitations in content prevents analysts from finding an exact answer to a question.
- One important problem solving strategy is to bound a system’s capability or technologies.
- By using additional valuable information, more refined bounds can be built, allowing for more precise estimates.
- Two example problems are found in examinations of Iran and North Korea
Case Study: Iran

- Consider the Iranian space program.
- Iran has demonstrated a satellite launch capability using the domestically produced Safir rocket family.

Images: Safir Rockets (1, 2).
Case Study: Iran (Cont.)

- Given the success of Safir launches, could Iran utilize or modify existing satellite launch vehicles (SLVs) into ICBMs?
- What are key factors to consider when analyzing a ballistic missile?
 - Size of deliverable
 - Range
- Using these parameters, a Δv for the missile system can be defined for a given mass.
Case Study: Iran (Cont.)

- What is a good estimate for the mass of a reentry vehicle (RV)?
- How can we arrive at that estimation?
Case Study: Iran (Cont.)

Selection of US RVs (L to R: Mk 6, Mk 12a, Mk 21). Not great analogies for a first Iranian RV (3,4,5).
Case Study: Iran (Cont.)

- We can estimate materials and sub-systems, using relatively small (in volume) US systems.
 - Safing, arming, fuzing, firing (SAFF)
 - Special nuclear material
 - High explosives
 - RV shell
 - plastics/foams/etc.
 - Others?

- Using these, and weighting by volume, a lower mass bound was estimated at 740-1150 lbs.
Case Study: Iran (Cont.)

- Minuteman III throw weight is ~2400 lbs

Minuteman III with 3 Mk 12a RVs (6)
Case Study: Iran (Cont.)

- Using this mass, a Safir system does not have the required Δv needed to reach necessary apogee to be considered an ICBM.

- A comparison with western missiles of the same capability yields a bounded estimate (in time) of when Iran could have a nuclear capable ICBM.
Case Study: North Korea

- Consider the naval capabilities of the DPRK.
- How long would it take for the DPRK to successfully develop a **reliable** SLBM capability?

NK-11 Missile ejection and estimate of Sinpo-Class SSB (7,8).
In similar fashion to the Iran case, what does the DPRK need to achieve its goal?
- A nuclear weapon. (Deliverable/miniatuized)
- Reliable SLBM system
- SSB(N)
- Supporting technology for SLBMs and SSB(N)s

How long would it take for the DPRK to successfully develop a reliable SLBM capability?
Case Study: North Korea (Cont.)

• North Korea has made some fairly substantial claims…
 - Claim of “Hydrogen Bomb” test, Jan 2016 (BBC).
 - Claim of being about to fully “cope with America with nuclear weapons at any time” (CNN).
• North Korean rhetoric alone will not provide an accurate understanding of capabilities.
• Important to consider that posturing can be geared both for domestic propaganda or foreign intimidation.
Case Study: North Korea (Cont.)

- Reality: Primarily using maps and satellite imagery as the source of information:
 - ~ One Sinpo Class submarine (assumed operational)
 - Testing of SLBMs initially only platform based.
- Check through tracking tech transfers (Golf II, R-27)
Similarly to the Iran case, a comparison to Western development provides a minimum bound for the time needed to have a credible SLBM capability.

- What is the difference between a “usable” capability and a “reliable” capability?
SSBNs, instead of SSBs, allow for a more flexible deterrent for several reasons
- Quiet
- Long(er) deployment times
- Longer effective range

However, all of the required infrastructure for a naval nuclear reactor is certainly not trivial.

The domestic production timeframe on an SSBN class likely exceeds a decade.
Conclusions

• The huge breadth and depth of open source information can complicate an analysis, especially because open information has no guarantee of accuracy

• Open source information can provide key insights either directly or indirectly:
 - Looking at supporting factors (flow of scientists, products and waste from mines, government budgets, etc.)
 - Direct factors (statements, tests, deployments)
Conclusions (Cont.)

- Fundamentally, it is the independent verification of information that allows for a more complete picture to be formed.
- Overlapping sources allow for more precise bounds on times, weights, temperatures, yields or other issues of interest in order to determine capability.
- Ultimately, a “good” answer almost never comes from an individual, but rather requires the utilization of a wide range of skill sets held by a team of people.
Additional References