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ELECTROSTATIC FLIGHT 

A recent proposal by Dredalus Research suggests using electrostatic 

forces to lift and propel a small airborne vehicle. We show here that al

though this is permitted by the laws of physics, it is very inefficient, and is 

limited· to low areal loads by the requirement to avoid electric breakdown. 

Electrostatic propulsion offers no special advantages which might justify the 

price of its inefficiency. 

In electrostatic propulsion, just as in propulsion by a rotating airfoil, 

it is not necessary to exert thrust directly downward in the manner of a 

helicopter. It may be possible to employ a wing to provide lift and to make 

the thrust horizontal, only overcoming the drag induced by flow over the 

wing. Just as for a conventional aircraft, this reduces the thrust required 

to maintain altitude, in comparison to that required by a helicopter, by the 

lift-to-drag ratio L/ D of the vehicle. This is about 5 even for very small 

(em-sized) wings, but may be less for the vehicle as a whole because of the 

necessity of moving a broad electrostatic propulsor broadside through the 

air. 

The principle of electrostatic lift and propulsion is to fill a volume of 

air with a net negative charge density by introducing electrons from a field 

emitting cathode, and then to exert a force on this charged air by applying 

an electric field. The charged air fills the volume between two parallel flat 

electrodes, taken to be squares of side s separated by a distance b. We will 

make the approximation that this can be treated electrically as if b « s, 

neglecting fringing fields. 

Electrons are assumed to be injected at the cathode by field emission at 

numerous sharp points, and then to attach to O2 molecules, which have an 
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electron affinity of 0.44 e V, and are the only major component of air with a 

positive electron affinity. We assume all the electrons are bound in the form 

of 0;, which (using the Saha equation) is found to be a good approximation 

at room temperature, but which will not be correct at higher temperature. 

We also assume that no other ions are present; if other ions are created the 

efficiency will be less than even the low values we calculate. 

The electric field between the electrodes accelerates the 02" towards 

the anode, and collisions transfer momentum to the neutral air molecules. 

The electrodes must be porous to admit a flow of neutral air through the 

cathode and to permit it to escape through the anode, at which the ions are 

neutralized. This flow of air provides the reaction force against which the 

electrostatic engine exerts its thrust, and is analogous to the downwash of a 

helicopter rotor or a propellor wake. 

We first present a very simple rough estimate. Assume the charge den

sity and electric field between the electrodes are uniform, which is correct in 

the limit in which the charge density is small (and the field imposed by the 

electrodes is large). Then the total charge contained between the electrodes 

is 

(1) 

where ni is the ion density and -nie the net charge density. The magnitude 

of the thrust or force is 

F=EQ, (2) 

where E = V /b is the electric field produced by the electrodes and V is the 

potential drop. 

The charge Q produces an additional electric field which tends to push 

the ions and air out from between the electrodes, keeping the ions from 

reaching the anode by the most direct path and reducing the reaction force 

imparted to the air. This is undesirable, because it reduces the net charge 
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Q on which the imposed field acts, increases the frictional losses as ions are 

pushed laterally through the neutral air, and reduces the net field acting on 

the net charge. We can approximate this self-field 

Q 
Es '" (8/2)2 for b < 8 (3) 

(b > 8 is an inefficient electrode geometry because the fringing fields are 

dominant). 

In order for the efficiency to approach its maximum value we must have 

Then 

Es <E. 

F 1/ 28 
Q<--2 . 

(4) 

(5) 

In order to minimize E (which will turn out to be uncomfortably large) we 

maximize Q by taking the inequality (5) to be an equality. Then 

and 

(F)1/2 
E=2 -

8 2 

(F)1/2 
V=2b -

8 2 

(6) 

(7) 

There are two concerns: the power which must be expended to supply 

the thrust F and the magnitude of the potential. The power expended is 

largely that dissipated resistively at a rate j E per unit volume, where j is 

the current density. The ratio of power to thrust 

p jE82b nieE82bvdr QEVdr 
F - F F F = Vdr, 

where Vdr the ion-neutral drift velocity, given by 

Vdr = kE. 

The mobility of 02" in air k = 4.4 cm2/ (Volt s) = 1.3 X 103 cgs. Hence 

p = 2k (F)1/2 
F 8 2 
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,_''l!iII'''''' ______________________ _ 

For plausible values of F = 103 dyne and 8 = 1 em, P/ F = 8 X 104 cm/s. We 

have ignored inefficiencies resulting from the significant value of Es , viscous 

drag in air flow through the porous electrodes, etc., which may be significant. 

This value of P / F should be compared to the value found for more 

conventional propulsion by rotating airfoils, which is R: [F / (Pair8 2) ]1/2 R: 900 

cm/s. Electrostatic propulsion demands nearly 100 times as much power, a 

ratio which is independent of the areal loading F /82. The reason for this 

inefficiency is the large power dissipated in friction between the ions and the 

neutral air, whose relative drift velocity is Vdr. 

The required electric fields are large. For the previous parameters E R: 

20,000 Volts/em. This is uncomfortably close to the breakdown field of 

30,000 Volts/em for air. In the neighborhood of the field-emitting points the 

field is substantially larger, and at least corona discharge may occur. 

In the thin capacitor limit (b « 8) an exact calculation, allowing fot 

the effect of the self-field of the space charge, is straightforward. Poisson's 

equation for the electrostatic potential is 

(11) 

where z measures the distance from the cathode. The conservation of charge 

implies that the current density j is constant, and j is related to the electric 

field by the ion mobility; 

j = E(z)ni(z)ek (12) 

Eliminating ni(z)e gives 

47rj d?¢ dE(z) 
kE(z) = - dz2 = dz . (13) 

Upon integration 

(14) 
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The constant of integration Zo depends on the charge density. The maximum 

possible charge (and hence the smallest electric field for a given surface load

ing F/82) is found if Zo = 0, so that the field drops to 0 at the cathode (the 

charge density -ni(z)e becomes infinite there, by Equation 12). The surface 

loading is found from the difference in electric stresses at the two electrodes: 

F E2(b) - E2(0) jb 
82 - 871" - k· (15) 

The power dissipated is 

~ = / j E dz = j / E dz = jv. (16) 

The ratio of power to surface load is 

~ = ~k = ~kE(b). (17) 

The field E(b) is 2.5 times the rough estimate of Equation 6; reqUIrIng 

E(b) < 30,000 Volts/cm to avoid breakdown limits the surface loading to 

400 dyne/cm2 • Equation (14) shows that E(b) = 3V/(2b); that is; the ionic 

space charge increases the field at the anode by 50% compared to a uniform 

field with the same potential. At this surface loading the ratio of power to 

thrust is 9 x 104 cm/s, close to the rough estimate of Equation 10. The 

ratio P / F for a rotating airfoil with the same surface loading is ~ 550 cm/s. 

Electrostatic propulsion demands about 150 times more power than a ro

tating airfoil, a ratio more pessimistic than the rough estimate, but again 

independent of the areal loading. 

Another way of looking at the inefficiency of electrostatic propulsion is 

to estimate the endurance of such an aircraft. This depends on the power 

supply, which we will take to be a battery with the highest estimated specific 

energy of any battery, E = 400 Wh/kg = 1.44 x 1010 erg/gm for lithium 

thionyl chloride. Fuel cells may provide a few times higher specific energy, 

but are not available off the shelf. Hydrocarbon fuels have even higher high 

energy content (roughly an order of magni tude greater than that of the best 
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batteries), but micro-scale heat engines and generators do not exist, and may 

have low efficiency if they are built. Taking a fraction /b of the vehicle's mass 

M as battery and equating the energy available to the power expended in an 

endurance time t yields 

f&M= gM(P/F)t 
Jb L/D' (18) 

where L/D = 1 if the thrust is exerted directly downward, as in a helicopter. 

Substituting /b = 0.5, L/D = 1 and taking the previously estimated P/F = 

9 x 104 em/sec yields 
/b&(L/D) 

t = g(P/F) = 85 sec. (19) 

The numerical value depends on a number of parameters whose values can 

only be estimated (for example, it is not possible to draw the energy of a 

battery nearly as fast as required). It is still apparent that the endurance 

time is hundreds of times shorter than that of more conventionally powered 

aircraft, and is too short to be useful. 
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