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EXECUTIVE SUMMARY

Recent progress in developing and refining the techniques and tools for
medical imaging, coupled with the ever-increasing power and cost-effectiveness
of computational platforms and mass storage, has led to tremendous progress
in both research and clinical biomedical imaging applications. JASON was
asked to consider what computational needs were likely to arise (with a focus
on the next 5 years), and to suggest an effective strategy for addressing these
needs. The study’s task statement is reproduced below.

Computation for Medical Image Processing: Task Statement

JASON will undertake a study for the DOE and the NIH National In-
stitute for Bio-medical Imaging and Bio-engineering on the role of computa-
tion (broadly defined to include raw computational capabilities, mass storage
needs, and connectivity) for medical imaging. This study will address the

computational requirements in three general areas:
o The fusion of image data of varying modalities, over differing spatial
and temporal scales and resolutions.

o The extraction and display of quantitative information, with associated

uncertainties.
o Data archiving: raw vs. extracted parameters, metadata standards.
JASON will assess the present status of computational, storage and con-
nectivity needs for existing tools and techniques, and will project likely com-

putational demands for the future. The imaging systems under consideration

include both diagnostic and real-time clinical tools.

We are cognizant of other recent study reports that pertain to biomed-

ical computing, notably the Biomedical Information Science and Technology
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Initiative (BISTT) report (1), the Coalition for Advanced Scientific Comput-
ing (CASC) report (2), and the President’s Information Technology Advisory
Committee (PITAC) report (3). Our focus was considerably narrower than
those adopted in these prior studies; we have concentrated on the anticipated

computational needs that are specific to medical imaging.

Although the bulk of this report deals with a five-year outlook, we have
included some thoughts on possible long-term opportunities that would arise

from applying Petaflop scale computing in the medical imaging arena.

Findings

Our study team was impressed with the sophistication and the ap-
proaches being pursued by the medical imaging community. Challenges such
as geometrical registration of images of differing modality, for example “lining
up” a CAT scan with an MRI image, are being undertaken with a powerful

blend of applied mathematics and computational resources.

The current practice in typical clinical applications of biomedical imag-
ing is to present 2-d image data (after suitable preprocessing) to a human
who carries out a qualitative assessment based on expert judgment. After
being interpreted by an expert physician, the images are archived as part of

the hospital’s patient records system.

With contemporary computing capabilities, near real-time processing
of clinical biomedical images into a form suitable for qualitative analysis is
commonplace. The data volumes to be archived do not present a major

challenge to large capacity mass storage systems.

Turning now to the biomedical imaging research community, we did
not encounter many instances of image analysis problems that were facing
major computational throughput bottlenecks. The volumes of images being
acquired do not overflow contemporary data storage resources. Multi-CPU
parallel computer clusters and Terabyte-scale disks arrays now carry price
tags in the tens of thousands of dollars, and as long as adequate financial

resources are provided to this community, the hardware should be able to




keep up with image processing pipelines that produce images appropriate for
qualitative analysis.

So why can’t today’s physicians, after acquiring diagnostic images of
a patient, query a database to extract similar past cases from a database,
with quantitative image properties and fused image-plus-analysis data from
differing imaging modalities, including an on-the-fly determination of the

historical effectiveness of different treatments for such cases?

Some of the barriers to implementing this vision include establishing
metrics for gauging similarities and differences in complex biological images,
having a community-wide set of metadata standards for both images and
database structures, and incorporating the quantitative analysis of biomed-

ical images into the culture of clinicians.

Our study team has attempted to identify a number of steps that the
DOE and NIH could take to address what we see as the major outstanding
impediments to progress, and these are summarized in the next section. The
main body of the report provides further detail on our findings and sugges-
tions, and responds to the sponsor’s request for our suggestions for areas

where additional investment might be the most effective.

Recommendations

1. Implement the BISTI report recommendations. In particular their rec-
ommendation number 4, pertaining to the availability of a hierarchy
of computing platforms for the biological community, is essential to
continued progress in biomedical imaging. Moore’s Law only benefits

those who continue to invest in computing hardware!

2. Calibrate. The lack of a concrete geometrical registration hampers im-
age fusion, and uncalibrated absorbtion or other information hamper
quantitative interpretation of biomedical images. We encourage work-
ing towards distribution of 3-d standards for geometrical registration

frames, incorporating calibration as in integral part of each measure-

s




ment, and appending the calibration information to all raw data files.

. Cultivate an open-access and open-source approach to biomedical imag-
ing data sets and analysis algorithms. There are significant cultural
impediments within the biomedical imaging community to the sharing
of images and algorithms. Furthermore, there are no common ‘test
problems’ against which new algorithms can be tested. We advocate
addressing these issues by nurturing the sharing of both code and data.

One specific possibility is given in the following recommendation.

. Establish an open (“BioLena”) data set, which all researchers can use
to test algorithms and techniques. Implementing prototype metadata
standards, NIBIB could act as curators, allowing apples-to-apples com-

parisons and industry standard test problems.

. Promote computer-assisted qualitative analysis of biomedical images
in the clinical arena. This intermediate step strikes us an achievable
near-term goal along the path towards eventual automated quantitative

analysis of biomedical images.

. Develop appropriate database technology, and select and evaluate demon-
stration projects. We see the database challenges associated with bio-
medical image exploitation as a major technical bottleneck in the com-
ing years, but one which can be somewhat averted if appropriate steps

are taken now.

_ Establish a succession of “Grand Challenge Problems in Biomedical
Imaging” to stimulate technical progress on the roadblock issues listed
above. This can also galvanize collaborations between the biomedical
community, mathematicians and computational and database scien-

tists. Example problems include:

e Map-the-Phantom — Construct a full-scale anatomical model (tho-
racic, cerebral?) and invite teams to acquire images and then pro-

vide their best quantitative, distortion-corrected reconstruction of




the interior structure of the model. Kudos to those who produce
the highest fidelity data set.

Multi-scale integration — Functional imaging of a biological process,
from molecular to physiology. Examples are the cardio and brain

efforts already under way.

Time-to-solution challenge — Pick an imaging methodology and
problem. Points for whoever can port their analysis toolkit to a
standard platform and get an acceptable answer the fastest. Also

points for the “best” answer.

Quantitative Change Detection Challenge — Given a temporal se-
quence of images, some with actual clinical data and others with
features inserted “by hand”, identify and quantify the evolution
of the changes.

Joint analysis challenge — Use raw data from multiple modalities

to improve the fidelity of image generation.

Quantitative Diagnosis challenge — Use parametric descriptions
of image features of interest to achieve detection, diagnosis or

differential diagnosis, as appropriate.

Multimode image integration challenge — Produce the best regis-
tered set of images, with common data structure and access tools,

from images obtained with diverse methods.

Best Merged Image-plus-catalog data structure, with query tools

and comparison metrics for images.

8. Begin the process of considering the potential of using what we presently

consider super-computing in the biomedical imaging arena. Today’s

supercomputer is tomorrow’s desktop machine, and this may open up

totally new approaches to the interpretation of biomedical images.




1 INTRODUCTION

Computing in the biosciences is a major endeavor, encompassing every-
thing from protein folding to genetic databases to the information technol-
ogy associated with patient medical records. Our task was to look into the
likely computational requirements for a narrow slice of biomedical computing,
namely the CPU, storage, software and connectivity requirements needed to
digest, exploit and archive the images produced by the clinical and research
biomedical imaging communities. Even this subset of biomedical computing
covers a wide span of activity. This report makes broad observations and
recommendations, based on our study team’s findings and experience. While
there are undoubtedly specific counterexamples to many of the points we
make, we contend that some general trends do emerge and that there are
specific opportunities for high-impact investment by the NIH and the DOE.

For the purposes of this study we define biomedical imaging as the
collection of methods used to produce 2 or 3 dimensional representations
of physical properties of systems of biological interest. This includes optical
and electron microscopy, Xray (CT) and electron tomographic (ET) imaging,
Positron Emission Tomography (PET), Single Photon Emission Computer-
] ized Tomography (SPECT), ultrasound, Nuclear Magnetic Resonance (MRI)
and Electrographic and Magentographic Encephalography (EEG and MEG).

These techniques have different domains of applicability, ranging from
probing biological systems at molecular scales to full-body scans. Although
there are exceptions, presently most clinical applications utilize organ to limb
scale images, while biomedical imaging at smaller scales currently mostly sup-
ports basic science research. Figure 1 presents a map of biomedical imaging
in the context of applications and characteristic length scales. As discussed

below, (1) increasing the clinical applications of imaging at smaller scales,

and (2) spanning many decades of length scales to improve our understanding

of biological processes do involve computational challenges.

It is important to recognize that there are two distinct biomedical imag-
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Domains of Medical Imaging
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Figure 1: Medical Imaging domains of applicability. The horizontal axis is a
logarithmic representation of characteristic length scales, while the vertical
axis reflects the distribution of applications, from basic research to clinical
applications. A major goal should be to shift current research approaches
“ypwards” on the plot, towards routine clinical use, when appropriate.

ing communities, with some overlap between them: 1) the clinicians, who are
most interested in maximizing accurate information of medical interest at the
lowest possible cost, typically using commercial hardware and software, and
2) the biomedical imaging research community, who frequently have a closer
relationship to the acquisition hardware and analysis software, and who can

often tolerate longer latencies in image processing times.

Overall, the JASON study team was impressed with the existing on-
going efforts in the community’s approach to the computational challenges

of biomedical imaging. We saw a nice combination of applied mathemat-




ics, medical physics, and innovative computational techniques that were well
coupled to the biological problems at hand. We did not hear the biomedical
imaging community express frustrations at lack of adequate computational
throughput, or even for lack of disk space. For research applications, comput-
ing at the scale of a high-end cluster of Linux workstations seems well suited
to handle current image processing needs. There is of course a worry that this
represents a ‘selection effect’, in that the algorithms currently being used are
precisely those that can return an answer in a tolerable amount of wall clock
time, but we did not sense that there are significant unexploited opportunities
that remain dormant for lack of adequate computational throughput. With
the cost of both CPU power and disk storage falling rapidly, we do not expect
that either of these will produce bottlenecks in the 5 years ahead. (We do
note later in this document the potential benefits of applying supercomputer

technology to medical imaging analysis, however.)

So if the hardware is not a major source of concern, what is hard about
computing in the biomedical imaging arena? We highlight the following list
of issues that are (or are likely to become) impediments to capitalizing on the
ongoing technical developments in both imaging techniques and computing

capabilities:

e The evolution from qualitative to quantitative interpretation of bio-
medical images is hampered by the fact that the questions are ill-posed.
Computing the morphology of shapes is a tough problem. This diffi-
culty is accentuated by the fact that the heritage for generating well

calibrated image data sets is not particularly strong.

e The lack of a common set of metrics, and the absence of a standard
set of test images/cases, makes it difficult to quantitatively compare
different techniques and algorithms.

e As the imaging techniques used by the research community at the sub-
cellular and molecular level make a transition into clinical applications,
the challenge of fusing information across length scales, phenomenology,

and imaging modalities must be confronted.
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e A major obstacle that we foresee is the inability of current database
technologies to easily accommodate images as intrinsic database ob-
jects. Most high-volume image archives that are presently linked to
SQL-compatible databases do not contain the images themselves as
data entities, but rather the databases typically contain links to where
the images are stored on disk. As outlined later in this report, we see

this as an area ripe for investment.

o A related issue pertains to the lack of metadata standards. This will
soon become a significant impediment to interoperability across data
structures, and to the effective sharing of data between subdisciplines

in the biomedical imaging community.

e There are significant cultural obstacles pertaining to the sharing of bio-
medical image data and algorithm source code, which have in our view
hampered progress in this discipline. We comment on these issues, and

potential ways to start overcoming them, in the sections that follow.

We received briefings from a diverse cross-section of the medical imaging
community. The speakers and their institutional affiliations are listed in
Table 1. In addition, we benefited from extensive conversations with other
members of the biomedical imaging profession. We are very grateful to all of
these individuals for taking the time to share their viewpoints, concerns and

suggestions with us.

The structure of this report largely traces the flow of information in a
medical imaging application. We start in Section 2 with the initial step of
converting raw data into images, i.e. going from bits into pixels. The result-
ing images are now typically presented to experts (physicians) who use their
extensive experience and professional judgment to extract knowledge from
the pictures. Their interpretation is usually presented as a narrative quali-
tative appraisal, sometimes even only comprising a single bit of information
(yes/no). We note for future reference that this analysis constitutes a very
significant reduction in data volume, from a digital image to a few succinct

bits of pertinent extracted information.
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Table 1: Study Briefers

Speaker

Affiliation

Richard Leahy, Ph.D.

NeuroImaging Research Group
University of Southern California
Los Angeles CA

Chris Johnson, Ph.D.

Director, Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, Utah

Michael Miller, Ph.D.

Director, Center for Imaging Science
The Johns Hopkins University
Baltimore MD

Mark Ellisman Director, Center for Imaging and Microscopy Research
University of California, San Diego
Larry Frank Center for Functional MRI Imaging

University of California, San Diego

Michael Vannier

Chair, Department of Radiology
University of Iowa

Richard Martino

Director, Division of Computational Bioscience
NIH Center for Information Technology, Bethesda MD

Judith Niland

Division of Information Sciences
City of Hope Hospital, Pasadena CA

We will explore what is needed in order to shift from this qualitative
interpretation to a fully quantitative analysis of medical images. This in-
cludes the transition from pictures to numbers, using parametric analysis
techniques, discussed in Section 3, and the extraction of knowledge and un-
derstanding from these image parameters. This is discussed in Sections 4 and
5. Issues relating to transfer of information and connectivity are discussed in
Section 6. We have significant concerns that pertain to data and code access,
which are discussed in Section 7. Considerations of the application of truly

high end computing to medical image analysis is presented in Section 8. We

close with our recommendations and conclusions in Section 9.
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2 THE ANALYSIS OF RAW DATA: FROM
BITS TO PICTURES

A common feature of all biomedical imaging techniques involves the
transformation of raw digital data into a image. Solving the inverse problem
for CAT scans is one example of the type of analysis required. Another
example is the forward modeling used for MEG analysis. The refinement
of the tools and techniques used to produce images of high fidelity is an
ongoing field of research, and one that certainly merits continued support.
We note that in many fields the development of more efficient and effective
algorithms accounts for as much increased analysis throughput as hardware

improvements.

The analyses needed to convert from raw data into images often come
to us as ill-posed problems, with incomplete, grainy or noisy data. A major
challenge in the coming years will be to take the experimental uncertain-
ties, and the assumptions made in the analysis, and propagate them forward

through the visualization and interpretation stages.

2.1 Raw Data Volume and Data Rates — Not A Major
Limitation

Using a nominal rate of 32GB/hour, a single MRI machine generates
approximately 11TB/year of raw data. Certainly handling 11TB of data
is not difficult technically; these data can be readily stored in a few RAID
arrays of disks, in a rack with high throughput interconnects. Providing local
(same-building) access to comprehensive image archives is also not a major
technical challenge. We do note that patient record confidentiality and access
permission issues may be a hurdle, but one that will surely be surmounted

in the coming few years.

Given adequate financial resources to acquire the requisite hardware,

and sufficient system administration support for the platforms and disk

13
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farms, major municipal hospitals should be able to generate and maintain

image archives for their patients.

As discussed below in Section 6, however, transferring large image archives

around on the net will likely be a significant bottleneck in the decade ahead.

2.2 Converting from Raw Data to Images: Inversion
Techniques and Forward Modeling

One class of medical image generation uses inverse techniques to gen-
erate an image from the raw data. A classic example is the inversion used
to extract a model of the body using x-ray transmission measurements as
a function of angle. Although much progress has been made on devising
clever techniques for CAT scan analysis, it remains the case that the result-
ing images do not typically contain uncertainties associated with the analysis
technique, the assumptions, or the even the signal-to-noise ratio of the raw
data.

If the imaging method were perfect, producing images would be straight-
forward and error free. For example, tomographic reconstruction requires
inverting a Radon transform. The mathematical properties of this transform

have long been understood.

In practice, difficulties arise because of uncertainties in the imaging
method. Uncertainties are caused by a myriad of factors, including (a) sys-
tematic errors inherent in the imaging method (e.g. the local magnetic field
distortions in MRI typically introduce significant, patient dependent, uncer-
tainties); (b) image contrast limitations (e.g. magnetic resonance does not
provide good contrast for bone, while CT scans do not provide good contrast
for soft tissues); (c) movement of the patient during the scans; (d) aliasing
effects and (e)multiple scattering effects. Each of these factors introduces
uncertainty into the imaging data, which in turn causes the inversion of the

imaging transform to be mathematically and computationally ill-posed.

The only way to invert an incomplete, error laden, imaging transform

14




is to make use of some statistical model for the missing and uncertain de-
grees of freedom. Depending on the level of detail in the statistical model,
this can be a computationally demanding task. For example, in particle
physics/astrophysics running the calibration statistical models takes up the
bulk of the computing time. This approach is not common practice in the

medical imaging community.

Recent approaches have lowered the dimensionality of the reconstruction
problem by positing that the imaged object is composed of distinct materials
with known material properties. Under this assumption, the inversion prob-
lem need only solve for the interface between the distinct regions. Although
progress is clearly being made in this direction, attention must be paid to
what the errors are, even under the assumption of perfect interface inversion.
For example, it is well known that tissues are not isotropic materials, and
the anisotropies must affect the data obtained.

The other major class of imaging challenges that arises in medical imag-
ing is the problem of forward modeling; using a set of measurements that even
under ideal circumstances give incomplete information to exactly reconstruct
the image. The major exemplars of this class of problems are magneto en-
cephalography (MEG) and electroencephalography (EEG). These techniques
require measuring the electrical potential or magnetic field at a finite set of
sensor locations distributed over a region of the body. From these data, the
task is to reconstruct the charge/current distribution inside the region im-
aged. Even in a perfectly characterized material this problem is ill posed:
determining (for example) the charge distribution inside a body requires
knowing the electric potential on the entire surface of the body. The charge
distribution that reproduces a finite number of measurements of the poten-
tial on the surface of a body is not unique. Said differently, in a perfectly
characterized material, there is a set of charge distributions that is quanti-
tatively consistent with a given set of measurements. This dispersion in the
set of charge distributions gives the error in the interpretation of the data.

Medical imaging brings several additional complications: First, the ma-

terial properties (dielectric and conductivities) are generally uncharacterized.

15
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Second, for clinical imaging, the shape of the surface over which the data
is taken is not characterized. Even if the surface potential were measured
exactly everywhere, each of these factors would be an uncertainty in the de-
duced interior charge/current distribution. For the errors associated with
cither of these issues to be reduced, it is clear that EEG/MEG need to be
combined with other imaging modalities that are capable of measuring the
shapes of surfaces and the shapes of regions with different material prop-
erties. Such work is the focus of current research activity, though the field
has a long way to go to fully understand and accommodate the uncertainties

from both the data and the image-generation techniques.

Ongoing support of algorithmic development is well warranted, but
would be enhanced by increasing access to both test images and algorithms,

as discussed in Section 7.

2.3 Reducing the Uncertainties in Image Generation
by Simultaneous Joint Analysis

A major hurdle that must be surmounted is to reduce the uncertain-
ties described above. The community is carrying out various research direc-
tions in this regard, mainly with the view towards combining complementary
techniques together. For example, combining MRI with CT scan would al-
low simultaneous visualization of soft tissues and bones, if the two types of
images could be calibrated against each other. Combining MEG with MRI
gives information about the precise surface of the head to be combined with

inversion calculations for the MEG.

We note that a joint analysis of the raw data is fundamentally different

from the challenge of fusing information from images, at a post-analysis stage.

Although it is clear that the combining of different methodologies will
lead to more and better information, for quantitative metrics to be developed

it is imperative that the data from each of the imaging methods be calibrated

16




to a common reference standard so that they can be used together without

additional calibration error.
2.4 The Merits of Calibration

Current efforts on computer analysis of medical imaging are focused on
trying to correlate morphology with function of disease. The morphology is
generally defined by surfaces which can be distinguished by discontinuities
in density or other properties. Thus, the real information being extracted
lies in spatially localized differences, and depends on the smoothness of the

performance of the imaging systems.

While we are confident that this will yield results, we are not certain
on what scale the results will emerge. It is possible that gross anatomical
differences in size and shape in parts of organs will not correlate well with
function, but that these correlations will not emerge until the cellular or even

molecular level.

We were briefed on studies of the hippocampus which tried to correlate
shape with schizophrenia. Apparently efforts in that direction were signif-
icantly hampered because different MRI machines have spatial distortions
which are on the same scale as the shape changes that the investigators were
measuring. This made it impossible to fuse data from different machines, and
moreover we were told that routine machine maintenance will cause enough

distortion change to hamper research along these lines.

We applaud the wonderful accuracy that manufacturers have achieved
with their MRI and CAT machines, but at the same time we feel that some
of this effort is misplaced. A chest xray will be directly examined by a
radiologist without computer enhancement, and therefore must convey the

information that the diagnostician needs directly.

However, the raw data from MRI or CAT scans are not useful without
computer processing, and so the most important attribute that a machine
should have is stability. If a machine is stable, it can be used to scan a

17
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standard target (a cube, for example, with struts of known location and
density), and then these reference data can be used as part of the normal
computer processing to produce an image which has no distortion at all. We
imagine that the first and last use each day of an MRI or CAT machine might

be a scan of the standard cube.

Such routine calibration data would convey a technical advantage, of
course, in that it monitors the health and accuracy of the machine, and the
computer analysis of it could determine whether the machine is operating

within specification, or whether it should be serviced.

The most important aspects of incorporating such calibration data into

the analysis of biological scans are that

e It permits easy and accurate fusion of many different data sets
e It provides an absolute calibration of size, density, etc.

e It opens the possibility for extremely sensitive temporal studies of the

same subject.

This last aspect is one which deserves attention. If two MRI scans
of a given subject, possibly taken months apart, were accurately calibrated
in terms of position and density, they could be registered and subtracted.
The registration displacement field would be an accurate measure of any
spatial changes which occurred during the intervening time (swelling around
a tumor, for example), and the density changes which would be revealed with

great sensitivity might also have significant diagnostic value.

2.5 Enhanced Visualization of Biomedical Images —
Computer-Assisted Qualitative Analysis

At present the generation and display of clinical medical images is tai-
lored to support qualitative analysis by physicians. The radiologists draw

upon their training and personal experience to interpret imaging data, and

18




to arrive at a diagnosis, or differential diagnosis. This often involves compar-
ing an image with the clinician’s recollection of what normal or pathological
features look like. In many cases, a patient’s imagery is compared not with
earlier images but with written reports about prior images. Even when an im-
age history is available, the comparisons are not quantitative but are simple
side-by-side comparisons made by the radiologist. In the case of comparing
images with written reports, it is important to note that a different radiol-
ogist may be making the comparison, and that due to its subjective nature,
important features may have been missed. A small feature discounted by the
first radiologist may now be manifested as disease in the patient. Finally,
the images are considered in the context of other case-specific information:

patient age, signs and symptoms, medical history, etc.
2.6 A Valuable Near Term Opportunity

It strikes us that the present clinical procedures could be enhanced, using
computers and archived images to improve the performance of qualitative
biomedical image analysis. There are a variety of ways this could be done,

two of which we list below:

e Using archived images and computer-assisted access to provide relevant
comparison images and information. We envision a system in which the
physician is presented with a montage of relevant comparison images,
reflecting stages of disease progression, and (when appropriate) exam-
ples of benign physiological anomalies that are commonly mistaken as
disease. The evaluation could then be carried out with real-time access
to relevant comparison images. The determination of an appropriate
comparison set of images is a challenge, but not an insurmountable one.

We will return to this issue in the section on databases.

e Having an analysis program draw the physician’s attention to image
features of potential interest. There is of course the potential problem

of having radiologists become overly reliant upon this, and potentially
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missing important features. This could be avoided by having the com-
puter analysis take place after the radiologist has made an appraisal,

as a backstop to the human interpretation.

This middle ground, using computational resources to enhance quali-
tative image analysis, strikes us as an effective way to build technical and
cultural bridges into the era of full quantitative analysis that is surely in our

future.

2.7 The Representation of Uncertainties in Medical
Images

The computer graphics and scientific visualization communities have
conducted extensive research in the visualization of uncertainties. That work
should be leveraged instead of reinventing it. Similarly, the computer graph-
ics and scientific visualization community have significant expertise in dealing
with isosurfaces and textures. It seems that this body of research could be
leveraged by the medical imaging community. Research collaboration with

computer scientists in these fields should be expanded significantly.

Providing visualization of uncertainties is not the hard part here— rather
obtaining and propagating the underlying uncertainties is the real challenge.
Presently, medical images do not contain uncertainty information. These
uncertainties can arise from fundamental limitations in the measurements
(Poisson noise, etc.) or from uncertainties due to the image-generation tech-
nique. Clearly, the community must first decide that uncertainties are an
integral part of medical images. Then, different techniques for visualization

and representation can be evaluated.

Incorporating uncertainties as an integral part of biomedical images is
of course a necessary prerequisite to being able to carry out fully quantitative

analyses of these data.
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3 THE CHALLENGES OF QUANTITATIVE
IMAGE ANALYSIS: EXTRACTING NUM-
BERS FROM PICTURES

As outlined in the previous section, people are accustomed to looking at
pictures, and other 2 dimensional representations of information. In clinical
applications the primary product of medical imaging is a 2-d image. There is
a long tradition in radiology of deriving very useful clinical information from
the qualitative examination of such images. This qualitative approach, with
expert judgment by physicians leading to narrative descriptions of findings,
does not do justice to the rich information contained in images obtained
from contemporary imaging systems, and limits the physician’s ability to

quantitatively express the clinically essential information in a succinct way.
3.1 The Merits of Quantitative Analysis

There are numerous benefits to be reaped from moving towards a more
quantitative exploitation of medical images: Monitoring the progress of a
medical condition, and ascertaining its response to therapies, would be en-
hanced if the community had reliable and effective quantitative tools. Com-
parisons with archived images of comparable cases would be facilitated with
quantitative tools, and quantitative descriptors are likely to play in key role

in identifying relevant image data.

There are some examples of quantitative analysis of medical images in
a clinical setting, such as physiological measurements made on ultrasound
images, but this is presently the exception rather than the rule. The quan-
titative analysis of ultrasound images is an encouraging case where a new
technique was rapidly adopted by the clinical community once its value was
clearly demonstrated.

One approach to quantitative analysis of biomedical images involves ex-
tracting from (2-d or 3-d images) a parametric description of the morphology
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of objects of interest in the frames. This would involve, for example, auto-
mated recognition of physiological features in images (tibia, femur...), and a
means for summarizing their properties with a handful of numbers (length,

width, density...).
3.2 Change Analysis with Image Subtraction

An alternative approach would be to carry out a differential analysis of
a succession of images. We wondered whether the image subtraction schemes
used (7) in astronomy to detect change might have application in this arena
as well. We will not pursue this further here, but we do advocate evaluating
this approach. Figure 2 shows the power of’/literally subtracting images in

order to highlight changes. Software currently used in the astronomical com-

Epoch 1

Epoch 2 (3 weeks later) Epoch 2 - Epoch 1

Figure 2: An example of image difference analysis. The figure shows two
images taken at different times in the left and center panels. The right
hand panel shows the pixel-by-pixel difference in the images, in this case
highlighting a supernova. This approach may prove fruitful in the analysis of
biomedical images as well. (Image courtesy of the High-z Supernova Team.)

munity can compensate for geometrical distortions, as well as additive and
multiplicative scaling between the 2 images before carrying out the subtrac-

tions.
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Monitoring the progress of a medical condition, and ascertaining its re-
sponse to therapies, would be enhanced if the community had reliable and
effective quantitative tools for evaluating medical images. Such tools would
allow the tracking of precise anatomical changes within a given patient over
time, and also within patient populations. Such quantitative tools would
invite the development of imaging metrics, to track conditions and man-
age risks. Current quantitative metrics for assessing risks exist throughout

medicine, though are notably lacking in many modern imaging technologies.

Present research is motivated by the desire to map out boundaries, sur-
faces and volumes in biomedical images. This approach follows the presently
prevalent notion that pathology is manifested in gross anatomical abnormal-
ities, and we note that this will likely evolve to include more subtle chemical,
physical and biomolecular evidence of disease and injury. As this under-
standing progresses, we can look forward to biomedical imaging modalities

that will provide quantitative diagnostic information.

3.3 Why Is Quantitative Image Analysis So Difficult?

With all the effort expended on biomedical imaging technology and
analysis, why is the quantitative analysis of this imagery not commonplace?
We consider there to be a number of reasons why we have not progressed
to its obvious conclusion. Calculational capability is not the limiting factor.
Rather, the difficulties include the fact that the extraction of the features
of interest is an intrinsically ill-posed problem. While physicians, using a
vision system that has been honed by many generations of human evolution,
can sift the uninteresting from the informative, it is very hard to teach a

computer to do the same.

Developing quantitative descriptors of medical images requires not only
finding ways to extract a parametric description of the morphology and tex-
ture of objects of interest from 2d or 3d images, but also developing mea-
sures of uncertainties in the reported description. In many of the imaging

modalities currently in use, the uncertainties are substantial, depending on
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details of the patient, the imaging device, and the manner in which images
are acquired. Without an accurate understanding of these uncertainties and
a way of representing them, quantitative analysis of images is impossible.
This should motivate not only an effort to increase the reliable calibration of
medical images, but also the propagation of uncertainties through the entire

image analysis pipeline.

Additionally, the pedigree of the extracted features must be retained.
This requires tracking and archiving the raw image data, the code used to
generate an image, the code used to extract feature parameters, etc. This
would ideally all be stored in a self-describing data structure that is inti-

mately linked to a version-controlled code bank, as illustrated in Figure 3.

Ideally....
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Figure 3: An Aspiration. An integrated image-and-analysis self-describing
structure would link raw data, generated images, and an extracted feature
catalog with the version-controlled code bank used in the analysis. The full
pedigree of the data and code version would be retained in an integrated
metadata structure.

Even once a parametric description of image data has been extracted,

these numbers must assessed in comparison to other cataloged numbers,
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spanning the range from “normal” to “pathological” in order to obtain a
clinical appraisal of value. This comparison will necessarily involve a consid-
eration of the specific case history, which is probably best represented as a
set of Baysian priors. This challenge is considered in the next section.
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4 INTERPRETATION: FROM NUMBERS
TO KNOWLEDGE

Once a parametric description of image features of interest has been
obtained, the goal is to turn this into useful biomedical information and
insight. This will require a comparison with either (1) the relevant parameter
history of the patient in question (essentially a differential measurement) or
(2) a set of comparison data drawn from a relevant comparison group. This
process will clearly benefit from building queryable databases, but we will

defer considering that aspect until Section 5.

Any comparison of extracted feature parameters will obviously rely upon
having calibrated data with well understood and quantified uncertainties, as
any similarities or differences must be considered in the context of their
statistical significance. We do not consider the current state-of-the-art in
most modalities of biomedical imaging, or in general the analysis of these

images, to be at a stage that will support this kind of approach.

4.1 Defining Relevant Comparison Images

The definition of a relevant comparison group is presently done implic-
itly when a physician interprets a clinical image. The doctor is bringing
strong prior probabilities to bear on the problem, based on the patient’s
clinical history, symptoms, the results of laboratory tests, and other perti-
nent information. This “data fusion” is a major component of the training
that physicians receive, and also draws upon the doctor’s personal experi-
ence. Moving from this approach to a diagnosis (or differential diagnosis)
that is based upon a parametric description of image features will be very
challenging. While it is certainly possible to envision constructing a data-
base query that constrains the parameter comparison to, say the typical size
of the livers of 12-15 year old girls that live in the Eastern US, we are a
long way from being able to carry this out. The availability and low-latency
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accessibility of the archived comparison information is a major part of this

challenge.

Additional complications include defining appropriate comparison groups
for each patient, contending with benign anatomical anomalies, and moving

beyond the consideration of surfaces and volumes as the quantities of interest.

We conclude that not only is the extraction of parameters a difficult
problem, but that the clinical interpretation of these parameters, by way of
comparisons, is far from trivial. So how might the agencies foster progress in
this arena? One potential approach would be to pick a demonstration case
where the algorithms needed for parameter extraction do not present a major
challenge, and where the scope of the comparison group is well defined. This

is a good candidate for a “Grand Challenge” in biomedical imaging.

We envision an eventual progression of physician interaction with images
and their features. We imagine moving from today’s stage of “show me the
picture” to being able to extract a subset of images from an archive with
commands like “show me all images that contain skull fractures with lengths
between 2.5 and 5.0 centimeters”, to interactive processing such as “run this
new algorithm on all lung images in the archive, and store and compare the
results” to eventual natural-language interactions such as “return all images
that contain features like this one”. This leads us to the interplay between

databases, image archives, bandwidth and latency.
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5 DATABASES, DATA RETRIEVAL,IMAGE
ARCHIVES AND METADATA: A HIGH-
LEVERAGE OPPORTUNITY?

5.1 The Potential Value of Sophisticated Databases in
Medical Imaging

There is, in our view, a considerable opportunity in developing more
sophisticated database tools in support of biomedical imaging. Whether the
images themselves are included as intrinsic database objects, or whether the
database simply contains pointers to images that reside in an external file
structure is an implementation detail. The goal should be to build a tightly

integrated data structure that contains
e data pedigree information: code versions, image construction algorithm
parameter files, etc.
e image files,

e uncertainty arrays,

parametric descriptions of detected image features,

links to patient record data, including updated information about out-

comes and progress.

Eventually this field will develop and maintain such database structures
that merge calibrated images with extracted parameters (shapes, volumes,
etc.). It seems to us essential (and inevitable) that comprehensive biomedical
imaging data, both images and extracted parameters, be widely available

after addressing patient confidentiality issues.

This will provide a means to access and exploit the increasing volume

of medical imaging, in a way that could provide substantial improvements
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in patient care. With records that are readily accessible across the nation,
a patient who appears in the Denver ER can have their records accessed
by that facility, even if they reside half a continent away. Physicians could
interact with the aggregate data in order to compare and contrast the case

under consideration with the nation’s accumulation of such cases.

User—friendly interfaces to these databases will help overcome the risk
of building substantial write-once-read-never (WORN) data sets. We see it
as essential to build small-scale prototypes, with query efficiency and ease of

access as prime considerations.

In an era when digital data seldom outlast the life cycle of proprietary
formats and systems, if medical imaging data are stored in compliance with
broad meta—data standards, these data will be sustainable over multiple gen-
erations of hardware and software evolution. This will require the develop-

ment and adoption of metadata standards.

5.2 Metadata Standards

If we consider constructing a national archive of medical images for di-
agnostic and research purposes, this archive will be very large. Depending
on the policy for placing images into the (distributed) archive, it could range
from a few TB (terabyte) to a PB (petabyte) or more. Such a large archive
will require professional management, and high bandwidth links to the re-
searchers and physicians who use it. We should note that given such a large
collection of images, it will be impossible in the foreseeable future to use
image processing techniques to search through this archive. Searching will
have to be done on metadata, and so techniques and metrics for describing
features of the images will have to be developed. It should be possible to
derive many of these features from the images automatically, and then store

them with the image as metadata.

When we consider metadata, and indeed data formats, standards are

very important. The reason that computers interoperate on the Internet is
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due entirely to the adoption of standards; the reason a cellular telephone
works on more than one network is due to adherence to standards. In order
for researchers to make effective use of medical imagery data, these data
should be put into standard formats that can be read by all researchers.
Manufacturers should be encouraged to adopt these standards (we need to
try to make a case that this will be to their advantage).

All of the sensor calibrations, the algorithms used to construct the im-
age, the transformations applied to the image, its segmentation and annota-
tions by medical professionals make up much of the metadata of the image.
By choosing a standard format, and carefully maintaining this metadata, it
becomes a searchable quantity in the database. A query such as ”Find all
brains with possible aneurysms near the circle of Willis identified using an

MR angio with no contrast agent” suddenly becomes possible.

A good example of the use of metadata is the AFNI system (6). The
AFNI system carefully annotates medical image data, including calibrations
and its lineage and all transformations that have been applied to it. A further
improvement would be to adopt a standard metadata description language
such as XML. XML is a widely used standard, and since it is well-understood
many parsers for it exist, that would ease adoption. By using a standard
metadata description, exchange of data and the ability to both track the
lineage and changes to that data, as well as make queries against that data
would be significantly enhanced. In recent years, database technology has
been developed that works well with XML.

It appears that current practice is to use flat text files, and in some cases
files encoded in binary formats. The amount of space saved by binary for-
mats is minimal, and not significant given the growth in storage technology.
The use of text files improves portability, but the formats are still proprietary
and this makes exchanging data with other researchers (or medical profes-
sionals) difficult. It is important that the data produced by medical imaging
equipment be self-describing, and again a language such as XML seems to
be ideal for this task.

31



XML, or a language like it, could be used to describe data ranging from
the raw data returned by the sensors, to the images that are derived from the
sensor data. It could describe all calibration coefficients and other parameters
as appropriate for the imaging technology. Once an image is constructed, the
algorithms and corrections made could be described using XML. As image
processing algorithms are applied, each transformation of the image could be

appropriately noted.

In the case where the image is segmented, XML could be used to describe
the segmentation of the image. Again, we gain the advantage of being able to
describe in the image itself how the segmentation was accomplished. Anno-
tations made by medical professionals, such as the identification of features
could be kept with the image in the XML. For example, the identification of

an aneurysm, its type and location could be made.

The archival situation in the clinical setting is very poor. Archives, when
kept, are usually kept as film and not digital images. Due to the nature of
the turn-key systems currently sold, images from an older system may not
be compatible with those of the new system. The DICOM standard used in
the medical imaging industry seems to have serious compatibility problems,
and we wonder why yet another standard was thought to be necessary in the

presence of so many digital image standards with proven compatibility.

JASON sees the generation of broadly supported metadata standards
and the development of appropriate database testbeds as important steps in
moving the medical imaging community towards realizing the full potential

of the discipline.
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6 CONNECTIVITY: PUSHING A RIVER
THROUGH A STRAW

{ Although Terabyte data volumes can be cost-effectively stored on disk,
the bandwidth needed to support the exchange of these data sets is not
currently available. This can be readily illustrated by estimating the time
required to transfer a typical image: a 1K x 1K image at 16 bits comprises
2 MBytes of data. Moving this across a network with a delivered bandwidth
of 100 Kbits/sec would take nearly 3 minutes. Implementing a scheme where
large image data sets are routinely transferred across the nation will rapidly

saturate the existing network capacity.

There is a fundamental mismatch between the image archive size that
can be readily stored locally (tens of Terabytes) and what can be transferred
across the network (optimistically, perhaps Gigabytes/day). We do applaud
initiatives such as the BIRN project(8) that are stepping up to these chal-
lenges, but we feel the network infrastructure is not able to support wholesale

exchange of large image data sets.

The agencies should take a hard look at nationwide networking capac-
ity, and anticipate the likely evolution of demand from the medical imaging

community.

Local networking infrastructure is also an important issue that needs
to be addressed. Deploying sufficient infrastructure locally in a building or
group of buildings on a campus is not prohibitively expensive, but it is im-
portant that the infrastructure be kept up to date on a regular schedule.
Currently, that infrastructure should be 1 gigabit Ethernet for data transfer;
but a plan should be in place to move to the next generation as soon as it
becomes cost effective. The more difficult issue is connectivity among geo-
graphically distributed researchers and clinicians. The so-called “last mile
problem” has not be inadequately resolved, and so aside from high cost solu-
tions getting sufficient bandwidth remains expensive. Short-lived initiatives

to connect clinics and hospitals are not sufficient.
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Two possible approaches to overcoming the connectivity gap are 1) im-
age compression and 2) parameter extraction. We understand that liability
issues preclude the use of lossy compression for medical images, but there are
modest factors to be gained by using lossless compression algorithms. The
other approach is to avoid transferring full images, but rather to transfer

extracted feature parameters, which is a much smaller data volume.

We do anticipate that network capacity limitations will likely prevent
the full benefits of rapid image exchange from being realized, unless steps are

taken to increase network throughput, on both the national and local scales.
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7 DATA ACCESS AND RELATED CULTURAL
ISSUES

The biomedical imaging community does not have a strong heritage of
releasing image sets or code, even upon publication. This stands in stark
contrast to the approach taken by the molecular biology community, where
publication of research papers is contingent upon gene sequences being de-
posited in an accessible database. The following excerpt (4) from a recent

editorial in Radiology paints a grim picture —

In radiology, where imaging is central to everything we do, pub-
lished images are neither indexed separately nor retrievable. To
make matters worse, most authors decline to share their original
source images, preferring to maintain them in private collections.
It is tmpossible to reconstruct the results of published work, since

the original source data (e.g., images) are unavailable.

In apparent recognition of the importance of clarifying its approach to
proprietary data, the NIH has issued (5) a Data Access Policy, an excerpt of

which reads

...Starting with the October 1, 2003 receipt date, investigators
submitting an NIH application seeking $500,000 or more in direct
costs in any single year are expected to include a plan for data

sharing or state why data sharing is not possible. ..

Having set the criteria for what constitutes a project whose data are
considered of sufficient value to merit a data release plan, the NIH policy
then goes on to instruct (5) reviewers to disregard the strength or credibility

of the data release plan in assessing the merit of the proposal:

Reviewers will not factor the proposed data-sharing plan into the

determination of scientific merit or priority score. Program staff
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will be responsible for overseeing the data sharing policy and for
assessing the appropriateness and adequacy of the proposed data-

sharing plan.

Several efforts to gather and freely distribute biomedical image archives
have been attempted, but most have withered due to lack of enthusiasm
by researchers. It seems to us that a change in attitude is necessary. One
only needs to observe the benefit of data sharing enjoyed by the genome
community to see that science is better served by open access to data than
by holding those data confidential. Other branches of science have already
embraced this goal, for example, if an astronomer is funded by NASA, then
in 18 months all images created under that award enter the public domain.
NIH has begun with a much weaker model, requiring researchers to develop
a data sharing plan as part of their grant applications. Often funding is not
including for data sharing, and data sharing usually consists of ad hoc web

pages.

The culture of data-hoarding that appears to permeate much of bio-
medical imaging research strikes us as outdated. It limits progress in the
field, and prevents an honest comparison of tools and techniques. Other
scientific disciplines have wrestled with the issue of proprietary data rights,
and there is a strong trend towards increasing community access to data sets
and analysis tools that have been developed with taxpayer funds. We note
the thoughtful narrative from NASA on this topic (9). Certainly in astron-
omy, much of the improvement in open access is a direct result of funding
agency policies. In this context, we found the NIH data access provisions to
be somewhat less than ideal, in pushing the field towards more open access

to image data.

Another limitation is lack of a standard test set of data, so that different
algorithms and approaches can be compared. Most research papers that
describe new image generation or analysis algorithms present ‘before’ and
‘after’ images for qualitative comparison, but the images themselves (let alone

the algorithms!) are seldom made available to the community. This makes
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it nearly impossible to make a quantitative comparison of the performance
of different approaches and algorithms, as there is no common set of test

images.

We see considerable merit to the idea of establishing an open-access
data archive, conforming to prototype metadata standards, from which the
research community could draw example images. Results of various inversion
and analysis algorithms could then be uploaded to this site (even along with
code, if that cultural barrier can ever be breached). This is a chance to push

towards an open source/open data ethic.

We encourage the agencies to adopt a more forceful carrot-and-stick
approach to bringing about a change in the culture of the biomedical imaging

community, as we are convinced that more open access will pay big dividends.
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8 LOOKING BEYOND THE FIVE YEAR
HORIZON - “SUPERCOMPUTING” AND
MEDICAL IMAGING

Recognizing the gigantic size and intrinsic conservatism of the medical
(and medical imaging) community, most of this report is rightly limited to
‘the art of the possible’ — recommendations for incremental change that lever-
age off of prior art, on a 5 year time scale. However, we would be remiss if we
did not make at least some attempt at a more radical ‘futurism’, outlining
what sorts of advances could, in principle, be achieved by major investments

in paradigm-breaking technologies.

It is not by happenstance that practicing radiologists are fully trained
as physicians before they acquire any specialized training in medical imaging
and image interpretation. As a physician, the radiologist has peered-at,
poked, palpated, prodded, pondered, and in many cases dissected the tissues
and organs whose images will fill the rest of his or her career. The result
of this early training is that the radiologist has a mental model not just in

image space, but in the underlying ‘real’ space of anatomy and physiology.

This is a profound point: The radiologist is able, with an ease that
comes from training and experience, to ‘filter’ the huge space of all possible
(distorted, noisy, imperfect, ...) images into the large, but tractable, space
of anatomically and physiologically possible situations (conditions, processes,
syndromes, diseases, ...). This is a huge, and necessary, dimensional reduction
in the image interpretation problem. While no two individuals, even normal
individuals, are identical at the image level, the filter of understanding the
‘laws’ of physiology, etc., enables the radiologist to see non-identical images

as belonging to common equivalence classes.
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8.1 TUsing Models to Reduce the Dimensionality of the
Image Analysis Problem

A national stretch goal for computation in support of medical imaging
would be to develop a level of computer understanding, based on an un-
derlying physically simulated model, comparable to that of an experienced

radiologist.

This is not as crazy as it sounds. We will not be asking the computer
to understand medicine, or to make diagnostic judgments, but only to un-
derstand anatomical, physical, mechanical, and possibly chemical properties
of the tissues of the human body: mechanical and elastic properties, fluid
flows (both free and diffusive flows), stress and strain relationships, and so
on; and to be able to model these relationships in the presence of constraints
imposed by the data of medical images. Although perhaps harder in practice,
this is not different in principle from the problem of modeling the detona-
tion behavior of a nuclear weapon, constrained by the image data of nuclear
and non-nuclear tests — a problem in which the nation has invested several

billions of dollars and with highly successful return.

According to the data provided by Mark Ellisman (8), a brain of 1500
cm3 can yield an enormous amount of data. For micron-scale spatial resolu-
tion and 3 bytes/pixel, a single full-brain image would require 4.5 Petabytes

of data storage.

If it is indeed possible to eventually image at this level, then there is
clearly a data storage problem that cannot easily be managed. There is
good reason to believe that disk drives will top out at a few TB each. Let’s
imagine that 10TB is a reasonable terminal disk size. Then a color 1 pm
image would require 450 such disk drives. The time to read one of these
disk drives at 1GB/s (which is roughly 20 times what can be done today)
is 10* seconds, a little over three hours. If the data were striped across all
disks, and assuming you could build a memory with that kind of bandwidth

(current memories are a few GB /s at best, the ESS doing parallel memory
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accesses is 32 GB/s), then it could be done in about three hours. This also
represents the best case scenario for writing the data. If the data were placed
sequentially on the disks, then it would take 56 days to read a single data
set. This of course assumes sequential access to the data, which is the highest
bandwidth form of access. Smaller accesses are possible, but the data needs
to be structured in such a way that the volume to be extracted can be done
easily and in parallel, it could easily degenerate to close to the worst case
sequential scenario even in the case of highly striped disks (a small read from
a single disk in each stripe).

It seems unlikely that 1 pm resolution is likely to occur in the near
future. What we showed is that a single brain at 1 um resolution was equal
to the next generation ASCI computer in terms of disk storage, and would
exceed the memory of that computer by orders of magnitude. It is interesting
to note that 1 million brains at 1 mm resolution (current MRI resolution) is
4.5TB, which is manageable. It is important to note that this is to store an
image at 1 mm resolution, not the data used to construct that image. The
data used to construct at MRI image using a single coil is approximately 2GB,
looking to the near future where arrays of 16 coils will be used the data grows
to 32GB. If we return to the database of 1 million brains, then this means
that from 2PB to 32PB of data must be stored for 1 mm resolution.

8.2 Tracking Changes in Each Patient

Since in the future a single individual will be imaged multiple times in
a lifetime, the computer also needs to ‘understand’ (i.e., have available in a
form able to be manipulated as a physical model) some areas of developmen-
tal biology. For example: The geometry of the brain’s cortical folds are to
some extent common to all normal individuals, and to some extent random
(as the growing brain is packed, in mechanical equilibrium, into the growing
skull). With a database of all previous images of an individual, and with
a real-time mechanical model of how brain tissue responds to mechanical

stresses, the computer will disambiguate normal small changes from (e.g.)
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incipient tumor growth.

Particularly when the common clinical practice evolves to include pe-
riodic full body scans, it should be fairly straightforward to classify each
individual’s physiological anomalies so that the detection of anomalies or

pathologies is not confounded by benign anatomical anomalies.

There already exist pilot efforts in disparate fields that are steps to-
wards reaching this stretch goal. For example, the “Cardiome” project(10)
is attempting to develop an integrated model of the heart, incorporating me-
chanical simulation, fluid flow, neuro-electrical behavior, and so forth. In
the entirely different field of computer animation, there exist skeletal models
of the human body, with mechanically realistic representations of muscle,
draped skin, and so forth. These are computed according to the actual laws

of physics so as to achieve realistic animations.

What we need is the ‘full body’ model — not at the molecular or biochem-
ical level, but at the level of reproducing all the features that are accessible
to medical imaging. Further, we need this model to be not just a ‘forward’
model (the kind that can predict appearance given state) but also to have
the right computational ‘hooks’ in it to be usable as a ‘backward’ model,
whereby state can be inferred by images. It would be an important part
of the research agenda to define exactly what these hooks should be: This
would be research combining computer science with medical expertise on the

complete catalog of conditions that one expects to diagnose by imaging.

Baysian statistics is already an integral, if subconscious, part of med-
ical image analysis and interpretation. Physicians assess the likelihood of
different interpretations of an image based in large part on an appraisal of
prior probabilities, drawn from case histories and other clinical information.
This would have to be formalized and incorporated into the scheme described

here, and this will require considerable development and testing.
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8.3 Taking Steps in This Direction

This section has considered an approach in which the number of de-
grees of freedom in medical image analysis is radically reduced, by imposing
physical and physiological constraints via a full computational model. This
is essentially what physicians do on a daily basis, and it is in principle within
our reach, given a deep enough understanding coupled with adequate com-
puting power. Moving in this direction would require a clear long-term view
on the part of the agencies, coupled with a staged program of research and

development.

Existing computing resources within the DOE complex could be brought
to bear on example problems of limited scope, and computational scaling
performance could be explored and evaluated. In addition, a program of
aggressive algorithmic and model development would be required.

It is important to not have the scope of our vision limited by our present
computational capabilities. It seems to us inevitable that the capabilites that
are presently available in state-of-the-art supercomputers will eventually mi-
grate to the desktop. It’s only a matter of when this will occur. It makes
sense to be prepared to exploit the continued evolution of available computa-
tional power, and to remain open to revolutionary rather than evolutionary

developments.
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9 RECOMMENDATIONS AND CONCLU-
SIONS

We have summarized our view, on a 5 year time scale, of the computa-
tional requirements for medical imaging in the chart shown in Figure 4.

A summary:
Present day and 5 year outlook

Computational Challenge Today |+ 5 yrs
Adequate CPU cycles T

-Sufficien-i Ddtd Storage

Computer assrsted qual rtatrve ana[ysrs

Full Quant;tatrve Analyszs )

‘Fused/merged images

Connectzw ty: Access to remote data

Figure 4: Summary of Computing in Support of Medical Imaging. The chart
shows the JASON appraisal of the status of various computational needs
for medical imaging. Green sections indicate items where needs are well
met, yellow segments merit concern, and red segments are areas of serious
deficiency.

Our recommendations were presented briefly in the Executive Summary,
and are repeated here with somewhat more elaboration. We consider these
recommendations to be high-leverage opportunities. Some will provide near-
term dividends. Others represent our attempt to anticipate bottlenecks that
are likely to arise further into the future.

1. Implement the BISTI report recommendations. In particular their rec-
ommendation number 4, pertaining to the availability of a hierarchy
of computing platforms for the biological community, is essential to
continued progress in biomedical imaging. The legendary benefits of
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Moore’s Law only accrue if new hardware is procured on a timely ba-
sis. An important aspect of this is to provide resources to supply the
biomedical imaging community with a hierarchy of computing tools,
ranging from desktop systems to supercomputer facilities. Equally im-
portant is providing funding to acquire mass storage capacity. These
procurements, however, must go hand-in-hand with the definition and
adoption of metadata standards, in order to ensure that the imag-
ing data and derived products will be sustainable with the inevitable

turnover in computer hardware, operating systems, and software.

. Calibrate! The lack of credible geometrical registration hampers image
fusion, and uncalibrated absorbtion or other information hampers the
quantitative interpretation of biomedical images. We encourage work-
ing towards distribution of 3-d standards for geometrical registration
frames, incorporating calibration as in integral part of each measure-
ment, and appending the calibration information to all raw data files.
In addition, the actual measured physical parameters (transmission,
density...) should be measured, to the extent possible, in calibrated
physical units. This also will support moving towards the incorpo-
ration of meaningful uncertainties as an integral part of biomedical

imaging data.

. Cultivate an open-access and open-source approach to biomedical imag-
ing data sets and analysis algorithms. There are significant cultural
impediments within the biomedical imaging community to the shar-
ing of images and algorithms. The current NIH standards for data
access stand in stark contrast to the common practice in other disci-
plines. This includes even the publication norms of other branches of
the life sciences, such as genetic sequence data being made public is
a condition of publication of research results. Furthermore, there are
no common set of ‘test problems’ against which new algorithms can be
tested. We advocate addressing these issues by nurturing the sharing
of both code and data. One specific possibility is given in the following

recommendation.
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4. Establish an open (“BioLena”) data set, which all researchers can use
to test algorithms and techniques. We have in mind a set of images akin
to those used by the computer imaging community, which are used as
test images in essentially all research on algorithms and image process-
ing. Implementing prototype metadata standards, NIBIB could act
as curators, allowing apples-to-apples comparisons and industry stan-
dard test problems. We propose data sets (both raw and processed)
that are drawn from each of the biomedical imaging modalities. We
also advocate encouraging researchers to post, for open access, images
that result from applying their new analysis or reduction algorithms.
This will promote progress in metadata standards as well as providing
a mechanism for quantitative, scientific, comparison of different algo-

rithms.

5. Promote computer-assisted qualitative analysis of biomedical images
in the clinical arena. This intermediate step strikes us an achievable
near-term goal along the path towards eventual automated quantitative
analysis of biomedical images. We think it is relatively straightforward
to use existing technology to present the physician with not only the
clinical images from a single patient, but also with a mosaic of images
from comparable cases, along with their histories and outcomes. This
may require some work to deal with patient confidentiality issues, but
that strikes us as a tractable problem. One could also imagine an inter-
active image display system that is optimized to assist with differential

diagnosis challenges.

6. Develop appropriate database technology, and select and evaluate demon-
stration projects. We see the database challenges associated with bio-
medical image exploitation as a major technical bottleneck in the com-
ing years, but one which can be somewhat averted if appropriate steps
are taken now. A particular topic for long term research is feature-based
image queries, in which the step of parameterizing image features is not
an explicit stage of image analysis, which produces an intermediate data

catalog that is the basis for comparisons.
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7. Establish a succession of “Grand Challenge Problems in Biomedical
Imaging” to stimulate technical progress on the roadblock issues listed
above. This approach has served the DOE community well in the past.
A clear example is the success of the protein folding competitions which
are now a staple of computational molecular biology. These challenges
can also be crafted to galvanize collaborations between the biomedical
community, mathematicians and computational and database scien-

tists. Example problems include:

e Map-the-Phantom — Construct a full-scale anatomical model (tho-
racic, cerebral?) and invite teams to acquire images and then pro-
vide their best quantitative, distortion-corrected reconstruction of
the interior structure of the model. Kudos to those who produce
the highest fidelity data set.

e Multi-scale integration — Functional imaging of a biological process,
from molecular to physiology. Examples are the cardio and brain
efforts already under way. This will promote the eventual adop-

tion of cellular and molecular imaging as clinical techniques.

e Time-to-solution challenge — Pick an imaging methodology and
problem. Points for whoever can port their analysis toolkit to a
standard platform and get an acceptable answer the fastest. Also

award points for the “best” answer.

e Quantitative Change Detection Challenge — Given a temporal se-
quence of images, some with actual clinical data and others with
features inserted “by hand”, identify and quantify the evolution of
the changes. We consider this as a tractable aspect of quantitative
biomedical image analysis, rather than trying to solve the more
genera] problem of recognizing and characterizing all features in
an arbitrary image.

e Multimode image integration challenge — Produce the best regis-
tered set of images, with common data structures and access tools,

from images obtained with diverse methods. There is also an op-

portunity here to promote the joint analysis of raw data, rather
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than just merging images after all processing has been done.

o Best merged Image-plus-catalog data structure, with query tools
and comparison metrics for images. This will move the field in
the direction of merged data entities, and will help lay important
groundwork for development of metadata standards.

8. Begin the process of considering the potential of using what we presently
consider super-computing in the biomedical imaging arena. Today’s
supercomputer is tomorrow’s desktop machine, and this may open up

totally new approaches to the interpretation of biomedical images.
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