Artificial Gill

W. Happer
J. Katz

November 1986

JSR-86-104

Distribution is unlimited - approved for public release

The MITRE Corporation
7525 Colshire Drive
McLean, Virginia 22102-3341
ARTIFICIAL GILL

PERFORMING ORGANIZATION NAME AND ADDRESS
The MITRE Corporation
7525 Geistshire Drive
McLean, VA 22102

CONTROLLING OFFICE NAME AND ADDRESS
CARPA
1400 Wilson Boulevard
Arlington, VA 22209

MONITORING AGENCY NAME AND ADDRESS (IF DIFFERENT FROM CONTROLLING OFFICE)

DISTRIBUTION STATEMENT (of this report)
Distribution is unlimited - approved for public release.

SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse side if necessary and identify by block number)
Artificial gill, electrode surfaces, low pressure distillation and sparging.

ABSTRACT (Continue on reverse side if necessary and identify by block number)
The methods of extracting oxygen from sea water for use as an oxidizer in an underwater vehicle are considered. The Aquanautics artificial gill in the baseline system: its feasibility requires further improvements in the oxygen carrier, electrode surfaces, or both. Current performance of the baseline is half of what is required for the proposed test vehicle. JASON considers the proposed test vehicle premature: much more work on electrochemical research is in order.
An alternate technique, based on low pressure distillation and sparging, is analyzed and shows an improvement of about ten in the theoretical minimum relative to the baseline system. It is also simpler, since it has no need for the exchange membrane and the carrier molecules. Offsetting this simplicity is the existence of mechanical moving parts. Further research toward achieving the theoretical minimum is recommended for both, and other competing, approaches.
ABSTRACT

Two methods of extracting oxygen from sea water for use as an oxidizer in an underwater vehicle are considered. The Aquanautics artificial gill is the baseline system: its feasibility requires further improvements in the oxygen carrier, electrode surfaces, or both. Current performance of the baseline is half of what is required for the proposed test vehicle. JASON considers the proposed test vehicle premature: much more work on electrochemical research is in order.

An alternate technique, based on low pressure distillation and sparging, is analyzed and shows an improvement of about ten in the theoretical minimum relative to the baseline system. It is also simpler, since it has no need for the exchange membrane and the carrier molecules. Offsetting this simplicity is the existence of mechanical moving parts. Further research toward achieving the theoretical minimum is recommended for both, and other competing, approaches.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF ILLUSTRATIONS</td>
<td>vii</td>
</tr>
<tr>
<td>1.0 ARTIFICIAL GILL</td>
<td>1-1</td>
</tr>
<tr>
<td>2.0 COMPARISON OF THE GILL WITH PHYSICAL EXTRACTION OF O₂ GAS FROM SEAWATER</td>
<td>2-1</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>D-1</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>A simple system to strip O$_2$ from seawater for a submerged vehicle</td>
<td>2-2</td>
</tr>
<tr>
<td>2-2</td>
<td>For most efficient stripping of O$_2$ a counter current sparging system should be used</td>
<td>2-5</td>
</tr>
</tbody>
</table>

vii
1.0 ARTIFICIAL GILL

A system which would permit an undersea vehicle to extract oxygen from the seawater is intriguing, and may permit the development of very long endurance low velocity undersea vehicles. The work by Aquanatics on the development of an artificial gill is a step in this direction, and raises a number of interesting questions.

1. Such a system competes directly with lithium batteries and lithium-seawater fuel cells. We cannot compare their merits, because the gill is in early development, and its ultimate performance is not known.

2. The success of the artificial gill requires further improvement in the oxygen carrier, electrode surfaces, or both. The best achieved electrochemical power requirement of \[120 \text{ watt-minutes/liter} \] is 20 times short of the theoretical minimum of 6 watt-minutes/liter quoted by Aquanatics. It is impossible to say how much further development of carriers and electrode surfaces will reduce the electrochemical power. A factor of two improvement would appear to be sufficient to allow operation of the proposed self-propelled test vehicle. Essential to the success of this
The project will be a continuing program of electrochemical research.

3. The design of a test vehicle was necessary to define the required performance parameters. Its actual construction and demonstration is not now necessary, and would divert resources from more important work on the electrochemistry. A premature demonstration would not only waste money and human resources, but would also unnecessarily pose extra risks—those of failure for some reason unrelated to the gill itself (for example, unexpected inefficiencies in pumps and other auxiliary equipment).

4. A very long range goal might be the development of a vehicle which could truly be self-sustaining, like a fish, obtaining both fuel and oxidant from the sea. The fuel would presumably be suspended organic matter. Many means of using it are conceivable including drying and burning, and fermentation to produce combustible gases. The development of such a system would clearly be a very long range basic research project, but may be worth consideration. It should not supplant the development of an artificial gill, which is very much closer to fruition.
2.0 COMPARISON OF THE GILL WITH PHYSICAL EXTRACTION OF O\textsubscript{2} GAS FROM SEAWATER

The Aquanautics artificial gill requires the development of several challenging subsystems, notably an electrochemical unloader and a gill module with a large surface area to transfer oxygen from seawater to the carrier flow loop. If the goal of the DARPA program is to extract dissolved oxygen from seawater rather than to foster the development of synthetic carrier molecules for oxygen, it is worth examining other extraction methods with less technological risk. We have not made an exhaustive study of alternate methods but we will discuss physical extraction of dissolved oxygen from seawater as one example.

The removal of a dissolved gas from a liquid is a fairly common operation in chemical engineering. It may be accomplished by low pressure distillation, heating, or flushing the liquid with an inert carrier gas, a process sometimes called sparging. A simple device to extract oxygen for a submerged vehicle is sketched in Figure 2-1. Seawater is admitted at its ambient pressure p_1 to a large batch extraction tank of Volume V. The tank is isolated from the sea by closing valves 1 and 4. The pressure control piston is withdrawn to decompress the water in the tank to a pressure p_1 which is less than one atmosphere. The mechanical work required for this decompression is

2-1
Figure 2-1 A simple system to strip O₂ from seawater for a submerged vehicle
\[W_1 = \frac{1}{2} \frac{p_0^2}{k} \left(\frac{p_1^2}{p_0^2} - \frac{p_2^2}{p_0^2} \right) V = 22 \frac{\text{ergs}}{\text{cm}^3} \left(\frac{p_1^2}{p_0^2} - \frac{p_2^2}{p_0^2} \right) V \]

where \(p_0 = 1.01 \times 10^6 \text{ dyne/cm}^2 = 1 \text{ atm} \) is atmospheric pressure and \(k = 2.22 \times 10^{10} \text{ dyne/cm}^2 \) is the bulk modulus of elasticity for seawater. At a depth of 100 meters \(p_1 = 11 \text{ atm} \) and the work needed to decompress the seawater is 2662 erg/cm\(^3\), assuming \(p_2 \) is negligibly small.

The \(O_2 \) content of the seawater is removed by bubbling \(N_2 \) gas at a pressure of 0.8 atm through the decompressed seawater. Since the seawater is saturated with \(N_2 \) gas at a pressure of 0.8 atm, no nitrogen will be transferred from the water to the sparging gas. A certain amount of work must be done to bubble the gas through the liquid, at the very least, enough work to overcome the surface tension during inflation of the bubbles. This work will be on the order of

\[W_2 = N \cdot 4\pi r^2 \gamma \]

where \(\gamma = 77 \text{ erg/cm}^2 \) is the surface tension of water, \(r \) is the bubble radius and \(N \) is the number of bubbles needed to extract the oxygen. Suppose that 100 bubbles of radius 0.1 cm are needed to strip each cm\(^3\) of seawater of its oxygen. The work involved is then 968 erg/cm\(^3\), somewhat smaller than the decompression work.
For efficient extraction one would probably want to have a counterflow stripping column rather than the simplistic scheme of Figure 2-1. The basic idea is sketched in Figure 2-2. Once the batch of seawater has been stripped of its oxygen the valves 2 and 3 are closed, the pressure control piston is advanced to repressurize the batch tank to the ambient pressure of seawater, and valves 1 and 4 are opened. The spent water is ejected and replaced by fresh seawater and the cycle described above is repeated.

The works of compression and decompression are nearly equal and opposite so the net work could nearly cancel for a well engineered system. However, we shall assume no recovery of the compressional work at all and take this as representative of the energy needed to extract O\textsubscript{2} from seawater. We assume that the countercurrent stripping system extracts the full 0.006 liter/liter of O\textsubscript{2} at STP dissolved is saturated seawater. Then 167 liters or something over 40 gallons of seawater must be stripped to extract one liter of oxygen at STP. At a depth of 100 m some 45 joules of compressional work are needed to extract one liter of O\textsubscript{2}, i.e., 0.74 watt-minutes/liter. Comparing this to the best achieved value quoted by Aquanautics of 120 watt-minutes/liter for operation of the electrochemical part of their artificial gill, and the theoretical optimum
Figure 2-2 For most efficient stripping of O_2 a counter current sparging system should be used.
value of 6 watts-minutes/liter we see that further study of the alternative oxygen extraction system discussed above and other schemes would be worthwhile since much smaller operating powers seem attainable. The physical stripping scheme will have to process about the same amount of water as the Aquanautics gill but the exchange membrane, the carrier molecules and the electrochemical cycle can be dispensed with.
DISTRIBUTION LIST

Mr. Saul Amarel
DARPA
1400 Wilson Blvd.
Arlington, VA 22209

Mr. N. Ross Buckenham
Aquaculture Corporation
4560 Horton Street, Room 111,
Emeryville, CA 94608

Mr. Ralph Chatham
Program Manager
Naval Technology Office
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Mr. Ron Clark
DARPA
1400 Wilson Blvd.
Arlington, VA 22209

Mr. John Darrah
Sr. Scientist and Technical Advisor
HQ Space Cnrd/XPN
Peterson AFB, CO 80914

COMO Craig E. Dorman
Department of the Navy, OP-095T
The Pentagon, Room 5D576
Washington, D.C. 20350

Dr. Robert C. Duncan
DARPA
1400 Wilson Boulevard
Arlington, VA 22209

Mr. John Entzminger
DARPA
1400 Wilson Blvd.
Arlington, VA 22209

Mr. Robert Foord [2]
P.O. Box 1925
Washington, D.C. 20505

Mr. Bert Fowler
Senior Vice President
The MITRE Corporation
P.O. Box 208
Bedford, MA 01730

Mr. William Gates
Deputy Director
Central Intelligence Agency
P.O. Box 1925
Washington, D.C. 20505

Dr. Larry Gershwin
NIO for Strategic Programs
P.O. Box 1925
Washington, D.C. 20505

Dr. J. Richard Fisher
Assistant BMD Program Manager
U.S. Army
Strategic Defense Command
P.O. Box 15280
Arlington, VA 22215-0150

Mr. William Gouse, W300
Vice President and General Manager
The MITRE Corporation
1820 Dolley Madison Blvd.
McLean, VA 22102
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Organization</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. Jack Hammond</td>
<td>Strategic Defense Initiative Organization</td>
<td>1717 H. Street</td>
<td>Washington, D.C. 20301</td>
</tr>
<tr>
<td>Dr. William Happer</td>
<td></td>
<td>Princeton University</td>
<td>Princeton, NJ 08540</td>
</tr>
<tr>
<td>Mr. Keith K. Hazard [3]</td>
<td>Director, JASON Program Office</td>
<td>The MITRE Corporation</td>
<td>1820 Dolley Madison Blvd. McLean, VA 22102</td>
</tr>
<tr>
<td>Dr. Donald A. Hicks [2]</td>
<td>Under Secretary for R&E</td>
<td>Office of the Secretary of Defense</td>
<td>The Pentagon, Room 3E1006 Washington, D.C. 20301</td>
</tr>
<tr>
<td>Mr. R. Evan Hineman</td>
<td>Deputy Director for Science & Technology</td>
<td></td>
<td>P.O. Box 1925 Washington, D.C. 20505</td>
</tr>
<tr>
<td>CDR Earl R. Jones</td>
<td>NAVOPINTCEN</td>
<td></td>
<td>4301 Suitland Road Suitland, MD 20390-5170</td>
</tr>
<tr>
<td>Mr. Ed Key</td>
<td>Vice President</td>
<td>The MITRE Corporation</td>
<td>P.O. Box 208 Bedford, MA 01730</td>
</tr>
<tr>
<td>MAJGEN Donald L. Lamberson</td>
<td>Assistant Deputy Chief of Staff (RD&A)</td>
<td>HQ USAF/RD, Rm. 4E334</td>
<td>Washington, D.C. 20330</td>
</tr>
<tr>
<td>Mr. Charles Mandelbaum</td>
<td>Mail Stop ER-32/G-226 GTN</td>
<td>U.S. Department of Energy</td>
<td>Washington, D.C. 20545</td>
</tr>
<tr>
<td>Mr. Robert Manners</td>
<td>Office of Research and Development</td>
<td></td>
<td>P.O. Box 1925 Washington, DC 20505</td>
</tr>
<tr>
<td>Mr. John P. McTague</td>
<td>Deputy Director</td>
<td>Office of Science & Tech. Policy</td>
<td>Old Executive Office Building 17th & Pennsylvania Ave., N.W. Washington, D.C. 20500</td>
</tr>
<tr>
<td>Mr. Al Mense</td>
<td>Strategic Defense Initiative Organization</td>
<td>1717 H. Street</td>
<td>Washington, D.C. 20301</td>
</tr>
</tbody>
</table>
DISTRIBUTION LIST (Cont’d.)

Mr. Mewson
HQ SAC/NRI
Offutt AFB
Nebraska 68113-5001

Dr. Marvin Moss [2]
Technical Director
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. Julian Nall [2]
P.O. Box 1925
Washington, D.C. 20505

Superintendent (Code 1424)
Naval Postgraduate School
Monterey, CA 93943
Attn: Documents Librarian

Director
National Security Agency
Fort Meade, MD 20755
ATTN: Mr. Edward P. Neuburg
DDR-FANX III

Prof. William A. Nierenberg
Scripps Institution of
Oceanography
University of California, S.D.
La Jolla, CA 92093

Dr. Robert Norwood [2]
Office of the Deputy Under
Secretary of the Army
Assistant Under Secretary
of the Army
The Pentagon, Room 2B653
Washington, D.C. 20310-0102

BG Malcolm O’Neil
Strategic Defense Initiative
Organization
1717 H. Street
Washington, D.C. 20301

Mr. John Rausch
NAVOPINTCEN Detachment, Suitland
4301 Suitland Road
Washington, D.C. 20390

The MITRE Corporation
Records Resources
Mail Stop W971
McLean, VA 22102

Dr. Richard Reynolds
DARPA
1400 Wilson Blvd.
Arlington, VA 22209

Mr. Alan J. Roberts
Vice President & General Manager
Washington C3I Operations
The MITRE Corporation
1820 Dolley Madison Boulevard
McLean, VA 22102

Dr. Phil Salwyn [2]
Technical Director
Office of Naval Technology
800 N. Quincy Street
Arlington, VA 22217

Mr. Shen Shey
DARPA
1400 Wilson Blvd.
Arlington, VA 22209
DISTRIBUTION LIST (Con'l'd.)

Dr. Gordon Smith
Strategic Defense Initiative Organization
1717 H. Street
Washington, D.C. 20301

Dr. Joel A. Snow [2]
Director
Science & Tech. Staff
U. S. DOE/ER-6
Washington, D.C. 20585

COMO William O. Studeman
Director of Naval Intelligence
Office of Naval Intelligence
Navy Department (OP-009)
Washington, D.C. 20310

Mr. Alexander J. Tachmindji
Senior Vice President & General Manager
The MITRE Corporation
P.O. Box 208
Bedford, MA 01730

Dr. Vigdor Teplitz
ACDA
320 21st Street, N.W.
Room 4484
Washington, D.C. 20451

LTCOL Simon Peter Worden
Strategic Defense Initiative Organization
1717 H. Street
Washington, D.C. 20301

Dr. Gerold Yonas [2]
Strategic Defense Initiative Organization
Office of the Secretary of Defense
The Pentagon
Washington, DC 20301-7100

Mr. Leo Young
OUSDRE (R&AT)
The Pentagon, Room 3D1067
Washington, D.C. 20301-3081

Mr. Charles A. Zraket
President
The MITRE Corporation
P.O. Box 208
Bedford, MA 01730