
Perspectives on Research in Artificial Intelligence 
and Artificial General Intelligence  

Relevant to DoD

 

 

JASON
The MITRE Corporation

7515 Colshire Drive
McLean, Virginia 22102-7508

(703) 983-6997

JSR-16-Task-003

January 2017

Contact: Richard Potember — rpotember@mitre.org

Distribution authorized for Public Release.





REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
 January 2017 

2. REPORT TYPE 
   

3. DATES COVERED (From - To) 
                         

4. TITLE AND SUBTITLE 

      
 
 
 
 
 
 
 

5a. CONTRACT NUMBER 

    
 Perspectives on Research in Artificial Intelligence and Artificial General Intelligence 

Relevant to DoD 
5b. GRANT NUMBER 

 

 
 

5c. PROGRAM ELEMENT NUMBER 

 
6. AUTHOR(S) 

 
 
 
 

5d. PROJECT NUMBER 

  1316JA01 
  5e. TASK NUMBER 

    PS 

 
 
 
 

5f. WORK UNIT NUMBER 
 
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 
  

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

The MITRE Corporation 
JASON Program Office 
7515 Colshire Drive, MS T130 
McLean, Virginia 22102 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
    JSR-16-Task-003 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   

OSD ASDR&E 
Basic Research Labs 
4800 Mark Center Drive 
Alexandria VA 
  
   

  
11. SPONSOR/MONITOR’S REPORT  
      NUMBER(S) 
 

12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Distribution authorized for Public Release  
13. SUPPLEMENTARY NOTES 
 

Artificial Intelligence (AI) is conventionally, if loosely, defined as intelligence exhibited by machines.  
Operationally, it can be defined as those areas of R&D practiced by computer scientists who identify with one or 
more of the following academic sub-disciplines:  Computer Vision, Natural Language Processing (NLP), Robotics 
(including Human-Robot Interactions), Search and Planning, Multi-agent Systems, Social Media Analysis 
(including Crowdsourcing), and Knowledge Representation and Reasoning (KRR).  The field of Machine Learning 
(ML) is a foundational basis for AI.  While this is not a complete list, it captures the vast majority of AI researchers. 
 
Artificial General Intelligence (AGI) is a research area within AI, small as measured by numbers of researchers or 
total funding, that seeks to build machines that can successfully perform any task that a human might do.  Where AI 
is oriented around specific tasks, AGI seeks general cognitive abilities.  On account of this ambitious goal, AGI has 
high visibility, disproportionate to its size or present level of success, among futurists, science fiction writers, and 
the public. 
 
15. SUBJECT TERMS 

 
16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
    Dr. Robin Staffin 

a. REPORT 

Unclassified 
b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

 
     UL 

 19b. TELEPHONE NUMBER (include area 

code) 571-372-6460 
 Standard Form 298 (Rev. 8-98) 

Prescribed by ANSI Std. Z39.18 

 





 

iii 

 

Contents 
 

 

1 EXECUTIVE SUMMARY               1 

 1.1 Background ........................................................................................................................1 

 1.2 Overview ............................................................................................................................1 

 

2  INTRODUCTION 3 

 2.1 AI and AGI .........................................................................................................................3 

2.2 Importance of AI to DoD ...................................................................................................4  

2.3 Structure and History of AI as a Field of Research ............................................................5 

 2.3.1 Sub-fields of AI research ...........................................................................................5 

 2.3.2 AI in Historical Context ............................................................................................6 

 

3 THE DEEP LEARNING REVOLUTION  9 

 3.1 Perceptrons .......................................................................................................................10  

 3.2 Generic Network Architecture ........................................................................................ 11 

 3.3 Neuron Non-Linearity ......................................................................................................13 

 3.4 Training and Back-propagation ........................................................................................15 

 3.5 Convolutional Neural Nets ...............................................................................................16 

 3.6 Some Details of DNNS ....................................................................................................19 

 3.6.1 Error functions .........................................................................................................19 

 3.6.2 Softmax layer ..........................................................................................................19 

  3.6.3 Training, validation, and test data ...........................................................................20 

  3.6.4 Stochastic gradient descent .....................................................................................20 

  3.6.5 Weight-decay: L2 and L1 regularization .................................................................20 

  3.6.6 Dropout ....................................................................................................................21 

  3.6.7 Unstable gradients and unbalanced leaning in DNNs .............................................21 

 3.7 Dealing with Small Data Sets ...........................................................................................22 

  3.7.1 Transfer learning .....................................................................................................22 

  3.7.2 Data augmentation ...................................................................................................22 

  3.7.3 Autoencoders ...........................................................................................................23 

  3.7.4 Recurrent neural networks .......................................................................................24 

 3.8 Summary of the Big Data Deep Learning “Dogma” ........................................................25 

 

4 DEEP LEARNING AND THE “ILITIES” 27 

4.1 An Analogy: Software Engineering as a Discipline .........................................................27 

4.2 Why the Ilities May Be Intrinsically Hard for Deep Learning .........................................28 

 



 

iii 

 

5 AREAS OF RAPID PROGRESS OTHER THAN DEEP LEARNING 33 

5.1 Reinforcement Learning ...................................................................................................33 

5.2 Graphical Models .............................................................................................................33 

5.3 Generative Models and Probabilistic Programming Languages ......................................34 

5.4 Hybrid Architectures ........................................................................................................35 

5.5 What Is On the Sidelines ..................................................................................................37 

 

6 DNNs FROM A HARDWARE PERSPECTIVE  39  

 6.1 Evolution of DNNs .........................................................................................................39 

 6.2 DNN Computations ........................................................................................................41 

  6.2.1 Training ..................................................................................................................41 

  6.2.2 Inference ................................................................................................................42 

  6.2.3 Compute and Memory Requirements for DNNs ...................................................42 

 6.3 Hardware for DNNs ........................................................................................................43 

  6.3.1 Accelerators for DNNs ..........................................................................................45 

 6.4 Signatures and Technological Surprise ...........................................................................50 

  6.4.1 Compact Networks.................................................................................................50 

  6.4.2 Sparsity ..................................................................................................................50 

  6.4.3 Attention Networks ................................................................................................51 

 

7 SOME CONSIDERATIONS SPECIFIC TO DOD  53 

 

8 JASON FINDINGS AND RECOMMENDATIONS  55 

 8.1 Findings...........................................................................................................................55 

 8.2 Recommendations ...........................................................................................................55  

 

APPENDIX A: Statement of Work and JASON Responses to Specific  

Questions Posed 57 

 

APPENDIX B: Briefings to JASON Study on Artificial Intelligence 59  

 

APPENDIX C: The Back-Propagation Algorithm 61 

C.1 Training a Single Neuron 61 

  C.1.1 Summary ...............................................................................................................63 

 C.2 The Single Neuron, Multi-Layer Net .............................................................................63  

  C.2.1 Summary ..............................................................................................................62 

 C.3 The Multi-Neuron, Multi-Layer, Neural Net .................................................................66 

  C.3.1 Summary ..............................................................................................................67 

 

APPENDIX D: List of Acronyms Used 69 

  

 



 

1 

 

1 EXECUTIVE SUMMARY 

 

1.1 Background 

Artificial Intelligence (AI) is conventionally, if loosely, defined as intelligence exhibited by 

machines.  Operationally, it can be defined as those areas of R&D practiced by computer 

scientists who identify with one or more of the following academic sub-disciplines:  Computer 

Vision, Natural Language Processing (NLP), Robotics (including Human-Robot Interactions), 

Search and Planning, Multi-agent Systems, Social Media Analysis (including Crowdsourcing), 

and Knowledge Representation and Reasoning (KRR).  The field of Machine Learning (ML) is a 

foundational basis for AI.  While this is not a complete list, it captures the vast majority of AI 

researchers. 

Artificial General Intelligence (AGI) is a research area within AI, small as measured by numbers 

of researchers or total funding, that seeks to build machines that can successfully perform any 

task that a human might do.  Where AI is oriented around specific tasks, AGI seeks general 

cognitive abilities.  On account of this ambitious goal, AGI has high visibility, disproportionate 

to its size or present level of success, among futurists, science fiction writers, and the public. 

This JASON study was sponsored by DoD/OSD/ASD(R&E).  AI technologies are of great 

importance to DoD missions.  Defense systems and platforms with varying degrees of autonomy 

already exist.  More importantly, AI is seen as the key enabling technology (along with human- 

computer interactions of various kinds) of a “Third Offset Strategy” that seeks for the U.S. a 

unique, asymmetric advantage over near-peer adversaries. 

 

1.2 Overview 

Starting around 2010, the field of AI has been jolted by the broad and unforeseen successes of a 

specific, decades-old technology: multi-layer neural networks (NNs).  This phase-change re- 

energizing of a particular area of AI is the result of two evolutionary developments that together 

crossed a qualitative threshold: (i) fast hardware Graphics Processor Units (GPUs) allowing the 

training of much larger—and especially deeper (i.e., more layers)—networks, and (ii) large 

labeled data sets (images, web queries, social networks, etc.) that could be used as training test- 

beds.  This combination has given rise to the “data-driven paradigm” of Deep Learning (DL) on 

deep neural networks (DNNs), especially with an architecture termed Convolutional Neural 

Networks (CNNs). 

Hardware and software concepts for DNNs have synergistically co-evolved.  GPU capabilities 

are increasingly well matched to DNN architectures that are empirically found to be the most 

powerful.  Special purpose hardware accelerators for DNNs exist in laboratories and 

proprietary industry settings and may soon become available commercially.  

DL methods (including hybrid methods with other technologies) already exceed human 

performance in some kinds of image recognition, spoken word recognition, the game of Go (long 

thought to require generalized human intelligence—AGI, roughly speaking).  DL has notably 

made self- driving vehicles practical. They are now limited less by technology than by policy. 



 

2 

 

Deep Learning, based on DNNs trained on Big Data, is a tipping point in AI, evangelized by 

many fervent supporters.  As a “dogma”, DL has these beliefs: (i) Use of DNNs, often 

convolutional, at scale. (ii) Flat, numerical data representations.  Inputs are vectors of reals.  

Internal data representations are tens to hundreds of millions of real-valued activations. (iii) 

Desirability of training on Big Data with few hard-wired model assumptions.  DL seeks to learn 

everything from the data, believing that “data is where truth lies”.  (iv) The strong belief that an 

approximate answer is good enough.  When a solution works, use it and don’t ask too many 

questions about how it works. 

Nevertheless, the very real successes of the DL revolution may be overshadowing some other 

rapidly advancing areas in AI.  The report discusses the successes of reinforcement learning (RL, 

which can be applied both to DL and other paradigms); graphical and Bayes models, especially 

with probabilistic programming languages; generative models that may allow training with much 

smaller data sets; and other kinds of probabilistic models such as those that have shown 

remarkable successes in question answering (e.g., IBM’s Watson), machine translation, and 

robotics.  While DL will certainly affect all of these fields, it is not the only or final answer.  

More likely, DL will become an essential building block in more complicated, hybrid AI 

architectures. 

In a seminal paper 25 years ago, Shaw pointed out that engineering disciplines grow from an 

initial “craft” stage, through a “commercial” but still fundamentally empirical state, and only 

finally reach a stage that can be called “professional engineering” (in which the “ilities” are 

accounted for).  AI, especially Deep Learning, is somewhere early in the second stage. 

The so-called “ilities” are of particular importance to DoD applications: reliability, 

maintainability, accountability, verifiability, evolvability, attackability, and so forth.  As a 

generalization, DL—in its current state of development—is weak on the “ilities”.  The full report 

discusses why, at a fundamental level, this is the case: DNNs are function approximators in very 

high dimensional spaces (e.g., millions of dimensions).  The manifolds whose shape and extent 

they are attempting to approximate are almost unknowably intricate, leading to failure modes for 

which—currently—there is very little human intuition, and even less established engineering 

practice. 

JASON’s findings and recommendations are given in Chapter 8.



 

3 

 

 

2 INTRODUCTION AND BACKGROUND 

 

2.1 AI and AGI 

Artificial Intelligence (AI), defined loosely as the ability of machines (computers) to perform 

tasks that humans do with their brains, has captured the American public’s imagination in ways 

both good and bad.  Smartphone and computer users readily embrace the use of AI technologies 

in speech recognition, Internet search, and Facebook image tagging.  Movie viewers take for 

granted the spectacular, or sometimes subtle, digital special effects made possible by AI.  Sports 

fans now expect to see three-dimensional reconstructions of key plays in realistic video.  The 

video game industry is larger than the movie industry.  Fully self-driving cars exist in prototype, 

while partial self-driving features are already widely available to consumers. 

At the same time, there is a growing public suspicion of AI, not always based on fact, especially 

in some applications relevant to DoD missions.  Humanoid robots of malign intent are a 

Hollywood staple—ironically, rendered on film by benign AI technologies.  Lethal unmanned 

aerial vehicles (UAVs), at present fully under human command and control, are readily conflated 

in the public’s mind with futuristic, fully autonomous killer robots whose human control is 

imagined to be tenuous and fragile.  In January, 2015, an Open Letter on Artificial Intelligence 

was signed by luminaries including Stephen Hawking and Elon Musk, that, while recognizing 

AI’s benefits, cautioned against dire consequences.  Hawking told the BBC, “The primitive 

forms of artificial intelligence we already have proved very useful. But I think the development 

of full artificial intelligence could spell the end of the human race.”  Musk has described AI as 

“our biggest existential threat”.1 

To most computer scientists, the claimed “existential threats” posed by AI seem at best 

uninformed.  They do not align with the most rapidly advancing current research directions of AI 

as a field, but rather spring from dire predictions about one small area of research within AI, 

Artificial General Intelligence (AGI).  AGI seeks to develop machines with “generalized” human 

intelligence, capable of sustaining long-term goals and intent, or, more generally “perform any 

intellectual task that a human being can.”2 Where AI is oriented around specific tasks, AGI seeks 

general cognitive abilities.  On account of this ambitious goal, AGI has high visibility, 

disproportionate to its size or present level of success. Further, as this report elaborates in 

subsequent sections, the breakout technologies that have put us in a “golden age” of AI, may 

impact AGI only modestly.  In the midst of an AI revolution, there are no present signs of any 

corresponding revolution in AGI.  On this issue, the AI100 Study Panel, a consensus effort by a 

broad set of prominent AI researchers, recently concluded, 

“Contrary to the more fantastic predictions for AI in the popular press, the Study Panel 

found no cause for concern that AI is an imminent threat to humankind.  No machines 

with self-sustaining long-term goals and intent have been developed, nor are they likely 

                                                 

1 http://www.telegraph.co.uk/technology/news/11342200/Top-scientists-call-for-caution-over-artificial-

intelligence.html 
2 Wikipedia, at https://en.wikipedia.org/wiki/Artificial_general_intelligence . Wikipedia goes on to say that AGI is 

“an important topic for science fiction writers and futurists. 

http://www.telegraph.co.uk/technology/news/11342200/Top-scientists-call-for-caution-over-artificial-intelligence.html
http://www.telegraph.co.uk/technology/news/11342200/Top-scientists-call-for-caution-over-artificial-intelligence.html
https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Science_fiction
https://en.wikipedia.org/wiki/Futurist


 

4 

 

to be developed in the near future. Instead, increasingly useful applications of AI, with 

potentially profound positive impacts on our society and economy are likely to emerge 

between now and 2030, the period this report considers.” 3 (emphasis added) 

This JASON study was sponsored by the Assistant Secretary of Defense for Research and 

Engineering (ASD R&E) within the Office of the Secretary of Defense (OSD), Department of 

Defense (DoD).  The study looks at AI research at the “6.1” level (that is, unclassified basic 

research).  We were not briefed on any DoD developmental efforts or programs of record.  All 

briefings to JASON were unclassified, and were largely from the academic community.  Our 

specific charge is listed in Appendix A, but in general terms it is this:  Aiming at a reader with a 

technical background—but no assumed background in computer science or artificial 

intelligence—describe the technologies behind the remarkable recent advances in AI, explain 

how they may relate (or may not relate) to hypothesized future advances in AGI, and elucidate 

what special role the DoD may have in the support of basic research in these areas.  Appendix B 

lists the briefers and topics that were input to this report.  

  

2.2 Importance of AI to DoD 

That AI and—if it were to advance significantly—AGI are of importance to DoD is so self-

evident that it needs little elucidation here.  Weapons systems and platforms with varying 

degrees of autonomy exist today in all domains of modern warfare, including air, sea (surface 

and underwater), and ground.  To cite a few out of many possible examples:  Northrop 

Grumman’s X-47B is a strike fighter-sized unmanned aircraft, part of the U.S. Navy's Unmanned 

Combat Air System (UCAS) Carrier Demonstration program.  Currently undergoing flight 

testing, it is capable of aircraft carrier launch and recovery, as well as autonomous aerial 

refueling.4  DARPA’s Anti-Submarine Warfare Continuous Trail Unmanned Vessel (ACTUV) 

program recently commissioned the “Sea Hunter”, a 130 ft. unmanned trimaran optimized to 

robustly track quiet diesel electric submarines.5,6   The Samsung SGR-A1 is a South Korean 

military robot sentry designed to replace human counterparts in the Korean demilitarized zone.  

It is capable of challenging humans for a spoken password and, if it does not recognize the 

correct password in response, shooting them with either rubber bullets or lethal ammunition.7 

It is an important point that, while these systems have some degree of “autonomy” relying on the 

technologies of AI, they are in no sense a step—not even a small step—towards “autonomy” in 

the sense of AGI, that is, the ability to set independent goals or intent.  Indeed, the word 

“autonomy” conflates two quite different meanings, one relating to “freedom of will or action” 

(like humans, or as in AGI), and the other the much more prosaic ability to act in accordance 

with a possibly complex rule set based on possibly complex sensor input, as in the word 

“automatic”.   In using a terminology like “autonomous weapons”, the DoD may, as an 

unintended consequence, enhance the public’s confusion on this point. 

                                                 

3 “Artificial Intelligence and Life in 2030”, Report of the 2015 Study Panel (June, 2016) at 

https://ai100.stanford.edu/ 
4 http://www.northropgrumman.com/Capabilities/x47bucas/Pages/default.aspx 
5 https://www.washingtonpost.com/news/checkpoint/wp/2016/04/08/meet-sea-hunter-the-130-foot-unmanned-

vessel-the-navy-wants-to-hunt-submarines/ 
6 http://www.darpa.mil/program/anti-submarine-warfare-continuous-trail-unmanned-vessel 
7 https://en.wikipedia.org/wiki/Samsung_SGR-A1 

https://ai100.stanford.edu/
http://www.northropgrumman.com/Capabilities/x47bucas/Pages/default.aspx
https://www.washingtonpost.com/news/checkpoint/wp/2016/04/08/meet-sea-hunter-the-130-foot-unmanned-vessel-the-navy-wants-to-hunt-submarines/
https://www.washingtonpost.com/news/checkpoint/wp/2016/04/08/meet-sea-hunter-the-130-foot-unmanned-vessel-the-navy-wants-to-hunt-submarines/
http://www.darpa.mil/program/anti-submarine-warfare-continuous-trail-unmanned-vessel
https://en.wikipedia.org/wiki/Samsung_SGR-A1


 

5 

 

At a higher strategic level, AI is recognized by DoD as a key enabling technology in a possible 

Third Offset Strategy.8  As briefed to JASON, key elements of a Third Offset Strategy include: 

(i) autonomous learning systems, e.g., in applications that require faster-than-human reaction 

times; (ii) human-machine collaborative decision making; (iii) assisted human operations, 

especially in combat; (iv) advanced strategies for collaboration between manned and unmanned 

platforms; and (v) network-enabled, autonomous weapons capable of operating in future cyber 

and electronic warfare environments. 9  AI, as it is currently understood as a field of “6.1” basic 

research, will supply enabling technologies for all of these elements.  At the same time, none of 

these elements are dependent on future advances in AGI. 

 

2.3 Structure and History of AI as a Field of Research 

 

2.3.1 Sub-fields of AI Research 

In the academic world, AI research is situated largely in computer science departments as one of 

(say) a half-dozen major subdivisions of computer science.  Within AI, researchers traditionally 

align themselves by research and application areas.  A typical list of the sub-fields of AI might 

be: computer vision, natural language processing, robotics (including human-robot interactions), 

search and planning, multi-agent systems, social media analysis (including crowdsourcing), and 

knowledge representation and reasoning (within which AGI would be considered a small 

component).  That AI research is rather stove-piped has been noted by many in the field.  An 

expert in computer vision may know rather little about natural language processing (and so 

forth). 

Machine learning (ML) enjoys a special relationship with AI.  It provides the foundational 

mathematical and statistical algorithms that are used in AI’s application areas.  If we take 

perceptrons and expert systems (not exactly ML, but see Section 2.3.2) as exemplifying a “pre-

modern” era in ML, then we might take the “dawn of the modern” era to be exemplified by: 

 Gaussian mixture models 

 k-means clustering 

 hidden Markov models (HMMs). 

Firmly in the “modern era” as well-understood technologies are 

 support vector machines 

 kernel methods 

 ensemble methods such as “random forest” 

 regularization methods based on Bayes priors (allowing sensible models with more 

parameters than data) 

 hierarchical Bayes models 

                                                 

8 DEPSECDEF, http://www.defense.gov/News/Speeches/Speech-View/Article/606641/the-third-us-offset-strategy-

and-its-implications-for-partners-and-allies .  The “First Offset Strategy” refers to the development of nuclear 

weapons, the “Second Offset Strategy” to precision guided munitions. 
9 Briefing by ASD (R&E) Steven Welby. 

http://www.defense.gov/News/Speeches/Speech-View/Article/606641/the-third-us-offset-strategy-and-its-implications-for-partners-and-allies
http://www.defense.gov/News/Speeches/Speech-View/Article/606641/the-third-us-offset-strategy-and-its-implications-for-partners-and-allies


 

6 

 

Continuing the metaphor, we are now, just since about the year 2000, in a “post-modern” era 

characterized by very rapid advances in, arguably, just a small number of areas, 

 deep neural networks (DNNs), including convolutional neural networks (CNNs), when 

combined with big data (yielding so-called Deep Learning or DL) 

 graphical Bayes models, including statistical inference on large Bayes nets 

 reinforcement learning (RL) 

Indeed, many argue (including, for example, the AI100 study panel) that just the first of these, 

Deep Learning, has displaced most traditional paradigms of AI research.  Rarely does any field 

of science advance as far and as fast as AI has advanced in the last half-dozen years, thanks 

mostly to DL.  We will spend much of this report discussing this phenomenon in some technical 

detail. 

 

2.3.2 AI in Historical Context 

As a field of research, AI traces its history back to the dawn of computer science, in the 1950s.  

The term “AI” itself was coined in 1956.10 In the 1960s, “perceptrons” (see Section 3.1for 

technical details) were taken to exemplify the possibility that a machine could “learn” from data.  

By 1969, however, it was understood11 that the perceptron model was not the desired “universal 

function approximator” that machine learning required.  In particular, as essentially linear 

discriminators, perceptrons could not learn a task as simple as how compute logical exclusive-or 

(XOR).  Machine learning using networks, and to some extent the field of AI as a whole, went 

into a decade-long decline. 

In the 1980s, a resurgence of interest in AI was fueled by so-called expert systems, formal 

schemes for capturing (through interviews) and converting to actionable rules (largely if-then 

rules) the field-specific knowledge of human experts.  It is said that, by the end of the 1980s, two 

thirds of Fortune 500 companies were applying expert system technology to their daily business 

activities.12  Even so, as a research area, the sub-field of expert systems petered out.  There was 

nothing “wrong” about it; but its useful initial results were not followed by significant further 

advances. 

The 1990s found AI, as an academic field, arguably in the doldrums.  While steady, if slow, 

progress in algorithms continued, the main story was on the hardware side.  The relentless 

advance of Moore’s Law brought into the realm of feasibility—using fairly prosaic algorithms—

some problems in AI that had previously been thought to require conceptual or “cognitive” 

breakthroughs.  Poster-child for this trend was the 1997 decisive victory of IBM’s Deep Blue 

computer over world chess champion Garry Kasparov,13 which was enabled by a modest amount 

of machine chess expertise combined with a (then) spectacular amount of blind, high-speed 

searching ability. 

Chess, once thought to be a game of subtle human strategy, fell not to a machine with cognitive 

abilities that mimicked human thought, but to one with a very special-purpose, and very fast, 

                                                 

10 https://en.wikipedia.org/wiki/Dartmouth_Conferences 
11 Marvin Minsky and Seymour Papert, 1969, Perceptrons: An Introduction to Computational Geometry, The MIT 

Press, Cambridge MA, ISBN 0-262-63022-2. 
12 https://en.wikipedia.org/wiki/Expert_system 
13 http://www.nytimes.com/1997/05/12/nyregion/swift-and-slashing-computer-topples-kasparov.html  

https://en.wikipedia.org/wiki/Dartmouth_Conferences
https://en.wikipedia.org/wiki/Special:BookSources/0262630222
https://en.wikipedia.org/wiki/Expert_system
http://www.nytimes.com/1997/05/12/nyregion/swift-and-slashing-computer-topples-kasparov.html


 

7 

 

search algorithm.  We emphasize this point, because it is a theme repeated (though not often so 

dramatically) in the development of AI as a field. 

As another example:  Shortly after Deep Blue’s victory in 1997, a New York Times article about 

the game of Go asserted that Deep Blue’s “roughshod approach [to chess] is powerless against 

the intricacies of Go.” The article went on to say that, 

“…to play a decent game of Go, a computer must be endowed with the ability to 

recognize subtle, complex patterns and to draw on the kind of intuitive knowledge that is 

the hallmark of human intelligence….  When or if a computer defeats a human Go 

champion, it will be a sign that artificial intelligence is truly beginning to become as good 

as the real thing.”14 

Yet, as it turned out twenty years later, the surprise 2016 victory of Google’s AlphaGo against 

world Go champion Lee Sedol,15 did not involve any breakthrough in general machine cognition.  

Instead, it involved a hybrid of DNN technology—the DL revolution that we next discuss—with 

(as a generation earlier for Deep Blue but now even more so), massively parallel tree-search and 

reinforcement learning. 

Most applications of artificial intelligence today that touch on image classification, object 

detection, speech recognition, and natural language understanding use deep neural networks 

(DNNs).  For many problems, a DNN can be trained to generate a desired output in response to 

an input as long as a large training set of input-output pairs exists.  The DNN is trained to learn 

the input-output relationship and then can generalize its learning to inputs that it has not yet seen.  

For example, given a training set of animal images labeled with the name of the animal, the 

DNN learns to identify an animal given an image.  DNNs have been trained to classify images, 

detect objects, identify people from faces, generate text from speech, translate natural languages, 

and many other tasks.  For many of these tasks, DNNs have achieved performance that exceeds 

what humans typically do. 

 

  

                                                 

14 http://www.nytimes.com/1997/07/29/science/to-test-a-powerful-computer-play-an-ancient-game.html 
15 https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol  

http://www.nytimes.com/1997/07/29/science/to-test-a-powerful-computer-play-an-ancient-game.html
https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol




 

9 

 

3 THE DEEP LEARNING REVOLUTION 

 

The basic constructs of deep neural networks 16 17, convolutional neural networks 18, and back-

propagation 19 were all in place by the 1980s.  However, DNNs did not become the technology 

of choice for many applications until after 2010.  The delay of more than 20 years in the 

application of DNNs to key problems was because two key ingredients were missing: labeled 

data sets for training, and sufficiently powerful hardware for training.  For image classification, 

large training data sets (e.g., ImageNet) were available by 2005, but it wasn't until Alexnet, 

trained on GPUs, won the 2012 ImageNet competition, that the use of DNNs for image 

processing became widespread.  With the availability of powerful GPUs it became feasible to 

train large networks on the large data sets needed to achieve good accuracy.  Today, the size of a 

network and the size of the data set on which it is trained remains limited by available hardware 

for training. 

The impact of Deep Learning on multiple sub-fields of AI in just the last five years is nothing 

short of revolutionary.  Using DNNs, between 2011 and 2015, the error rate for image captioning 

by computer fell from 25% to about 3%, better than the accepted figure for human performance 

of about 5%.20  Figure 1, from work done at Google, shows examples of computer captioning.  

DNNs have exceeded human performance on many tasks, including face recognition, object 

detection, and speech understanding.  (According to Google’s speech group, its single word 

recognition error rate fell, in two years between 2013 and 2015, from 23% to 8%.)  Due in large 

part to the DL revolution, we are in the surprising position that the rollout of self-driving 

vehicles is now more limited by the speed of policy change than by its technical readiness. 

 

                                                 

16 Aleksei Grigorevich Ivakhnenko and Valentin Grigorevich Lapa, Cybernetic predicting devices, CCM 

Information Corporation, 1965.   
17 Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard and L.D. Jakel, Backpropagation 

applied to handwritten zip code recognition, Neural Computation 1(4), 541-551 (1989).   
18 K. Fukushima, Neocognitron:  A self-organizing neural network model for a mechanism of pattern recognition 

unaffected by shift in position, Biological Cybernetics 36(4), 193-202 (1980).   
19 D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Cognitive 

Modeling 5(3), 1 (1988).   
20 http://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-

twist-not 

http://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-twist-not
http://www.economist.com/news/special-report/21700756-artificial-intelligence-boom-based-old-idea-modern-twist-not


 

10 

 

 

Figure 1.  At the current state-of-art, more than 95% of images can be captioned as well as 

shown in the first column, with the remaining 5% distributed across the other three columns.  

Note that the errors made are often unintuitive to a human observer (as in the upper right 

image).  Source:  Vinyals et al., “Show and Tell: A Neural Image Caption Generator” (2015). 

 

Figure 2 shows examples of computer vision capabilities beyond simple object recognition.  

There is no clear, bright line between these capabilities and those, not yet achieved, that we may 

think still require generalized human intelligence (that is, AGI and not just AI).  For example, in 

the context of Figure 2, it is beyond the capabilities of today’s machine systems to answer (or 

discuss) the question, “Will person B put some money into Person C’s tip bag?” However, as we 

will discuss below, today’s remarkable capabilities are enabled by the existence of large, relevant 

data sets.  It is by no means impossible that a future data set capturing a sufficiently large range 

of human actions and activities would enable DL to plausibly discuss the “tip bag” question. 

In the remainder of this chapter, we take a pedagogical “technology deep dive” into Deep 

Learning (DL), deep and convolutional neural networks (DNNs and CNNs), and related 

matters.21.  The magnitude of the importance of these technologies is hard to overstate, and we 

thus feel that technically minded, non-expert readers should be exposed to at least some of the 

details “behind the curtain”.  Others may skip to Section 3.4. 

                                                 

21 Our discussion draws heavily on the book Neural Networks and Deep Learning 

(neuralnetworksanddeeplearning.com) by Michael Nielsen, and the book Deep Learning 

(www.deeplearningbook.com) by Ian Goodfellow, Yoshua Bengio and Aaron Courville. 



 

11 

 

 

 

Figure 2.  Beyond captioning and object identification, computer vision using DNNs is capable 

of (a) image segmentation—identifying the pixels that constitute Person A, (b) pose estimation—

using a knowledge of human anatomy to construct a likely three-dimensional pose of Person B, 

(c) associating groups of objects, as that Person C is playing an accordion, (d) recognizing and 

constructing 3-D models of partially hidden objects, as here the bench.  Source: Jitendra Malik. 

 

3.1 Perceptrons 

The earliest neural nets, of the 1950s and 1960s, were composed of perceptrons 22.  The 

perceptron was motivated by a biophysical model of the neuron, and thus the building block is 

now referred to as a neuron.  Each neuron had several inputs, 𝑥1, 𝑥2, 𝑥3, … 𝑥𝑛, and a single output 

referred to as its activation, 𝑎.    The perceptron performed a linear sum over the input to obtain 

the activation, 𝑎 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 , where the weights 𝑤𝑖 and bias 𝑏 define the function of the 

neuron. This neuron is completely linear.  Adding larger layers of neurons increases the 

dimensionality of the data representation, but the fundamental process remains that of a linear 

filter.  Thus it can be reduced (by matrix multiplication) to a single linear transformation, 

showing that the intermediate layers are, in fact, illusory.  Nevertheless, these early learning 

networks, as linear discriminators, could do classification on some model problems.  The process 

of discovering the weights and biases such that the network of neurons performs the proper 

function is called “training the network”, and will be discussed in detail in a later section.   

                                                 

22 Frank Rosenblatt, The Perceptron - a perceiving and recognizing automaton, Cornell Aeronautical Laboratory, 

Report 85-460-1, (1957) 

 



 

12 

 

3.2 Generic Network Architecture 

As shown in Figure 3, a neural network is a weighted, directed graph where the vertices 
represent neurons and the edges represent connections (sometimes called synapses) between the 

neurons. The neurons are arranged in layers.  In this simple example the network consists of an 

input layer with 8 neurons, three hidden layers each with 9 neurons, and an output layer 

consisting of four neurons.  These are shown as fully connected layers, as the output of each 

neuron is connected to the input of every neuron in the following layer.   

 

Figure 3.  A simple deep neural network (DNN).  This network consists of five layers:  an input 

layer with eight neurons, three hidden layers with nine neurons each, and an output layer with 

four neurons.  Layers in modern neural networks have thousands to millions of neurons in 

dozens to hundreds of layers.  Source:  neuralnetworksanddeeplearning.com/chapt6.html. 

 

The input stimulus for the network is applied to the input layer.  For a network that operates on 

images, each input neuron represents a pixel (or one color channel of a pixel). An input neuron 

may represent an audio sample for a speech recognition network or a character for a natural 

language understanding network.  Discrete data, like characters or numbers, are represented in a 

one-hot representation where a separate neuron is used for each possible symbol in each position. 

For example, a string of n letters would be represented with 26n neurons one neuron for each 

possible symbol in each position.   

The intermediate neurons represent features that are detected in the image, audio stream, or other 

input.  It is often the case that the hidden layers are of higher dimensionality than the input 

layers, as it is often useful to expand the problem into a higher dimensional manifold.   

The right-most set of neurons represents the output of the network. For example a network that 

classifies images into one of 1,000 categories (as in the ImageNet competition) would have 1,000 

output neurons, one for each category. Output neuron activations are typically computed using a 

soft-max layer, which regularizes the output to that of a probability.   

Modern neural nets typically involve many thousands to millions of neurons in a single layer, 

and deep neural networks involve many tens to hundreds of layers.  The result is often billions of 

weights and biases which need to be calculated.     



 

13 

 

3.3 Neuron Non-Linearity 

The big, early advance in neural networks came with the realization that adding nonlinearity to 

the neuron dramatically increases the functionality of the system, making it much more powerful 

that just a simple linear discriminant.  The non-linearity is obtained by defining the sum over 

weights and bias for an individual neuron as an internal variable 𝑧 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑛
𝑖=1 , and then 

applying a non-linear function to z so as to obtain the output23. An example of this non-linearity 

used in early NNs is the sigmoid a=1⁄((1+exp(-z))), shown in the left panel of  Figure 4.  The 

function is linear near to z=0, but saturates for large values of |z|.  Its derivative is shown in the 

right panel of  Figure 4.   The derivative will play an important role in the training of 

coefficients.  Note that the maximum value of the derivative is 0.25, and that the derivative goes 

to zero for large values of |𝑧|.  While it is the non-linearity that increases the usefulness of the 

neurons, the saturation for large values of |𝑧| , and subsequent small value of its derivative, 

makes the networks challenging to train.  

Modern DNNs more commonly use the rectified linear unit (ReLU), 𝑦 = max (0, 𝑧), as the 

source of non-linearity 24.  It generally outperforms the sigmoid, as it doesn’t saturate for large 

values of 𝑧.  The resulting network is easier to train and remains responsive for large values of 𝑧.  

 
Figure 4.  Left, the non-linear sigmoid function, 1 (1 + 𝑒𝑥𝑝(−𝑧))⁄ , and right, its derivative. Note 

that its maximum value of the derivative is 0.25, and that it goes to zero for large value of  |𝑧|. 

 

The introduction of non-linear transformations at the level of the neuron enables the network to 

implement non-linear transformations of very high dimensional manifolds.  This allows 

classification algorithms to disentangle the what would otherwise be an unresolvable 

classification problem.  As a simple example of how this works, consider the problem of 

separating the entangled red and blue spiral curves of Figure 5.  A simple linear discriminant 

cannot solve this problem, as there is no straight line that separates the curves.  However, after 

                                                 

23 Note that the biases b will be viewed as weight 𝑤0 associated with the affine, 𝑥0 = 1.   
24 V.Nair and G.E. Hinton, Rectified linear units improve restricted boltzman macnines, ICML, 2010.   



 

14 

 

transformation by a network containing four hidden layers, the manifold (shown at the top of the 

page) is deformed such that the spirals are easily separated by a line.   

Additionally, it often helps to embed the problem in a higher dimensional space. Shown 

schematically in Figure 6 is the problem of trying to separate the circular targets from the white 

background.  In the two dimensional manifold there is no straight line which solves the problem.  

However, if the problem is embedded in 3-dimensions, as shown on the right, it becomes 

possible to deform the manifold such that a single plane solves the problem.  Thus, the higher 

dimensional space allows a simpler solution of the problem.  For this sort of reason, the hidden 

layers often have considerably more neurons than the input layer.   

 

Figure 5.  An example of the power of non-linear transformation for classification.  The red and 

blue spirals are entangled such that no straight line (i.e. linear discriminator) can separate them.  

However, after processing by a network containing four hidden layers, the manifold (shown at 

the top of the page) is transformed such that the spirals are easily separated by a line.  Source: 

colah.github.io.   

The	spiral	arms	are	1D	manifolds	in	2D	space

Stretching	and	squashing	the	space	separates	them

source: colah.github.io



 

15 

 

 

Figure 6.  Consider the problem of trying to separate the circular targets from the white 

background.  In this two dimensional manifold, there is no straight line which solves the 

problem.  However, if the problem is embedded in 3-dimensions, as shown on the right, it 

becomes possible to deform the manifold such that a single plane solves the problem.  Source: 

DARPA brief. 

 

3.4 Training and Back-propagation 

Central to the DNN is its training, in which the millions of weights which connect the various 

neurons are assigned values. The modern technique for training these networks has its origins in 

a 1986 paper by D. Rumelhart, et al. 25  Understanding this back-propagation algorithm is central 

to understanding why DNNs have benefited so greatly from big data and GPUs.  It also helps to 

illuminate some of the challenges associated with designing DNNs.   

Appendix C has a simple derivation of the back-propagation algorithm, in the spirit of what a 

non-expert would need to know to understand the major features.  This section summarizes the 

the results derived in Appendix C.   

Assume a network with L layers of neurons.  The weights and biases in the network are 

initialized using a random number generator. To train the network, one has N coupled 

input/output pairs (x,y), where x is a vector spanning the space of all input neurons, and y spans 

the space of all output neurons.  

The general training algorithm then proceeds as follows.  For each input/output pair of training 

data (x,y) 

1) Set the activations of the input layer 𝑎1 to the values of the input vector x.   

                                                 

25 D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature 

323(9), 533-536 (1986).   



 

16 

 

2) Starting with the first layer, forward propagate the input weights 𝑧𝑙 and activations 𝑎𝑙 

layer by layer through the entire network, where 

 

[𝑧𝑙] = [𝑤𝑙] [𝑎𝑙−1] 

[𝑎𝑙] = [𝑓(𝑧𝑙)] 

Note that 𝑓(𝑧) is the non-linear function each neuron applies to its input weight z.   

3) Use the final layer activations 𝑎𝐿 and the calibrated output y to calculate the error 

function.  If using a quadratic error function, it is of the generic form 

𝐸 =
1

2
[𝑦 − 𝑎𝐿]𝑇 [𝑦 − 𝑎𝐿]  

4) Back-propagate the error through the network, obtaining corrections to the weights which 

minimize the error function for that particular (𝑥, 𝑦) pair.  Starting with the final layer L, 

the correction to the final layer weights [𝛿𝑤𝐿] are obtained as 

[𝜖𝐿] = [𝑓′(𝑧𝐿)] [𝑎𝐿 − 𝑦] 

[𝛿𝑤𝐿] = −𝜂 [𝜖𝐿] [𝑎𝐿−1]𝑇 

The correction to weights in the remaining layers, [𝛿𝑤𝑙], are calculated using the following 

relations. 

[𝜖𝑙] = [𝑓′(𝑧𝑙)] [𝑤𝑙+1]𝑇 [𝜖𝑙+1] 

[𝛿𝑤𝑙] = −𝜂 [𝜖𝑙] [𝑎𝑙−1]𝑇 

The parameter 𝜂 is the learning rate.  This is back-propagation because the weighted gradients, 

𝜖𝑙+1, from layer 𝑙 + 1 are used to calculate the results in layer l.  Note that all the values for 𝑧𝑙 

and 𝑎𝑙 are calculated in the forward propagation.   

5) Repeat this algorithm for all input/output pairs in the training data.  The final corrections 

to the weights are obtained by averaging over the results obtained for all input/output 

pairs.   

6) Update the weights.   

Each iteration through the entire set of training data is an epoch. Many epochs are calculated, 

until the error function converges to a minimum.   

That the entire back-propagation algorithm can be written in a matrix algebra formalism renders 

it perfectly suited to benefit from the parallelism of graphics processor units (GPUs).  Graphics 

processors were initially developed for processing image data for displays, which are also 

dominated by matrix operations.  The benefits become all the more important as the scale of the 

problem grows, both in terms of the number of neurons per layer and the total number of layers.  

Thus, the success of deep neural networks relies on availability of GPU hardware. 

 

3.5 Convolutional Neural Nets 

While images can be processed by a network composed of fully-connected layers, like that of 

Figure 3, they are more efficiently handled by a network that employs convolutional layers.  As 

will be seen below, convolutional neural networks (CNNs) use the translational invariance of 

image features to dramatically reduce the number of weights in the network.   



 

17 

 

Consider the input layer and first hidden layer of neurons shown in Figure 7 and Figure 8.  

Instead of building a fully connected link to the next layer, a convolution neural network will 

take a small, spatially related, group of input neurons and connect them to a neuron in the next 

hidden layer.  In the case of this image, the network takes a 5x5 neuron region in the upper left of 

the input layer and connects each of these neurons to a single neuron in the next hidden layer.  

The 5x5 region in the input layer is called the “local receptive field”.  The local receptive field is 

then shifted over by some distance (called the stride length, here 1 neuron), and this shifted local 

receptive field is connected to the next neuron in the following hidden layer.  This is continued 

until the entire hidden layer is filled.   

The weights defining the connectivity between the neurons in the local receptive field of the 

input layer and the corresponding neuron in the hidden layer are determined using the same 

training exercises.  However, every neuron in the hidden layer uses the same set of weights.  

Thus, the z-value for the (i,j)th neuron in the hidden layer is  

𝑧𝑖,𝑗 = 𝑏 + ∑ ∑ 𝑤𝑘,𝑙 𝑎𝑖+𝑘,𝑗+𝑙

4

𝑙=0

4

𝑘=0

 

The values 𝑤𝑘,𝑙 are the same for the entire hidden layer.  Thus, in the above example, there only 

26 coefficients for the entire hidden layer (i.e. 25 weights plus a bias).  For a three color image, 

there would be 76 coefficients (i.e. 1 + 25*3).   

This convolutional architecture works because an image feature is translationally invariant.  By 

using the same set of weights and bias for each neuron in the hidden layer, each hidden layer 

neuron measures whether or not a particular feature exists in the particular local receptive field 

of the previous layer to which the neuron is connected.  The shared weights define a kernel or 

filter.   

Suppose the lth layer of a CNN is meant to detect multiple distinct features in the l-1th layer.  The 

lth layer is designed as a stack of what might otherwise be viewed as some number of individual 

layers, each detecting a distinct feature.  Thus, the lth layer has the structure (𝑖, 𝑗, 𝑓).  The planes 

of constant f in each layer are referred to as feature channels.  As an example, the input layer 

typically has only three feature channels (for the red, green, and blue color channels) or only a 

single channel for a monochrome image. 

 



 

18 

 

 

Figure 7.  A schematic representing the input and first hidden layer in a convolutional neural 

network.  This network takes a 5x5 array of neurons in the input layer and links them to a single 

neuron in the first hidden layer. Source:  neuralnetworksanddeeplearning.com/chapt6.html. 

 

 

Figure 8.  The second neuron in the first hidden layer is connected to a 5x5 array of neurons in 

the first input layer, shifted by one column relative to what was shown in Figure 7.  Source:  

neuralnetworksanddeeplearning.com/chapt6.html. 

 

The next step in modern convolutional nets involves a pooling layer. A pooling layer condenses 

the feature map by taking small, non-overlapping regions of neurons in the feature map and 

pooling them together.  Pooling layers are typically 2x2 neuron filters with a stride of 2. A max-

pooling layer takes the maximum value of the activations of the neurons to be pooled.  There are 

various types of pooling that could be done (mean pooling, L2-norm pooling, etc.).  Pooling 

reduces the size of the representation, and thus reduces over-fitting to the training data.  



 

19 

 

In summary, Figure 9 shows a schematic of what might be a typical convolutional layer in a 

network.  The input is a 28x28 pixel image.  The image is processed with a 5x5 convolutional 

kernel and a stride length of one pixel, yielding 24x24 neuron feature maps.  Here there are are 

three feature maps, each with its unique set of weights.  Each feature map is pooled with a 2x2 

pooling layer, yielding three 12x12 feature maps.   

 

Figure 9.  A schematic of a typical layer in a convolutional network.  The input is a 28x28 pixel 

image.  The image is processed with a 5x5 convolutional kernel and a stride length of one pixel, 

yielding 24x24 neuron feature maps.  Here there are are three feature maps, each with its unique 

set of weights.  Each feature map is pooled with a 2x2 pooling layer, yielding three 12x12 

feature maps.  Source:  neuralnetworksanddeeplearning.com/chapt6.html . 

 

3.6 Some Details of DNNs 

The following is an assortment of topics relevant to understanding DNN form and function. 

  

3.6.1 Error functions 

Error functions are also called either cost functions or loss functions in the DNN literature.  

Many different types of error functions have been used in DNNs.  Quadratic error functions are 

perhaps the simplest.  Others include cross-entropy functions, which when used with the sigmoid 

non-linearity reduce the lack of sensitivity of the back-propagation algorithm at large values of 

|𝑧|. 
 

3.6.2 Softmax layer 

The activations of the final neural layer of a DNN is often transformed by a soft-max layer.  

Given a set of activations i in the final neural layer L, 𝑎𝑖
𝐿, the output of the soft-max layer is 

𝑦𝑖 =
exp (𝑎𝑖

𝐿)

∑ exp (𝑎𝑖
𝐿)𝑖

 

 

The point to the layer is to transform the activations 𝑎𝑖
𝐿 into a set of values which have the 

properties of probabilities.  In particular, 𝑦𝑖 > 0 and ∑ y𝑖𝑖 = 1.   



 

20 

 

3.6.3 Training, validation, and test data 

The complete set of input/output pairs used to train the network is typically randomly divided 

into three groups: a training set, a validation set, and a test set.  Training data are used to train the 

network, as was described above in the section on back-propagation.  

Validation data are used to measure how well the training is progressing and to adjust various 

parameters used in the training, such as the learning rate, the network architecture, etc. 

Additionally, you might evaluate the DNN against the validation data after each epoch as a 

benchmark for progress.   

When the training process is completed, the test data are used to measure the success of the final 

DNN. 

  

3.6.4 Stochastic gradient descent 

The back-propagation algorithm is based on gradient descent.  Stochastic Gradient Descent 

makes use of the principle that one can make a reasonable estimate of the gradient by sampling 

over a small, randomly selected, set of input/output pairs.  Using these mini-batches helps to 

speed up the learning process.  For example, suppose you have N sets of training data, and these 

are randomly divided into M mini-batches of size N/M, such that each training datum occurs 

once. For big data, the typical size of N is of order 106, and the typical size of M is of order 10s 

of (𝑥, 𝑦) pairs.  One iteration of the back-propagation algorithm is run for each mini-batch, and 

thus the weights are updated for each mini-batch.  Doing this for all M mini-batches corresponds 

to one epoch.  After the first epoch is finished, the data are again randomly divided into mini-

batches, and again the weights are updated for each mini-batch.  This is then continued through 

several epochs, typically several 10s of epochs.  Thus, stochastic gradient descent is defined in 

terms of the number of mini-batches and the number of epochs.      

There are many variants on stochastic gradient descent.  For example, momentum based 

stochastic gradient descent averages the gradient of the error function over the past several mini-

batches.     

𝑣𝑖 = 𝜇𝑣𝑖−1 − (1 − 𝜇)𝜂
𝜕𝐸

𝜕𝑤
 

𝑤𝑖 = 𝑤𝑖−1 + 𝑣𝑖 

where the parameter i here cycles through subsequent mini-batches. 

 

3.6.5 Weight-decay: L2 and L1 regularization 

Weight decay is a regularization method that reduces over-fitting by conditioning the network to 

learn small weights.  Keeping the weights small makes the network less sensitive to noise in its 

inputs, and thus less likely to learn the noise.  As an example of weight decay, L2 regularization 

adds a penalty quadratic in the weights to the error function, 𝐸 =  𝐸0 +
𝜆

2𝑁
∑ 𝑤𝑖

2
𝑖 , where 𝜆 > 0 is 

the strength of the regularization penalty and the sum over i is meant to include all weights.  As 

is described below, this sum over weights does not normally include the biases.   

 

 



 

21 

 

Taking the gradient,  

𝜕𝐸

𝜕𝑤𝑖
=

𝜕𝐸0

𝜕𝑤𝑖
+

𝜆

𝑁
𝑤𝑖. 

On training, the weight becomes 

𝑤𝑖 → 𝑤𝑖 − 𝜂
𝜕𝐸

𝜕𝑤𝑖
= (1 −

𝜂𝜆

𝑁
) 𝑤𝑖 − 𝜂

𝜕𝐸0

𝜕𝑤𝑖
. 

Thus, it is clear L2 regularization serves to reduce the size of the weights. 

Another example of weight decay is L1 regularization, 𝐸 =  𝐸0 +
𝜆

2𝑁
∑ |𝑤𝑖|𝑖 .   L1 regularization 

tends to drive small weights to zero faster than L2 regularization, but shrinks large weights 

slower than L2. Thus, L1 regularization generally results in networks with a sparse set of 

important connections.  

While one could also regularize the biases, in practice it is not normally done.  Having a large 

bias is different than having large weights.  Large weights increase the sensitivity of the neuron 

to its inputs, and thus makes it more likely to over-climb on input noise.  In contrast, large biases 

make it easier for the neuron to go into saturation, which can be a desirable property in that it 

desensitizes the neuron to all inputs, but isn’t likely to result in over-climbing on input noise. 

 

3.6.6 Dropout 

Dropout is another technique used in the training of the network that helps to prevent over 

fitting.  For each mini-batch, a different a different set of randomly selected neurons is omitted 

from the network.  Typically, of order half the neurons in the hidden layers of the network are 

omitted.  Training for a mini-batch occurs as normal, except the network architecture excludes 

the omitted neurons.  Thus, dropout implements training over a reduced network. Dropout 

reduces over-fitting by making it more difficult to climb on correlations between neurons.  

  

3.6.7 Unstable gradients and unbalanced leaning in DNNs   

As was discussed in the section on back-propagation, the correction to the weights in layer l is 

given by the expression  

[𝛿𝑤𝑙] = −𝜂 [𝜖𝑙] [𝑎𝑙−1]𝑇 

where  

[𝜖𝑙] = [𝑓′(𝑧𝑙)] [𝑤𝑙+1]𝑇 [𝜖𝑙+1] 

This expression for [𝜖𝑙] can be written explicitly for all layers through to the final layer L as the 

product,  

[𝜖𝑙] = [𝑓′(𝑧𝑙)] ( ∏  [𝑤𝑖]
𝑇

[𝑓′(𝑧𝑖)]

𝐿

𝑖=𝑙+1

) [𝑎𝐿 − 𝑦] 

 

This product is made of terms of the general form 𝑤𝑖𝑓′(𝑧𝑖).   As was shown in Figure 4, the 

derivative of the sigmoid functions peaks at 0.25, and is generally much smaller than that.  If the 

weights are a normal random variable, than it will generally be the case |𝑤𝑖𝑓′(𝑧𝑖)| < 1.  Thus 



 

22 

 

the parameters 𝜖𝑙 tend to get smaller as one works towards earlier layers.  This is called the vanishing 

gradient problem. It results in the general rule of thumb that earlier layers tend to learn slower 

than the later layers. 

Of course, it does not have to be the case that |𝑤𝑖𝑓′(𝑧𝑖)| < 1.  It is possible to have large 

weights, 𝑤𝑖 ≫ 1, and biases that center the input weights 𝑧𝑖 near to zero where 𝑓′(𝑧𝑖) ≈ 0.25, 

resulting in |𝑤𝑖𝑓′(𝑧𝑖)| > 1.  This tends to yield the opposite problem, a diverging gradient, in 

which earlier layers learn faster than later layers. 

The underlying problem is not that the gradient is either vanishing or diverging, rather it is that 

the gradient is unstable. This comes from the fact that 𝛿𝑤𝑙 involves products from terms in all 

subsequent layers, and the product of many terms is unstable. As a result, different layers will 

learn at different rates, and the learning is unbalanced.  This problem becomes worse as the 

number of layers become large, and is thus a particular challenge for DNNs. 

   

3.7 Dealing with Small Data Sets 

Perhaps the biggest obstacle to adopting the use of Deep Learning in a particular application is 

the lack of large, labeled data sets for training.  In this section we examine some techniques for 

coping with the lack of labeled data. 

 

3.7.1 Transfer learning 

A common technique to construct a network for a small data set without overfitting  is to use 

transfer learning in which feature detectors trained on a large data set are used to build a 

network for a smaller data set.26 27 A network, for example VGG16 (discussed in Section 6.1), is 

first trained on a readily available data set, for example ImageNet.  This is done to train  the 

feature detectors in the convolutional layers. The convolutional layers are then frozen and the 

fully-connected layers are retrained using a small data set. The result is a network that gives 

much better performance than if it were trained solely on the small data set. 

Transfer learning works because, to first approximation, feature detectors are domain 

independent. Thus, feature detectors trained on one data set work reasonably well on a different 

data set. With a much smaller set of parameters in the fully-connected layers to be trained, a 

smaller data set is adequate to get reasonable results. 

Transfer learning using a network pre-trained on ImageNet has become a standard protocol for 

computer vision applications with limited training data. 

 

3.7.2 Data augmentation 

A training set of a given size can be made to appear larger through data augmentation.  Each 

image in the training set is transformed to create multiple similar images. Training with the 

                                                 

26 Sinno Jialin Pan and Qiang Yang.  A survey on transfer learning.  IEEE Transactions on knowledge and data 

engineering, 22(10):1345–1359, 2010. 
27 Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level image 

representations using convolutional neural networks. In Proceedings of the IEEE conference on computer vision and 

pattern recognition, pages 1717–1724, 2014. 



 

23 

 

augmented data set has been shown to lead to better accuracy. Transformations for data 

augmentation include: 

Cropping:  a single image may be cropped in multiple ways, moving the central object in the 

image. 

Mirroring: the image is flipped about the vertical axis, swapping left and right. 

Warping: the image is warped, for example by “keystoning”.  More complex, non-affine, warps 

may also be used. 

Exposure and Contrast:  The exposure and contrast of the image may be varied. 

Color Balance: The color temperature, saturation,  red/green balance, etc., of the image are 

adjusted. 

The different transformations can be combined giving a multiplicative number of augmented 

images. For example, if one combines 5 crops with 2 mirrorings, 5 warps, 5 exposure 

adjustments, and 5 color adjustments each image expands to 1250 images in the augmented data 

set. 

 

3.7.3 Autoencoders 

An autoencoder is a DNN whose output and input  are the same. Thus, for an autoencoder, any 

dataset is a labeled data set. Autoencoders are typically constructed in a symmetrical manner as 

illustrated  in Figure 10.  An input image is fed through a number of convolutional layers, each 

smaller in spatial dimension but larger in number of channels. At the mid-point of the network an 

input  image is encoded in a high-dimensional intermediate representation. The output layers are 

then a mirror image of the input layers. They decode the intermediate representation to generate 

an approximation of the input image. 

 

Figure 10.  An autoencoder is a DNN that has identical input and output.  It is trained by 

applying an input to the network and then comparing the output to the input image to compute 

the loss function. Source: Avery Allen and Wenchen Li28 

     

                                                 

28 http://www.cc.gatech.edu/~hays/7476/projects/Avery_Wenchen/ 

http://www.cc.gatech.edu/~hays/7476/projects/Avery_Wenchen/


 

24 

 

Autoencoders are useful in their own right for image denoising and upscaling. However, they are 

also useful to train input layers on unlabeled data sets29 30. One trains the autoencoder on the 

unlabeled data. Then the output stages are discarded and replaced by a classifier network of one 

or two fully-connected layers. This classifier network is then trained on a labeled subset of the 

larger data set while holding the convolutional layers constant. 

 

3.7.4 Recurrent neural networks 

Recurrent neural networks (RNNs) are used when the input, output, and/or internal state of a 

network must deal with  memory or sequence.  RNNs are typically used to deal with speech, text, 

image captioning, and other language processing tasks.31 As shown in Figure 11, a RNN is a 

neural network with feedback. The feedback causes the hidden state s to be a function of all 

previous inputs, not just the current input.  In this manner, state s has a memory that reflects the 

history or sequence of inputs to the network. We can analyze an RNN by unfolding it in time as 

shown on the right side of Figure 11. 

 

Figure 11.  A recurrent neural network (RNN) is a network with feedback that gives it a memory. 

Hidden state s at time t reflects the sequence of inputs x up until time t. An RNN can be analyzed 

by unrolling it in time as shown on the right. 

 

In practice the simple feedback connections in Figure 11 are typically replaced by a more 

complex memory mechanism. Long- and short-term memory (LSTM) cells32 or gated recurrent 

unit (GRU) cells33 34 are commonly used for this purpose. A discussion of these cells is beyond 

the scope of this report. 

                                                 

29 Jonathan Masci, Ueli Meier, Dan Ciresan, and Jurgen Schmidhuber.  Stacked convolutional auto-encoders  for  

hierarchical feature extraction. In International Conference on Artificial Neural Networks, pages 52–59. Springer, 

2011. 
30 Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and composing 

robust features with denoising autoencoders. In Proceedings of the 25th international conference on Machine 

learning, pages 1096–1103. ACM, 2008. 
31 Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep recurrent  neural 

networks.  In 2013 IEEE international conference on acoustics, speech and signal processing, pages 6645–6649. 

IEEE, 2013. 
32 Martin Sundermeyer, Ralf Schluter, and Hermann Ney. Lstm neural networks for language modeling. In 

Interspeech, pages 194–197, 2012. 
33 Kyunghyun Cho, et al.  Learning phrase representations using rnn encoder-decoder for statistical machine 

translation.  arXiv preprint arXiv:1406.1078, 2014. 
34 Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback recurrent neural 

networks. CoRR, abs/1502.02367, 2015. 



 

25 

 

An RNN can be trained to learn a language model by feeding it sentences one word at a time on 

the input i and presenting the next word of the sentence as the desired output  o.  The words are 

typically encoded as one-hot vectors (see Section 3.2) over the vocabulary.  After seeing several 

words on i, the hidden state of a trained network will be a high-dimensional representation of all 

of the words seen to that point.  This representation can be used, for example, to translate the 

sentence to a different language or to answer questions about the sentence. 

 

3.8 Summary of the Big Data Deep Learning “Dogma” 

The powerful successes of Big Data / Deep Learning have given it the status of a kind of 

dogma—a set of principles that, when followed, lead often to unexpectedly powerful successes.  

A brief summary of these principles might be the following: 

 Use deep (where possible, very deep) neural nets.  Use convolutional nets, even if you 

don’t know why (that is, even if the underlying problem is not translation invariant). 

 Adopt flat numerical data representations, where the input is a vector of reals and the 

internal representation (for a DNN, the activations) is an even larger number of reals.  

Avoid the use of more complicated data structures.  The model will discover any 

necessary structure in the data from its flat representation. 

 Train with big (really big) data.  Don’t load on model assumptions, but rather learn 

everything from the data—that is where the truth lies.  As an example, don’t attempt to 

hardwire the laws of aerodynamics into an autopilot application.  With enough data, it is 

more efficient to let the DNN discover them on its own. 

 An approximate answer is usually good enough.  When it works, it is not necessary to 

understand why or how. 

  





 

27 

 

4 DEEP LEARNING AND THE “ILITIES”  

 

The recent revolution in Big Data / Deep Learning (BD/DL) will be of importance to many 

future DoD capabilities; the pressure to incorporate DL into DoD systems will continue to grow.  

However, as an important caveat, the current cycle of progress in BD/DL has not systematically 

addressed the engineering “ilities”:  reliability, maintainability, debug-ability, evolvability, 

fragility, attackability, and so forth.  Further, it is not clear that the existing AI paradigm is 

immediately amenable to any sort of software engineering validation and verification.  This is a 

serious issue, and is a potential roadblock to DoD’s use of these modern AI systems, especially 

when considering the liability and accountability of using AI in lethal systems. 

 

4.1 An Analogy: Software Engineering as a Discipline 

The issue of software engineering and its relation to software development is a subject going 

back decades.  It was codified in a seminal 1990 paper by Mary Shaw35, where the following 

question was asked: “Is [in the year 1990] software engineering an engineering discipline?”  

Shaw distinguished three stages in a field’s development, summarized in Figure 12. In the first 

stage, software development is a craft done by virtuosos and talented amateurs.  When it 

becomes possible for the software to be produced as a commercial product, issues associated 

with how to produce the product are considered. 

However, this doesn’t make software development an engineering discipline.  For example, the 

product development can still be done by skilled craftsmen following empirically determined 

procedures. Software development doesn’t reach the stage of professional engineering until there 

is a science associated with it, including educated professionals, quantitative analysis, etc.  

Several areas of software development have made the transition to software engineering.  

Compiler development used to be an art form, but now is a rigorous engineering discipline.  

Additionally, in many areas of the modern commercial software industry there are well 

established methodologies for developing and maintaining very large code bases.  These 

methodologies are clearly recognizable (now in 2016) as professional software engineering.  

They were not so recognizable in 1990. 

                                                 

35 Mary Shaw, Prospects for an Engineering Discipline of Software, IEEE Software 7(6), 15-24 (1990).   



 

28 

 

 

Figure 12. Evolution of an engineering discipline.  The lower lines track the technology, and the 

upper lines show how the entry of production skills and scientific knowledge contribute new 

capability to the engineering practice. Source: Shaw, footnote [35]. 

 

So the question is, by analogy:  Where does “AI engineering” fall on Shaw’s developmental 

path, now or in the future? 

 

4.2 Why the Ilities May Be Intrinsically Hard for Deep Learning 

One might expect that AI using DL methods will evolve to become an engineering discipline 

much as software engineering has done.  However, the current push for rapid progress in the 

BD/DL paradigm has moved development away from the rigors of software engineering and its 

associated “illities”.  Additionally, a point that we want to emphasize, the very nature of DNNs 

may make it intrinsically difficult for them to transition into what is typically recognized as a 

professionally engineered product. 

There are two distinct issues for AI engineering.  The first is the code on which the DNNs are 

based.  It should be possible to develop this code using principles of software engineering, even 

in the current environment with the push for rapid progress; but one must commit to the effort.  

The second issue, the issue that may be much more problematic, is the sheer magnitude, millions 

or billions of parameters (i.e. weights/biases/etc.), which are learned as part of the training of the 

net.  Their values depend on the particular set of data on which the nets are trained, the order in 

which these data are processed, the particular training algorithm, etc.  Nets optimized for the 

same job but trained differently will have different parameters, and in the tails will likely give 

different results. 

The final set of parameters define a point in a very large dimensional space, hopefully a point 

that gives performance close to the global optimal to the particular problem.  However, this un-

transparent mass of coefficients makes it impossible to really understand exactly how the 

network does what it does.  Thus the response of the network to all possible inputs is 



 

29 

 

unknowable. This property makes it intrinsically difficult to address the various engineering 

“ilities” systematically. 

As was described above, the data lie on manifolds in very high-dimensional space.  For instance, 

a 1000x1000 pixel image with three colors lives in a 3 million-dimensional space.  Related 

images are not randomly distributed in this space.  Instead, they occur on lower dimensional 

manifolds, as should be clear because one can continuously transform from one image into 

another.  A simple example of this is shown in Figure 13, where pictures of faces of different 

people in different poses have been collected.  A learning system will tease out the coordinates 

of the manifolds, in this case which can be varied at fixed identity across different poses, or at 

fixed pose across different identities. This particular example show how low-dimensional 

intuition can provide a comforting and reassuring view of how DL works.   

 
Figure 13.  Pictures of faces of different people in different poses.  A learning system will tease 

out the coordinates of the manifolds that can vary at fixed identity across different poses, or at 

fixed pose across different identities. 

 

Unfortunately, our low-dimensional intuition can give a very misleading view of how DL 

actually works.  An interesting example of this problem36 is shown in Figure 14, in which the a 

DNN was given the problem of identifying two animals which have very similar coloring:  a 

gibbon and a panda. The DNN was trained using many labeled pictures of gibbons and pandas, 

as well as other animals. Our intuition views the classification problem as existing on some low 

dimensional manifold, shown schematically as being projected into a 2-dimensional manifold in 

Figure 14. Here, the classification problem is imagined to involve resolving the different 

domains as being either that of a gibbon or a panda. 

                                                 

36 I.J. Goodfellow, J. Shlens, and C. Szegedy, Explaining and Harnessing Adversarial Examples, 

arXiv:1412.6572v3[stat.ML], 2015.   



 

30 

 

 

Figure 14.  Image of a gibbon and a panda.  Our low-dimensional intuition generally imagines 

some low dimensional manifold, here shown as a two-dimensional space, which allows us to 

distinguish gibbon from panda.  Source: Peter Norvig brief. 

 

The real problem exists, however, in a very high-dimensional manifold, where the boundaries 

between domains is not always clear, or even correct.  These boundaries can be challenged as 

follows.  Consider the image of the panda shown on the left in Figure 15.  This image exists at 

some particular point in the manifold, which the neural network properly identifies as a panda 

with 57.7% certainty.  Starting at this point in the manifold, on can calculate the gradient vector 

which represents the most direct translation from the panda domain to the gibbon domain.  This 

vector, the center image in Figure 15 looks to us like noise, but the DNN identifies it as the 

animal “nematode” with 8.2% confidence.  Adding this vector to the original picture of the 

panda with a weight of 0.007 results in the figure on the right in Figure 15.  This image still 

looks very much like the original panda picture, but the DNN identifies it as a gibbon with 

99.3% certainty.  Thus, the gradient vector has moved the image into a domain of the manifold 

which the DNN strongly associates with the gibbon.  Clearly, this classification is incorrect. It 

highlights that in a manifold of millions/billions of dimensions, there will always be pockets 

which are misclassified.  While this type of mistake might be tolerable in some commercial 

systems, it is likely intolerable in DoD systems where the consequences of mistakes are more 

acute.   

Gibbon

Panda

panda

gibbon



 

31 

 

 

Figure 15:  One can get from the panda classification to the gibbon classification by adding what 

appears to us to be noise.  The resulting image looks to us like a panda, but it looks to the DNN 

like a gibbon, with 99.3% confidence.  Source: see footnote [36]. 

 

Our low-dimensional intuition misleads us into thinking that the “space of animals” is something 

with compact regions, as shown on the left side of Figure 16.  But of course that can’t be right.  

“Most” images in 1000x1000x3-dimensional image space look like pure noise.  Animals 

comprise tiny lower-dimensional slices.  Perhaps like the right-hand panel in Figure 16, then? 

 

Figure 16.  Manifolds of meaningful data are infinitesimal fractions (fractals!) of high-dimension 

space.  Source: Peter Norvig brief. 

   

No such luck!  The geometry of data manifolds in high-dimensional spaces is vastly more 

complicated and impossible to fully characterize than either panel in Figure 16.  Paraphrasing 

J.B.S. Haldane, these manifolds are not just stranger than we imagine, but stranger than we can 

imagine.37  As only a slight improvement on Figure 16, we might propose an image like the one 

shown in Figure 17, an artist’s conception.  In such a situation, it seems plausible that 

engineering the “ilities” will be particularly challenging. 

                                                 

37 The original quote is “Now my own suspicion is that the Universe is not only queerer than we suppose, but 

queerer than we can suppose.”  See https://en.wikiquote.org/wiki/J._B._S._Haldane . 

gradient vector from a particular 
panda to the nearest gibbon boundary

https://en.wikiquote.org/wiki/J._B._S._Haldane


 

32 

 

 

Figure 17.  A possible artist's conception of the complicated nature of manifolds in high-

dimensional space  (image © Oleskii Koval) 

 

While the issue of the “ilities” has not impeded the recent rapid development of DNNs, it has not 

gone unnoticed.  The recent paper by D. Scully, et. al. titled Machine Learning:  The High-

Interest Credit Card of Technical Debt38 laments the lack of understanding of the “ilities” in the 

latest boom in machine learning.  In particular, they suggest the current pace of development is 

creating a large “technical debt” which will eventually have to be addressed.  The term technical 

debt is meant in the sense that system capability has evolved in performance faster than the 

corresponding development of deep understanding of what the DNNs are doing, of methods to 

manage the performance, especially when it goes wrong, and of formal control of the software 

development and maintenance process.  People are creating systems that work, that may become 

commercial, but which have unknown liabilities downstream. 

That the nature of these systems is to be prone to error is one reason why it might be better to 

treat DNNs as components in a larger, or hybrid, system (see Section 5.4).  One can imagine the 

DNN as one piece of a larger system, where the other pieces have supervisory roles, enabling the 

robust validation and verification associated with software engineering.  Indeed, many of the DL 

systems which have captured the public’s attention are, though for different reasons, hybrid 

designs, for example Google’s AlphaGo system.

                                                 

38 D. Scully, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, and M. Young, Machine 

Learning:  The High-Interest Credit Card of Technical Debt, Software Engineering for Machine Learning (NIPS 

2014 Workshop), 2014 



 

33 

 

5 AREAS OF RAPID PROGRESS OTHER THAN DEEP 

LEARNING 

 

While the “Big Data / Deep Learning dogma”, as summarized above in Section 3.4, has rightly 

captured the imagination of experts and the lay public alike, there is some danger of its 

overshadowing some other areas of AI that are advancing rapidly and hold significant future 

promise, including in DoD applications.  In this Chapter, we review what we think are the most 

important of these. 

 

5.1 Reinforcement Learning 

The basic idea of reinforcement learning (RL) is to let the computer generate its own training 

data by giving it a metric or score that it should seek to optimize, and then letting it loose in a 

(generally simulated) environment with a set of possible actions that it can take.  Initially the 

computer’s actions will be ineffectual, but gradually, over time, it will learn characteristic states 

of the environment in which certain actions affect positively the score.  DNNs are often used 

within RL as fast, approximate calculators of the score that is being optimized. 

RL (with or without the use of large DNNs as “subroutines”) allows training without the 

necessity of huge labeled data sets.  That is, labeled pairs of correct input and output never need 

to be presented to the machine. 

A recent example of successful RL is the Google DeepMind group’s systematic learning on 43 

Atari 2600 games from the 1970s, including favorites such as Pong, Space Invaders, Breakout, 

etc.  The computer sees only the pixels on the screen, and is told to maximize the score (e.g., as it 

is displayed in a certain region of pixels) using the set of actions provided by the game joystick.  

The particular RL algorithm used by DeepMind achieves better-than-human performance for 

about half of the Atari games.  For some games, the performance is vastly superior to humans.39 

Successful examples that mix RL with labeled data are known.  AlphaGo used two DNNs.  One 

was trained on a library of recorded games played by humans (in effect, a labeled data set), and 

the other was used for estimating the value or score function for RL. 

 

5.2 Graphical Models 

A graphical model is a probabilistic representation of a causally related set of random variables 

(nodes of a graph) that are linked by conditional dependencies.  The dependencies may be as 

general as a complete multivariate joint distribution over the input variables, or any kind of 

simpler model (e.g., depend only on the sum of inputs).  Figure 18 shows a simple example with 

four variables.  At scale, state-of-the-art graphical models may have thousands or more variables. 

                                                 

39 https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf  

https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf


 

34 

 

 

Figure 18. A graphical model with four random variables.  Here A and B are independent 

variables, D depends on A, B, and C; and C depends on B and D.  (Source: Wikipedia) 

 

Graphical models are also called probabilistic graphical models (PGMs—not to be confused with 

precision guided munitions!), and come in various flavors:  Bayesian networks (also called belief 

networks), Markov random fields, conditional random fields, restricted Boltzmann machines, 

and so on.  It is beyond our scope here to explain the differences. 

What makes graphical models useful is that they can assimilate data, and that they can be solved 

(usually awkwardly termed, “have inference performed on them”).  That is, certain of the 

random variables can be set to measured or known values, after which the probability 

distributions (including, if desired, joint distributions) of all the other “hidden” variables can be 

calculated. 

The “secret sauce” for a large graphical models lies in the details of the highly developed 

inference algorithms, and also in finding useful approximations for very large systems.  For 

example, large graphs can be simplified by marginalizing (in the statistical sense) over whole 

subgraphs.  A robot may not need to keep re-estimating precise conditions from the distant past, 

but may only need to know a few aggregate properties about its history. 

 

5.3 Generative Models and Probabilistic Programming Languages 

Generative models are closely related to graphical models, but attempt to “hide” the graph and 

the inference engine details behind the user-friendly interface of a so-called probabilistic 

programming language (PPL).  We can explain this by an example (Figure 19) from the work of 

Tenenbaum and collegues.40  The desired task is the recognition of handwritten characters, here 

drawn from a fictitious large alphabet with more than a thousand different characters.  This is a 

task that Deep Learning is highly capable of doing if it is given a large data set of handwritten 

characters (in pixel format), labeled by the correct character identification.41  But what if instead 

we are given only a single example of each different character? 

A high-level view is that we want to replace the (say) thousand-dimensional space of all (say) 32 

by 32 pixel images with the much lower-dimensional space of likely handwritten characters, 

based on some a priori knowledge of the latter.  We do this by writing, in the provided PPL, a 

forward or generative model that generates “random” handwritten characters.  That is, it 

chooses, from some probability distribution, a number of strokes to make; chooses their shapes 

                                                 

40 Brenden M. Lake, Ruslan Salakhutdinov, Joshua B. Tenenbaum, “Human-level concept learning through 

probabilistic program induction,” Science, 350:1332 (2015). 
41 In fact, digit recognition (0-9) by a neural network has been used by the U.S. Post Office since the 1990s. 



 

35 

 

and orientations from a limited set of possibilities; and chooses where to place them with respect 

to one another.  The various choices of probability distributions are the Bayes priors of the 

generative model.  Without informative data, the output of the purely forward model, each time it 

is run, is the pixel image of a random handwritten character from a random hypothetical 

alphabet. 

But now, as discussed in Section 5.2 above, we can reverse the process and do inference.  Given 

a pixel image, we can infer probabilistically the values of all the random variables in the forward 

model.  These lie in the desired lower-dimensional space sufficiently robustly that we can 

classify new characters in a test set based on the single exemplars of the training set.  Or, given 

the constraints provided by the single training exemplar, we can run the forward model many 

times and produce many different examples of the same character (Figure 20).  If we wanted, we 

could then train a DNN on this synthetic data, and then use that DNN as the actual recognition 

engine. 

Generative models challenge the Big Data / Deep Learning dogma that data representations need 

only be flat, not structured so as to encode known properties of the data.  Instead of relying on 

the DNN to learn from many examples how characters are made up of strokes (etc.), we specify 

this information in the form of a generative model and its Bayes priors. This is, in effect, a highly 

structured data representation.  With enough labeled data, DL by itself might succeed with a flat 

representation; but, leveraging its richer representation, the PPL (or its underlying graphical 

model) can achieve success with much less data. 

 

 

Figure 19. Application of a generative model to the recognition of (fictitious) alphabet characters 

given only a single training example of each character.  (Source: Lake et al., in DARPA 

briefing). 



 

36 

 

 

Figure 20.  Given the single examples shown, human and machine each draw nine examples of 

the character.  In each pane, human is shown randomly on either the left or the right, illustrating 

that the generative model captures information virtually indistinguishable from the human. 

(Source: Lake et al.) 

 

Work by Stuart Russell and colleagues illustrates the practical utility of generative models in a 

defense-related problem.  The Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) 

maintains a global network of 147 seismic stations that constantly monitor for treaty violating 

underground nuclear tests.  The recorded seismograms are of course vastly dominated by 

naturally occurring earthquakes—nuclear tests are very rare events.  The NET-VISA system 

encodes what natural seismic events should look like as a generative model written in a 

probabilistic programming language, and does inference to see if the imputed parameters of any 

particular seismic event fall outside of the range possible for natural events.  NET-VISA is 

predicted to achieve an approximately 60% reduction in the number of missed nuclear events as 

compared with the previous human labor-intensive system. 42 

 

5.4 Hybrid Architectures 

There exist many examples of hybrid architectures in which DNNs are only one of several 

components.  We consider this a fruitful research area.  A few examples: 

 AlphaGo43 uses a DNN as something like a subroutine for the rapid evaluation of a 

configuration’s merit, but it then explicitly explores a cleverly pruned game tree of 

possible moves, sometimes to considerable depth.  The strategy is reminiscent of Daniel 

Kahneman and colleagues’ understanding of the human brain as having two 

distinguishable thought systems, one fast, approximate, and subconscious; the other 

                                                 

42 http://people.eecs.berkeley.edu/~russell/papers/bssa-netvisa.pdf 
43 http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html 

http://people.eecs.berkeley.edu/~russell/papers/bssa-netvisa.pdf
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html


 

37 

 

slower, more conscious, and more calculating.44  It is a matter of interest whether this 

kind of duality is fundamental to the practical solution of some classes of problems. 

 Generative adversarial networks (GANs) are proving themselves as one powerful 

architecture.  Here two DNNs are trained simultaneously: a generative model G that 

captures the data distribution, and a discriminative model D that estimates the probability 

that a sample came from the training data rather than G. The training procedure for G is 

to maximize the probability of D making a mistake. This framework corresponds to a 

minimax two-player game.45  In more complicated architectures, layers of G and D 

separately interact.  These techniques are said to be widely used by Facebook. 46 

 Autoencoders, that is, back-to-back DNNs in an “encoder-decoder” configuration 

(Section 3.7.3), have been used successfully to learn to rotate classes of three-

dimensional objects, given only a single two-dimensional view of each object.47  This 

involves augmenting the features coming out of the “encoder” by a new posited 

parameter, the rotation angle, and then training for overall consistency of both encoder 

and decoder with the data. 

 So-called “wide-and-deep” architectures have proved useful in applications such as 

recommender systems and search.48  These combine a DNN that returns “good guesses” 

for answers to (say) a search query—the deep—with boolean logic search trees that can 

find exact matches across broad data—the wide. 

 DNNs, CNNs, and Long-Short Term Memory Recurrent Neural Networks (LSTMs) are 

used in a combined architecture for speech recognition.49 (See Section 3.7.4.) 

 The nonlinearity between layers of a DNN can be replaced by references to memories of 

various sorts. 

These examples by no means survey the field.  They simply indicate that “pure” DL is not 

necessarily the best solution to all problems in AI.  Rather, it seems likely that—as some of the 

more dogmatic aspects of Big Data / Deep Learning gradually lose currency—DNNs will remain 

as powerful architectural elements in the advancing disciplines of AI. 

 

5.5 What Is On the Sidelines 

Far from showing the kind of rapid progress that we have discussed above, some sub-fields of AI 

seem to be left behind.  It is never possible to know with certainty that a sub-field will not 

acquire new life in the future.  Indeed, that is exactly what happened as neural nets (long a 

backwater of AI) transformed into the hot subject of Deep Learning.  Nevertheless, we here 

provide JASON’s collective (if subjective) judgment that certain areas of AI are not poised to 

leap forward at present: 

 Capturing expert judgment (other than for labeling big data sets) 

 Physical and deterministic modeling (for example, physics-based computer vision) 

                                                 

44 Daniel Kahneman, Thinking Fast and Slow (Farrar, Straus and Giroux, 2011) 
45 https://arxiv.org/abs/1406.2661 
46 http://www.scientificamerican.com/article/when-will-computers-have-common-sense-ask-facebook/ 
47 https://arxiv.org/abs/1601.00706 
48 https://research.googleblog.com/2016/06/wide-deep-learning-better-together-with.html 
49 http://research.google.com/pubs/archive/43455.pdf 

https://arxiv.org/abs/1406.2661
http://www.scientificamerican.com/article/when-will-computers-have-common-sense-ask-facebook/
https://arxiv.org/abs/1601.00706
https://research.googleblog.com/2016/06/wide-deep-learning-better-together-with.html
http://research.google.com/pubs/archive/43455.pdf


 

38 

 

 Direct computation on complex symbolic data representations (for example, SAT-solving 

approaches to cognitive systems50) 

 Purpose-designed and rule-based systems designed for error-free response (for example, 

the “classical” side of control theory) 

 Biomimetic cognitive systems 

We recognize that a lively argument could be had over any of the above judgments.

                                                 

50 By contrast, SAT-solving for formal validation of software or hardware is a lively and important sub-field. 



 

39 

 

6 DNNs FROM A HARDWARE PERSPECTIVE 

 

6.1 Evolution of DNNs 

It is instructive to examine the evolution of DNNs over the last several years. Table 1 

shows key properties of the networks that won the ImageNet competition from 2012 

through 2015.  AlexNet51 is a 7-layer network with 5 convolutional and 2 fully-connected 

layers that won the ImageNet 2012 competition.  In 2013, VGG1952 (a larger variant of 

VGG16) won the competition with a 19-layer network that included 2 fully-connected 

layers. 

 

Table 1. Evolution of DNNs for ImageNet. 

 
Network Year Conv Layers FC Layers Parameters Activations Operations 

AlexNet 2012 5 2 6.1 × 107
 8.1 × 105

 1.5 × 109
 

VGG16 2013 13 3 1.4 × 108
 1.4 × 107

 3.1 × 1010
 

GoogLeNet 2014 22 0 7.0 × 106
 4.7 × 106

 3.2 × 109
 

ResNet 2015 152 0 6.0 × 107
 2.2 × 107

 2.2 × 1010
 

 

A major qualitative change came in 2014 when GoogLeNet53 won the competition with a 

network containing only convolutional layers. The network used a unique architecture consisting 

of layers of inception modules (Figure 21) each of which included series and parallel 

combinations of 1 × 1, 3 × 3, and 5 × 5 convolutions.  A 1 × 1 stage is used before each 3 × 3 or 

5 × 5 stage to reduce the number of channels before the more expensive convolution.  In many 

respects, the 1 × 1 convolutions take the place of the fully-connected layers. They are, in fact, a 

fully-connected layer per pixel.  By adopting this fully-convolutional organization, GoogLeNet  

exceeded the accuracy of VGG16 with 20× fewer parameters and 10× fewer operations. 

ResNet54 won the competition in 2015 with an extremely deep (152-layer) network that added 

residual or bypass connections around each layer.   The bypass connections facilitate training 

deeper networks by avoiding the problem of vanishing gradients. 

                                                 

51 Alex Krizhevsky,  Ilya Sutskever, and Geoffrey E Hinton.  Imagenet classification with deep convolutional neural 

networks. In Advances in neural information processing systems, pages 1097–1105,  2012. 
52 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. 

arXiv preprint arXiv:1409.1556, 2014. 
53 Christian Szegedy, et al.  Going deeper with  convolutions.  In Proceedings  of the IEEE Conference on Computer 

Vision and Pattern Recognition, pages 1–9, 2015. 
54 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. arXiv 

preprint arXiv:1512.03385, 2015. 



 

40 

 

 

Figure 21. An Inception module from GoogLeNet. Each module consist of parallel 1x1, 3x3, and 

5x5 convolutions stages. A 1x1 stage with c > k is used before the larger convolutions to reduce 

dimensionality. 

 

Several important trends are clearly visible from the data in the table: 

Increasing Depth:  The depth of the networks is increasing — from 7 layers in 2012 to 152 

layers in 2015. This is because deeper networks give better results. The depth of mainstream 

networks has been increasing somewhat slower than this with 20-50-layer networks common 

today. 

Improved Efficiency: Newer networks are doing more with fewer parameters.  GoogLeNet  has 

an order of magnitude fewer parameters than AlexNet or VGG16 but gives better accuracy. This 

increase in efficiency is largely due to the move to fully-convolutional networks. 

Fully-Convolutional Networks:  Starting with GoogLeNet in 2014, these networks no longer 

have fully-connected layers.  Instead all layers are convolutional.   However, these newer 

networks contain many 1 × 1 filters which are the equivalent of a fully-connected layer per pixel.  

Moving to fully-convolutional networks gives a net reduction in the size of the model required to 

achieve a given accuracy.  Fully-connected layers remain important for other types of DNNs. 

Smaller Convolutions:  As networks have gotten deeper, the size of the convolutions have been 

reduced. AlexNet included an 11 × 11 convolution in the first layer and a 5 × 5 convolution in 

the second layer. VGGNet moved to 3 × 3 convolutions.  Better performance is achieved with 

more layers of smaller convolutions to enable more non-linearity in the filters. 

The evolution of CNNs for ImageNet illustrates the triad of network scaling. To improve 

accuracy the size of the training set, the capacity of the network, and the performance of training 

hardware must all improve together.  Network capacity and training set size are closely coupled.  

If too large a network is trained on a small data set, the network overfitting will occur. The 

network will give good results for the training set, but will generalize poorly to other input data.  

On the other hand, too small a network will have inadequate capacity to learn all of the 

information in a large data set. If a network gives the same accuracy on half the training set that 

it gets on the full training set, it is too small. 



 

41 

 

While the ImageNet data set has held constant at 1.2 million images, network designers are able 

to get the effect of a larger data set by using data augmentation (Section 3.7.2). Each image in 

the original training set is used to generate many (sometimes hundreds) of augmented images by 

cropping, mirroring, warping, adjusting white balance and color balance, etc.  Training on 

augmented data has been shown to improve performance on the test set. Of course increasing the 

size of the training set also increases training time. 

The size of the network and the size of the data set are ultimately limited by the computing 

power available for training.   Today’s DNNs are sized to be trainable in no more than two 

weeks on small clusters of 8-16 GPUs. If the network size and training set size both doubled, the 

training time would quadruple. To stay within the two-week threshold on training time, the 

performance of computer hardware would need to quadruple to enable this doubling of network 

capacity. 

While the architecture of networks has evolved considerably, they continue to be built from the 

same basic sets of primitives.  The computation of a network is dominated by convolutions and 

matrix-vector multiplies (matrix-matrix multiplies, for batched computations). 

 

6.2 DNN Computations 

Two main types of computation are performed on neural networks:  training and inference.  

During the training process the weights of each connection in the network are learned—by 

iteratively applying labeled inputs and adjusting the weights to improve accuracy.  Once learned 

these weights can be used for inference by applying an input to the network and computing a set 

of output values. 

 

6.2.1 Training 

The training process is used to compute the weights of a neural network from a labeled training 

set of input-output pairs55.  During the training process each element (e.g., image) in the training 

set is applied to the network, an output is produced, and a loss function is computed by 

comparing the computed output to the correct output.  The weights are then updated based on the 

loss function (see Section 3.4).  Using stochastic gradient descent (Section 3.6.4), a partial 

derivative of the loss function with respect to each weight is computed through back 

propagation.  Running the network backwards computes the partial derivative of the loss 

function with respect to each activation — applying the chain rule repeatedly.  The partial 

derivative with respect to the weights can then be computed from the partial with respect to the 

output activations and the original input activations. 

To improve efficiency, training is typically performed on batches of 26 to 210 images at a time. 

Operating on batches converts the matrix-vector product to a matrix-matrix product and 

increases the re-use of weights — reducing the demand on memory bandwidth. 

To avoid having small weight updates become lost in quantization noise, most networks today 

are trained using 32-bit floating-point representations of weights and activations.  There is some 

                                                 

55 It is also possible to train a network using an unlabeled training set by using an autoencoder or by using 

reinforcement  learning.   However these methods are beyond the scope of this section. 



 

42 

 

evidence that 16-bit floating-point  is adequate for training,  particularly  if accumulation is done 

at 32-bit precision and stochastic rounding is employed. 

Training is a computationally intensive process.  Training sets are typically large, containing 106 

to 108 samples, and they must be applied multiple times, often 103 or more (called training 

epochs) before the network converges.  Processing each training input through the forward 

computation and back propagation may take 109 − 1010 operations. Thus training a network can 

easily take 1018 to 1021 operations. Even on a 10TF (1013 FLOPS) GPU, training can take up to 

105 to 108 seconds (1 day to 3 years). 

The memory footprint for each training batch can be quite large. 106 to 108 activations for 103 

samples need to be retained, resulting in a memory footprint of 109 to 1011 32-bit words or 4 to 

400 GB. This large footprint requires that activations be stored in DRAM during training.  The 

footprint is far too large for an on-chip SRAM. 

Network accuracy improves with  larger networks and training  sets. However, the size of 

networks and training sets used today is largely limited by the computational resources available 

for training. 

 

6.2.2 Inference 

Once a network has been trained, it can be used for inference. For each input stimulus applied to 

the network, a set of output values is computed. For example, an image is applied to the network 

and a set of output values that classifies the image and/or detects an object in the image is 

computed.  For example, a one of N output can specify what class of object is in the image for a 

classifier network. A bounding box with label may be output for a detection network. 

Compared to training, inference is a much simpler computation for three reasons. First, good 

accuracy can be achieved representing weights and activations with 8-bit fixed-point numbers. 

Second, each layer of activations can be discarded as soon as the next layer is computed, 

resulting in a much smaller memory footprint.  Finally, the back-propagation and weight update 

steps are not needed. This cuts the computation per image by a factor of approximately three. 

While some applications of DNNs permit inference calculations to be batched, others are latency 

sensitive and require each input stimulus to be processed as soon as it is received. 

 

6.2.3 Compute and Memory Requirements for DNNs 

The convolutional layers of a DNN  are compute, not memory bound.  The number of operations 

used to compute one convolutional layer (for both the forward and back-propagation steps) is 

equal to the size of the output activation Ai+1 (k × x ×y) multiplied by the size of the 

convolutional kernel used to compute each point in the output activation (c × r × s). That is, the 

computation is a six-dimension loop that iterates over x, y, c, k, r, and s. For example, the 

conv4_3 stage of VGG16 computes a 28 × 28 × 512 = 4.0 × 105 point output activation using a 

512×3×3=4.6×103 point convolutional kernel to compute each activation point.  Thus, this layer 

requires 1.9 × 109 multiply-adds or 3.7 × 109 FLOPS. The memory footprint for this computation 

is 4.0 × 105 activations and 2.4 × 106 parameters. Thus, this computation performs over 103 

FLOPS for each word read from memory — even without batching. 

In contrast, the fully-connected layers of a DNN may be memory bound, particularly  for small 

batch sizes. The number of operations required to compute on fully-connected layer is equal to 



 

43 

 

the size of the parameter matrix Wi, which is equal to the product of the number of input and 

output activations. For example, the fc7 layer of VGG16 has 4K input activations and 4K output 

activations. Thus Wi contains 16M parameters, and 16M multiply-adds (32M FLOPS) are 

required to compute the layer. Compared to this relatively modest amount of computation, the 

memory footprint is huge, with 16M parameters. 

Without batching a word has to be read from memory for every multiply-add. With batching, the 

re-use is equal to the batch size. 

 

6.3 Hardware for DNNs 

As we have seen from the previous section, both training and performing inference on DNNs 

require performing dense linear algebra operations—convolutions and matrix-vector multiplies.  

With the exception of unbatched fully-connected layers (which are memory bound), the 

computation is arithmetic bound.  Training computations are largely performed in 32-bit floating 

point while inference computations are mostly performed in 8-bit fixed point. 

These computations can be performed on CPUs, GPUs or fixed-function accelerators. For each 

platform what matters is the raw performance (multiply-adds/second) and the efficiency 

(multiply-adds/J).  For unbatched fully-connected layers, the memory bandwidth (bytes/s) and 

efficiency (bytes/J) also matter. Because one can easily parallel multiple units to get higher 

performance, the efficiency numbers are the most important. 

The relationship between network architecture and hardware architecture is bi-directional. Future 

hardware is being driven by observed trends in networks, to meet the anticipated demand.  On 

the other hand, new networks are strongly influenced by what runs well on existing hardware. In 

particular, the size of a network and its training set are limited primarily by available training 

hardware. 

 

Table 2. The efficiency (ops/J) of CPU, CPU with vector extension, GPU, and accelerator on 32-

b floating-point and 8-b fixed point operations. The first two columns are peak performance.  

The third column is sustained performance on AlexNet. The final column expresses the sustained 

performance as a fraction of peak. 

Type 8b OPS/J 32b FLOPS/J AlexNet % Peak 

Scalar CPU 1 × 109 1 × 109   

CPU Vector Extension 3.6 × 1010 9 × 109 1 × 109 11 % 

GPU (GP100) 1.4 × 1011 3.5 × 1010 1.4 × 1010 40 % 

Accelerator 8 × 1011 1.2 × 1011   

 

The first two columns of Table 2 compare the theoretical maximum efficiency of four hardware 

platforms on 32-b floating-point and 8-b fixed point arithmetic.  This theoretical maximum does 

not include the energy for referencing memory, index calculations, control overhead, etc. Thus, 

no real platform will achieve these numbers. They are an upper bound on what is achievable. 

A CPU executing scalar instructions consumes about 1 nJ of energy per instruction in its 

complex, dynamically-scheduled pipeline. This overhead energy swamps the 4 pJ for the 

floating-point operation, the 4 pJ for a 32-b SRAM read, or the 0.3 pJ for an 8b integer multiply.  

The efficiency is 1 GOP/J — almost all of it consumed in instruction scheduling overhead. 



 

44 

 

CPUs attempt to combat instruction overhead by adding SIMD  (single-instruction,  multiple-

data) or vector extensions. The latest Intel processors, for example, support the AVX-512 

extension that performs 512-bit wide vector operations: 16 32-bit operations or 64 8-bit 

operations are performed in parallel. It is difficult to write code to exploit the AVX extension. 

However, highly tuned libraries, such as the Intel MKL library, are available to perform the 

convolutions and matrix multiplies needed for DNNs on AVX.  The AVX parallel operations 

amortize the 1nJ instruction scheduling overhead resulting in theoretical efficiencies of 9 

GFLOPS/J for 32-bit FP and 36 GOPS/J for 8-bit fixed point.  Using the Intel MKL libraries, the 

E5-2697-E4 sustains 2.1 GFLOPS/J on AlexNet or 11% of the peak theoretical efficiency. 

GPUs have very simple execution pipelines and amortize instruction overhead over 32 

processors using a SIMT (single-instruction multiple-thread) architecture. As a result, they have 

very high execution efficency. The NVIDIA GP100 (Pascal) GPU has peak efficiency of 35 

GFLOPS/J on 32-bit floating point and 140 GOPs/J on 8-bit fixed point.  The GPU achieves 

40% of peak, 14 GFLOPS/J on AlexNet. 

For training, raw performance can be as important as efficiency because network and training set 

size are limited by training speed. Table 3 compares the training rate of three platforms:  a CPU, 

a single GPU, and an 8-GPU cluster (DGX-1).  The 18-core Xeon CPU can process 100 images 

per second on AlexNet. The single GPU provides 29 times this performance, and the cluster of 8 

GPUs provides 190 times this performance. 

 

Table 3. The raw performance (in AlexNet images/s) of three Deep Learning training platforms. 

Platform AlexNet images/s 

CPU (E5-2697-v4) 100 

GPU (GP100) 2,938 

DGX-1 (8 × GP100) 19,053 

 

The numbers in Table 3 show that small numbers of GPUs achieve nearly linear speedup on 

training of DNNs.  This allows even larger networks to be trained in an acceptable amount of 

time. Training on 8-16 GPUs is common, and Baidu has reported linear scaling up to 128 

GPUs56. Earlier results from Google also report parallelizing training57. 

The ultimate in efficiency is a fixed-function accelerator. By hard-wiring a particular function, 

most energy is consumed by the arithmetic units themselves (4pJ/32-b FLOP or 0.3pJ/8-b op) 

and small SRAMs used to stage data into the execution units (1pJ/byte).   Note that for 8b integer 

operations, this memory read takes more energy than a multiply.   A real accelerator will not 

achieve these numbers because additional energy is required to read data from DRAM, control 

the pipelines, and perform other functions. We examine the efficiency of some real accelerators 

in Section 6.3.1. 

 

 

                                                 

56 Dario Amodei, et al.  Deep speech 2:  End-to-end speech recognition in English and Mandarin. arXiv preprint 

arXiv:1512.02595, 2015. 
57 Jeffrey Dean, et al. Large scale distributed deep networks.  In Advances in neural information processing systems, 

pages 1223–1231,  2012. 



 

45 

 

From Table 2 and Table 3 we see that: 

1. Of COTS hardware, GPUs are significantly more efficient than CPUs at executing 

DNNs. On AlexNet, an NVIDIA P100 has 14.2 times the sustained FLOPS/J than a Core 

E5. 

2. GPUs also offer substantially better total performance. This enables training of larger 

networks on larger data sets. A single P100 GPU executes AlexNet 29 times faster than 

an 18-core server CPU. A cluster of 8 P100 GPUs operates 190 times faster. 

3. Accelerators could potentially be substantially more efficient than GPUs, particularly at 

inference which uses 8b operations. We examine accelerators in the next section. 

 

6.3.1 Accelerators for DNNs 

While GPUs provide impressive performance and efficiency executing DNNs, as Table 2 

suggests, fixed-function accelerators offer the potential for even greater performance and 

efficiency. One of the first efforts in building special purpose hardware for DNNs is the DianNao 

family of chips that were jointly developed by the Chinese Academy of Sciences and INRIA58 59 
60.  This family of accelerators is based on a core, illustrated in Figure 22, that performs dot 

product operations.  The original DianNao chip had 16-units that each performed 16-point, 16-bit 

dot-product operations, for a total of 256 multiply-accumulates per cycle. In 65nm CMOS this 

chip dissipated 485mW at 980MHz for an efficiency of approximately 1 TOPS/J, not counting 

memory energy. 

The DianNao chip fetches all activations and weights from off-chip DRAM. With an access 

energy of 320 pJ/word (compared to 1 pJ/MAC) external memory access completely dominates 

system energy as shown in Figure 23.  The DianNao core has 64-entry input buffers for both 

weights and activations.   However, these buffers are far too small to get sufficient reuse to 

amortize the very large cost of reading data from external memory. The result is an actual 

efficiency of 42 GOPS/J. 

 

                                                 

58 Tianshi Chen, et al.  Diannao: A small-footprint  high-throughput accelerator for ubiquitous machine-learning.  In 

ACM Sigplan Notices, volume 49, pages 269–284. ACM, 2014. 
59 Yunji Chen, et al. Dadiannao: A machine-learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM 

International Symposium on Microarchitecture, pages 609–622. IEEE Computer Society, 2014. 
60 Zidong Du, et al.  Shidiannao: shifting vision processing closer to the sensor. In ACM SIGARCH Computer 

Architecture News, volume 43, pages 92–104. ACM, 2015. 



 

46 

 

 

Figure 22. The core of the Dian Nao DNN accelerator performs a 16-point, 16-bit fixed-point dot 

product operation followed by a programmable non-linear function. Input and output buffers 

facilitate operand reuse. 

 

To address the issue of high memory energy the DaDianNao chip was developed with embedded 

DRAM (eDRAM)61.  Each DaDianNao chip contains 36MB of eDRAM. This memory is 

partitioned into 2MB arrays in each of 16 tiles and a 4MB central array.  By eliminating the 

energy required to access external DRAM, DaDianNao achieves an efficiency of 350 GOPS/J. 

 

 

Figure 23. Because it fetches all data from external DRAM. the power dissipation of DianNao is 

completely dominated by memory fetch. 

 

                                                 

61 Yunji Chen, et al. Dadiannao: A machine- learning supercomputer. In Proceedings of the 47th Annual IEEE/ACM 

International Symposium on Microarchitecture, pages 609–622. IEEE Computer Society, 2014. 



 

47 

 

In an alternate approach to address the issue of high memory energy, a group at NVIDIA and 

Stanford has developed the efficient inference engine (EIE)62.  This design leverages network 

compression techniques that first prune the network, eliminating unnecessary connections63 and 

then compresses the remaining weights using trained quantization.64 This process reduces the 

size of the network by 240× allowing it to fit in a modest-sized on-chip SRAM which can be 

accessed for 5 pJ per 32b word rather than 640 pJ for off-chip DRAM. 

 

Figure 24. Block diagram of the efficient inference engine (EIE). EIE keeps the weights  in a 

highly-compressed form (compressed 240×) by pruning the network and coding the non-zero 

weights using trained quantization. The special-purpose hardware is tailored to operate 

efficiently on this sparse, encoded representation. 

 

The EIE is designed to exploit the inherent sparsity of DNNs.  Both the weights and the 

activations of DNNs are sparse. The weights (connections) can be pruned to 10% density for 

fully-connected layers and to 30% density for convolutional layers with no loss of accuracy.63 

With ReLU non-linear units (which convert negative values to zero), a large fraction of 

activations are zero as well.  For a typical layer 30% of the activations are non-zero.  Thus, for a 

typical fully-connected layer, with 30% activation density and 10% weight density, only one 

operation in 30 of the dense computation actually needs to be performed. For a convolutional 

layer, only one operation in 11 needs to be performed. The sparsity of the weights is static, while 

the sparsity of the activations is dynamic, varying from one input to another. 

The EIE is a tiled design intended to operate on compressed, sparse fully-connected layers.  A 

sparse adjacency matrix for the layer is row interleaved across the tiles. Input and output 

activations are also interleaved. Except for the broadcast of non-zero input activations, all 

operations are local to a tile. On a wide range of networks, near linear speedup is demonstrated 

up to 256 tiles. The block diagram of one EIE tile is shown in Figure 24. The hardware is 

tailored to efficiently walk the compressed sparse column matrix representation and to 

decompress the weights. Performing these operations on COTS hardware is inefficient. 

                                                 

62 Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and William  J Dally.  Eie:  

efficient inference engine on compressed deep neural network. arXiv preprint arXiv:1602.01528, 2016. 
63 Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient neural 

network. In Advances in Neural Information Processing Systems, pages 1135–1143, 2015. 
64 Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural network with pruning, 

trained quantization and Huffman coding. ICLR, 2015. 



 

48 

 

Eyeriss, jointly developed by MIT and NVIDIA, exploits activation sparsity. It also uses a large 

buffer memory and a spatial-array architecture to minimize DRAM energy.65 66  This allows it to 

achieve 170 GOPS/J even though it is fetching all activations and weights from off-chip DRAM.  

It is able to get sufficient on-chip re-use to amortize the high DRAM access energy. 

 

Table 4.  The efficiency of fixed-function accelerators for DNNs. 

Accelerator OPS/J 

Theoretical Maximum    8 × 1011 

DianNao 4.2 × 1010 

Eyeriss 1.7 × 1011 

DaDianNao 3.5 × 1011 

EIE 3.5 × 1011 

EIE dense equiv. 1.1 × 1013 

 

Table 4 compares the efficiency of a number of fixed-function DNN accelerators to the 

theoretical maximum efficiency. DianNao has an efficiency of 42 GOPS/J. This is substantially 

worse than GPU performance on inference (8b fixed point).  Accelerators may not be more 

efficient than programmable engines if they do not efficiently deal with sources of overhead — 

like memory energy. 

Eyeriss improves on the efficiency of DianNao by using a large enough input buffer (108KB) to 

get sufficient re-use to amortize the high energy of fetching weights and activations from 

DRAM.  It also uses a spatial array to facilitate re-use between processing elements and gates off 

execution units when activations are zero to exploit sparsity.  The result is an efficiency of 170 

GOPS/J. DaDianNao doubles this efficiency, to 350 GOPS/J, by storing all weights and 

activations in on-chip eDRAM. 

EIE also stores all weights and activations in on-chip RAM, by using pruning and compression 

so that weights and activations fit in on-chip SRAM. It matches the efficiency of DaDianNao at 

350 GOPS/J. For EIE, however, this is efficiency on a sparse computation.  By exploiting 

sparsity in both activations (3×) and weights (10×) EIE can evaluate a network with 30× fewer 

operations. To match the efficiency of EIE, a dense accelerator like DaDianNao would need to 

have an efficiency of 11 TOPS/J.  This dense equivalent efficiency is the last line of  

Table 4. Note that GPUs and CPU SIMD extensions are relatively inefficient on sparse 

calculations, so inference on sparse networks is one area where fixed-function accelerators can 

achieve a significant advantage over programmable engines. 

 

There are a few commercial offerings of accelerators for DNNs.   Google announced a tensor 

processing unit (TPU) to accelerate inference on DNNs.67 68 However no details of the device 

                                                 

65 Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. 14.5 eyeriss: An energy-efficient reconfigurable 

accelerator for deep convolutional neural networks. In 2016 IEEE International Solid-State Circuits Conference 

(ISSCC), pages 262–263. IEEE, 2016. 
66 Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-efficient dataflow for 

convolutional neural networks. 2016. 
67 Karl Freund.  Google’s tpu chip creates more questions than answers.  Forbes, May 2016. 

http://www.forbes.com/sites/moorinsights/2016/05/26/googles-tpu-chip-creates-more-questions-than-answers 
68 Norm Jouppi.  Google supercharges machine learning tasks with tpu custom chip. Google Cloud Platform Blog, 

May 2016. 

http://www.forbes.com/sites/moorinsights/2016/05/26/googles-tpu-chip-creates-more-questions-than-answers


 

49 

 

have been disclosed other than that it is 10× more energy efficient than an unspecified 

alternative. 

 

Figure 25.  A photo of Google’s tensor processing unit (TPU).  Few details of this chip have 

been released. All that is known is that it gives 10× the efficiency as some undisclosed 

alternative on inference. 

 

Movidius makes a vision processing unit (VPU) that  accelerates convolutional networks for 

computer vision.69  Their Myriad 2 chip has 2 TFLOPS of 16-bit floating-point performance. 

With the end of Dennard Scaling70 and with it the performance scaling popularly referred to as 

Moore’s Law71, we can no longer expect large improvements in performance due to 

improvements in semiconductor process. This is true both for general-purpose CPUs and GPUs 

and for fixed-function DNN accelerators.  Each generation of semiconductor technology, which 

reduces linear dimensions by 30%, is expect to give about a 20% improvement in OPS/J. This is 

in contrast with a 180% improvement when Dennard scaling was in effect. 

We expect most future improvements in performance and efficiency to come from improvements 

in architecture and more optimized networks, rather than from process technology. GPUs are 

now being optimized for DNN training and inference. For example, the latest generation of 

NVIDIA GPUs has support for 16b (half-precision) floating point and 8b integer operations.  

Special instructions to accelerate the inner loops of DNN algorithms are also starting to appear in 

newer GPUs. We expect this continued evolution of GPUs to eliminate essentially all of the gap 

between GPUs and fixed-function hardware for training, and much of the gap for inference. 

At the same time, we expect more fixed-function accelerators for DNN inference to appear. This 

is driven by the need to embed DNNs in small embedded devices from video cameras to 

appliances. 

 

                                                 

69 R. Colin Johnson.  Movidius vision processing unit enters 2nd generation.  EE Times, July 2014. 
70 Giorgio Baccarani, Matthew R Wordeman, and Robert H Dennard. Generalized scaling theory and its application 

to a 1/4 micrometer mosfet design. IEEE Transactions on Electron Devices, 31(4):452–462, 1984. 
71 Hadi Esmaeilzadeh et al. Dark silicon and the end of multicore scaling. In Computer Architecture (ISCA), 2011 

38th Annual International Symposium on, pages 365–376. IEEE, 2011. 



 

50 

 

6.4 Optimizations 

One can also improve the speed and efficiency of training and inference on DNNs by optimizing 

the networks themselves. Reducing the complexity of the network, without sacrificing accuracy, 

has the same advantage as running on faster hardware. The two are complementary. Additional 

gains can be achieved by running a less complex network on more efficient hardware. 

 

6.4.1 Compact Networks 

A more efficient network design can achieve equivalent accuracy with fewer parameters and 

fewer operations.  GoogLeNet53 is an example of an efficient network design. By using a fully 

convolutional network, by making the network very deep (22 layers), and by using inception 

units (Figure 21) that use 1 × 1 convolutions to reduce dimensionality before applying 3 × 3 

convolutions, GoogLeNet exceeds the accuracy of VGG16 while using 10× fewer operations and 

6× fewer parameters. 

SqueezeNet takes a similar, if slightly simpler, approach.72  SqueezeNet is composed of 

alternating layers of squeeze and expand modules. A 1 × 1 convolution with more input channels 

than output channels squeezes the representation to fewer dimensions. A 3 × 3 convolution then 

expands the dimensionality.  SqueezeNet achieves AlexNet accuracy with 50× fewer parameters. 

Combining this compact network with pruning and compression64 results in a model that is only 

470KB in size compared to 240MB for the original AlexNet. 

 

6.4.2 Sparsity 

DNNs are inherently sparse, both in activations and connections.  While many DNNs are 

formulated as dense networks—i.e., all input activations in a fully connected layer are connected 

to all output activations—it has been shown that the majority of connections can be eliminated 

without  affecting accuracy.63 Fully connected layers can typically be pruned to 10% density, and 

convolutional layers can typically be pruned to 30% density. This results in a 10× and 3.3× 

reduction in the number of weights needed to represent a network.  In addition, typically only 

30% of activations are non-zero for any given input.   Exploiting both the static sparsity of 

weights and the dynamic sparsity of activations reduces the amount of work to be performed by 

33× for fully-connected layers and by 11× for convolutional layers. 

 However, exploiting sparsity also turns evaluation of the network into an irregular computation.   

The data-parallel hardware in GPUs and the SIMD extensions of CPUs are poorly matched to 

this irregular computation.  Structured pruning73 has been suggested as a method to reduce 

connections while preserving regularity.  Alternatively, accelerators like EIE can efficiently walk 

sparse-matrix data structures.62 

 

                                                 

72 Forrest N Iandola, et al.    Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 1mb model size. 

arXiv preprint arXiv:1602.07360, 2016. 
73 Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional neural networks. 

arXiv preprint arXiv:1512.08571, 2015. 



 

51 

 

6.4.3 Attention Networks 

A conventional CNN performs the same computation over an entire image, for example, from an 

HD (1920 × 1080) sensor. Much of a typical image is often empty space, sky, ground, etc., with 

no objects of interest. It is wasteful to run complex feature detectors and object detectors over 

obviously empty space. 

CNNs can be made much more efficient by using a simple network to detect regions of interest 

(ROIs). An attention mechanism then directs a more complex network to direct its attention to 

these ROIs — processing only these areas of the image and ignoring the rest. 

The R-CNN family of networks74 75 76 use an attention mechanism. A relatively simple generic 

object detection network is used to identify regions of interest. A more complex classifier 

network and per class detection network is then applied to each region. In a similar manner77 

Xiao et al. apply attention to the classification problem.  It first uses a filter network to propose 

ROIs.  These ROIs are then input to a classifier network. 

 

  

                                                 

74 Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik.   Rich feature hierarchies for accurate object 

detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern 

recognition, pages 580–587, 2014. 
75 Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Con- ference on Computer Vision, pages 

1440–1448, 2015. 
76 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.  Faster r-cnn: Towards real-time object detection with 

region proposal networks. In Ad- vances in neural information processing  systems, pages 91–99, 2015. 
77 Tianjun Xiao, et al. The application of two-level attention models in deep convolutional neural network for fine-

grained image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 

pages 842–850, 2015. 





 

53 

 

7 SOME CONSIDERATIONS SPECIFIC TO DOD 

 

By now it should be clear that there is much potential value for the Department of Defense 

incorporating AI technologies into DoD systems. While much discussion in the AI community 

focuses on research directions and opportunities, the purpose of this section is different.  Taking 

for granted existing and near-term AI technologies, how might the DoD use them? 

In this context, many topics in the public discussion of AI become irrelevant. For example, 

displacement of soldiers’ jobs by technology is a benefit, not an economic or social harm. 

AI technologies make available more powerful or more flexible algorithms than conventional 

software engineering methodologies.   Still, these have to be engineered into functioning 

systems.  Satisfying 80% of the need is a good start, and sometimes sufficient for the commercial 

sector, but for many DoD applications, the necessary remaining 20% needs to be provided too. 

This simple fact has restrained the spread of AI in higher consequence aspects of everyday life, 

and internalizing it will help avoid failures. 

For the DoD, AI provides two sorts of opportunities.  1. AI technologies might make existing 

tasks simpler, more reliable, or more efficient. Or, 2. AI technologies might be used to introduce 

wholly new capabilities. Another dichotomy is substitutive, where AI replaces people, or 

complementary, where AI improves or helps.  But these points are true of all automation. AI 

techniques provide new tools to help accomplish these goals. Using them is engineering, albeit 

advanced engineering. 

As an example that demonstrates advantages of the new technology, consider automatic target 

recognition, a problem that has been intensively worked on for decades. At one time careful 

models (real or virtual) were built and measured and the data from each model were hand coded 

into the algorithm. It was difficult to compute the possibility of confusion with non-targets 

because each would have had to be precisely modeled too. With machine learning, one can take 

lots of pictures of targets and of non-targets and use a clustering algorithm. It is not hard to 

understand the classification errors in the resulting model. 

A bigger difference, however, is the much smaller amount of human intervention and hand 

coding that is needed compared to older techniques. Presented with new targets, or non-targets, 

the model can just be retrained. The algorithms find the decision boundaries automatically. Deep 

learning algorithms may have even better performance, although then understanding 

classification errors requires different techniques.  The ability to upgrade the algorithm easily is 

an advantage. Taking advantage, however, has implications for how the algorithm is embedded 

in systems.  When changing the target recognition algorithm was a big effort, systems were 

upgraded only occasionally. To exploit the advantages of the new technology the systems need 

to be easily upgradable, and that comes with its own set of issues and new technologies. (In 

private life one used to get very occasional OS upgrades on disks.  Now it is all done over the 

network, frequently and almost transparently.) 

As an example that suggests how difficult DoD’s transition to increased use of AI might be, 

consider autonomous ground tactical vehicles.  One might consider these for combat support, or 

just for logistics. Either would be a boon. Civilian experience shows that going down this path 

will require at least a decade of challenging work.  The work on self-driving cars has consumed 



 

54 

 

substantial resources. After millions of hours of on-road experiments and training, performance 

is only now becoming acceptable in benign environments. Acceptability here refers to civilian 

standards of safety and trust; for military use the standards might be somewhat laxer, but the 

performance requirements would likely be tougher. 

There are many reasons why the problem is so hard, but here are two. First, the environment is 

complex and challenging. The car has some sort of map. Then, if it can see lane markings, it can 

figure out what to do—unless there has been recent construction, in which case it must decide 

which are the old misleading lane markings and which are the new ones.  If it is snowing, or 

there is a road with no lane markings, what does it do?  There are engineering answers to all of 

this, but there are lots of situations that are only slightly unusual, but have to be handled.  More 

complex is the interaction with other things, from other vehicles, to pedestrians, to potholes, to 

careless children, to windblown garbage cans. So the second reason is that it is hard to cope with 

the complex tree of possibilities, understanding what’s going on and what to do about it. This is 

an area where research is needed and where research can help. 

But applying that research is likely to require a lot of difficult engineering. More likely than full 

autonomy is some form of driver assist. In the civilian world the human interface is critical, and 

getting that right requires trial and error and redesign. (Smart cruise control works quite well 

technically, but there are people who turn it off because it annoys them in one way or another.) 

The military may be able to settle for good-enough. One might imagine convoys of trucks where 

only the first truck has a driver and the others can use the driver’s plans and all the trucks’ 

sensors. This raises the 80/20 issue: driving down the highway would work, but there are lots and 

lots of edge cases that have to work too. (Traffic light changes in the middle of the convoy? 

Driver makes a mistake and the convoy has to reverse? Flat tire? Refueling?) 

In image processing the DoD can take advantage not only of existing knowledge, but also the 

public domain neural nets that have already been trained. It is unlikely that DOD applications 

want the exact same images recognized, but the results of transfer learning (Section 3.7.1) 

suggest that most of the neural net could be thought of as adapted to all sorts of images and can 

be left fixed, and that only the top few layers need to be retrained, which would be much less 

effort than full retraining. 

Machine learning is intrinsically statistical. This fact may have implications for requirements, for 

testing, and for understanding the behavior of the system.  Errors pose a different problem for an 

operational system than for a research system. A machine learning demonstration or research 

project starts with data purportedly representative of the real world, keeps some aside for final 

evaluation, and after training reports some measure of accuracy evaluated on the held out data. 

The measure is typically some combination of precision and recall. There are two pitfalls. The 

first is well-understood, that the training data may not be sufficiently representative of the real 

world. The second is that in the real-world, some errors are much worse than others.  If these can 

be anticipated, then extra training data can be used to make sure these mistakes don’t happen. 

Commercial experience suggests that it’s very hard to think of all of these in advance; 

operational systems may well need to be changed quickly. 

The implication is that requirements need to include something about error rates, and testing 

needs to go beyond checking that requirements are satisfied. DoD’s testing of AI systems will 

have to probe outside the boundary of expected behavior to try to uncover unexpected 

weaknesses. 



 

55 

 

8 JASON FINDINGS AND RECOMMENDATIONS 

 

8.1 Findings 

The background for each of the following findings is found in the main text.  Pointers are given 

to the relevant sections. 

1. AI, both commercially derived and DoD-specific, will be integral to most future DoD 

systems and platforms. To be a “smart buyer” and to support its unique development 

needs, DoD needs to maintain a strong portfolio of 6.1 research, and a cadre of 

knowledgeable program officers, widely across the most rapidly advancing areas. 

[Section 2.2] 

2. The boundary between existing AI and hoped-for AGI keeps being shifted by AI 

successes, and will continue to be. For DoD, AGI is at most a small part of AI’s 

relevance to the DoD mission. [Section 2.3.2 and Chapter 0]  

3. The use of AI to augment human performance is a key application area for DoD, and 

closer to real implementation than AGI. [Section 2.2] 

4. DNNs have exceeded typical human performance on many tasks, including face 

recognition, object detection, and speech understanding. [Chapter 0] 

5. DNN performance is dependent today on large, labeled training sets of data. 

Reinforcement learning (RL), transfer learning, and autoencoders can replace labeled 

data in special cases. [Section 3.6.5] 

6. DNNs are “winning the race” today, but large Bayes models (e.g., graphical, and with 

PPLs) continue to be innovative and fruitful, especially for DoD-related applications. 

Generative Bayes models can require much less data for training. [Chapter 0] 

7. Hybrids show great promise, both for (i) AI engineering at the “block level”, and (ii) for 

richer data representations within DNN-like multilayer structures (e.g., memories, 

generative models, networks-of-networks). [Section 5.4] 

8. COTS GPUs offer enabling performance for training DNNs. Special purpose hardware, 

both COTS and DoD-specific, hold the potential for even higher efficiency on inference. 

[Chapter 6Error! Reference source not found.] 

9. DNNs are immature as regards the “illities”, including reliability, maintainability, 

accountability, validation and verification, debug-ability, evolvability, fragility, 

attackability, and so forth. [Chapter 4] 

10. Increasingly, cutting-edge AI research can be performed only by large organizations with 

access to key resources (e.g., large labeled datasets and large farms of GPUs) [Section 

3.8] 

11. Most AI models need at least periodic retraining. The acquisition process must cope with 

this. [Chapter 7] 

 

8.2 Recommendations 

JASON offers the following recommendations to DoD senior leadership: 

1. DoD should both track (via a knowledgeable cadre) and invest in (via a 6.1 research 

portfolio) the most dynamic and rapidly advancing areas of AI, including, but by no 

means limited to DL. 



 

56 

 

2. DoD should support the development of a discipline of AI engineering, accelerating the 

progress of the field through Shaw’s “craft” and (empirical) “commercial” stages. A 

particular focus should be advancing the “illities” in support of DoD missions. 

3. DoD’s portfolio in AGI should be modest and recognize that it is not currently a rapidly 

advancing area of AI. The field of human augmentation via AI is much more promising 

and deserves significant DoD support. 

4. DoD should support the curation and labeling, for research, of its unique mission-related 

large data sets. Wherever possible, operational data should be saved for future research 

use in support of AI for DoD-unique missions. 

5. DoD should create and provide centralized resources for its intramural and extramural 

researchers (MOSIS-like), including labeled data sets and access to large-scale GPU 

training platforms. 

6. DoD should survey the mission space of embedded devices for potential breakthrough 

applications of AI, and should consider investing in special-purpose accelerators to 

support AI inference in embedded devices for DoD missions if such applications are 

identified.



 

57 

 

APPENDIX A:  Statement of Work and JASON Responses to 

Specific Questions Posed 

 

The Statement of Work posed to JASON includes four specific “yes/no” questions regarding the 

state of development of Artificial General Intelligence.  While the detailed answers to these 

questions are implicit in the main body of the report, we here give the actual text of the 

Statement of Work, and JASON’s responses to the questions posed. 

 

Statement of Work from ASD (R&E) 

Objectives: 

There have been notable advances in intelligent robotic systems in recent decades including 

development of marine survey robots, self-driving cars, home vacuum cleaners, outer planetary 

probes, and many others. These intelligent systems function reasonably well in highly structured, 

well-specified narrow domains and scenarios. However, it is generally acknowledged these 

systems tend to exhibit very limited robustness and adaptabilities when they are placed in 

unstructured, open-world, uncertain environments that are of critical importance to DoD. To 

build robust, versatile agents that can function in a variety of environments (physical or cyber) 

and situations, and capable of interacting/reacting to friendly/unfriendly intelligen.t agents, we 

must develop the science base for general machine intelligence or Artificial General Intelligence 

(AGI). 

Since 1950s when Artificial Intelligence (AI) became a recognized discipline, we have tried to 

develop the science for building smart agents that are versatile and resilient. Even though we 

have had great success in building agents that perform well in structured, narrow, closed 

domains, the field has not yet achieved its promise. What is missing then? Most researchers 

agree that general intelligence is indeed knowledge acquisition, knowledge representation, 

reasoning, and communications with other intelligent agents. 

Scope: 

1. Have there been the necessary breakthroughs and framework to create structures of general 

intelligence for acquiring knowledge? That is access to varied sources of information, algorithms 

for learning, tools for knowledge engineering, and architectures for organizing the acquired 

knowledge in ways that are useful for inference? 

JASON response:  Generally speaking, no.  The enormous recent progress in AI, while broadly 

applicable to many areas, continues to advance in a domain specific manner. 

2. Have we made sufficient progress to be able to create elements of general intelligence on 

reasoning, planning (decision-making), and problem solving in large, uncertain, partially known, 

open domains? 

JASON response:  The breakout technologies associated with Big Data / Deep Learning are 

applicable to some partially known, open domains, most notably self-driving vehicles in urban 

settings.  However, this progress is not the result of the creation of elements of general 

intelligence. 



 

58 

 

3. Do we have sufficient level of understanding in cognitive neuroscience of social cognition to 

enable us 

a. To develop computational architectures and interfaces to engender trust in the users? 

JASON response: No. 

b. To allow intelligent systems to represent goals, plans and perspective of the users. 

JASON response: There is considerable potential in this area, as well as other areas of human-

machine collaboration.  See, however, this report’s discussion of the “ilities”. 

4. Many leading AI researchers and scientists from other disciplines expressed their concerns of 

potential pitfalls of AI development in the "Open Letter on Artificial Intelligence." As the letter 

suggests, can we trust these agents to perform correctly? Can we verify and validate these agents 

with sufficient level of built-in security and control to ensure that these systems do what we want 

them to do? 

JASON response:  Verification and validation of AI agents is, at present, immature.  There is 

considerable opportunity for DoD to participate in the program of advancing the state of the art 

of AI to become a true engineering discipline, in which V&V, as well as other engineering 

“ilities”, will be appropriately controlled. 



 

59 

 

 

APPENDIX B:  Briefings to JASON Study on Artificial Intelligence 

 

JASON is grateful to the individuals listed below for both their formal presentations and several 

full days of wide-ranging discussions.  While their views shaped the perspective of this report, 

these individuals are in no way responsible for JASON’s findings and recommendations.  We 

express thanks to sponsor David Han for his considerable commitment to the study in arranging 

these briefings. 

June 27, 2016 

Sponsor Brief-in: Stephen Welby, Assistant Secretary of Defense for Research and Engineering, 

“Autonomy / Artificial Intelligence Opportunities and Challenges” 

Sponsor Brief-in:  David Han, Associate Director for Basic Research in Machine Intelligence 

and Robotics, Office of the Assistant Secretary of Defense (R&E), “JASON Study on Artificial 

General Intelligence” 

John Launchbury, Director I2O, DARPA, “A DARPA Perspective on Artificial Intelligence” 

Tom Dietterich, President, Association for the Advancement of Artificial Intelligence and 

Distinguished Professor, Oregon State University, “Artificial Intelligence: Where We Are, 

Barriers to Progress, Where We Want to Be” 

Subbarao Kambhampati, Arizona State University, “Planning Challenges in Human-Machine 

Collaboration” 

Peter Norvig, Google, “Machine Learning and Artificial Intelligence” 

Kenneth D. Forbus, Northwestern University, “Software Social Organisms: A Path to Human-

Level AI” 

June 28, 2016 

Lynne E. Parker, Division Director, Information and Intelligent Systems Division, National 

Science Foundation, “NSF’s Research Relevant to General AI” 

Nicholas Roy, MIT Aero/Astro, “Representations vs. Algorithms: Robotics and AI” 

Brian M. Sadler, Army Research Laboratory, “Distributed Collaborative Intelligent Systems: A 

Tactical Offset Strategy” 

Marc Steinberg, Program Officer, Science of Autonomy, Office of Naval Research, “Artificial 

Intelligence, Autonomy, Machine Learning, and More...” 

Steven ‘Cap’ Rogers, Senior Scientist (Autonomy), Air Force Research Laboratory, “The 

QuEST for Artificial General Intelligence” 

John E. Laird, John L. Tishman Professor of Engineering, University of Michigan, “The 

Cognitive Architecture Approach to General Artificial Intelligence” 

July 6, 2016 

Honglak Lee, University of Michigan, “Deep Learning and General Intelligence” 



 

60 

 

Jitendra Malik, EECS, UC Berkeley, “Common Sense Computer Vision” 

Martial Hebert, The Robotics Institute, Carnegie Mellon University, “Robust Perception and 

Reasoning” 

Stuart Russell, Computer Science Division, UC Berkeley, “Prospects for General Intelligence” 



 

61 

 

APPENDIX C: The Back-Propagation Algorithm 

 

Central to the DNN is its training, in which the millions of weights which connect the various 

neurons are assigned values. The modern technique for training these networks has its origins in 

the paper D. Rumelhart, G.E. Hinton, and R.J. Williams, Learning representations by back-

propagating errors, Nature 323(9), 533-536 (1986).  Understanding this back-propagation 

algorithm is central to understanding why DNNs have benefited so greatly from big data and 

GPUs.  It also helps to illuminate some of the challenges associated with making the nets work 

efficiently.   

This Appendix summarizes the back-propagation algorithm.  This derivation draws heavily from 

the book Neural Networks and Deep Learning (neuralnetworksanddeeplearning.com) by Michael 

Nielsen.  It assumes some knowledge of multivariable calculus and linear algebra.   

The material is organized into three sections.  The first section, Training a Single Neuron, is 

where the formalism is developed.  Here we see how data are used to train the net.  In addition, 

stochastic gradient descent and the methodology for organizing the data is discussed.   

The second section, The Single Neuron, Multi-Layer Net, uses the formalism detailed in the first 

section to explore how we put together multiple layers.  In the end we learn why the gradient can 

be unstable in DNNs, and why that results in layers that train at different speeds.   

In the final section, The Multi-Neuron, Multi-Layer, Neural Net, the matrix algebra approach to 

training large networks is derived.  Organizing the calculation in terms of matrix algebra is what 

enables allows DNNs to benefit from GPUs. 

    

C.1 Training a Single Neuron 

Our simple model of the neuron, shown in Figure, is that the neuron has some inputs, 𝑥𝑖, where i 

runs from 1 to the number of inputs I.  In what is to come, the inputs to neurons in layer l are the 

output of neurons in layer l-1. The output of a neuron is referred to as its activation, a.  If we 

define our neuron as existing in layer 1, and the inputs are imagined to be from neurons in layer 

0, then the inputs 𝑥𝑖 can then be re-labeled as 𝑎𝑖
0 =  𝑥𝑖.  In this notation superscripts index layers 

and subscripts index neurons.   

The inputs to a neuron are combined as a linear sum, 𝑧1 =  ∑ 𝑤𝑖
1𝑎𝑖

0 + 𝑏𝐼
𝑖=1 .  The parameter z is 

called the weighted input to the neuron.  The parameters 𝑤𝑖
1 are the weights and the parameter 𝑏 

is the bias.  Note that the bias b can be thought of as the coefficient of the affine, and thus one 

can include the bias as a weight by writing 𝑧 =  ∑ 𝑤𝑖𝑎𝑖
0𝐼

𝑖=0 , where 𝑤0 = 𝑏 and 𝑎0
𝑗

= 1.  When 

this formalism is used in multi-neuron layers in multi-layer DNNs, the weighted input to neuron j 

in layer l is given as 𝑧𝑗
𝑙 =  ∑ 𝑤𝑗,𝑖

𝑙 𝑎𝑖
𝑙−1

𝑖 , where the sum over i includes all the neurons in layer l-1 

and the affine.   



 

62 

 

 

Figure C1:  Schematic of the model neuron.  The neuron has multiple inputs xi and a single 

output.  The output is called the activation a.  The inputs to neurons in layer l are usually the 

activations of the neurons in the previous layer, 𝑙 − 1. The relation between the input and the 

output is described in the text.  

 

The weighted input is acted on by the neuron, the output of which is a non-linear function, 𝑎1 =
𝑓(𝑧1).  In our single neuron example, this is the final output of the system.   

The only adjustable parameters in this system are the weights. Discovering optimal values of the 

weights is the process of training. This process generally requires training data, which are known 

input/output pairs (𝑥, 𝑦).  For example, if one were trying to train a DNN to approximate a 

function 𝑦 = 𝑓(𝑥), the training data would be simply individual (𝑥, 𝑓(𝑥)) pairs, where x is a 

point in the domain of the function.  Alternatively, if one were trying to train a DNN to recognize 

images, the input data x could be the intensity values of the pixels in the image, and the 

corresponding output y would be a description of the picture.   

For the example of our single neuron, given an input vector x, the corresponding activation 𝑎1 is 

calculated. The performance of the neuron is quantified using an error function, such as the 

quadratic function 𝐸 =
1

2
(𝑦 − 𝑎1)2.  The goal of training is to minimize the error function, 

which can be accomplished by techniques such as gradient descent. (W.H. Press, et. al., 

Numerical Recipes, Cambridge University Press, New York, 2007, Chapter 10.)  The basic idea 

of gradient descent is that the weights are updated by using the gradient of the error function.  

For example, the component of the error function gradient for weight 𝑤 is 𝜕𝐸 𝜕𝑤⁄ .  The weight 

is updated from 𝑤 to 𝑤 + 𝛿𝑤, where 𝛿𝑤 = −𝜂 𝜕𝐸 𝜕𝑤⁄ .  The parameter 𝜂 is called the learning 

rate. Working through this for the weights in our single neuron example, one obtains  

𝛿𝑤𝑖
1 = −𝜂

𝜕𝐸

𝜕𝑤𝑖
1 = −𝜂

𝜕𝐸

𝜕𝑎1
 
𝜕𝑎1

𝜕𝑧1
 
𝜕𝑧1

𝜕𝑤𝑖
1 = −𝜂(𝑎1 − 𝑦) 𝑓′(𝑧1) 𝑎𝑖

0 

Training starts by randomly assigning values to all the weights and biases in the network. 

Working from this initial state of the network, on then runs many input/output pairs through the 

network.  For each input/output pair (𝑥, 𝑦), the values for 𝛿𝑤𝑖
1(𝑥, 𝑦) are calculated.  These are 

then averaged over all N pairs of training data 𝛿𝑤𝑖
1 =  

1

𝑁
∑ 𝛿𝑤𝑖

1(𝑥, 𝑦)(𝑥,𝑦) .  The weights are then 

updated, and the process begins again. In a perfect world, this continues until the weights find 

the global minimum of the error function averaged over all the training data, 𝐸 =

 
1

𝑁
∑ 𝐸(𝑥, 𝑦)(𝑥,𝑦) .   



 

63 

 

C.1.1 Summary 

In addition to the formalism, there are several important ideas which can be addressed using this 

simple model 

1) The training data are often vast, typically including many thousands to millions of (𝑥, 𝑦) 

pairs.  The complete set of input/output pairs used to train the network is typically 

randomly divided into three groups: a training set, a validation set, and a test set.  

Training data are used to train the network, as was described above.  Validation data are 

used to measure how well the training is progressing and to adjust various parameters 

used in the training, such as the learning rate, the network architecture, etc.  Additionally, 

you might evaluate the DNN against the validation data after each epoch as a benchmark 

for progress.  When the training process is completed, the test data are used to measure 

the success of the final DNN.  

2) Practical training of DNNs usually involves Stochastic Gradient Descent, in which the 

training data are randomly divided into mini-batches of size M.  The point to this is that 

one can often obtain a reasonable approximation to the gradient by averaging over M 

samples, where 𝑀 ≪ 𝑁.  This speeds up the learning process. The typical size of M is of 

order 10s of (𝑥, 𝑦) pairs.  The weights are updated by averaging the data in a single mini-

batch.  This is then repeated for all mini-batches until all of training data has been used.  

One complete run through all the training data is called an epoch.  Training continues 

through many epochs until the DNN is sufficiently trained, typically involving several 

10s of epochs. 

 

C.2  The Single Neuron, Multi-Layer Net 

Now consider the case of a single neuron, multi-layer network, such as that shown in Figure.  

This example serves only to develop formalism.  Here there is a single input x, three neurons 

wired in series, and an output.  The set of equations define the forward propagation of the input 

through the network: 

Input Layer: 

𝑎0
0 =  1, 𝑎1

0 =  x 

Layer 1: 

𝑧1 =  𝑤0
1𝑎0

0 + 𝑤1
1𝑎1

0 

𝑎0
1 =  1, 𝑎1

1 =  𝑓(𝑧1) 

 Layer 2:  

𝑧2 =  𝑤0
2𝑎0

1 + 𝑤1
2𝑎1

1 

𝑎0
2 =  1, 𝑎1

2 =  𝑓(𝑧2) 

Layer 3:  

𝑧3 =  𝑤0
3𝑎0

2 + 𝑤1
3𝑎1

2 

𝑎1
3 =  𝑓(𝑧3) 

 



 

64 

 

 

Figure C2:  A network of three neurons in series, each with a single input.  The activation of the 

ith neuron is 𝑎1
𝑖 . 

 

The output of the system is 𝑎1
3, and this is what is evaluated in the error function 

𝐸 =
1

2
(𝑦 − 𝑎1

3)2 

Now we backwards propagate to calculate the derivatives necessary to adjust the weights.  Let’s 

start with the weights in the 3rd layer, 𝑤0
3 and 𝑤1

3, for which it is necessary to calculate 

𝛿𝑤𝑖
3 = −𝜂

𝜕𝐸

𝜕𝑤𝑖
3 = −𝜂

𝜕𝐸

𝜕𝑧3

𝜕𝑧3

𝜕𝑤𝑖
3 

The right-hand side contains the derivative 𝜖3 = 𝜕𝐸 𝜕𝑧3⁄ , which is sufficiently easy to calculate 

𝜖3 =
𝜕𝐸

𝜕𝑎1
3

𝜕𝑎1
3

𝜕𝑧3
= (𝑎1

3 − 𝑦) 𝑓′(𝑧3) 

Additionally, the second factor is easy to generalize,  

𝜕𝑧3

𝜕𝑤𝑖
3 = 𝑎𝑖

2 

Thus, one obtains 

𝛿𝑤𝑖
3 = −𝜂𝜖3𝑎𝑖

2 = −𝜂 (𝑎1
3 − 𝑦) 𝑓′(𝑧3) 𝑎𝑖

2 

Now let’s calculate the update to the weights in the 2nd layer. We can formulate this exactly as 

was done above, 

𝛿𝑤𝑖
2 = −𝜂

𝜕𝐸

𝜕𝑤𝑖
2 = −𝜂

𝜕𝐸

𝜕𝑧2

𝜕𝑧2

𝜕𝑤𝑖
2 = −𝜂𝜖2𝑎𝑖

1 

The parameter 𝜖2 can be written in terms of 𝜖3, 

𝜖2 =
𝜕𝐸

𝜕𝑧3

𝜕𝑧3

𝜕𝑧2
= 𝜖3

𝜕𝑧3

𝜕𝑧2
 

Now we need to obtain 𝜕𝑧3 𝜕𝑧2⁄ ,  

𝜕𝑧3

𝜕𝑧2
=  

𝜕(𝑤0
3𝑎0

2 + 𝑤1
3𝑎1

2)

𝜕𝑧2
=  𝑤0

3
𝜕𝑎0

2

𝜕𝑧2
+ 𝑤1

3
𝜕𝑎1

2

𝜕𝑧2
 

But 𝜕𝑎0
2 𝜕𝑧2⁄ = 0 and 𝜕𝑎1

2 𝜕𝑧2⁄ = 𝑓′(𝑧2), thus this expression simplifies to 

𝜕𝑧3

𝜕𝑧2
= 𝑤1

3 𝑓′(𝑧2) 

yielding 



 

65 

 

𝜖2 = 𝜖3𝑤1
3𝑓′(𝑧2) 

The resulting updates to the weights are 

𝛿𝑤𝑖
2 = −𝜂𝜖2𝑎𝑖

2 = −𝜂𝜖3𝑤1
3𝑓′(𝑧2)𝑎𝑖

1 

Finally, lets update the weights in the first layer.  The process is exactly as it was above, yielding 

the answer.   

𝛿𝑤𝑖
1 = −𝜂𝜖2𝑤1

2𝑓′(𝑧1)𝑎𝑖
0 

In summary, the backwards propagation algorithm allows us to update the weights according to 

the following algorithm: 

𝛿𝑤𝑖
3 = −𝜂 (𝑎1

3 − 𝑦) 𝑓′(𝑧3) 𝑎𝑖
2 

𝛿𝑤𝑖
2 = −𝜂𝜖3𝑤1

3𝑓′(𝑧2)𝑎𝑖
1 

𝛿𝑤𝑖
1 = −𝜂𝜖2𝑤1

2𝑓′(𝑧1)𝑎𝑖
0 

where  

𝜖𝑙 = 𝜖𝑙+1𝑤1
𝑙+1𝑓′(𝑧𝑙) 

 

C.2.1 Summary  

We learn the following things about back-propagation 

1) The update to weights in layer l are obtained from parameters that were calculated in the 

forwards propagation step, namely  𝑎𝑖
𝑙−1 and 𝑧𝑙 , and a term related to layer l+1 which 

come from the backwards propagation step, namely 𝜖𝑙+1.  This is the beauty of the 

algorithm; you propagate forwards through the net to calculate the current values of the 

system, and then backwards propagate the error function through the net to update the 

weights.   

2) If we write out long hand the explicit expression for the update to the weights, you obtain 

the following clear pattern: 

𝛿𝑤𝑖
3 = −𝜂 (𝑎1

3 − 𝑦) 𝑓′(𝑧3) 𝑎𝑖
3 

𝛿𝑤𝑖
2 = −𝜂 (𝑎1

3 − 𝑦)( 𝑓′(𝑧3) 𝑤1
3) 𝑓′(𝑧2) 𝑎𝑖

2 

𝛿𝑤𝑖
1 = −𝜂 (𝑎1

3 − 𝑦)(𝑓′(𝑧3) 𝑤1
3) (𝑓′(𝑧2) 𝑤1

2) 𝑓′(𝑧1) 𝑎𝑖
1 

Thus, the update to the weights in the earlier layers involve ever more products of terms of the 

form (𝑓′(𝑧𝑙)𝑤1
𝑙).  The function 𝑓′(𝑧) peaks at a value of 0.25.  If the weights are distributed as a 

normal random variable, then it will usually be the case |𝑓′(𝑧𝑙)𝑤1
𝑙| < 1.  In this case the values 

𝛿𝑤𝑖
𝑙 will tend to get smaller as one works towards earlier layers.  This is called the vanishing 

gradient problem. It results in the general rule of thumb that earlier layers tend to learn slower 

than later layers. 

Of course, it does not have to be the case that |𝑓′(𝑧𝑙)𝑤1
𝑙| < 1.  It is possible to have large 

weights, 𝑤1
𝑙 ≫ 1, and biases that center the input weights 𝑧𝑖 near to zero where 𝑓′(𝑧𝑖) ≈ 0.25, 

resulting in 𝑤𝑖𝑓′(𝑧𝑖) > 1.  This tends to yield the opposite problem, a diverging gradient, in 

which earlier layers learn faster than later layers. 



 

66 

 

The underlying problem is not that the gradient is either vanishing or diverging, rather it is that 

the gradient is unstable. This comes from the fact that 𝛿𝑤𝑙 involves products from terms in all 

subsequent layers, and the product of many terms is unstable. As a result, different layers will 

learn at different rates, and the learning will be unbalanced.  This problem becomes worse as the 

number of layers become large, and is thus a particular challenge for DNNs. 

   

C.3 The Multi-Neuron, Multi-Layer, Neural Net 

The formalism adopted above can be adapted to a fully connected, multi-neuron, multi-layer 

neural net.  The addition of multiple neurons makes it natural to want to phase all the 

calculations in terms of matrix algebra.  The derivation below starts with calculations of 

individual components, and then generalizes to the matrix formalism.   

As was done above, the input data are defined to include the affine: 

𝑎0
0 =  1, 𝑎𝑖

0 =  x𝑖   for  𝑖 > 0 

The description of the ith neuron in layer l:  

𝑧𝑖
𝑙 =  ∑ 𝑤𝑖,𝑗

𝑙  𝑎𝑗
𝑙−1

𝑗

 

𝑎𝑖
𝑙 =  𝑓(𝑧𝑖

𝑙) 

It is straightforward to view all of these operations in terms of matrix algebra.  In particular, if 

we format  𝑧𝑙  as a (𝑁𝑙 x 1) column matrix, 𝑤𝑙  as an (𝑁𝑙 x 𝑁𝑙−1) rectangular matrix, and 𝑎𝑙−1 
as a (𝑁𝑙−1 x 1) column matrix, then the above expressions become 

[𝑧𝑙](𝑁𝑙 x 1) = [𝑤𝑙](𝑁𝑙 x 𝑁𝑙−1) [𝑎𝑙−1](𝑁𝑙−1 x 1) 

[𝑎𝑙](𝑁𝑙 x 1) = [𝑓(𝑧𝑙)](𝑁𝑙 x 1) 

The error function is then 

𝐸 =
1

2
[𝑦 − 𝑎𝐿](1 x 𝑁𝑙)

𝑇  [𝑦 − 𝑎𝐿] (𝑁𝑙 x 1) 

where the notation [ ]𝑇 is meant to mean the transpose matrix.   

Now start the backwards propagation exercise.  The update to the weights in the final layer is  

𝛿𝑤𝑖,𝑗
𝐿 = −𝜂

𝜕𝐸

𝜕𝑤𝑖,𝑗
𝐿 = −𝜂

𝜕𝐸

𝜕𝑧𝑖
𝐿

𝜕𝑧𝑖
𝐿

𝜕𝑤𝑖𝑗
𝐿 = −𝜂𝜖𝑖

𝐿𝑎𝑗
𝐿−1 

where the derivative 𝜖𝑖
𝐿 = 𝜕𝐸 𝜕𝑧𝑖

𝐿⁄ .  It is straightforward to calculate 

𝜖𝑖
𝐿 =

𝜕𝐸

𝜕𝑎𝑖
𝐿

𝜕𝑎𝑖
𝐿

𝜕𝑧𝑖
𝐿 = (𝑎𝑖

𝐿 − 𝑦𝑖) 𝑓′(𝑧𝑖
𝐿) 

Thus, one obtains 

𝛿𝑤𝑖,𝑗
𝐿 = −𝜂 (𝑎𝑖

𝐿 − 𝑦𝑖) 𝑓′(𝑧𝑖
𝐿) 𝑎𝑗

𝐿−1 



 

67 

 

Now lets calculate the update to the weights in the l th layer.  We can formulate this exactly 
as was done above, 

𝛿𝑤𝑖,𝑗
𝑙 = −𝜂

𝜕𝐸

𝜕𝑤𝑖,𝑗
𝑙 = −𝜂

𝜕𝐸

𝜕𝑧𝑖
𝑙

𝜕𝑧𝑖
𝑙

𝜕𝑤𝑖,𝑗
𝑙 = −𝜂𝜖𝑖

𝑙𝑎𝑗
𝑙−1 

The parameter 𝜖𝑖
𝑙 can be written in terms of 𝜖𝑗

𝑙+1, 

𝜖𝑖
𝑙 = ∑

𝜕𝐸

𝜕𝑧𝑗
𝑙+1

𝜕𝑧𝑗
𝑙+1

𝜕𝑧𝑖
𝑙

𝑗

= ∑ 𝜖𝑗
𝑙+1𝑤𝑗,𝑖

𝑙+1𝑓′(𝑧𝑖
𝑙)

𝑗

 

where the sum is over the 𝑁𝑙+1 neurons in the (l+1)th layer.  Now, the interesting part of 
this expression is that it can be re-cast in terms of matrices.  In particular, if we format  𝜖𝑙 
as a (𝑁𝑙 x 1) column matrix, 𝑤𝑙+1 as an (𝑁𝑙+1x 𝑁𝑙) matrix, and 𝑓′(𝑧𝑙) as a (𝑁𝑙 x 𝑁𝑙) diagonal 

matrix with the terms 𝑓′(𝑧𝑖
𝑙) along the diagonal, then the expression for 𝜖𝑙 becomes 

[𝜖𝑙](𝑁𝑙 x 1) = [𝑓′(𝑧𝑙)](𝑁𝑙 x 𝑁𝑙) [𝑤𝑙+1](𝑁𝑙 x 𝑁𝑙+1)
𝑇  [𝜖𝑙+1](𝑁𝑙+1 x 1) 

Using the same notation, one can express the update to the weights as  

[𝛿𝑤𝑙](𝑁𝑙 x 𝑁𝑙−1) = −𝜂 [𝜖𝑙](𝑁𝑙 x 1)[ 𝑎𝑙−1](1 𝑥𝑁𝑙−1 )
𝑇  

And thus backwards propagation enables the calculation of the update to the weights in a 
particular layer in terms of parameters calculated during forward propagation and in terms 
of parameters calculated for subsequent layers during the backwards propagation.   

Similarly, we can re-cast the backwards propagation results for the final layer L using this 
same formalism, 

[𝜖𝐿](𝑁𝐿 x 1) = [𝑓′(𝑧𝐿)](𝑁𝐿 x 𝑁𝐿) [𝑎𝐿 − 𝑦](𝑁𝐿 x 1) 

[𝛿𝑤𝐿](𝑁𝐿 x 𝑁𝐿−1) = −𝜂 [𝜖𝑙](𝑁𝐿 x 1)[ 𝑎𝐿−1](1 𝑥𝑁𝐿−1 )
𝑇  

 

C.3.1 Summary 

The entire training algorithm can be written in matrix notation. The forward propagation is 
written as  

[𝑧𝑙] = [𝑤𝑙] [𝑎𝑙−1] 

[𝑎𝑙] = [𝑓(𝑧𝑙)] 

The backwards propagation starts with the parameters for the final layer 

[𝜖𝐿] = [𝑓′(𝑧𝐿)] [𝑎𝐿 − 𝑦] 

[𝛿𝑤𝐿] = −𝜂 [𝜖𝐿] [ 𝑎𝐿−1]𝑇 

The remaining layers are calculated using the following relations. 

[𝜖𝑙] = [𝑓′(𝑧𝑙)] [𝑤𝑙+1]𝑇 [𝜖𝑙+1] 

[𝛿𝑤𝑙] = −𝜂 [𝜖𝑙] [ 𝑎𝑙−1]𝑇 



 

68 

 

This matrix algebra formalism is ideally suited to benefit from the parallelism of graphics 

processor units (GPUs).  Graphics processors were initially developed for processing image data 

for displays, which are also dominated by matrix operations.  The benefits become all the more 

important as the scale of the problem grows, both in terms of the number of neurons per layer 

and the total number of layers.  Thus, the success of deep neural networks relies on availability 

of GPU hardware.



 

69 

 

APPENDIX D:  List of Acronyms Used 

 

ACTUV Anti-Submarine Warfare Continuous Trail Unmanned Vessel 

AGI Artificial General Intelligence 

AI Artificial Intelligence 

AI100 One Hundred Year Study on Artificial Intelligence 

ASD (R&E) Assistant Secretary of Defense for Research and Engineering 

AVX Advanced Vector Extension 

BBC British Broadcasting Corporation 

BD Big Data 

BD/DL Big Data / Deep Learning 

CNN Convolutional Neural Network 

COTS Commercial Off-The-Shelf 

CPU Central Processing Unit 

CTBTO Comprehensive Nuclear Test Ban Treaty Organization 

DL Deep Learning 

DNN Deep Neural Network 

DOD Department of Defense 

DRAM Dynamic Random Access Memory 

eDRAM Embedded DRAM 

EIE Efficient Inference Engine 

FLOPS Floating-point Operations Per Second 

GAN Generalized Adversarial Network 

GOP Giga Operations 

GPU Graphics Processor Unit 

GRU Gated Recurrent Unit (element in an RNN) 

HMM Hidden Markov Model 

KRR Knowledge Representation and Reasoning 

LSTM Long and Short-Term Memory (element in an RNN) 

MAC Memory Access 

MKL Math Kernel Library 

ML Machine Learning 



 

70 

 

MOSIS Metal Oxide Semiconductor Implementation Service 

NLP Natural Language Processing 

NN Neural Network 

OSD Office of the Secretary of Defense 

PGM Probabilistic Graphical Model 

PPL Probabilistic Programming Language 

RAM Random Access Memory 

ReLU Rectified Linear Unit (nonlinear element in NN) 

RGB Red, Green, Blue 

RL Reinforcement Learning 

RNN Recursive Neural Network 

ROI Region Of Interest 

SAT Boolean Satisfiability Problem 

SIMD Single Instruction, Multiple Data 

SRAM Static Random Access Memory 

TF Tera FLOPS 

TPU Tensor Processing Unit 

UAV Unmanned Aerial Vehicle 

UCAS Unmanned Combat Air System 

VGG Visual Geometry Group (Oxford University) 

VPU Vision Processing Unit 


	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page



