An X reveals a Diamond: locating Israeli Patriot batteries using radar interference

Amid a busy few weeks of nuclear-related news, an Israeli researcher made a very surprising OSINT discovery that flew somewhat under the radar. As explained in a Medium article, Israeli GIS analyst Harel Dan noticed that when he accidentally adjusted the noise levels of the imagery produced from the SENTINEL-1 satellite constellation, a bunch of colored Xs suddenly appeared all over the globe.

SENTINEL-1’s C-band Synthetic Aperture Radar (SAR) operates at a centre frequency of 5.405 GHz, which conveniently sits within the range of the military frequency used for land, airborne, and naval radar systems (5.250-5.850 GHz)—including the AN/MPQ-53/65 phased array radars that form the backbone of a Patriot battery’s command and control system. Therefore, Harel correctly hypothesized that some of the Xs that appeared in the SENTINEL-1 images could be triggered by interference from Patriot radar systems.

Using this logic, he was able to use the Xs to pinpoint the locations of Patriot batteries in several Middle Eastern countries, including Qatar, Bahrain, Jordan, Kuwait, and Saudi Arabia.

 

 

Harel’s blog post also noted that several Xs appeared within Israeli territory; however, the corresponding image was redacted (I’ll leave you to guess why), leaving a gap in his survey of Patriot batteries stationed in the Middle East.

This blog post partially fills that gap, while acknowledging that there are some known Patriot sites—both in Israel and elsewhere around the globe—that interestingly don’t produce an X via the SAR imagery.

All of these sites were already known to Israel-watchers and many have appeared in news articles, making Harel’s redaction somewhat unnecessary—especially since the images reveal nothing about operational status or system capabilities.

 

 

Looking at the map of Israel through the SENTINEL-1 SAR images, four Xs are clearly visible: one in the Upper Galilee, one in Haifa, one near Tel Aviv, and one in the Negev. All of these Xs correspond to likely Patriot battery sites, which are known in Israel as “Yahalom” (יהלום, meaning “Diamond”) batteries. Let’s go from north to south.

The northernmost site is home to the 138th Battalion’s Yahalom battery at Birya, which made news in July 2018 for successfully intercepting a Syrian Su-24 jet which had reportedly infiltrated two kilometers into Israeli airspace before being shot down. Earlier that month, the Birya battery also successfully intercepted a Syrian UAV which had flown 10 kilometers into Israeli airspace.

 

 

The Yahalom battery in the northwest is based on one of the ridges of Mount Carmel, near Haifa’s Stella Maris Monastery. It is located only 50 meters from a residential neighborhood, which has understandably triggered some resentment from nearby residents who have complained that too much ammunition is stored there and that the air sirens are too loud.

 

 

The X in the west indicates the location of a Yahalom site at Palmachim air base, south of Tel Aviv, where Israel conducts its missile and satellite launches. In March 2016, the Israeli Air Force launched interceptors as part of a pre-planned missile defense drill, and while the government refused to divulge the location of the battery, an Israeli TV channel reported that the drill was conducted using Patriot missiles fired from Palmachim air base.

 

 

Finally, the X in the southeast sits right on top of the Negev Nuclear Research Centre, more commonly known as Dimona. This is the primary facility relating to Israel’s nuclear weapons program and is responsible for plutonium and tritium production. The site is known to be heavily fortified; during the Six Day War, an Israeli fighter jet that had accidentally flown into Dimona’s airspace was shot down by Israeli air defenses and the pilot was killed.

 

 

The proximity of the Negev air defense battery to an Israeli nuclear facility is not unique. In fact, the 2002 SIPRI Yearbook suggests that several of the Yahalom batteries identified through SENTINEL-1 SAR imagery are either co-located with or located close to facilities related to Israel’s nuclear weapons program. The Palmachim site is near the Soreq Centre, which is responsible for nuclear weapons research and design, and the Mount Carmel site is near the Yodefat Rafael facility in Haifa—which is associated with the production of Jericho missiles and the assembly of nuclear weapons—and near the base for Israel’s Dolphin-class submarines, which are rumored to be nuclear-capable.

Google Earth’s images of Israel have been intentionally blurred since 1997, due to a US law known as the Kyl-Bingaman Amendment which prohibits US satellite imagery companies from selling pictures that are “no more detailed or precise than satellite imagery of Israel that is available from commercial sources.” As a result, it is not easy to locate the exact position of the Yahalom batteries; for example, given the number of facilities and the quality of the imagery, the site at Palmachim is particularly challenging to spot.

However, this law is actually being revisited this year and could soon be overturned, which would be a massive boon for Israel-watchers. Until that happens though, Israel will remain blurry and difficult to analyze, making creative OSINT techniques like Harel’s all the more useful.

—–

Sentinel-1 data from 2014 onwards is free to access via Google Earth Engine here, and Harel’s dataset is available here.

Russia Images the LACROSSE Spysat

A Russian satellite tracking facility in Siberia has produced rarely-seen photographs of a U.S. intelligence satellite.

The U.S. Lacrosse radar satellite was captured in images generated at Russia’s Altay Optical Laser Center, apparently between 2005 and 2010. A selection of images was compiled and analyzed by Allen Thomson. See An Album of Images of LACROSSE Radar Reconnaissance Satellites Made by a 60 cm Adaptive Optics System at the G.S. Titov Altai Optical-Laser Center.

“The images contain enough information (range, angular scale) to perform a bit of technical intelligence (i.e., sophomore high school trigonometry) on the radar antenna size, which is a significant parameter affecting capability,” Mr. Thomson, a former CIA analyst, told Secrecy News.

While provocative, the intent of the imagery disclosure was obscure, he said.

“Why did the Russians release the images?  The US is highly paranoid about releasing resolved images of spysats, ours or others. The Russian paranoia is at least as great, so how did these images get out? What was the purpose?”

The images themselves seem to be mostly just a curiosity. But perhaps they underscore the growing visibility and the corresponding vulnerability of U.S. space-based assets.

“Our asymmetrical advantage in space also creates asymmetrical vulnerabilities,” said Gil Klinger, a defense intelligence official, last year. “Our adversaries recognize our dependence on space and continue to think of ways to respond to our space advantage.”

He testified at a 2014 House Armed Services Committee hearing on U.S. national security space activities, the record of which has recently been published. Space protection, orbital debris, the industrial base and related topics were addressed.

Russia’s Altay Optical Laser Center was profiled by Mr. Thomson here.

Defending the Earth

The 60-mile diameter Manicouagan impact feature in Canada

The 60-mile diameter Manicouagan impact feature in Canada

As astrophysicist Neil deGrasse Tyson has pointed out, we live in a cosmic shooting gallery. Less than a year ago a good-sized chunk of cosmic rock exploded over the Russian city of Chelyabinsk with a force of over 400 kilotons – over 30 times as powerful as the bomb that flattened Hiroshima. The impact was huge, blowing out windows and knocking people off their feet over hundreds of square miles – over 1500 people sought medical care for their injuries. And that was a fairly small rock – about the size of a school bus. There are much larger rocks out there with our name on them – like the 6-mile asteroid that dredged a hundred-mile crater (killing the dinosaurs in the process), or the even larger ones that excavated craters over 160 miles in diameter in Canada.

In fact, there are at least 4 craters on Earth that were formed by impacts large enough to cause mass extinctions – and these are only the ones we know about. Given that well over half the Earth’s surface is water-covered it stands to reason that there have been about twice as many huge water impacts as those on land. On top of that, we also have to wonder how many have eroded away, been covered by sediments, or destroyed by plate tectonics. Over the history of our planet it’s possible that we’ve had our bell rung by at least a dozen major impacts – every few hundred million years or so. Given that complex multicellular life has only been around for 500-600 million years most of these impacts would be invisible in the fossil record, but every one of them would have been catastrophic to life all over our planet – any of them would have been fatal to our civilization and would have pushed humanity to (maybe even past) the brink of extinction. And remember – it doesn’t take a dinosaur-killing strike to end our civilization – something far smaller is more than sufficient to put an end to our current technological civilization. Considering all of this, it might not be a bad idea to have some contingency plans.

Believe it or not there’s been a fair amount of work on this topic – watching the 1993 impact of Comet Shoemaker-Levy 9 leave Earth-sized bruises on the face of Jupiter convinced scientists that cosmic impacts can still play an important role in today’s Solar System. That led to Congress tasking NASA with locating all of the largest asteroids that have a chance of hitting Earth – to date the American programs have located over 2400 near-Earth asteroids, many of them large enough to pose a serious threat to our civilization.

Locating threats is a good first step but it would be nice to be able to do something other than passively watch an asteroid all the way to a collision – it would be nice to be able to deflect it somehow. Over the years there have been a number of suggestions, including gravitational tractors (parking a massive spacecraft nearby to let the gravity of the spacecraft tug the asteroid out of a collision course), using a giant mirror to heat one side of the asteroid to help divert it, and even coating half the asteroid with reflective materials to let the very slight pressure of reflected light push an asteroid out of our path. But the more dramatic methods – usually involving rocket motors or nuclear explosives – have pretty much been relegated to the realm of science fiction.

Part of the reason for this is that rockets and explosions are pretty dramatic and high-impact events – not only are they hard to get into position to use, but they are also just as likely to break an asteroid into pieces as to push it off course. This would seem to be OK – but in actuality, getting hit with three 2-mile diameter rocks is about as bad (maybe even worse) as being hit with a single 4-mile object. Unless whatever we were to do were to break the incoming object into pieces small enough to break up or burn up while passing through the atmosphere we might end up making things worse. Nevertheless, the concept of using nuclear weapons to help divert an incoming asteroid remains under consideration. In general, the further out we can predict a collision the more time we have to avoid trouble – and the gentler the methods we can use. But if we don’t see something until the last minute – a few years before collision – we might have to resort to more violent methods. This is where nuclear weapons might play a role, and according to a recent story in the Global Security Newswire, both Russian and American scientists are interested in using their skills to help develop weapons that might help to save our bacon.

So here’s the question – actually one of many – are nuclear weapons designers and the governments who employ them really interested in saving the planet, or are they just looking for a pretext to keep working on (and maybe testing) new and improved weapons? And a follow-on question – there’s a very real risk of a catastrophic collision in the next hundred million years, but a very small risk in the next century; do we face a greater risk from a possible asteroid collision or from developing and testing a new generation of nuclear explosives ostensibly aimed at averting such a collision?

I don’t have an answer to that one, but society needs to decide. If we, as a society, decides that the risk of a civilization-ending asteroid strike is sufficiently high that we need to have plans, backup plans, and an ultimate backup then we will need to not only design, but also to test new nuclear weapons that might someday save humanity – and we’ll also have to trust the governments and the scientists who design and test these devices that they will only be used for that purpose. If we don’t feel we can make this leap of faith then perhaps we ought to beef up our efforts to locate and track everything that poses a risk so that we don’t need to fall back on a last-ditch and last-minute effort to blow something out of our sky.

Personally, I think it makes sense to hedge our bets. There are only a few nations that have proven themselves capable of developing an asteroid-moving nuclear weapon and all of these nations have shown themselves able to resist the temptation to use these weapons in tense situations. I’d like to think that these nations will continue to show this level of restraint. And I also have to say that, to me, there is a certain symmetry in the thought that the weapons we thought might destroy civilization and launch a nuclear winter might one day be used to save the world.

The post Defending the Earth appears on ScienceWonk, FAS’s blog for opinions from guest experts and leaders.

Where does the plutonium come from?

new_horizonsLast week I wrote about how the shortage of Pu-238 might impact the exploration of the outer Solar System, but I didn’t much get into where the plutonium comes from. After all, while there are trace amounts of natural plutonium, there certainly isn’t nearly enough to fuel a space probe. So this week it seemed as though it might be worth going over where we get our plutonium, if only to understand why NASA (or DOE) needs tens of millions of dollars to produce it.

On the Periodic Table plutonium is two spots above uranium – uranium has an atomic number of 92 (that is, it has 92 protons) and plutonium is at 94. To make plutonium we somehow have to add two protons to a uranium atom. The way this happens is sort of cool – and there are different routes depending on the plutonium isotope that’s being produced.

To make Pu-239, the nuclide used in nuclear weapons, it’s a fairly simple process. Natural uranium is over 99% U-238, which doesn’t fission all that well. Put the U-238 (which makes up a minimum of 95% of the reactor fuel) into the middle of a reactor, which is seething with neutrons from uranium fission, and it will capture a neutron and turn into U-239. The U-239, in turn, decays by emitting a beta particle to neptunium-239, which gives off another beta particle. Since each beta decay turns a neutron into a proton, these two beta decays suffice to turn a uranium atom into one of plutonium. Thus, a single U-238 atom absorbing a single neutron and being allowed to sit long enough to undergo two beta decays (a few weeks or so) will turn into a single atom of Pu-239. Making heavier plutonium nuclides is just as easy – when Pu-239 captures additional neutrons it turns into Pu-240, Pu-241, Pu-242, and more. Not only is it fairly easy, but it happens all the time in any operating nuclear reactor.

OK – so we can see how simple neutron capture and patience can give us plutonium nuclides heavier than U-238, but this really doesn’t help us to make the Pu-238 needed to power a spacecraft. Making the lighter nuclide is a little more roundabout.

Remember that, through neutron capture, a reactor produces Pu-241. It turns out that Pu-241 also decays by beta emission, creating Am-241 – the stuff that’s used in smoke detectors (among other things). Am-241 is an alpha emitter and it decays to a lighter variety of neptunium (Np-237) which, when subjected to neutron irradiation, captures a neutron to become Np-238. One final transformation – a last beta decay – is the last step to producing Pu-238. This is the reason why Pu-238 is so expensive – making it requires two bouts of irradiation (the first long enough to produce the Pu-241), enough time for all of the radioactive decays to transform plutonium into americium and the americium into neptunium, and several steps of chemical processing to isolate the various elements of interest that are formed.

Although it sounds convoluted (well, I guess it is convoluted), making Pu-238 is fairly straight-forward. The science and engineering are both well-known and well-established, and its production certainly breaks no new scientific or technical ground. But the politics…that’s another matter altogether.

As I mentioned last week, the American Pu-238 production line shut down over two decades ago. Since then we’ve been buying it from the Russians, but they’ve got their own space program and have limited stocks to boot. So this option is not going to work for much longer, regardless of the future of US-Russian international relations.

A recent blog posting by Nuclear Watch suggested that the US might be able to meet its Pu-238 needs by dismantling nuclear weapons and by digging into its inventory of scrap Pu-238 – it notes that the Los Alamos National Laboratory (LANL) documents indicate that over 2000 RTGs’ worth of the nuclide can be recovered from nuclear weapons alone. But I’m not sure if I can accept this assertion, primarily because putting this nuclide into a nuclear weapon makes absolutely no sense. I can’t comment on the “scraps” of Pu-238 that LANL is said to have lying around, and unfortunately Nuclear Watch didn’t provide a link to the LANL documents they cited, making it difficult to check or to comment further. But if there is a Pu-238 stockpile at LANL it would certainly be nice to tap it for space exploration – not to mention the savings in disposal costs.

Yet another way to make Pu-238 is in a liquid fluoride thorium reactor (LFTR) – a reactor that uses naturally occurring thorium (Th-232) to breed U-233, which fissions quite nicely. Additional neutron captures can turn U-233 into Pu-238, which can be chemically separated from the fuel. There’s a lot more to the topic than this, but I covered the topic of thorium reactors fairly thoroughly last year (the first of these posts is at this URL, and there are three others in the same series) and it’s also covered on the Thorium Energy Alliance’s website. There are a lot of nice things about thorium reactors in addition to their being able to produce Pu-238, and it’s a technology that’s been worked out and tested – but the US shows no sign of building any of them anytime soon. India and China might develop extensive thorium reactor systems – but what these nations might do a decade or two in the future won’t do much for NASA in the next few years. The bottom line is that, however promising they might be for future needs, thorium reactors aren’t likely to help us send more spacecraft to the outer Solar System anytime soon.

So here’s where we stand. The US stopped producing the Pu-238 needed to run our deep-space probes and we’ve pretty much used up our stocks of the material. In the intervening years we’ve been buying Russian Pu-238, but that won’t be available for much longer, leaving us high and dry. There may be scraps of the material – possibly even stockpiles – at various DOE facilities, but dismantling nuclear weapons is probably not going to do the job. Over the long run thorium-cycle reactors might be a great way to make it, but these reactors aren’t operating anywhere in the world today and there are no American plans to build any of them anytime soon. That would seem to leave us with only three options – re-start our Pu-238 production line, find another way to make (or obtain) the material, or confine ourselves to the inner Solar System. As I mentioned last week, I sincerely hope we don’t go the last route. So let’s see what we can come up with – and let’s hope we don’t leave the solution (and decisions) too long.

The post Where does the plutonium come from? appears on ScienceWonk, FAS’s blog for opinions from guest experts and leaders.

Houston – we need some plutonium

Pu-238 glowing with the heat of alpha radiation decay

Pu-238 glowing with the heat of alpha radiation

The outer Solar System is a dark and lonely place – solar energy drops off with the inverse square of distance to the Sun so a spaceship in orbit around Jupiter (5.5 times as far from the Sun as the Earth) receives only about 3% as much solar energy as one orbiting Earth. Solar panels do a great job of powering spacecraft out about as far as Mars but anything sent to the outer reaches of the Solar System needs to find some other source of power. For most spacecraft this means using plutonium – specifically the isotope Pu-238. And according to some recent reports, we might be running out this particular flavor of plutonium. Since we can’t visit the outer solar system on solar power and batteries have a limited lifespan, if we want to go past the asteroid belt we’ve got to go nuclear with either radioisotope thermoelectric generators (RTGs) or reactors. And according to a NASA scientist (quoted in the story linked to above) we are running out of Pu-238 – if we don’t take steps to either replenish our stocks or to develop an alternative then our deep space exploration might grind to a halt. But before getting into that, let’s take a quick look at why Pu-238 is such a good power source.

As with any other element, plutonium has a number of isotopes – Pu-239 is the one that fissions nicely enough to be used in nuclear weapons, and the slightly heavier version (Pu-240) also fissions nicely. These heavier plutonium isotopes are both produced in nuclear reactors when U-238 captures a neutron or two – any operating reactor produces them and, for that matter, fissioning these plutonium isotopes produces a significant amount of energy in any nuclear reactor. Pu-238 is also produced in reactors, but through a slightly more convoluted pathway. The bottom line is that useable quantities of plutonium – fissionable or non – are produced in reactors.

What makes Pu-238 valuable is that it decays away quite nicely and produces a boatload of energy when it decays – it has a long enough half-life (just a tad less than 88 years) to last for decades and it gives off a high-energy alpha particle (for those who are interested, the alpha energy is over 5.5 MeV).

So let’s look at how this is turned into energy. Plutonium-238 has a half-life of 87.7 years and a decay constant (a measure of the fraction of Pu-238 atoms that will decay in a year) of 0.0079. To get a bit geekish, if we can calculate the number of atoms in a kg of Pu-238 then we can multiply the number of atoms by the decay constant to figure out how many decays will occur in a given period of time. A kg of Pu-238 has about 2.5×1023 atoms – multiply this by the decay constant and we find that there should be about 2×1022 atoms decaying every year; a year has about 3.1×107 seconds so this will give a decay rate of about 6.4×1014 atoms every second. And since each decay carries with it about 5.5 million electron volts (MeV), 1 kg of Pu-238 produces 3.5×1015 MeV every second. Doing some unit conversions gives us an energy production of about 550 joules per second – one J/sec is 1 watt, so each kilogram of Pu-238 produces 550 watts of power. A 5-kg RTG (like the one that’s powering the Curiosity rover on Mars) will put out nearly 3 kW of thermal power. This is enough heat that a sufficiently large mass of Pu-238 will glow red-hot; captured, it can be transformed into electricity to power the spacecraft – with a 5% conversion efficiency from thermal to electrical energy, this 10 kg of Pu will produce about 150 watts of electrical power. There are more efficient ways of turning heat into electricity, but they all have their limitations or are untried technologies.

This is where the Pu-238 half-life comes into play – it will take 87.7 years for 50% of the Pu-238 (and for power production to drop by half), so power will drop by only about 0.8% in a year. The Pu-238 half life is short enough to make for a furious decay rate – enough to produce the power needed to run a spaceship – but long enough to last for the decades needed to reach Pluto (the destination of the New Horizons ship) or to linger in orbit around Jupiter and Saturn (a la Galileo and Cassini). Without RTGs powered by Pu-238 we can’t explore much beyond the asteroid belt. This is why the possible exhaustion of our stocks of this nuclide so alarms Adams. According to Adams, NASA has already delayed or cancelled a number of planned missions to the outer Solar System, including a mission to study Europa, whose oceans are considered a prime candidate as an abode for life outside of Earth. The Department of Energy estimates that an annual outlay of $20 million or less would be enough to supply NASA’s Pu-238 needs, but this amount has not been forthcoming.

The space program is controversial and has been controversial for a half-century. Some decried the spending on Apollo, in spite of the fact that it gave us humanity’s first steps on another world. The Shuttle program also came under fire for a number of reasons, as has the International Space Station. And unmanned programs have been criticized as well. The common thread in most of this criticism is a matter of money – asking why in the world we should spend billions of dollars to do something that doesn’t provide any tangible benefit to those of us on Earth. Those making this argument are those who are reluctant to spend (or waste, as they’d put it) a few tens of millions of dollars annually to power the spacecraft that could help us learn more about our cosmic neighborhood.

The economic argument is hard to refute on economic grounds – there’s no denying that close-up photos of Saturn’s rings or Titan’s hydrocarbon seas haven’t fed a single hungry person here at home. And for that matter, even finding life on Mars (or Europa) will not feed the hungry here on Earth. But there has got to be more to life than simple economics – if not then there would be no need for art, for music, for sports, or for any of the other things we do when we’re not working, eating, sleeping, or attending to personal hygiene.

Discussing the relative merits of “pure” science is beyond the scope of this post (although I did discuss it in an earlier post in this blog). But I think it’s worth pointing out that the public showed a genuine interest in the exploits of the Voyager probe, the Galileo mission, and the Cassini craft – not to mention the missions to Mars, Venus, and elsewhere. I’d like to think that the deep space program is worth another few tens of millions of dollars a year for the entertainment value alone – especially given the vast sums that are spent on movies and TV shows that are watched by fewer people and that provide little in the way of enlightenment or uplifted spirits.

One other point that’s worth considering is that NASA’s outer Solar System missions are billion-plus dollar missions and the cost of plutonium is a small fraction of this amount. While not a major part of the nation’s economy, NASA programs employ a lot of people throughout the US to design and build the machines and the rockets that loft them into space, not to mention everyone who works to collect and analyze the data as it comes to Earth. That our deep-space capacity and those who keep it running might grind to a halt for lack of a few tens of millions of dollars of plutonium is a shame. The loss of everything else that goes along with our space program – the influx of new knowledge, the cool pictures, the sense of pride that we can send a working spacecraft so far and can keep it working so long, and the sense of wonder that comes from considering (even if only for a short time) our place in the universe – losing this for want of a little plutonium would be a crime.

The post Houston – we need some plutonium appears on ScienceWonk, FAS’s blog for opinions from guest experts and leaders.

Change at the United Nations

by: Alicia Godsberg

The First Committee of this year’s 64th United Nations General Assembly (GA) just wrapped up a month of meetings.  The GA breaks up its work into six main committees, and the First Committee deals with disarmament and international security issues.  During the month-long meetings, member states give general statements, debate on such issues as nuclear and conventional weapons, and submit draft resolutions that are then voted on at the end of the session.  Comparing the statements and positions of the U.S. on certain votes from one year to the next can help gauge how an administration relates to the broader international community and multilateralism in general.  Similarly, comparing how other member states talk about the U.S. and its policies can give insight into how likely states may be to support a given administration’s international priorities. Continue reading

North Korea Launches Rocket but Satellite Fails

Despite a world of advice to the contrary, the North Koreans launched their Taepodong-2 or Unha rocket yesterday morning. Recent reports are that the first two stages operated correctly but the third stage failed. Reading between the lines a bit, it might have failed to ignite rather than exploding. This seems to be a replay of the Taepodong-1 test satellite launch attempt: In that case, both stages one and two seemed to operate properly but the third stage apparently exploded and the satellite never entered orbit. (That failure did not discourage the North Koreans, who announced that the whole thing was a great success and the satellite was up there. My bet is they will do the same thing this time.)

So was the test a failure? Not at all. The reason the world is worried about this test is not because we are worried about competition in the satellite launch business. (Good luck to them!) The world worries because the launcher the North Koreans used is a Taepodong-2, which most everyone believes is their next step up toward a long-range ballistic missile. By taking a warhead off and putting a small third stage and a satellite on top, they might call it a space launcher but the first two stages are exactly the same. The last time the configuration was tested, it exploded 40 seconds into its flight and that flight was a clear failure. No doubt, the North Koreans would have been happier this time with a little satellite up there broadcasting patriotic songs but everything they needed to test for a military missile appears to have worked in yesterday’s test. From the military perspective, the test at this point seems to have been largely successful, in that it demonstrated what needed to be demonstrated and the North Koreans got the information they needed to get.

Does this mean they have a missile that can reach the United States? Well, not really. This test is a big step forward for them but one test does not make a ballistic missile program. There is much more for them to do. We have no idea what they judge the accuracy of the missile and they have not tested an appropriate reentry vehicle. This missile test is an very unfortunate development. I wish the North Koreans had more finese. But it does not give them a ballistic missile capability yet.
Addendum: More information is coming it. Apparently, not only did the satellite fail to enter orbit, but the second stage fell short of the predicted impact area. That suggests that the second stage failed. It could even be that the third stage operated successfully–separated, ignited, guidance worked, and so forth–but without the proper speed and altitude provided by the second stage, it would have no chance of making orbit. If this turns out to be the case, then the conclusions above have to be modified and this is a more limited step forward for the North Korean Taepodong-2 program.

North Korea’s Teapodong-2 Unha Missile Launch: What might we learn?

Indications are that North Korea is moving ahead with its planned launch of a missile with the intent of placing a satellite into orbit. The North Koreans are portraying the launch in purely innocuous, civilian terms even naming the rocket “Unha,” which means “Milky Way” in Korean, to emphasize its space-oriented function. In the West, the rocket is called the Taepodong-2 and is thought to be a long-range (but not truly intercontinental range) ballistic missile.

Even if the rocket launches a satellite, and recent news reports say the payload sections seems to be shaped and sized for a satellite, it would be an important step in their military ballistic missile program. In the early days of the Soviet and American space programs, there was little distinction between military and civilian rocket development and the same would be true of North Korea’s upcoming launch. What I want to discuss in this essay is the question of how much can the outside world learn if the North Korean test goes through, what does it tell us about their ballistic missile capability?

Continue reading

U.S. Plans Test of Anti-Satellite Interceptor Against Failed Intelligence Satellite

The United States is planning to intercept a dying reconnaissance satellite with a missile launched from a Navy ship. The administration justifies the intercept on the basis of public safety. That is a long stretch, indeed, and thus far in the news coverage that I have seen there is virtually no mention of the political consequences of the United States’ conducting its first anti-satellite test in over two decades.

The United States, along with China, Russia, and other space-faring nations, should be working to ban anti-satellite weapons. Such a ban would work strongly in the best interests of the United States because we depend more, by far, than any other nation on access to space for our economy and security. Any measure that reduces the threats to satellites will enhance American security. The proposed test is a potential public relations bonanza, showing the public how a defensive missile can protect us from a—largely imaginary—danger from above. What follows is a simple analysis of what some of these dangers might be and a description of what might happen. These are questions that should have been asked of the administration.

Continue reading