Trump Admin Would Curtail Carbon Capture Research

The Trump Administration budget request for FY 2018 would “severely reduce” Energy Department funding for development of carbon capture and sequestration technologies intended to combat the climate change effects of burning fossil fuels.

The United States has “more than 250 years’ worth of clean, beautiful coal,” President Trump said last month, implying that remedial measures to diminish the environmental impact of coal power generation are unnecessary.

Research on the carbon capture technology that could make coal use cleaner by removing carbon dioxide from power plant exhaust would be cut by 73% if the Trump Administration has its way.

“The Trump Administration’s approach would be a reversal of Obama Administration and George W. Bush Administration DOE policies, which supported large carbon-capture demonstration projects and large injection and sequestration demonstration projects,” the Congressional Research Service said this week in a new report.

“We have finally ended the war on coal,” President Trump declared.

However, congressional approval of the Administration’s proposal to slash carbon capture and sequestration (CCS) development is not a foregone conclusion.

“The House Appropriations Committee’s FY2018 bill funding DOE disagrees with the Administration budget request and would fund CCS activities at roughly FY2017 levels,” the CRS report said.

“This report provides a summary and analysis of the current state of CCS in the United States.” It also includes a primer on how CCS could work, and a profile of previous funding in this area. See Carbon Capture and Sequestration (CCS) in the United States, July 24, 2017.

Other new and updated reports from the Congressional Research Service include the following.

Methane and Other Air Pollution Issues in Natural Gas Systems, updated July 27, 2017

The U.S. Export Control System and the Export Control Reform Initiative, updated July 24, 2017

Base Erosion and Profit Shifting (BEPS): OECD Tax Proposals, July 24, 2017

Oman: Reform, Security, and U.S. Policy, updated July 25, 2017

Lebanon, updated July 25, 2017

Aviation Bills Take Flight, but Legislative Path Remains Unclear, CRS Insight, July 25, 2017

Military Officers, CRS In Focus, July 3, 2017

Military Enlisted Personnel, CRS In Focus, July 3, 2017

Transgender Servicemembers: Policy Shifts and Considerations for Congress, CRS Insight, July 26, 2017

Systematic, authorized publication of CRS reports on a government website came a step closer to reality yesterday when the Senate Appropriations Committee voted to approve “a provision that will make non-confidential CRS reports available to the public via the Government Publishing Office’s website.”

France’s Choice for Naval Nuclear Propulsion: Why Low-Enriched Uranium Was Chosen

This special report is a result of an FAS task force on French naval nuclear propulsion and explores France’s decision to switch from highly-enriched uranium (HEU) to low-enriched uranium (LEU). By detailing the French Navy’s choice to switch to LEU fuel, author Alain Tournyol du Clos — a lead architect of France’s nuclear propulsion program — explores whether France’s choice is fit for other nations. Read or download now.

Chernobyl After 30: The Vesuvius of our Time

© Szustka, iStock images

While Chernobyl has been by far the most serious nuclear accident in history and has probably put the brakes on nuclear power development worldwide more than any other event, this anniversary is a good time to assess how meaningful those lessons might be.

The decision to build Chernobyl was ill conceived; the design was faulty; its construction was botched (since the plant was opened without full testing of important design features); its management was flawed; and the execution of the critical tests, that were the immediate cause of the disaster, were ill advised.

The accident itself was initially denied; the blame was misplaced; show trials were held; and the guilt felt by a senior scientist was so great that it led to his suicide just two years later.

There have been exaggerated reports that have both overstated and understated the impact on the lives of people in the former Soviet Union and in Europe. After 30 years, there is some clarity on these numbers, but they remain controversial.

The poignancy of the Chernobyl event has been encapsulated in a touching collection of interviews by Belarusian writer, Svetlana Alexievich, who was awarded the Nobel Prize in Literature in 2015 in recognition of her artistry in capturing these oral histories. One review of her work commented that she wrote about a “combination of disaster and mendacity.”

Today, we still struggle to unravel the origins of the disaster and the magnitude of the mendacity. The history of Chernobyl is a bizarre anomaly which offers few lessons for the future directions of nuclear energy, but much that is instructive about the need for openness and an absolute requirement for a culture of safety.

The smoldering remains of Reactor 4 are being covered with a huge airtight enclosure that we hope will protect society for at least the next 100 years. This enclosure, which is often referred to as a “sarcophagus,” is an international effort costing more than one and one-half billion euros and that is so large, it could encapsulate the soccer stadium of Paris.

But while the physical remains of reactor 4 can be shielded from view, we still confront, in plain sight, eleven similar reactors that are operating in the Russian Federation. There are several of this model that were closed since 1986, including two in Lithuania that were taken out of operation at the insistence of the European Union that would not allow the accession of Lithuania into the EU unless that were accomplished. While the eleven that are still operating have been modified to improve their safety, it is doubtful that they would pass current operating standards. We call upon Russia to work with the IAEA to carefully evaluate the status of these reactors.

Edward A. Friedman is the Professor Emeritus of Technology Management at Stevens Institute of Technology. His undergraduate and doctorate degrees in Physics are from MIT (1957) and Columbia University (1963), respectively. He has had a long time interest in nuclear weapons issues. In recent years he has developed new courses that deal with nuclear weapons in international affairs and the threat of nuclear terrorism.

His career has included development of a computer intensive educational environment at Stevens, which in 1982, became the first college in the United States to require all students to own a computer. He played a key role in a U.S. government program to develop an indigenous college of engineering in Afghanistan, where he was director from 1970-1973. From 1988 thru 2004, he pioneered in the use of Internet resources in teaching mathematics and science in primary and secondary schools. From 2004 thru 2008, he worked with the United Nations Development Program on computer assisted medical diagnoses at rural clinics in Africa. Dr. Friedman received the national education medal from King Zaher Shah of Afghanistan and an Honorary Doctorate of Mathematics from Sofia University in Bulgaria. He was also awarded the New Jersey State Albert Einstein Medal for educational leadership.

Contact information: [email protected]

What Happened at Chernobyl 30 Years Ago?

The world’s worst nuclear power accident took place thirty years ago on April 26, 1986.  The accident released radioactive material over parts of Ukraine and Europe and permanently displaced 350,000 people. Thirty people, mostly firefighters, died from radiation exposure within months of the explosion. The long-term health impacts are ultimately unknown, but some studies suggest there could be thousands of premature deaths due to cancer. The 1621 square mile area surrounding the reactor (bigger than the state of Rhode Island), known as the “exclusion zone,” will not be safe for people to live in for at least 175 years, though there are a few people, mostly elderly, who have returned to their homes within the zone.

Sarcophagus surrounding the destroyed reactor.  Photo by Ukrainian Authorities
Sarcophagus surrounding the destroyed reactor. Photo by Ukrainian Authorities

After the accident, the Soviet authorities hastily constructed a “sarcophagus” to encase the damaged area so that the other three reactors on site could continue to operate.

The sarcophagus was not built to last, so the international community is building a New Safe Confinement structure designed to last 100 years. It is due for completion in 2017. The enormous structure is being built some distance away due to radiation concerns, and will be slid over the old sarcophagus and reactor building on rails.

So, how did the accident happen? Ironically, the events leading up to it centered around a special safety test, but the ultimate causes of the accident were an unsafe reactor design, insufficiently trained plant operators, a lack of safety culture, and a culture of secrecy that discouraged operators from thinking critically and taking initiative.

To understand exactly what happened, you first have to understand how the power plant works in broad strokes.

Uranium or plutonium atoms are split (also known as nuclear fission or nuclear reaction), producing heat. The heat boils water, which then turns into steam. The steam spins large turbines, which look something like large fans. The turbines are attached to generators, and spinning them produces electricity.

Three other things you need to know:

(1) In the Chernobyl reactor design, as the water circulated through the reactor, it cooled the reactor. Some of it turned into steam, and some of the steam was used to spin the turbines.  Eventually, the steam was condensed back into water and it recirculated, continuing to cool the reactor.

(2) Power plants control how many nuclear reactions are taking place by inserting and removing “control rods” into the core of the reactor. The control rods are made of materials which absorb neutrons. The neutrons are what cause the uranium or plutonium to split. So, by inserting the control rod, you absorb some of the neutrons and can slow down the number of nuclear reactions. By removing the control rod, you can increase the number of nuclear reactions because more neutrons are available to split the uranium or plutonium. However, the design of the control rods in the Chernobyl reactor was poor. The way they were designed, there was an increase in nuclear reactions for just a few seconds as they were inserted.

(3) Also in this reactor design, when the reactor is operating at low power, an increase in the amount of steam present can cause the number of nuclear reactions to increase. This is because the water acts a bit like a control rod and absorbs some neutrons. When it turns to steam, there are more air pockets, and the steam doesn’t absorb as many neutrons as the water. So, an increase in steam leads to more reactions, which in turn generates more heat, which then produces more steam.

So, back to the special safety test.

Progress of the New Safe Confinement structure as of March 31, 2016.  Photo by Ukrainian Authorities
Progress of the New Safe Confinement structure as of March 31, 2016. Photo by Ukrainian Authorities

The test was an attempt to see if, in the event of power loss, the turbines in the power plant would keep spinning long enough to keep the water pumps running until the emergency generators kicked in. The reactor had a safety system that would automatically shut it down by inserting control rods if it detected a loss in steam supply to the turbine. In other words, if the water pumps stopped, the reactor would shut itself down.

Before the test started, they bypassed that safety feature and made sure the reactor would keep running even if there wasn’t enough water circulating. The reactor was operating at low power.  Remember, in this state, more steam can lead to more nuclear reactions. The power level was too low for them to conduct the test, so they removed some control rods — too many, in fact.  They exceeded the established safety standards. Only then did they start the test.

The turbines shut down. The water pumps stopped. This caused a steam build up, which caused the nuclear reactions to increase, generating even more heat.  At this point, they tried to reinsert the control rods to slow down the reactions, but the Chernobyl control rods caused the nuclear reactions to increase for just a few seconds after they were inserted, generating even more heat. The fuel inside the reactor started to break apart. Steam explosions destroyed the reactor core and blew the roof off the building. Fires broke out everywhere. The whole thing went down in under a minute.

A lot of things changed after the Chernobyl accident. The Soviets tried to cover it up at first, but ultimately they weren’t able to keep it under wraps for long. Western governments applied intense pressure on the Soviets to provide details about the accident. Ultimately, Gorbachev was fully transparent about the accident, in contradiction to the traditional Soviet culture of secrecy. Changes were made to Soviet reactors of similar design, as well as the control rods, so that they now operate safely. Secrecy no longer abounds, and technical exchanges take place between countries. There is also now a more highly developed culture of safety.

There are many lessons that can be learned from the Chernobyl accident but I think the most important one is this: Cooperation and exchange among the international scientific community is vitally important. The Soviet culture of secrecy surrounding their nuclear programs prevented input on safer reactor and control rod designs. And technical exchanges could have established industry best practices and fostered a culture of safety. Just talking to one another could have prevented the accident in the first place.

Tara Drozdenko is the Managing Director for Nuclear Policy and Nonproliferation at Outrider. She has over a decade of experience in the National Security field and several years of experience managing complex government programs and supervising teams of talented researchers at both the U.S. State and Treasury departments. She earned a Ph.D. in plasma physics in 2001 and has worked for the U.S. Navy on issues related to Weapons of Mass Destruction (WMDs) and for the U. S. State Department on Nonproliferation and Arms Control issues.

Contact information: [email protected]; @TaraDrozdenko, @Outriderfdn

30 Years After the Accident: The Meaning of Chernobyl Today?


April 26, 2016
Carnegie Endowment for International Peace

Leading experts came together to discuss Chernobyl on the eve of its 30th anniversary, the lessons learned, and possible implications that this fateful event has for the nuclear industry today. This special event was convened by the Federation of American Scientists.

                   PANEL DISCUSSANTS                    

Charles D. Ferguson (Moderator)

President, Federation of American Scientists
Edward Friedman
Professor Emeritus, Stevens Institute of Technology
“Chernobyl’s Dysfunctional Decisions”

Maureen Hatch
Staff Scientist and Former Head of Chernobyl Research Unit, National Cancer Institute
“Chernobyl: Then and Now”
Carol Kessler
Former Senior Coordinator for Nuclear Safety, U.S. State Department
“Nuclear Energy After Chernobyl” 

Jon Johnson
Senior Vice President, Lightbridge
Former Senior Executive, Nuclear Regulatory Commission
“Nuclear Regulatory Lessons Learned from Chernobyl”

The full recording of the event is available here.

Low Pollution at the Lowest Cost

As we consider America’s actions to counter climate change, one fact stands out: Our largest solutions to power plant pollution are going broke. Clean alternatives to fossil fueled electric generators are under pressure from low natural gas prices. Power prices are so low that four nuclear plants have recently announced that they will close. Other new technologies can’t make a profit either.

These low power prices do not take into account the costs of pollution. The National Academies report The Hidden Cost of Energy estimates that the costs of pollution from power plants (without considering costs related to climate change) should add just under 20% to the price of power. Economists favor that solution since it would allow markets to operate efficiently.

We can’t bring ourselves to do that in the United States. Instead, we adopt strategies such as renewable portfolio standards (RPS) to reduce pollution.

The trouble is that “low pollution” and “renewable” are not synonyms. America generates 32% of its power from low polluting generators, only 6% of which is from sources that qualify under an RPS.

The remaining clean 24% of our electric generation is in trouble. We are closing nuclear plants that generate as much electricity as all the wind plants in Texas; in fact, as much as all the wind installed in the USA in the past three years. Even new hydroelectric projects can’t make money in this market. And development of advanced pollution capture technology for fossil fuel plants and other innovative generators is largely moribund since investors see no reward.

Fortunately, there is a practical solution. We can broaden the RPS concept to be a low pollution portfolio standard, sometimes called a capacity portfolio standard. Such a standard would allow all low-pollution sources to qualify.

New York’s Governor Cuomo is considering a similar step. New York, Pennsylvania, and many other states should act now to support all low pollution sources of electricity by requiring that a large fraction of electricity come from such sources by a date certain.

For years, models of the electric power system have shown that the price of power is greatly increased whenever policy choices are artificially restricted. The President’s “all of the above” strategy acknowledges this. But restricting ourselves to only certain types of low pollution generators through an RPS does not.

Economists call the cost of such restrictions a shadow price. And the effects are large: if the portfolio of pollution reduction options is restricted, the wholesale electricity price will be much higher than if a full portfolio is used. How much higher? Models by the Electric Power Research Institute show that limiting the portfolio can result in prices doubling over the next generation compared to the same pollution reduction with all clean sources allowed.

If we restrict ourselves to the few sources of low polluting power that are allowed under renewable portfolio standards, there is a real danger that we will quickly price ourselves out of clean energy.

We are now making a modest pollution reduction through RPSs, including reducing greenhouse gases a little. But that will likely not be the least expensive way of making the big reductions we need.

If we were to rely only on ever-increasing RPS targets, we would run into two main problems. First, some areas of the country simply don’t have bountiful renewable resources. But those same regions would be fertile ground for other technologies.

Second, a truly large-scale power system based on only wind and solar would be much more expensive than one based on a full portfolio of low polluting generators. Money saved on fuel would not be nearly enough to offset the additional cost of transmission lines, storage, and the additional turbines and solar plants that are necessary to compensate for the fact that the wind doesn’t blow nor the sun shine as often as other plants are able to run.

A combination of renewable and other low-pollution generators will achieve a given target for reducing conventional and greenhouse gas pollution at significantly lower cost than renewables alone.

By putting all clean power sources on the same footing, we can gain the benefits of reducing pollution at the lowest cost. A low pollution capacity standard would save middle-class jobs. Forbes reports that the average worker at the Fitzpatrick nuclear plant in New York earns a bit over $100,000 annually. At the Kemper carbon dioxide capture plant in Mississippi, over 6,000 workers were employed in construction, and the plant will generate more than $40 million annually in local tax revenues.

Wind and solar power are big business now, and good for them! But we can’t forget that innovating to zero pollution requires that all entrants be given a chance.

With a shift from renewable portfolio standards to low pollution capacity standards, we can correct the failure of the market to price pollution at the lowest cost. Pennsylvania, New York, and other states (such as Illinois) have nuclear plants closing due to bargain-basement power prices that don’t account for costs of conventional or greenhouse gas pollution. Those states should lead the way in adopting broader standards that encourage all low pollution generators.

Jay Apt is a Professor at Carnegie Mellon University’s Tepper School of Business and in the CMU Department of Engineering and Public Policy. He is the Co-Director of the Carnegie Mellon Electricity Industry Center and Director of the RenewElec (renewable electricity) project. He has authored more than 100 papers in peer-reviewed scientific journals as well as two books and several book chapters. He has published op-ed pieces in the Wall Street Journal, the New York Times and the Washington Post.  Professor Apt received an A.B. in physics from Harvard College in 1971 and a Ph.D. in physics from the Massachusetts Institute of Technology in 1976. He is a Fellow of the American Association for the Advancement of Science. He received the NASA Distinguished Service Medal in 1997 and the Metcalf Lifetime Achievement Award for significant contributions to engineering in 2002.

Contact information: [email protected]; 412-268-3003

Energy Policy and National Security: The Need for a Nonpartisan Plan

As I write this president’s message, the U.S. election has just resulted in a resounding victory for the Republican Party, which will have control of both the Senate and House of Representatives when the new Congress convenes in January. While some may despair that these results portend an even more divided federal government with a Democratic president and a Republican Congress, I choose to view this event as an opportunity in disguise in regards to the important and urgent issue of U.S. energy policy.

President Barack Obama has staked a major part of his presidential legacy on combating climate change. He has felt stymied by the inability to convince Congress to pass comprehensive legislation to mandate substantial reductions in greenhouse gas emissions. Instead, his administration has leveraged the power of the Environmental Protection Agency (EPA) to craft rules that will, in effect, force the closure of many of the biggest emitters: coal power plants. These new rules will likely face challenges in courts and Congress. To withstand the legal challenge, EPA lawyers are working overtime to make the rules as ironclad as possible.

The Republicans who oppose the EPA rules will have difficulty in overturning the rules with legislation because they do not have the veto-proof supermajority of two-thirds of Congress. Rather, the incoming Senate majority leader Mitch McConnell (R-Kentucky) said before the election that he would try to block appropriations that would be needed to implement the new rules. But this is a risky move because it could result in a budget battle with the White House. The United States cannot afford another grinding halt to the federal budget.

Several environmental organizations have charged many Republican politicians with being climate change deniers. Huge amounts of money were funneled to the political races on both sides of the climate change divide. On the skeptical side, political action groups affiliated with the billionaire brothers Charles and David Koch received tens of millions of dollars; they have cast doubt on the scientific studies of climate change.  And on the side of wanting to combat climate change, about $100 million was committed by NextGen Climate, a political action group backed substantially by billionaire Tom Steyer. Could this money have been better spent on investments in shoring up the crumbling U.S. energy infrastructure? Instead of demonizing each side and just focusing on climate change, can the nation try a different approach that can win support from a core group of Democrats and Republicans?

Both Democratic and Republican leaders believe that the United States must have strong national security. Could this form the basis of a bipartisan plan for better energy policy? But this begs another question that would have to be addressed first: What energy policy would strengthen national security? Some politicians, including several former presidents, have called for the United States to be energy independent. Due to the recent energy revolution in technologies to extract so-called unconventional oil and gas from shale and sand geological deposits, the United States is on the verge of becoming a major exporter of natural gas and has dramatically reduced its dependence on outside oil imports (except from the friendly Canadians who are experiencing a bonanza in oil extracted from tar sands). However, these windfall developments do not mean that the United States is energy independent, even including the natural resources in all of North America.

Oil is a globally traded commodity and natural gas (especially in the form of liquefied natural gas) is tending to become this type of commodity. This implies that the United States cannot decouple its oil and gas production and consumption from other countries. For example, a disruption in the Strait of Hormuz leading to the Persian Gulf will affect about 40 percent of the globe’s oil deliveries because of shipments from Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirate. Such a disruption might occur in an armed conflict with Iran, which has been at loggerheads with the United States over its nuclear program. Moreover, while the United States has not been importing significant amounts of oil from the Middle East recently, U.S. allies Japan and South Korea rely heavily on oil from that region. Thus, a major principle for U.S. national security is to work cooperatively with these allies to develop a plan to move away from overreliance on oil and gas from this region and an even longer term plan to transition away from fossil fuels.

Actually, this long term plan is not really that far into the future. According to optimistic estimates (for example, from Cambridge Energy Research Associates) for when global oil production will reach its peak, the world only has until at least 2030 before the peak is reached, and then there will be a gradual decline in production over the next few decades after the peak.1)Peter Jackson, The Future of Global Oil Supply: Understanding the Building Blocks, Report, Cambridge Energy Research Associates, November 2009. (Pessimistic views such as from oil expert Colin Campbell predict the peak occurring around 2012 to 2015.2)Colin J. Campbell, “The Age of Oil,” in Ugo Bardi, Extracted: How the Quest for Mineral Wealth is Plundering the Planet (Chelsea Green Publishing, 2014). We thus may already be at the peak.) Once the global decline starts to take effect, price shocks could devastate the world’s economy. Moreover, as the world’s population is projected to increase from seven billion people today to about nine billion by mid-century, the demand for oil will also significantly increase given business as usual practices.

For the broader scope national security reason of having a stable economy, it is imperative to develop a nonpartisan plan for transitioning from the “addiction” to oil that President George W. Bush called attention to in his State of the Union Address in January 2006. While skepticism about the science of climate change will prevail, this should not hold back the United States working together with other nations to craft a comprehensive energy plan that saves money, creates more jobs, and overall strengthens international security.

FAS is developing a new project titled Sustainable Energy and International Security. FAS staff will be contacting experts in our network to form a diverse group with expertise in energy technologies, the social factors that affect energy use, military perspectives, economic assessments, and security alliances. I welcome readers’ advice and donations to start this project; please contact me at [email protected]. FAS relies on donors like you to help support our projects; I urge you to consider supporting this and other FAS projects.

Notes   [ + ]

1. Peter Jackson, The Future of Global Oil Supply: Understanding the Building Blocks, Report, Cambridge Energy Research Associates, November 2009.
2. Colin J. Campbell, “The Age of Oil,” in Ugo Bardi, Extracted: How the Quest for Mineral Wealth is Plundering the Planet (Chelsea Green Publishing, 2014).

Keeping the Lights on: Fixing Pakistan’s Energy Crisis

pakistan1Legal and illegal power connections in Lahore, Pakistan1)Personal Photograph. 2013.

A stable and thriving Pakistan is the key to preserving harmony and facilitating progress in the broader South Asia region. Afghanistan, which is to the west of Pakistan, has a long border that divides the Pakhtun people between the countries. As a result of this border, Pakistan not only has a significant role in the Afghan economy, but instability in the loosely governed Pakistani frontier region spills across the border into Afghanistan. Because of this relationship, Pakistan has a direct impact on the outcome on the 13 year U.S. led war in Afghanistan.  On the other hand, an unstable Pakistan would not only shatter budding trade relations with India, but could also spark conflict between the two nuclear armed rivals.

From frequent attacks by Islamic militants across the country to a slowing economy, it is clear that there are many issues that threaten Pakistan’s stability. However, the most pressing issue that Pakistan faces today is its deteriorating economy. In particular, a crushing energy shortage across the country significantly constrains economic growth. This fiscal year, Pakistan’s Gross Domestic Product (GDP) is forecasted to grow by measly 3.4 percent.2)“Global Economic Prospects: Pakistan,” The World Bank, 2014. At the same time, the country’s population is expected to grow by 1.8 percent adding to the 189 million people living there today.3)Population Projection Tables by Country: Pakistan. The World Bank. 2014. If there aren’t jobs available for the millions of young Pakistanis entering the work force, not only will poverty increase, but there is a strong possibly that some of these youth could vent their frustrations by joining the countless Islamic militant groups active in the country.

To build a more prosperous economy, Pakistan needs to address its energy problems. Without a reliable source of electricity or natural gas, how can Pakistani businesses compete on the global market? Large parts of the country today face blackouts lasting an average of 10 hours each day because of the electricity shortage.4)Ghumman, Khawar, “Increased loadshedding worries Prime Minister,” Dawn, April 24 2014. 5)“Electricity shortfall reaches 2,500MW,” The Nation, Jan 2 2014. The current gap between electricity generation and demand is roughly 2500 MW, a shortage large enough to keep a population of 20 million or the city of Karachi in the dark.6)Ibid.

These power shortages are only expected to become worse in the coming summer months. This is because demand for electricity peaks in the sizzling heat, while hydroelectric generation decreases as the water flow in the rivers drops due to seasonal fluctuation. This article will focus on the causes of the country’s energy problems involving the electricity sector and explore possible directions Pakistan can take to improve its energy situation, building its economy in the process.


How Does Pakistan Generate its Electricity?

Pak Energy

Figure 1: Pakistan’s Electricity Generation by Source7)“Pakistan Energy Yearbook,” Hydrocarbon Development Institute of Pakistan, 2012.

Figure 1 breaks down Pakistan’s electricity generation by source. Thermal power, which includes natural gas, oil, and coal generated electricity, accounts for 70 percent of Pakistan’s total electricity generation, while hydroelectric generation is roughly responsible for the remaining 30 percent.

Electricity generated from furnace oil accounts for slightly over a third of Pakistan electricity. In the early 1990s, the country faced a power shortage of about 2000 MW when there was a peak load on the electricity grid.8)“Policy Framework and Package of Incentives for Private Sector Power Generation Projects in Pakistan,” Government of Pakistan, 1994. To resolve the growing crisis, the Pakistani government implemented a new policy in 1994, which was designed to attract foreign investment in the power sector9)Beg, Fatima and Fahd Ali, “The History of Private Power in Pakistan,” Sustainable Development Policy Institute, 2007. and as a result there was construction of oil based power plants. These power plants were cheaper and faster to construct compared to other electricity generation plants such as hydroelectric dams. At the same time, the relatively low prices (below $17 a barrel) of crude oil meant that these plants generated electricity fairly cheaply.10)“Crude Oil Purchase Price.” U.S. Energy Information Administration, 2014. Fast forward to present times, the price of crude oil has risen to hover roughly around $100 a barrel.11)Ibid. Unlike nearby Saudi Arabia, Pakistan is naturally not well endowed in crude oil reserves. This means that Pakistan must ship increasing amount of valuable currency abroad to secure the oil it needs to keeps these power plants running.

Along with furnace oil power plants, natural gas is used to generate about another third of electricity; it is provided by domestic reserves, thereby helping Pakistan’s economy and energy security. According to the U.S. Energy Information Administration, Pakistan has proven natural gas reserves of 24 trillion cubic feet (Tcf) in 2012. These reserves will last Pakistan an estimated 17 years based on the country’s annual consumption rate of 1.382 Tcf in 2012.12)Pakistan. U.S. Energy Information Administration. At the same time, consumption rates are estimated to increase four fold to nearly 8 Tcf per year by the year 2020, further reducing the size of the domestic reserves.13)Tirmizi, Farooq, “The Myth of Pakistan’s infinite gas reserves,” The Express Tribune, Mar 14 2011.

The Pakistani government in 2005 under President Pervez Musharraf promoted the conversion of cars to run on compressed natural gas (CNG) instead of gasoline.14)“Natural Gas Allocation and Management Policy,” Government of Pakistan: Ministry of Petroleum & Natural Resources, Sept 2005. The rationale was that this conversion would reduce the amount of money spent on purchasing and importing oil abroad. At the same time, CNG is cleaner for the environment than burning gasoline. As a result of this policy, more than 80 percent of Pakistan’s cars today run on CNG.15)Boone, Jon, “Pakistan’s government deflates dream of gas-powered cars,” The Guardian, Dec 25 2013. But because of this surging demand for its limited natural gas, there is a critical shortage of it which has adversely impacted the country’s ability to use this fuel source to generate electricity. Essentially Pakistanis are forced to decide whether to use natural gas to fuel their cars, cook their food, or generate electricity.


Power Theft and the Circular Debt Issue

The reliance on oil and natural gas to generate electricity is incredibly inefficient, but these inefficiencies alone are not responsible for the crippling power shortages. The other source of tension involves the accumulation of circular debt in the electricity sector over the past few years. Circular debt is a situation where consumers, electricity producers and the government all owe each other money and are unable to pay. By June 2013 when the new government led by Prime Minister Nawaz Sharif took control, this circular debt had ballooned to $5 billion.16)Bhutta, Zafar, “Circular debt: Power sector liabilities may cross Rs1 trillion by 2014,” The Express Tribune, May 26 2013.

There are several reasons for the accumulation of this debt; the largest problem stems from power theft.17)Pakistan’s Energy Crisis: Power Politics. The Economist, May 21 2012. Many Pakistani elites and even parts of the government do not pay their electricity bills. The law and order situation also prevent power companies from collecting bills in certain parts of the country. As a result, Pakistani electricity companies currently recover only 76 percent of the money that electricity consumers owe them.18)Jamal, Nasir. “Amount of unpaid power bills increases to Rs286bn.” Dawn. Apr 16 2014. In fact, the Pakistani Minister for Water and Power, Mr. Khwaja Muhammad Asif, has acknowledged that the Pakistani government is one of the country’s largest defaulters of electricity bills.19)“Govt one of the biggest electricity defaulters, says Khawaja Asif.” Dawn, May 2 2014. part of recent crackdown, the power ministry cut supplies to the Prime Minister’s home and the Parliament House (among many government offices) because they were delinquent on their electricity bills.20)“Pakistan cuts prime minister’s electricity for not paying bills” Reuters. Apr 29 2014. While many Pakistanis don’t pay their electricity bills, others steal power by illegally hooking into the power grid. This theft coupled with an inefficient electricity grid and the associated transmission loss means that Pakistan’s electricity generators are left with huge financial losses.

All these losses accumulate to form the circular debt and it places power producers in a position where they are unable to purchase enough fuel from abroad to operate power plants at full capacity. With an installed generation capacity of 22500 MW, Pakistan currently has more than enough installed capacity to meet peak demand levels today. The power producers are in reality only able to generate between 12000MW and 15000MW because of both inefficient energy infrastructure and circular debt..21)Kazmi, Shabbir. “Pakistan’s Energy Crisis.” The Diplomat, Aug 31 2013. This actual amount of electricity generated is far less than the 17000 MW of demand nationwide during peak hours of electricity usage.22)Abduhu, Salman. “Lack of funds real reason behind loadshedding.” The Nation, May 9 2014.

The circular debt also makes it more difficult for power producers to invest in upgrading existing electricity infrastructure. If power producers don’t have the money to operate oil based power plants at full capacity, they certainly do not have enough capital to build newer, more efficient power plants. Even when the lights are on, the inefficient electricity system takes an additional toll on the country’s economy. Pakistanis today pay more than double their Indian neighbors for electricity (16.95 Pakistani Rupees vs. 7.36 Pakistani Rupees per KWh respectively),23)Electricity Shock: “Pakistanis Paying the Highest Tariffs in Region.” The Express Tribune, Jan 31 2014. putting Pakistani firms at a further disadvantage compared to regional competitors.


Fixing Pakistan’s Electricity Problems

One of Prime Minister Nawaz Sharif’s first actions after taking office was to pay off the $5 billion in circular debt that had accumulated by July 2013.24)Chaudhry, Javed. “Circular Debt: ‘All dues will be cleared by July’.” The Express Tribune, June 14 2013. Unfortunately, this step alone will not solve the power woes as it does not fix the underlying causes of the country’s power crisis. In fact, the circular debt has accumulate again, and stood at $1.8 billion by January 2014.[25]  To sustainably address the power crisis, Pakistanis need to change their attitude towards power theft by forcing the government and those delinquent to clear outstanding bills. At the same time, Pakistan must improve the efficiency of its electricity sector as well as expand and diversify its electricity generating capacity in order to ensure that the country can handle the expected growth in demand over the coming years.


Hydroelectric Generation

Pakistan has tremendous potential to expand its electricity generating capacity by developing its renewable energy resources. At nearly 30 percent, hydroelectricity is already a major source of electricity generation, but according to the Pakistani government, this reflects only 13 percent of the total hydroelectric potential of the country.25)“Hydropower Resources of Pakistan.” Private Power and Infrastructure Board, Feb 2011. There are several drawbacks of major hydroelectric projects including that they are capital intensive and require extensive time to build. Furthermore, hydroelectric dams are harmful to the local ecosystem and can displace large populations. The U.S. government is actively investing in helping Pakistan develop its hydroelectric resources; in 2011, USAID funded the renovation of the Tarbela Dam.26)USAID Issues $6.66 m for Tarbela Units. Dawn. Mar 9 2011. In the process, this added generation capacity of 128 MW, which is enough electricity for 2 million Pakistanis.27)“Tarbela Dam Project.” USAID, Sept 26 2013.


Solar Energy

solar energy

Figure 2: Pakistan’s Solar Generation Potential28)“Pakistan Resource Maps.” National Renewable Energy Laboratory, Aug 2006.

According to the USAID map of solar potential in Pakistan, the country has tremendous potential in harnessing the sun to generate electricity.  Pakistan has an average daily insolation rate of 5.3 kWH/m2,29)The Feasibility of Renewable Energy in Pakistan, Triple Bottom-Line, 2012. which is similar to the average daily insolation rate in Phoenix (5.38 kWH/m2) or Las Vegas (5.3 kWH/m2), which are some of the best locations in the United States for solar generated electricity.30)“Surface Meteorology and Solar Energy,” NASA, 2013. So far, Pakistan has begun construction on a photovoltaic power plant in Punjab that will begin to produce 100 MW by the end of 2014.31)Quad-e-Azam Solar Power. According to the World Bank some 40,000 villages in Pakistan are not electrified.32)Renewable Energy in Pakistan: Opportunities and Challenges, COMSATS-Science Vision, December 2011. Tapping into these solar resources could easily electrify many of these off the grid villages, while avoiding an increase in demand on the national electricity grid.


Nuclear Energy

Pakistan has three currently active nuclear power plants: two located in Punjab and one in the southern port city of Karachi. The two Chinese built nuclear power plants in Punjab each have a net generation capacity of 300 MW.33)CHASNUPP-1. Nuclear Threat Initiative, 2014. 34)CHASNUPP-2. Nuclear Threat Initiative, 2014. The Karachi power plant, which was built with a reactor supplied by Canada in 1972, has a net generation capacity of 125 MW, enough to provide power to 2 million Pakistanis. 35)KANUPP. Nuclear Threat Initiative, 2014. China has been a key supplier and investor in Pakistani nuclear energy, but there are some concerns regarding the transfer of nuclear technology to Pakistan, where A.Q. Khan’s nuclear network was headquartered. Specifically, China argues that its alliance with Pakistan predates its joining of the Nuclear Suppliers Group (NSG), which has restricted nuclear sales to Pakistan, so this justifies its desire to supply Pakistan with the technology.36)Shah, Saeed. “Pakistan in Talks to Acquire 3 Nuclear Plants From China.” The Wall Street Journal, Jan 20 2014. The Chinese are helping construct four more nuclear power plants, the first of which is expected to be online starting in 2019.37)Mahr, Krista. “How Pakistan and China Are Strengthening Nuclear Ties.” Time, Dec 2 2013. While these plants will add 2,200 MW of generation capacity, these nuclear power projects are expensive;38)Ibid the current nuclear power plants under construction are said to cost about $5 billion per plant, an investment that China is helping finance.39)Ibid


Coal Power

There is a large amount of coal located in the Thar Desert in the southeastern part of the country.40)“Pakistan’s Thar Coal Power Generation Potential.” Private Power and Infrastructure Board, July 2008. While the quality of the coal isn’t the best, Pakistan has a lot of it, nearly 175 billion tons,41)“Discovery Of Ignite Coal In Thar Desert.” Geological Survey of Pakistan, 2009. which is enough to meet current electricity demands for more than 300 years.42)“Nawaz, Zardari launch Thar coal power project.” Dawn, Jan 31 2014. However, Pakistan currently only has one operational coal power plant.

Pakistan is taking steps to develop this resource. In January 2014, Prime Minister Nawaz Sharif and former President Zardari broke ground on a $1.6 billion coal power project in the Thar Desert.43)Ibid. This particular project is expected to be operational by 2017.44)Ibid.

Pakistan has taken some clear steps such as developing its renewable resources and tapping its coal reserves, which can help expand and diversify where and how it generates its electricity. Further harnessing these resources will help alleviate the electricity shortfall. However, these steps alone will not solve the energy crisis. The more difficult solution involves changing the country’s attitude toward power theft, both by private citizens and the government. Convincing people to pay their electricity bills is difficult when even the government itself doesn’t pay its fair share. At the same time, there is less incentive to pay when citizens don’t even have access to a dependable source of electricity when they need it. As long as this attitude is prevalent among Pakistanis from all walks of life as well as the government, the country cannot sustainably solve its energy woes. Circular debt will continue to accumulate and large sections of the country will face hours of darkness each day.

Tackling the energy problem is the first step to strengthening the economy; over time, a growing economy will attract greater investment in the energy sector. Pakistan’s sensitive geographic location could become a strategic asset as it would serve as a bridge linking the economies of Afghanistan and Central Asia with the broader Indian subcontinent. Not only does the population provide Pakistan with a large domestic market, but it also empowers the country with a young, entrepreneurial workforce. This gives Pakistan tremendous potential, but can only be unleashed if the country figures out a way to keep the lights on and the factories humming.


Ravi Patel is a student at Stanford University where he recently completed a B.S. in Biology and is currently pursuing an M.S. in Biology. He completed an honors thesis on developing greater Indo-Pakistan trade under Sec. William Perry at the Center for International Security and Cooperation (CISAC). Patel is the president of the Stanford U.S.-Russia Forum. He also founded the U.S.-Pakistan Partnership, a collaborative research program linking American and Pakistani university students. In the summer of 2012, Patel was a security scholar at the Federation of American Scientists. He also has extensive biomedical research experience focused on growing bone using mesenchymal stem cells through previous work at UCSF’s surgical research laboratory and Lawrence Berkeley National Laboratory.


Nelson Zhao is a fourth year undergraduate at University of California, Davis pursuing degrees in economics and psychology. Nelson is the Vice-President at the Stanford U.S.-Russia Forum and the Program Director at the U.S.-Pakistan Partnership. At the U.S.-Pakistan Partnership, he aims to develop a platform to convene the brightest students in order to cultivate U.S.-Pakistan’s bilateral relations.

Notes   [ + ]

1. Personal Photograph. 2013.
2. “Global Economic Prospects: Pakistan,” The World Bank, 2014.
3. Population Projection Tables by Country: Pakistan. The World Bank. 2014.
4. Ghumman, Khawar, “Increased loadshedding worries Prime Minister,” Dawn, April 24 2014.
5. “Electricity shortfall reaches 2,500MW,” The Nation, Jan 2 2014.
6. Ibid.
7. “Pakistan Energy Yearbook,” Hydrocarbon Development Institute of Pakistan, 2012.
8. “Policy Framework and Package of Incentives for Private Sector Power Generation Projects in Pakistan,” Government of Pakistan, 1994.
9. Beg, Fatima and Fahd Ali, “The History of Private Power in Pakistan,” Sustainable Development Policy Institute, 2007.
10. “Crude Oil Purchase Price.” U.S. Energy Information Administration, 2014.
11. Ibid.
12. Pakistan. U.S. Energy Information Administration.
13. Tirmizi, Farooq, “The Myth of Pakistan’s infinite gas reserves,” The Express Tribune, Mar 14 2011.
14. “Natural Gas Allocation and Management Policy,” Government of Pakistan: Ministry of Petroleum & Natural Resources, Sept 2005.
15. Boone, Jon, “Pakistan’s government deflates dream of gas-powered cars,” The Guardian, Dec 25 2013.
16. Bhutta, Zafar, “Circular debt: Power sector liabilities may cross Rs1 trillion by 2014,” The Express Tribune, May 26 2013.
17. Pakistan’s Energy Crisis: Power Politics. The Economist, May 21 2012.
18. Jamal, Nasir. “Amount of unpaid power bills increases to Rs286bn.” Dawn. Apr 16 2014.
19. “Govt one of the biggest electricity defaulters, says Khawaja Asif.” Dawn, May 2 2014.
20. “Pakistan cuts prime minister’s electricity for not paying bills” Reuters. Apr 29 2014.
21. Kazmi, Shabbir. “Pakistan’s Energy Crisis.” The Diplomat, Aug 31 2013.
22. Abduhu, Salman. “Lack of funds real reason behind loadshedding.” The Nation, May 9 2014.
23. Electricity Shock: “Pakistanis Paying the Highest Tariffs in Region.” The Express Tribune, Jan 31 2014.
24. Chaudhry, Javed. “Circular Debt: ‘All dues will be cleared by July’.” The Express Tribune, June 14 2013.
25. “Hydropower Resources of Pakistan.” Private Power and Infrastructure Board, Feb 2011.
26. USAID Issues $6.66 m for Tarbela Units. Dawn. Mar 9 2011.
27. “Tarbela Dam Project.” USAID, Sept 26 2013.
28. “Pakistan Resource Maps.” National Renewable Energy Laboratory, Aug 2006.
29. The Feasibility of Renewable Energy in Pakistan, Triple Bottom-Line, 2012.
30. “Surface Meteorology and Solar Energy,” NASA, 2013.
31. Quad-e-Azam Solar Power.
32. Renewable Energy in Pakistan: Opportunities and Challenges, COMSATS-Science Vision, December 2011.
33. CHASNUPP-1. Nuclear Threat Initiative, 2014.
34. CHASNUPP-2. Nuclear Threat Initiative, 2014.
35. KANUPP. Nuclear Threat Initiative, 2014.
36. Shah, Saeed. “Pakistan in Talks to Acquire 3 Nuclear Plants From China.” The Wall Street Journal, Jan 20 2014.
37. Mahr, Krista. “How Pakistan and China Are Strengthening Nuclear Ties.” Time, Dec 2 2013.
38. Ibid
39. Ibid
40. “Pakistan’s Thar Coal Power Generation Potential.” Private Power and Infrastructure Board, July 2008.
41. “Discovery Of Ignite Coal In Thar Desert.” Geological Survey of Pakistan, 2009.
42. “Nawaz, Zardari launch Thar coal power project.” Dawn, Jan 31 2014.
43. Ibid.
44. Ibid.

Reframing the Energy Discussion: Cubic Miles of Oil

Courtesy of Shutterstock.

In 2006, the world finally surpassed an enormous benchmark: the consumption of one cubic mile of oil each year. That’s equivalent to 1.1. trillion gallons or 26 billion barrels of oil.

In the conversation surrounding energy consumption, it can be hard to keep interest and sustain any meaningful dialogue as commentators must often wade through various units and conversions in discussing new energy sources. How does a Btu compare to a kWh? How many barrels of oil does it take to produce the same amount of energy as a ton of coal? Continue reading