In closing

lastpageFor a successful technology, reality must take precedence over public relations, for nature cannot be fooled. Nobel prize-winning physicist Richard Feynman, in an appendix to the report on the loss of the space shuttle Challenger.


The first post in this series was put up a little more than two years ago and I’ve written a hundred of them (a dozen more, counting Martin Hellman’s estimable contributions). And, for reasons both personal and professional, it’s time to draw this blog to a close. I have enjoyed writing it and I have enjoyed the thoughtful comments that so many of you have made – I hope that you’ve gotten as much out of it as I have. And, as the habit dies hard, I’d like to take one final opportunity to opine, if I may.

Although the topics covered have been primarily radiological and nuclear-related, I have at times delved into areas of geology, astronomy, the life sciences, and even into philosophy and ethics. But regardless of the topic I have tried to take the same approach to everything – to try to take a skeptical look at the science that underlies claims or stories that are based on science. Anybody can use invective, can rely on “gut” feelings, cast aspersions, and so forth – but if something rests on a foundation of science then it cannot be resolved without understanding that science. And any attempt to circumvent the science tends to be an attempt to circumvent the facts – to bolster an argument that might have little or no basis.

To me, skepticism is of paramount importance – but I need to make sure we’re all on the same page with what is meant by skepticism. First, being skeptical does not mean simply rejecting every claim or statement that’s made – this is simply being contrary, and contrarianism is actually fairly brainless. It doesn’t take much to say “you’re wrong” all the time, and it takes no thought at all to have this as your default response. Being skeptical also doesn’t mean steadfastly opposing a particular point of view, regardless of any information that might support that point of view. This approach is denialism and it also requires little thought or effort.  Skepticism is a bit more difficult a beast – it means questioning, probing, and ultimately deciding whether or not the weight of evidence supports the claim being made. And – very importantly – skepticism also means questioning claims that might support your preconceptions, lest we fall prey to confirmation bias. In fact, I remember looking at some plots of data with my master’s advisor – he commented that “they look plausible but they’re not what I’d expected; so they might just be right.” Skepticism takes work, but if the stakes (intellectual, scientific, technical, societal, or otherwise) are high enough then it’s effort that must be made.

Unfortunately, the reality of science is that what is true is often counter-intuitive, contrary to what we think we see, and different than what we would like to be the case. At one time in the past, for example, fossils were thought to be rocks that looked strangely like bones and shells, the Earth resided at the center of an infinite universe, time moved at the same rate for everybody everywhere, and mountains formed as the Earth slowly shrank due to cooling. That we now know differently is due to past scientists exercising their skepticism, their rationality, and choosing to look beyond what their obvious gut feelings were telling them.

The fact is that the world and the universe run according to the laws of science –astronomers have found fairly convincing evidence that the laws of physics seem to be the same across the universe while geologists and physicists have shown similar consistency over time. Not only that, but the scientific method has been developed, refined, and tested over centuries. To have all of the tools of science available to us and to simply disregard it in favor of an emotional gut feeling is something I just can’t understand. Gut feelings, instinct, and intuition have their place in some areas – fields that are more person-oriented – but they have only limited utility in science-based arguments. Let’s face it – whether we’re talking about radiation dose limits, global warming, nuclear energy, vaccines, or any of the myriad of questions with which we are confronted – if we ignore the science then we cannot arrive at a good answer except by sheer chance. To that end, I’d like to draw your attention to a fascinating website, a checklist, and an associated paper.

These links deal with forecasting – along the lines of weather forecasting, but extended to a number of areas in which people make predictions about what might happen next – but they have relevance to many areas of science. Predictions can take the form of models (such as climate models), calculations of cancer risk from radiation, forecasts of the stock market, or predictions of terrorist activities. People – even trained scientists – are often not very good at assessing these sorts of questions; this is why we have developed the scientific method and why the scientific process can take years or decades to play out. But even then, scientists are frequently too willing to rely on their scientific intuition, to make predictions based on their experience rather than on a scientific process, to overlook (or exclude) information that doesn’t support their hypotheses, and to give excessive weight to studies that agree with them. The principles outlined on the website, checklist, and paper I’ve linked to help all of us to avoid all of the mistakes of thinking that can otherwise lead us astray.

The bottom line is that the universe runs according to science and it doesn’t care what we would like to be true. All of our wishful thinking, outrage, and wishes can’t change the laws of physics; and issues of fairness – even ethics and morality – don’t matter to the universe one whit. If we try to use these principles – regardless of how important they might be in unscientific matters – we will be led astray.

I would like to invite you to continue exercising your own skepticism, especially any time you read (or hear) a story that seems either too good to be true, or too bad to be true. Be on the lookout for pathological science and for arguments that play to the emotions rather than to the rational and the scientific. Being a skeptic doesn’t mean being a contrarian – it means that you ask someone to prove their case to you rather than just accepting it at face value. It also means trying – as much as possible – to remove your feelings from the picture; once you think you’ve figured out what’s going on you can decide how it makes you feel but you can’t use your emotions to solve a scientific problem.

So, as a parting thought, I would urge you to take the time to think carefully about all of the media stories that are (or ought to be) science-based. If claims seem to be incredible – either too good or too dire – ask yourself if they make sense. Take an hour to go through the Standards and Practices for Forecasting (linked to earlier in this post) to see whether or not the argument(s) presented have any legitimate scientific justification, or if they are simply the opinions of scientist, however dressed up they might be. Most importantly, as Ronald Reagan famously told Mikhail Gorbachev with regards to nuclear weapons limits, “trust but verify.”

Again, I’ve enjoyed writing ScienceWonk for the last two years. I very much appreciate the Federation of American Scientists for giving me a home for this blog and I especially appreciate all of you who have taken the time to read it, to comment, and hopefully to think about what I’ve written. Many thanks for your attention – and I hope you have got as much out of it as I have.

The post In closing appears on ScienceWonk, FAS’s blog for opinions from guest experts and leaders.